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SPECTRUM OF THE FIELD OF COMPUTABLE
REAL NUMBERS
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Necessary and sufficient conditions for a Turing degree to be an element of the spectrum
of the classical field of computable real numbers are established.

Within the framework of computable analysis, we investigate properties of computable elements
employing numbering theory [1] and computable model theory [2, 3]—namely, the spectrum of the
ordered field of computable real numbers.

The results in [4-6] show that many topological spaces, for instance, real numbers and complete
computable metric spaces, have no computable numberings of computable elements. This gives rise
to the natural problem of describing all Turing degrees a such that the structure of computable
elements of a topological space admits an a-computable presentation, i.e., a presentation in which
basic relations and functions will be a-computable. In other words, the question on characterization
of the spectrum of this structure arises naturally.

We look into this question for the ordered field of computable real numbers Rc = 〈Rc,+, ·, 0,
1,≤〉. That 0 �∈ Spec (Rc) was well known for a long time [4, 5], yet a full characterization of
Spec (Rc) remained an open problem. We will prove that a ∈ Spec (Rc) iff a′ ≥ 0′′. This class
of degrees was explored in [7], where it was shown that it is the spectrum of some computable
structures.
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We proceed to definitions, notation, and auxiliary results. The reader is assumed to be familiar
with the basics of numbering theory [1], recursion theory [8], and computable analysis [9].

Definition 1. A real number x ∈ R is said to be computable if one of the following equivalent
conditions holds:

(1) there exists a computable sequence of rational numbers {qn}n∈ω such that |qi+1 − qi| < 1
2i

for all i ∈ ω and lim
i→∞

qi = x;

(2) the left and right Dedekind cuts, i.e., x− = {q ∈ Q | q < x} and x+ = {q ∈ Q | q > x}, are
computably enumerable.

Put Rc = 〈Rc,+, ·, 0, 1,≤〉. That Rc is a field was first noted in [10]. Moreover, Rc is an
Archimedean real-closed field.

Definition 2. Let a be a Turing degree. We say that a structure A = 〈A,σ〉 admits an a-
computable presentation if there is a numbering ν : ω → A such that relations and operations in
the signature, including equality, are a-computable (computable relative to some oracle in a) with
respect to the numbering ν. A pair (A, ν) is called an a-computable structure, and we refer to the
numbering ν as its a-computable presentation (a-constructivization).

Definition 3. The spectrum of a countable structure A, denoted Spec (A), is the collection of
all Turing degrees a such that A admits some a-computable presentation.

If F and G are functions from ω to ω, then we say that F dominates G if F (n) > G(n) for all
sufficiently large n. A function from ω to ω is called a dominant if it dominates every computable
function from ω to ω. The following characterization of Turing degrees of a dominant is well known.

PROPOSITION 1 [11]. For any Turing degree a, a′ ≥ 0′′ if and only if there exists a dominant
of degree less than or equal to a.

As usual, we denote the family of all total computable functions from ω to ω by Stot, and its
index set by Tot [12]. Let ϕn denote the nth partial computable function in the Kleene numbering
and ϕs

n(x) be the result of the computation of ϕn(x) in no more than s steps. We say that Stot

admits an a-computable numbering if there exists a numbering ν : ω → Stot which is a-computable
as a function of two variables.

By analogy with Definition 3, we define the spectrum of the family Stot, i.e., Spec (Stot) is the
collection of all Turing degrees a such that Stot admits some a-computable numbering.

PROPOSITION 2. If a ∈ Spec (Stot), then a′ ≥ 0′′.
Proof. Let νtot : ω → Stot be an appropriate numbering. It is not hard to see that the a-

computable function
F (n) = max

i≤n
ν(i)(n) + 1

is a dominant. From Proposition 1, it follows that a′ ≥ 0′′. �

PROPOSITION 3. If a ∈ Spec (Rc), then a ∈ Spec (Stot).
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Proof. We define a function 〈·〉 : R → (0, 1] as

〈x〉 =

⎧
⎨

⎩
{x}, x �∈ Z,

1, x ∈ Z,

where {x} is the fractional part of x.
Define a numbering ν̂ of the set

Ŝ = {f ∈ Stot | im(f) ⊆ {0, 1} and ∃∞if(i) = 1}

by the following rule:

ν̂(n)(i) = ci, where 〈(ν(n))〉 =
i∑

k=1

ck

2k
+ y and 0 < y ≤ 1

2i
.

Put

λ(n)(0) = 0;

λ(n)(s + 1) = μ i [i > λ(n)(s) ∧ ν̂(n)(i) = 1].

