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We introduce the concept of a generic relation for algorithmic problems, which preserves
the property of being decidable for a problem for almost all inputs and possesses the
transitive property. As distinct from the classical m-reducibility relation, the generic
relation under consideration does not possess the reflexive property: we construct an
example of a recursively enumerable set that is generically incomparable with itself. We
also give an example of a set that is complete with respect to the generic relation in the
class of recursively enumerable sets.

A generic approach toward computability and complexity theory was propounded in [1]. In the
frames of that approach, an algorithmic problem is considered not on the whole set of inputs but
on some subset of almost all inputs. The concept of “almost all” is formalized by introducing a
natural measure on a set of input data. From a practical viewpoint, fast decision algorithms for a
problem on a generic set are as good as fast algorithms for all inputs. A classical example of such
an algorithm is the simlex method—it solves a linear programming problem in polynomial time for
most of the data but has exponential worst-case complexity. Moreover, a problem may turn out to
be hard or altogether undecidable in the classical sense but easily decidable in the generic sense.
In [1, 2], it was proved that many algorithmic problems of algebra exhibit such behavior, and in
[3], a generic set was constructed on which the classical halting problem is decidable for Turing
machines with a one-way infinite tape.

An important notion in classical computability theory is the notion of reducibility of algorithmic
problems. Using it, we can compare problems with respect to computational complexity and develop
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a rich theory [4]. In computational complexity theory, the notion of polynomial reducibility makes
it possible to distinguish a very important class of NP-complete problems [5]. Attempts to define
reducibility in the generic case meet with difficulties. The notion of reducibility (m-reducibility) in
the classical case satisfies the following two natural properties:

if problem A reduces to problem B and B is decidable, then A is decidable;
if problem A reduces to problem B and B reduces to problem C, then A reduces to C.
For these properties to be satisfied in the generic case, it is natural to require that generic

m-reducibility translate generic sets into generic sets. Unfortunately, on the one hand, this
considerably narrows the class of computable functions which might be generic reducibilities. On
the other hand, this complicates verification of the very fact of generic reducibility for particular
problems: we need to prove that a computable function translates a generic set into a generic set.
In [6, Def. 4.3], for instance, we can find the thus defined generic reducibility of sets of natural
numbers—the universal quantification figuring in the definition is taken over any so-called generic
description of a reducible set. In [7, Def. 1.9], another notion of generic reducibility is introduced,
namely, one that uses a Turing functional for computing a characteristic function of one set given
any generic oracle for computing a characteristic function for the other set.

In the present paper, we introduce the concept of a generic relation on sets satisfying the two
properties above and not including a universal quantifier over any generic set or oracle. As distinct
from the classical m-reducibility relation (and reducibilities in [6, 7]), the relation considered here
does not possess the reflexive property: we construct an example of a recursively enumerable set
that is generically incomparable with itself. We also give an example of a set that is complete with
respect to the generic relation in the class of recursively enumerable sets. Note that an analogous
completeness result for reducibilities in [7] is not mentioned explicitly, but follows readily from [7,
Prop. 1.14, obs. 2.1]. A similar statement can also be derived from [6, Prop. 4.5, Lemma 4.6].

1. GENERIC ALGORITHMS

Let I be some set. A function size : I → N is called the size function if, for any n ∈ N, the set
In = {x ∈ I : size(x) = n} is finite. For instance, if I = Σ∗ is a set of words over a finite alphabet
Σ, then the size function will be one that is defined for any word w as its length |w|. Also, for
the set N of natural numbers, the size function assigns to any natural number the length of its
binary representation. As is customary in computability theory, by algorithmic problems we mean
recognition problems for subsets of some input set on which the length function is defined. For a
subset S ⊆ I, we define the sequence

ρn(S) =
|Sn|
|In|

, n = 1, 2, 3, . . . ,

where Sn = S ∩ In is a set of inputs of S of size n. Note that ρn(S) is the probability of falling
into S for a random and equiprobabilistic generation of inputs of In. The asymptotic density of S

388



is the limit (if it exists)
ρ(S) = lim

n→∞
ρn(S).

A set S is generic if ρ(S) = 1 and is negligible if ρ(S) = 0. Obviously, S is generic iff its complement
I \ S is negligible.

An algorithm A with input set I and output set J ∪ {?} (? /∈ J) is said to be generic if:
(1) A halts on all inputs of I;
(2) ρ({x ∈ I : A(x) 
= ?}) = 1.
A generic algorithm A computes a function f : I → J if A(x) = y ∈ J ⇒ f(x) = y for all

x ∈ I. The situation where A(x) = ? means that A cannot compute a function f at an argument
x, while condition (2) guarantees that A correctly computes f on almost all inputs (inputs of the
generic set). A set S ⊆ I is generically decidable if there exists a generic algorithm computing its
characteristic function.

