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ALGEBRAICALLY EQUIVALENT CLONES
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Two functional clones F and G on a set A are said to be algebraically equivalent if sets of
solutions for F - and G-equations coincide on A. It is proved that pairwise algebraically
nonequivalent existentially additive clones on finite sets A are finite in number. We
come up with results on the structure of algebraic equivalence classes, including an
equationally additive clone, in the lattices of all clones on finite sets.

The notion of an algebraic set of a universal algebra A = 〈A;σ〉 ultimately depends not on its
signature σ but on the clone of its term functions. Every functional clone F on a set A is the clone of
term functions in an algebra AF = 〈A;F 〉 the functions in the signature of which are all functions in
F . In [1], therefore, we proposed to treat algebraic sets for any functional clones on A and algebraic
equivalence relations on clones as calques of geometric equivalence relations on universal algebras
with identical universes. For any functional clone F on a set A, a subset B ⊆ An is said to be
n-dimensional F -algebraic if some system of function pairs {f1

i (x1, . . . , xn), f2
i (x1, . . . , xn) | i ∈ I}

in F satisfies the equality
B = {b ∈ An | f1

i (b) = f2
i (b), i ∈ I}.

Denote by AlgnF a collection (which is a complete lattice with respect to a set-theoretic relation
⊆) of all n-dimensional F -algebraic subsets of A, and by Alg F a sequence 〈Alg1F, . . . ,AlgnF, . . .〉
which is defined below as algebraic geometry of a clone F . Two clones F1 and F2 on a set A are
said to be algebraically equivalent (written F1 ∼alg F2) if Alg F1 = Alg F2. (In the language of
algebraic geometry of universal algebras, this corresponds to geometric equivalence of universal
algebras AF1 = 〈A;F1〉 and AF2 = 〈A;F2〉, corrected for conjugation of sequences Alg AF1 and
Alg AF2 by some bijection of the set A onto A.)
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In [1], it was noted that on any set A consisting of at least three elements, there exist mutually
different algebraically equivalent clones, and the question was posed whether such clones exist on
a two-element set. In fact, a similar statement holds also for a two-element set A. To prove this
statement, we need some concepts of universal algebra.

First we recall the concepts of a positive-conditional term for an algebra A = 〈A;σ〉 and of a
corresponding positive-conditional term function on A created in [2]. A positive-conditional term
for A = 〈A;σ〉 is a formula of the form

k∧

i=1

Φi(x1, . . . , xn) → y = ti(x1, . . . , xn), (∗)

where Φi(x1, . . . , xn) is some finite conjunction of term equations of a signature σ, and ti(x1, . . . , xn)
are terms of the same signature if, moreover, the following formulas are true on A:

∀x1, . . . , xn

k∨

i=1

Φi(x1, . . . , xn)

∀x1, . . . , xn(Φi(x1, . . . , xn) ∧ Φj(x1, . . . , xn) → ti(x1, . . . , xn) = tj(x1, . . . , xn))

for any 1 ≤ i, j ≤ k. A function y = f(x1, . . . , xn) on a set A is called a positive-conditional
term function for A if it is defined on A by some positive-conditional term; i.e., the equality
f(a1, . . . , an) = ti(a1, . . . , an) holds for any a1, . . . , an ∈ A with A |= Φi(a1, . . . , an).

For any algebra A = 〈A;σ〉, by PCT (A) we denote the collection (clone) of all positive-
conditional term functions on A for A. Correspondingly, for a functional clone F on A, by PCT (F )
we denote the clone PCT (AF ). An operator PCT : F → PCT (F ) is a closure operator on a lattice
LA of all functional clones on a set A. In other words, for any clones F1 and F2 on A, the following
hold:

(1) F1 ⊆ PCT (F1),
(2) PCT (PCT (F1)) = PCT (F1),
(3) if F1 ⊆ F2, then PCT (F1) ⊆ PCT (F2).
Recall the definition of a discriminator function d(x, y, z) on a set A: for a, b, c ∈ A,

d(a, b, c) =

⎧
⎨

⎩
c if a = b,

a otherwise.

A normal transformation on A is a function n(x, y, z, u) defined by n(x, y, z, u) = d(d(x, y, z),
d(x, y, u), u). In this case, for any a, b, c, d ∈ A,

n(a, b, c, d) =

⎧
⎨

⎩
c if a = b,

d otherwise.

In view of the above, the equation n(x, y, z, u) = z is equivalent to a disjunction of equations x = y

and z = u.
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We call F a discriminator clone if the discriminator function d is contained in F . In [3], the
algebra A = 〈A;σ〉 is defined as an equational domain if the collections AlgnA (for any n ∈ ω)
are closed under unions of finite collections of their elements. There, also, numerous examples of
equational domains are found among groups, rings, Lie algebras, and other classical algebras. A
clone F on a set A is equationally additive if the algebra AF = 〈A;F 〉 is an equational domain.
In view of what has been remarked in relation to the equation n(x, y, z, u) = z, for any normal
transformation n on A, every discriminator clone F on a finite set A (finiteness is required for
F -algebraic sets to be defined by a finite system of F -equations) will be equationally additive.