Let νtot(n)(i) = λ(n)(i + 1) − λ(n)(i) − 1. By construction, the function νtot is the required a-
computable numbering of Stot. �

THEOREM 1. If a ∈ Spec (Rc), then a′ ≥ 0′′.
The proof follows from Prop. 3. �

Below, for A ⊆ ω, we use the notation A[n] = {k | c(n, k) ∈ A} and write A(x) = 1 if χA(x) = 1.
A refinement of Jockusch’s theorem [13] is

THEOREM 2. The following assertions are equivalent:
(1) a′ ≥ 0′′;
(2) a ∈ Spec (Stot);
(3) there exist an a-computable numbering νtot : ω → Stot and a computable surjection h :

ω → ω such that:
(3a) ∀ϕn ∈ Stot)∃t(h(t) = n ∧ νtot(t) = ϕn);
(3b) ϕn �∈ Stot → ∀t(h(t) = n → ∃N(∀s ≥ N) νtot(t)(s) = 0);
(3c) (ϕn ∈ Stot ∧ h(t) = n ∧ νtot(t) �= ϕn) → ∃N(∀s ≥ N) νtot(t)(s) = 0.
Proof. (1) → (3) Assume a′ ≥ 0′′. By Proposition 1, there exists an a-computable dominant

F : ω → ω. Put

A[n](k) = 1 ↔ (∃s ≤ F (k))(∀l ≤ k)ϕs
n(l) ↓ ∧ϕs

n(l) ≤ F (k).

The set A has the following properties:
if n ∈ Tot then A[n] =∗ ω, i.e., ω \ A[n] is finite;
if n �∈ Tot then A[n] =∗ ∅, i.e., A[n] is finite;
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A is a-computable.
Indeed, if ϕn is total then functions hn(x) = max

l≤x
ϕn(l) and sn(x) = min{s | ∀(l ≤ x)ϕs

n(l)↓}
are also total and computable. Therefore, F dominates the functions, i.e., ∃N(∀k ≥ N)F (k) ≥
hn(k) ∧ F (k) ≥ sn(k). By definition, A[n](k) = 1 for all sufficiently large k, i.e., the first property
holds. Assume ϕn is not total and N is the maximal number such that [0, . . . , N ] ⊆ dom(ϕn).
Then A[n](k) = 0 for all k > N , i.e., the second property holds. The third property follows from
the definitions.

Now we construct νtot(t) for t = c(n, k). First we define the relation

P (t,m, z) � (z = 0 ∧ (∃l ≥ k)A[n](l) = 0) ∨ (z = ϕn(m)

∧ ∃s(∀i ≤ m)ϕs
n(i) ↓ ∧∀k(k < l ≤ m → A[n](l) = 1)).

We have P ∈ Σ0
1[a] and dom(P ) = {(t,m) | ∃zP (t,m, z)} = ω2. Therefore, by uniformization,

there exists a total a-computable function g : ω2 → ω such that:
gt(m) ∈ {0, ϕn(m)};
if gt(m) �= ϕn(m) then (∃l ≥ k)A[n](l) = 0;
if gt(m) = ϕn(m) then (∃s)(∀i ≤ m)ϕs

n(i)↓;
if (∃l ≥ k)A[n](l) = 0 then (∃N)(∀m ≥ N) gt(m) = 0;
if ϕn is total and (∀l ≥ k)A[n](l) = 1, then gt = ϕn, where gt(m) = g(t,m).
Put νtot(t) = gt and h(t) = l(t). These, in view of the above properties, are the required

functions. Indeed, if ϕ ∈ Stot then, by the construction of A, there exists k such that (∀l ≥
k)A[n](l) = 1. Put t = c(n, k); then we have νtot(t) = ϕn and h(t) = n. Verification of (3a) is
completed. Properties (3b) and (3c) are straightforward.

(3) → (2) Follows from the definition of Spec.
(2) → (1) Follows from Prop. 2. �

Before describing basic constructions, we state a proposition, which is interesting in its own
right.

PROPOSITION 4. Suppose L =
〈
L,≤, ci|i∈ω

〉
is a linear order with distinguished constants

and ν : ω → L is a numbering such that:
(1) C = {cL

i | i ∈ ω} is dense in L, with cL
i �= cL

j for i �= j;
(2) there exists a computable function f : ω → ω such that ν(f(i)) = cL

i ;
(3) ν−1(<) ∈ Σ0

1;
(4) ν−1(C) ∈ Δ0

2.
Then there exists a numbering μ : ω → L such that (L, μ) is a computable structure.

Proof. Let E = ν−1(C). By the limit lemma [12], there exists a strongly computable sequence
of finite sets E0, E1, E2, . . . such that E = lim

s→∞
Es. We construct a required μ employing the finite

injury method.
At every stage s ∈ ω, we construct a finite function μs : {0, . . . , 2s − 1} → ω and finite sets

Cs ⊂ im(f) and Bs ⊂ ω such that:
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ν(μs(2i)) = ν(f(i)) for i < s;
ν ◦ μs restricted to {i | i ≤ 2s − 1 and i is odd} is injective;
Bs = f−1(Cs).
Stage 0. Let μ0 = ⊥, C0 = ∅, and B0 = ∅.
Before embarking on the next stages, we note that for every n ≤ s + 1 there exists t ≥ s + 1

such that one of the following properties holds:
(a) n ∈ Et;
(b) at a stage no higher than t, we computed ν(n) �= ν(i) for all ν(i)|i∈Cs .
For every n ≤ s+1, we denote the least t satisfying (a) or (b) by t(n, s). If, for t(n, s), property

(b) holds then n is called a b-number If, for t(n, s), property (a) holds and property (b) does not,
then n is called an a-number. We say that an a-number n is active at stage s + 1 if there exists
mn for which n = μs(mn) and n �∈ Cs. We say that a number n ≤ s + 1 requires attention at stage
s + 1 if one of the following cases holds:

(c) n is an a-number which is active at stage s + 1;
(d) n is a b-number such that:
n �∈ im(μs);
at stage ≤ s + 1, we computed that ν(n) �= ν(l) for all l < n.
Stage s + 1. We search for a least number n ≤ s + 1 that requires attention at stage s + 1. If

there is no such n then we proceed to step A. If there is such n and n is an a-number then we
proceed to step B. If there is such n and n is a b-number then we proceed to step C.

Step A. Using the density of C in L, we search for a least i0 such that f(i0) �∈ Cs and f(i0) �=
f(s). Put

μs+1(2i + 1) =

⎧
⎨

⎩
μs(2i + 1), i < s,

f(i0), i = s,

Cs+1 = Cs ∪ {f(i0)} ∪ {f(s)}, Bs+1 = Bs ∪ {i0} ∪ {s}.

Proceed to the next stage.
To describe the other parts of stage s+1, we associate μs with a structure Ls = 〈Ls, σs〉, where

Ls = ν(im(μs)) and σs = (<, {ci}i∈Bs , {di}i≤s). Its partial positive atomic diagram Ds is defined
as follows:

—the interpretation of constants: cLs
i = ν(f(i)) and dLs

i = ν(μs(2i + 1));
—Ds contains all the results obtained under the replacement in the formula x < y of variables

x, y by constants from σs whose truth in Ls was computed at stage ≤ s + 1.
Step B. Since n is active at stage s + 1, using the density of C in L, we search for a least j

such that j �= s and 〈L, σs〉 |= Ds, where interpretations of constants are as follows:

cL
i = ν(f(i)) and dL

i =

⎧
⎨

⎩
ν(μs(2i + 1)), i �= mn,

ν(f(j)), i = mn.
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Then we search for a least i0 such that i0 �= j, i0 �= s, and f(i0) �∈ Cs. Put

μs+1(2i + 1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μs(2i + 1), i �= mn, i < s,

f(j), i = mn,

f(i0), i = s,

Cs+1 = Cs ∪ {f(j)} ∪ {f(i0)} ∪ {f(s)}, Bs+1 = Bs ∪ {j} ∪ {i0} ∪ {s}.

Proceed to the next stage.
Step C. Let

Fs = {m | m ∈ dom(μs), f(m) �∈ Cs, μs(m) > n, m is odd}.

Using the density of C in L, we construct a finite injection j : Fs → ω such that j(m) = jm,
f(jm) �∈ Cs, ν(f(jm)) �= ν(n), for all m ∈ Fs, and 〈L, σs〉 |= Ds, where interpretations of constants
are as follows:

cL
i = ν(f(i)) and dL

i =

⎧
⎨

⎩
ν(μs(2i + 1)), 2i + 1 �∈ Fs,

ν(f(jm)), 2i + 1 ∈ Fs.

Define

μs+1(2i + 1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μs(2i + 1), 2i + 1 �∈ Fs, i < s,

f(j(2i + 1)), 2i + 1 ∈ Fs,

n, i = s,

Cs+1 = Cs ∪ {f(jm) | m ∈ Fs} ∪ {f(s)}, Bs+1 = Bs ∪ j(Fs) ∪ {s}.

Proceed to the next stage. The construction is completed.
It is clear that μs meets the inductive requirements. Let

μ(m) = ν( lim
s→∞

μs(m)).

The following lemmas establish properties of μ.

LEMMA 1. (a) Along the construction process, the value μs(m) can be changed only finitely
many times for all m.

(b) For all m, if there exist s and j such that μs(m) = f(j) and f(j) ∈ Cs, then μs′(m) = f(j)
for all s′ ≥ s.