LEMMA 1. For every equationally additive clone F , F ∼alg PCT (F ).
Proof. Since F ⊆ PCT (F ),

AlgnF ⊆ AlgnPCT (F )

for any n ∈ ω. The definition of positive-conditional terms implies that any PCT (F )-equation
is equivalent to a finite disjunction of some systems of F -equations. Thus, for an equationally
additive clone F , we have AlgnPCT (F ) ⊆ AlgnF ; i.e., the clones F and PCT (F ) are algebraically
equivalent.

Denote by Fd a functional clone on a set {0, 1} generated by the discriminator function d on
{0, 1}. The clone Fd is equationally additive, and by virtue of Lemma 1, Fd ∼alg PCT (Fd). In
order to prove that the relation ∼alg is nontrivial on clones on {0, 1}, it suffices to observe that
Fd �= PCT (Fd).

Denote by h(x, y, z) a function on {0, 1} defined by the following positive-conditional term for
A = 〈{0, 1}; d〉:

h(x, y, z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = y → x,

x = z → x,

y = z → y.

We show that h /∈ Fd. First, note that d(x, x, y) = y, d(x, y, x) = x, and d(y, x, x) = y.
By induction on the structural complexity of a term t(x, y, z) in the signature consisting of the
discriminator function d(x, y, z), we prove that there exists an identification of variables x, y, z (x
and y, or x and z, or y and z) such that the value of t(x, y, z) will coincide with a third unidentifiable
variable. On the other hand, by virtue of the definition of a function h(x, y, z), its value will always
coincide with the value of an identifiable variable. Hence h /∈ Fd and Fd �= PCT (Fd), whereas
PCT (Fd) ∼alg Fd by Lemma 1. Thus ∼alg is not a trivial relation on the collection of all clones on
a two-element set. In view of the above-mentioned nontriviality of ∼alg on a collection of clones on
any set consisting of at least three elements, we obtain

Assertion 1. On the collection of all clones on any nonsingleton set, the algebraic equivalence
relation is nontrivial.

THEOREM 1 [4]. For any equational domains A0 = 〈A;σ0〉 and A1 = 〈A;σ1〉 with common
universe A, the following conditions are equivalent:
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(1) Alg A0 = Alg A1 and SubA0 = SubA1;
(2) PCT (A0) = PCT (A1).

Here SubA is the subalgebra lattice of A.
Recall that an inner homomorphism of an algebra A is a homomorphism of some subalgebra

of A onto some subbialgebra of A.
A characterization of positive-conditional term functions on finite algebras is given in the

following:

THEOREM 2 [2]. For every finite algebra A = 〈A;σ〉 and for an arbitrary function
f(x1, . . . , xn) on a set A, the following conditions are equivalent:

(a) f is a positive-conditional term function for A;
(b) subalgebras of A are closed with respect to f and f commutes with all inner homomorphisms

of A.
Note that subalgebras of A can be identified with idempotents of a semigroup Ihm A of inner

homomorphisms of A.
Theorem 2 gives rise to

COROLLARY. For finite algebras A0 = 〈A;σ0〉 and A1 = 〈A;σ1〉 with common universe A,
the conditions PCT (A1) = PCT (A0) and Ihm A1 = Ihm A0 are equivalent.

Among the initial natural questions associated with the relation ∼alg on the collection FA of all
clones on the set A are questions on the cardinality of a factor set |FA/ ∼alg | and on the structure
of classes F/ ∼alg for F ∈ FA as subsets of the lattice LA of all clones on A.

We start by proving the following:

THEOREM 3. For any finite set A, pairwise algebraically nonequivalent equationally additive
clones on A are finite in number.

Proof. Let A be some finite n-element set, FA be the collection of all equationally additive
functional clones on A, and F1, F2 ∈ FA. A relation ∼ on FA is defined as follows: F1 ∼ F2

iff Alg AF1 = Alg AF2 and SubAF1 = SubAF2 . By virtue of Theorem 1, for any F1, F2 ∈ FA,
F1 ∼ F2 implies PCT (AF1) = PCT (AF2), which in turn entails Ihm AF1 = Ihm AF2 (in view of
the corollary). Thus, since the number of semigroups of maps of subsets of A onto similar subsets
(the number of potential semigroups of inner homomorphisms of algebras with universe A) is finite,
the number of ∼-equivalence classes of the form F/ ∼alg for F ∈ FA is finite.

Algebraic equivalence on clones is rougher than ∼-equivalence; therefore, pairwise algebraically
nonequivalent equationally additive clones on a finite set are also finite in number. Theorem 3 is
proved.

Now we consider the question on the structure of classes of algebraically equivalent clones on
A as subsets of the lattice LA of all clones on A (w.r.t. ⊆). Obviously, the collection F/ ∼alg is a
convex set in LA for any clone F on A.