(c) If, for some m, we have μs(m) = n and μs+1(m) �= n, then n �∈ im(μs+1).
(d) For all n, there exists s0 such that (∀s ≥ s0)(n ∈ im(μs0) ↔ n ∈ im(μs)).
Proof. Claims (a)-(c) are straightforward from the construction.
(d) Assume n ∈ im(μs) \ im(μs+1). This means that at every stage s + 1, either there exists

l < n such that l �∈ im(μs) or there exists an a-number k < n which is active at stage s + 1. By
inductive reasoning, it is easy to see that after some stage s0 both of the cases will not hold. �

490



LEMMA 2. The function μ(m) = ν( lim
s→∞

μs(m)) is well defined and it is a numbering of L.
Proof. The well-definedness follows from Lemma 1. We show that im(μ) = L. Assume n is a

least number such that ν(n) �∈ im(μ). In particular, n �∈ im( lim
s→∞

μs), ν(n) �∈ C, and n �∈ E. In view
of Lemma 1 and the description of step C, it follows by assumption that after every stage s1 such
that n �∈ im(μs1) there exists a stage s2 > s1 such that n ∈ im(μs2). Therefore, there exists s0 such
that, for all s ≥ s0, n ∈ im(μs)∧ n �∈ Es, all a-numbers k < n are nonactive at stage s + 1, and all
b-numbers z < n are already in im(μs). For some m, the value μs(m) = n will not be changed at
stages s ≥ s0, i.e., n = lim

s→∞
μs(m), which contradicts the assumption. �

LEMMA 3. (L, μ) is a computable structure.
Proof. Since (L, σs0) |= Ds0 implies (L, σs0+1) |= Ds0 under constant interpretation changes

according to the construction, it is clear that the truth value of ν(μs(m)) < ν(μs(l)) is preserved
at all stages s ≥ s0. Therefore, μ−1(<) is a computably enumerable relation. Since ν(μs(2i+ 1)) �=
ν(μs(2j+1)) for i �= j, it is sufficient to construct an algorithm which, given i and j, decides whether
ν(μ(2i + 1)) = cj . Using the construction, we can effectively find s > i such that f(j) ∈ Cs. Thus
μ(2i+1) = cj iff μs+1(2i+1) = f(j). Therefore, the equality is computable with respect to μ. The
lemma is completed proving the proposition. �

It is worth observing that Proposition 4 can be relativized to any oracle a. We show that for
(Rc ∩ [−1, 1],≤, cr|r∈Dyadic∩[−1,1]) and a′ ≥ 0′′, there exists a numbering ν satisfying the conditions
of the relativized version of Prop. 4 (here Dyadic denotes all dyadic numbers). Using the function

H(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, n = 0,

1 n is even,

−1, n is odd,

and the numbering νtot in Theorem 2, we define

ν(n) =
∑

k∈ω

bk2−(k+1), where bk = H(νtot(n)(k)).

It is easy to see that D = {cRc
i ∈ [−1, 1]}i∈ω is dense in Rc ∩ [−1, 1] and ν−1(<) ∈ Σ0

1[a]. We show
that ν−1(D) ∈ Δ0

2[a]. Let x = ν(m) be associated with νtot(m). Using h such as in Theorem 2, we
write the condition that m ∈ ν−1(D) in an equivalent form for n = h(m):

(ϕn ∈ Stot∧((∃N)(∀s ≥ N)ϕn(s) is even ∨ (∃N)(∀s ≥ N)ϕn(s) is odd

∨ (∃N)(∀s ≥ N)ϕn(s) = 0 ∨ νtot(m) �= ϕn)) ∨ ϕn �∈ Stot.

The properties of νtot (see Thm. 2) and the Π0
2-completeness of Tot imply that ν−1(D) is a′-

computable, i.e., ν−1(D) ∈ Δ0
2[a]. This entails the following:

PROPOSITION 5. If a′ ≥ 0′′ then there exists a numbering μ : ω → Rc such that
(
〈
Rc,≤, cr|r∈Diad

〉
, μ) is an a-computable structure.
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The proof follows from Proposition 4 and the argument above. �

Proposition 5 highlights fundamental ideas and steps in the proof of Theorem 4, which is the
main result of the present paper. In order to establish Theorem 4, we prove the following statements.
The real closure of an ordered field (F,≤) will be denoted by [F ]rcl. First note that the field [Q]rcl

admits a computable presentation [2] and can be embedded in any real-closed field [14].
Let ([Q]rcl, ν0) be a computable structure. In the lemmas and proposition that follow, we

assume that F = 〈F, σc〉 is an Archimedean countable real-closed field with signature σc =
{≤, +, ·, 0, 1, ci|i∈ω}. Suppose that ν : ω → F is a numbering and an intermediate subfield
Q ≤ C ≤ [Q]rcl admits a computable presentation νc for which cF

i = νc(i). Since the field [Q]rcl

is rigid and computably categorical, we have νc ≤ ν0; i.e., there exists a computable function
f : ω → ω such that νc = ν0 ◦ f . Put

ADν = {n̄ ∈ ω<ω | ν(n̄) is a tuple of algebraically dependent elements}.

LEMMA 4. (1) Let {pi(x) > 0 | i ≤ k} be a finite set of formulas where pi ∈ F [x] and F [x]
is the ring of polynomials in one variable. The following statements hold:

(1.1) if there exists a ∈ F such that

F |=
k∧

i=0

pi(a) > 0,

then there exists an Archimedean ordering of F (x) such that

F (x) |=
k∧

i=0

pi(x) > 0;

(1.2) if there exists a ∈ F such that

F |=
k∧

i=0

pi(a) > 0,

then there exists b ∈ Q such that

F |=
k∧

i=0

pi(b) > 0.

(2) Let {pi(x̄) > 0 | i ≤ k} be a finite set of formulas where pi ∈ F [x̄] and F [x̄] is the ring of
polynomials in several variables x̄. The following statements are equivalent:

(2.1) there exists a tuple ā ∈ F<ω such that

F |=
k∧

i=0

pi(ā) > 0;
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(2.2) there exist a tuple b̄ ∈ Q<ω such that

F |=
k∧

i=0

pi(b̄) > 0.

Proof. The statements follow from quantifier elimination in strictly ordered fields [15] and
topological properties of Archimedean fields. �

PROPOSITION 6. Suppose (F, ν) and ADν satisfy the following properties:
(1) ADν ∈ Δ0

2;
(2) (F, ν) is a numerated (effective) algebra, i.e., there are computable functions f : ω → ω,

g+ : ω × ω → ω, and g∗ : ω × ω → ω such that ν(f(i)) = cF
i , ν(n) + ν(m) = ν(g+(n,m)), and

ν(n) · ν(m) = ν(g∗(n,m));
(3) the sets {(m, r) ∈ ω × Q | F |= ν(m) > r} and {(m, r) ∈ ω × Q | F |= ν(m) < r} are

computably enumerable.
Then there exists a numbering η : ω → F such that (F, η) is a computable structure.
Proof. In order to simplify the proof, we assume that C = Q. First, employing the finite

injury method, we construct a numbering μ of an appropriate X ⊆ ω for which F is algebraic over
Q(ν(X)).

The existence of a required η will follow from Ershov’s theorem [2] formulated below as
Theorem 3. By the limit lemma (see [12]), there is a strongly computable sequence of finite sets
E0, E1, E2, . . . such that ADν = lim

s→∞
Es.

Let λ : ω → V be a standard numbering of V = Q[x̄] \ {0}, where Q[x̄] = Q[xi | i ∈ ω]. For
simplicity, the elements of V are called rational polynomials. At every stage s ∈ ω, we construct
a finite function μs : {0, . . . , 2s − 1} → ω, finite sets Cs ⊂ im(f), Bs ⊂ ω, and Bs = f(Cs), a
language σs, a finite structure with partial positive diagram (Fs,Ds), and a value t(s) ∈ ω.

Stage 0. Let μ0 = ⊥, C0 = ∅, B0 = ∅, Fs = {0, 1}, Ds = ∅, and σ0 = ∅.
For every n ≤ s + 1, under the assumption that a tuple m̄ contains all elements of im(μs)

which are no higher than n and are not contained in Cs, there exists t ≥ s + 1 such that one of the
following properties holds:

(a) m̄ � n ∈ Et;
(b) at a stage no higher than t, for polynomials p(x̄) such that λ−1(p) ≤ s we verified that

p(ν(m̄ � n)) �= 0,
where the symbol � denotes the concatenation of a tuple and an element.

For every n ≤ s + 1, we denote the least t satisfying (a) or (b) by t(n, s) and put t(s) �
max

n∈im(μs)
(t(n, s)). If, for t(n, s), property (b) holds, then n is called a b-number. If, for t(n, s),

property (a) holds and property (b) does not, then n is called an a-number. We say that an a-
number n is active at stage s + 1 if there exists mn such that n = μs(mn) and n �∈ Cs. We say that
a number n ≤ s + 1 requires attention at stage s + 1 if one of the following cases holds:

(c) n is an a-number which is active at stage s + 1;

493



(d) n is a b-number such that:
—n �∈ im(μs),
—for a tuple m̄ of elements of im(μs) which are ≤ n and �∈ Cs, m̄ � n �∈ Et.