In [1], on the collection FA of all clones on the set A, a metric d is naturally introduced by
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setting, for F1, F2 ∈ FA,

d(F1, F2) =

⎧
⎨

⎩

1

min{n∈ω′|F (n)
1 
=(F2)(n)}

if F1 �= F2,

0 otherwise.

Here ω′ = ω \ {0} and F (n) is the collection of all n-ary functions in F . In [1], also, it was noted
that the operations ∧ and ∨ of LA are continuous on the space 〈FA; d〉.

Again it is obvious that F/ ∼alg are closed sets of the metric space 〈FA; d〉.
The convexity of collections F/ ∼alg in the lattice LA allows us to dub the conjecture that

F/ ∼alg is an interval in LA. However, the examples below show that this is not the case. Moreover,
the collection F/ ∼alg may not even be directed (neither upward nor downward) in LA.

Example 1. Let be A an arbitrary set consisting of at least four elements and B1, B2 ⊆ A,
with |B1|, |B2| ≥ 2 and B1∩B2 = ∅. Let Fi be clones of all functions on A which either have values
in the set Bi or are selectors on A. Then for any n ∈ ω we have AlgnFi = P (An) (where P (C) is
the collection of all subsets of C). Therefore, F1 ∼alg F2. At the same time, F1 ∧ F2 consists only
of selector functions, and hence Algn(F1 ∧F2) �= P (An); i.e., F1 ∧F2 �alg F1 ∼alg F2 and the class
Fi/ ∼alg is not a down-directed subset of the lattice LA.

Example 2. Let A be as in Example 1 and {B1, B2, B3} be a partition of A into nonempty
subsets, with |B3| ≥ 2. Let bi ∈ Bi for i = 1, 3. Unary functions g1 and g2 on A are defined as
follows:

g1(x) =

⎧
⎨

⎩
b1 if x ∈ B1,

b3 if x ∈ B2 ∪ B3,
g2(x) =

⎧
⎨

⎩
b1 if x ∈ B1 ∪ B2,

b3 if x ∈ B3.

Let Fi be functional clones on A generated by functions gi. Since g2
i = gi, the function

h(x1, . . . , xn) is contained in Fi iff it is a selector function, or h(x1, . . . , xn) = gi(xj) for some
j ≤ n.

It is easy to see that AlgnF1 = AlgnF2 for any n ∈ ω. Thus F1 ∼alg F2. Moreover, Alg1Fi =
{∅, A, {b1, b3}} (solution for gi(x) = x).

At the same time, if F includes clones F1 and F2, then the set B1 ∪ B3 (solution for g1(x) =
g2(x)) is contained in Alg1F , and F �alg F1 ∼alg F2. This means that the classes F/ ∼alg are not
generally up-directed subsets of the lattice LA.

For the case where A is finite, however, for equationally additive clones F on a set A we can
have some description of classes F/ ∼alg as subsets of LA.

In Lemma 1, it was mentioned that for the case of an equationally additive clone F , the clones
F and PCT (F ) are algebraically equivalent. We show that such is not the case in general.

Example 3. Let |A| = 9 and {B1, B2, B3} be a partition of A such that |B1| = 2, |B2| = 3,
and |B3| = 5. Suppose that the function g(x) is a 2-cycle on B1, a 3-cycle on B2, and a 5-cycle on
B3. Assume that F is a clone on A generated by the function g. Then Alg1F = {∅, A,B1, B2, B3}.
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Let a PCT (F )-function on A be defined by the positive-conditional term

h(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g2(x) = x → x,

g3(x) = x → x,

g5(x) = x → x2.

Therefore, B1∪B2 is a solution for a PCT (F )-equation h(x) = x, and hence Alg1PCT (F ) �= Alg1F ;
i.e., PCT (F ) �alg F .

For any closure operator g(x) on the lattice L, a convex subset B of L is called an upper
semi-interval generated by the operator g if g(b) = b and B = {c ∈ L : g(x) = b} for some b ∈ B.
Obviously, b = supB in this case.

THEOREM 4. For any finite set A and for an arbitrary equationally additive clone F on A,
the class F/ ∼alg is a union of finitely many upper semi-intervals generated by the closure operator
PCT on the lattice LA.

Proof. As noted, for every equationally additive clone F in FA, the class F/ ∼alg, along with
any clone F1 contained in it, includes the entire interval [F1, PCT (F1)] of LA (since Alg PCT (F1) =
Alg F1) and, hence, the entire upper semi-interval generated by the operator PCT with the greatest
element PCT (F1). It remains to note (as we did in the proof of Theorem 3) that the number of
such upper semi-intervals is finite, or, which is the same, the number of PCT -closed clones on A

(i.e., F in FA such that PCT (F ) = F ) is finite.
By Theorem 1, the number of different upper semi-intervals relative to the operator PCT that

are contained in the class F/ ∼alg does not exceed 22|A| for an equationally additive clone F on A.
In conclusion, once again we point out the still open question as to the cardinality of sets

FA/ ∼alg, for finite A included.
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