We construct μs with the following inductive properties:
—ν(μs(2i)) = ν(f(i)) holds for i < s;
—ν ◦ μs restricted to {i | i ≤ 2s − 1 and i is odd} is injective;
—for rational polynomials p(x̄) with λ−1(p) ≤ s we verified that p(ν(w̄s)) �= 0 in no more than

t(s) stages for all tuples w̄s such that set(w̄s) = ws, where ws = im(μs) \ Cs.
We associate μs with a structure Fs = 〈Fs, σs〉, where

Fs = ν(im(μs)),

Γs = {Γp | where p is a rational polynomial such that λ−1(p) ≤ s,

in no more than t(s) stages we verified that p(ν(w̄)) > 0},
σs = (<, {ci}i∈Bs , {di}i≤s, Γs),

and with its positive diagram Ds defined as follows:
—the interpretation of constants: cFs

i = ν(f(i)) and dFs
i = ν(μs(2i + 1));

—the interpretation of predicates: Fs |= Γp(ν(w̄)) if in no more than t(s) stages we verified that
p(ν(w̄)) > 0;

—Ds contains all the results obtained under the replacement in the formulas x1 < x2 and
Γp(x1, . . . , xl) of variables x1, . . . , xl by constants from σs whose truth in Fs was computed in no
more than t(s) stages.
It is easy to see that Ds is completely defined by the language σs. At later stages, we define σs via
μs and construct μs+1 using σs.

Stage s + 1. We search for a least number n ≤ s + 1 that requires attention at step s + 1. If
there is no such n, then we proceed to step A. If there is such n and n is an a-number, then we
proceed to step B. If there is such n and n is a b-number, then we proceed to step C.

Step A. Using the density of C in F , we search for a least i0 > s such that f(i0) �∈ Cs and the
inductive properties defined above hold for μs+1.

Put

μs+1(2i + 1) =

⎧
⎨

⎩
μs(2i + 1), i < s,

f(i0), i = s,

Cs+1 = Cs ∪ {f(i0)} ∪ {f(s)}, Bs+1 = Bs ∪ {i0} ∪ {s}.

Proceed to the next stage.
Step B. Since n is active at stage s + 1, using the density of C in L, being Archimedean for F,

and Lemma 4, we search for a least j such that j �= s and 〈F, σs〉 |= Ds, where interpretations of
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constants are as follows:

cF
i = ν(f(i)) and dF

i =

⎧
⎨

⎩
ν(μs(2i + 1)), i �= mn,

ν(f(j)), i = mn.

Next we search for a least i0 such that i0 �= j, i0 �= s, f(i0) �∈ Cs, and the inductive properties
defined above hold for μs+1. Put

μs+1(2i + 1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μs(2i + 1), i �= mn, i < s,

f(j), i = mn,

f(i0), i = s,

Cs+1 = Cs ∪ {f(j)} ∪ {f(i0)} ∪ {f(s)}, Bs+1 = Bs ∪ {j} ∪ {i0} ∪ {s}.

Proceed to the next stage.
Step C. Let

Fs = {m | m ∈ dom(μs), f(m) �∈ Cs, μs(m) > n, m is odd}.

Using the density of C in F , being Archimedean for F, and Lemma 4, we construct a finite injection
j : Fs → ω such that j(m) = jm, f(jm) �∈ Cs, ν(f(jm)) �= ν(n) for all m ∈ Fs, and 〈F, σs〉 |= Ds,
where interpretations of constants are as follows:

cF
i = ν(f(i)) and dF

i =

⎧
⎨

⎩
ν(μs(2i + 1)), 2i + 1 �∈ Fs,

ν(f(jm)), 2i + 1 ∈ Fs.

Put

μs+1(2i + 1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μs(2i + 1), 2i + 1 �∈ Fs, i < s,

f(j(2i + 1)), 2i + 1 ∈ Fs,

n, i = s,

Cs+1 = Cs ∪ {f(jm) | m ∈ Fs} ∪ {f(s)}, Bs+1 = Bs ∪ j(Fs) ∪ {s}.

Proceed to the next stage. The construction is completed.
It is clear that μs meets the inductive requirements. Let μ0(m) = lim

s→∞
μs(m).

The following lemmas establish properties of μ.

LEMMA 5. (a) Along the construction process, the value μs(m) can be changed only finitely
many times for all m.

(b) For all m, if there exist s and j such that μs(m) = f(j) and f(j) ∈ Cs, then μs′(m) = f(j)
for all s′ ≥ s.

(c) If, for some m, we have μs(m) = n and μs+1(m) �= n, then n �∈ im(μs+1).
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(d) For all n, there exists s0 such that (∀s ≥ s0)(n ∈ im(μs0) ↔ n ∈ im(μs)).
Proof. Claims (a)-(c) are straightforward from the construction.
(d) Assume n ∈ im(μs) \ im(μs+1). This means that at every stage s + 1, either there exists

l < n such that l �∈ im(μs) or there exists an a-number k < n which is active at stage s + 1. By
inductive reasoning, it is easy to see that after some stage s0 both of the cases will not hold. �

LEMMA 6. (1) The function μ(m) = ν( lim
s→∞

μs(m)) is well defined. Put X = μ0(ω) \ im(f).
Then ν(X) is an algebraically independent set in F .

(2) F is algebraic over F̃ = Q(ν(X)).
Proof. (1) Follows from Lemma 5 and inductive properties.
(2) Assume the contrary. Let n be a least number for which ν(n) is not algebraic over F̃ . In

particular, ν(n) �∈ C and n �∈ X.
There exists s0 such that for all s ≥ s0 and for all m ≤ n such that m �∈ Cs0 , the following

hold:
—m ∈ X ↔ m ∈ im(μs0);
—m ∈ im(μs0) ↔ m ∈ im(μs);
—n �∈ im(μs) and m �∈ Cs;
—m̄ � n �∈ Es, where m̄ contains all elements of im(μs) which are ≤ n and /∈ Cs;
—for every l < n and for an n-tuple k̄ of different numbers less than n, if ν(l) is algebraically

dependent on ν(k̄), then m̄ � n ∈ Es for all s ≥ s0.
At stage s0, therefore, n is the least number that requires attention. Applying step C of the

construction, we obtain n ∈ im(μs0+1), i.e., n ∈ X, a contradiction. �

LEMMA 7. The positive diagram D =
⋃

s∈ω
Ds is computably enumerable under the following

interpretations:
(1) dF

i = ν(μ0(2i + 1));
(2) cF

i = ν(f(i)).
Moreover, F |= p(di1 , . . . , dik) > 0 ↔ Γp(di1 , . . . , dik) ∈ D for any rational polynomial p(x̄) �≡ 0.

The proof is straightforward. �

LEMMA 8. There exists an algorithm to check the validity of

p(ν(μ0(i1)), . . . , ν(μ0(ik))) = 0

for rational polynomials p.
Proof. We construct an algorithm by recursion on k. Without loss of generality, we will assume

that every il is odd.
If stage s is sufficiently large, i.e., for all l ≤ k and all s1 ≥ s, μ0(il) = μs1(il) holds, and

λ−1(p) ≤ s, then
either in no more than t(s) stages we verified that

p(ν(μs(i1)), . . . , ν(μs(i1))) �= 0,
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or there exists l ≤ k such that μs(ik) ∈ Cs.
Using minimization on s, we check if one of the following cases holds:
(1) Γp ∈ σs and Γp(dj1 , . . . , dj1) ∈ Ds;
(2) Γ−p ∈ σs and Γ−p(dj1 , . . . , dj1) ∈ Ds;
(3) there exists l ≤ k such that μs(il) ∈ Cs, where il = 2jl + 1 for 1 ≤ l ≤ k.
In cases (1) and (2), the algorithm stops working. In case (3), we replace the lth variable in p

by μs(il) and proceed by recursion. �

LEMMA 9. Let F̃ = Q(ν(X)) = Q(μ0(ω)). The field (F̃ , <) admits a computable presentation
in the language of strictly ordered fields.

Proof. The construction of a natural numbering of Q(μ0(ω)) is standard and can be found,
for instance, in [16]. That such a presentation is computable follows from Lemma 8. �

The kernel theorem entails the following:

THEOREM 3 [2]. If an ordered field L0 admits a computable presentation λ0, then a
computable presentation λ1 of its real closure L1 = [L0]rcl can be constructed effectively so that
λ0(n) = λ1(g(n)) for some computable function g : ω → ω.

Theorem 3 completes the proof of Prop. 6. �

It is worth observing that we can relativize Proposition 6 to any degree a.
Now we show that for a strictly ordered field (Rc, σc) and for a′ ≥ 0′′, there exists a numbering

ν satisfying the conditions of the relativized version of Prop. 6.
First, using Hz : Z → {0, 1,−1} defined as

Hz(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, n = 0,

1, n > 0,

−1, n < 0,

and νtot such as in Theorem 2, we construct ν̃tot : ω → S̃tot, where S̃tot is the set of all computable
functions f : ω → Z.

It is well known how to add and multiply real numbers in presentations in which numbers from
{−1, 0, 1} are involved (so-called sign-digit representations). Therefore, we can assume that there
exist computable partial operators G+ and G∗ such that, for all computable functions f, g : ω → Z,

(

l +
∞∑

i=0

Hz(f(i))
2i+1

)

+

(

m +
∞∑

i=0

Hz(g(i))
2i+1

)

=
∞∑

i=0

G+(f, g, l,m)
2i

,

(

l +
∞∑

i=0

Hz(f(i))
2i+1

)

·
(

m +
∞∑

i=0

Hz(g(i))
2i+1

)

=
∞∑

i=0

G∗(f, g, l,m)
2i

,

where G+(f, g, l,m)(i) ∈ {0, 1,−1}, G∗(f, g, l,m)(i) ∈ {0, 1,−1} for i > 0, and l,m ∈ Z.
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It follows from [9] that there exists a computable sequence {fi}i∈ω of computable functions
fi : ω → Z such that

ci = fi(0) +
∞∑

k=1

Hz(fi(k))
2k

.

We define an operator T−(f)(i) = f(i + 1). The numbering ν̃tot can be constructed as follows:
—if n = c(0,m) then ν̃tot(n) = νtot(m);
—if n = c(1,m) then ν̃tot(n) = −νtot(m);
—if n = c(2,m) then ν̃tot(n) = fm;
—if n = c(k,m), k is even, k > 2, and m = c(a, b), then

ν̃tot(n) = G+(T−(ν̃tot(a)), T−(ν̃tot(b)), ν̃tot(a)(0), ν̃tot(b)(0));

—if n = c(k,m), k is odd, k > 1, and m = c(a, b), then

ν̃tot(n) = G∗(T−(ν̃tot(a)), T−(ν̃tot(b)), ν̃tot(a)(0), ν̃tot(b)(0)).

Now we define ν : ω → Rc as follows:

ν(n) = ν̃tot(n)(0) +
∞∑

i=1

Hz(ν̃tot(n)(i))
2i

.

It is not hard to see that

ν(n) = ϕh(m)(0) +
∞∑

i=1

Hz(ϕh(m)(i))
2i

for n = c(0,m).

We show that the numbering ν satisfies the conditions of the relativized version of Prop. 6.
Consider condition (2) in Proposition 6. It is not hard to see that g+(n1, n2) = c(4,m), where

m = c(n1, n2). Indeed,

ν(n1) + ν(n2) = ν̃tot(n1)(0) +
∞∑

i=1

Hz(ν̃tot(n1)(i))
2i

+ ν̃tot(n2)(0)

+
∞∑

i=1

Hz(ν̃tot(n2)(i))
2i

=
∞∑

i=0

G+(T−(ν̃tot(n1)), T−(ν̃tot(n2)), ν̃tot(n1)(0), ν̃tot(n2)(0))
2i

.

In a similar way, we can define g∗ and f . Therefore, g+, g∗, and f are computable. Condition (3) in
Proposition 6 is straightforward. Condition (1), i.e., ADν ∈ Δ0

2, follows from the following lemmas.

LEMMA 10. The set of Δ0
2[a]-computable functions is closed under superposition.

LEMMA 11. (1) The set A = {m | ν(c(0,m)) ∈ Dyadic} belongs to Δ0
2[a].
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(2) There exists a partial Δ0
2[a]-computable function on A that computes ν(c(0,m)) as an

element of Dyadic.

LEMMA 12. If m �∈ A, then ν̃tot(c(0,m)) = νtot(m) = ϕh(m), where h is defined in Theorem 2.

LEMMA 13. Every element ν(n) can be effectively represented as

t(ν(n1), . . . , ν(nk)),

where t(x1, . . . , xk) are terms in the language (∗2,+2,−1) and ni = c(0,mi).

LEMMA 14. Let J ⊆ {1, . . . , s}, ni be of the form c(0,mi) for 1 ≤ i ≤ s, and rj ∈ Dyadic
for j ∈ J . Suppose also that J = {j ≤ s | ν(nj) ∈ Dyadic}, t1, . . . , tk are terms in the language
(∗,+,−) having the form

t̃i = [ti(x̄)]

(
xi if i �∈ J, xj if j ∈ J

ν(ni), rj

)

.

Then the condition of being algebraically dependent for t̃1, . . . , t̃k is a Σ0
2-relation with arguments

n and r and a parameter J .
Note that Σ0

2 ⊂ Δ0
3 ⊆ Δ0

2[a] for a′ ≥ 0′′. Therefore, the properties of νtot (see Thm. 2) and ν

and the previous lemmas imply that ADν ∈ Δ0
2[a], where a′ ≥ 0′′.

COROLLARY 1. If a′ ≥ 0′′, then there exists a numbering μ : ω → Rc such that
(〈Rc,≤,+, ·, 0, 1〉 , μ) is an a-computable structure.

The proof follows from Proposition 6 and the argument above. �

THEOREM 4. The relation a′ ≥ 0′′ holds if and only if a ∈ Spec (Rc).
Proof. The characterization follows from Theorem 1 and Corollary 1. �
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