2. GENERIC RELATION ON SETS

We introduce the concept of a generic relation ≤Gen on sets and prove its elementary properties.
Let I and J be some sets on which size functions are defined. For sets A ⊆ I and B ⊆ J ,

A ≤Gen B if there exists a total computable function f : I × N → J ∪ {?} with the following
properties:

(1) ∀x ∈ I if f(x, 0) 
= ?, then ∀n ∈ N f(x, n) 
= ?;
(2) ρ({x ∈ I : f(x, 0) 
= ?}) = 1;
(3) ∀x ∈ I if f(x, 0) 
= ?, then ρ({f(x, n) : n ∈ N}) > 0;
(4) ∀x ∈ I if f(x, 0) 
= ?, then
x ∈ A ⇒ ∀n ∈ N f(x, n) ∈ B, and
x /∈ A ⇒ ∀n ∈ N f(x, n) /∈ B.
Consider each of the above properties in more detail. By (3), the function f (if its value is not

equal to ?) assigns to every element x of the set I of inputs in problem A a nonnegligible subset
J of inputs in problem B. Property (4) guarantees that this subset is fully inside B, if x ∈ A, and
is fully outside B if x /∈ A. Properties (1) and (2) say that for a negligible set of inputs in I, the
function f can yield an indefinite answer.

As distinct from classical m-reducibility which allows only one request about the belonging
of an element f(x) to the second set, the availability of a generic relation permits a potentially
unbounded number of requests about the belonging of elements f(x, n) to the second set, and these
elements form a sufficiently large (nonnegligible) subset.

THEOREM 2.1. If A ≤Gen B and B is generically decidable, then A is generically decidable.
Proof. Let f be a function realizing the generic relation A ≤Gen B, and let B be a

generic algorithm computing a characteristic function of B. A generic algorithm A computing a
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characteristic function of A operates on input x as follows. First we compute f(x, 0). If f(x, 0) = ?
then we output ?. Otherwise, we compute the values

f(x, 0), f(x, 1), f(x, 2), . . .

until we obtain n such that B(f(x, n)) 
= ?. This will always happen since, on the one hand,

ρ({y ∈ J : B(y) 
= ?}) = 1,

and on the other hand,
ρ({f(x, n) : n ∈ N}) > 0.

Therefore,
{y ∈ J : B(y) 
= ?} ∩ {f(x, n) : n ∈ N} 
= ∅.

By property (4) in the definition of a generic relation, B(f(x, n)) will be the correct value of the
characteristic function of the set A at x. It remains to show that

ρ({x ∈ I : A(x) 
= ?}) = 1.

This follows from property (2) for a generic relation ≤Gen. �

We prove that the generic relation is transitive.

THEOREM 2.2. If A ≤Gen B and B ≤Gen C, then A ≤Gen C.
Proof. Let f be a function realizing the generic relation from A to B and g be a function

realizing the generic relation from B to C. We construct a total computable function h realizing
the generic relation from A to C. A value for h(x, n) is computed as follows. If f(x, 0) = ?, then
h(x, n) = ? for any n ∈ N. If f(x, 0) 
= ?, then again we compute f(x, 0), f(x, 1), . . . until we find
k ∈ N such that g(f(x, k), 0) 
= ?. That this will happen is proved in the same way as in the proof
of the previous theorem. Now we put h(x, n) = g(f(x, k), n). It is easy to verify that the function
h constructed realizes the generic relation from the set A to the set C. �

As distinct from the classical m-reducibility relation, the generic relation ≤Gen does not satisfy
the reflexive property. This is shown in the following:

THEOREM 2.3. There exists a recursively enumerable set W ⊆ N such that W �Gen W .
Proof. We show that as W we can take any simple recursively enumerable set of natural

numbers, which is not generic. The existence of such (even negligible) sets was shown in [6, proof
of Prop. 2.15]. Assume that W ≤Gen W and f is a computable function realizing the generic
relation. Since W is not generic, N \ W is not negligible. Therefore, there exists x ∈ N \ W such
that f(x, 0) 
= ?. Hence f(x, n) ∈ N \W for any n, and the immune set N \ W contains an infinite
recursively enumerable set {f(x, 0), f(x, 1), f(x, 2), . . .}. We have arrived at a contradiction showing
that W �Gen W . �
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3. GENERICALLY COMPLETE RECURSIVELY ENUMERABLE SETS

As in classical computability theory, a set W is said to be generically complete for some class
of sets if S ≤Gen W for any set S in this class. We make a start from K0, a set of Turing machine
programs halting on input 0. It is known [4] that K0 is m-complete in the class or recursively
enumerable sets; i.e., all recursively enumerable sets are m-reduced to K0.

We will consider Turing machines with input alphabet {0, 1}. A program of a Turing machine
with inner states {q0, q1, . . . , qn} over {0, 1} consists of rules of the form (qi, a) → (qj, b, S), one
rule for all nonzero (nonfinal) states qi and symbols a of the alphabet. Altogether, there are 2n
rules. Such a rule prescribes that a machine, being in a nonfinal state qi and seeing (with its head)
on the tape a symbol a, should go into state qj (which may be the final q0), write on the tape a
symbol b, and move its head by a (left, right) shift S ∈ {R,L}. By the size of a machine we mean
the number n of nonfinal inner states. Machines will be identified with their programs.

A Turing machine is said to be normalized if from any nonfinal state qi (in its corresponding
rules in the program), we can pass to states qj , where j ≤ 2i + 1. The meaning of this restriction
complies with a sensible program writing process: starting with a first rule, in each next new rule,
we can go either into one of the old states, or into a new one. The fact that the class of computable
functions does not get narrowed in so doing is confirmed by the following:

LEMMA 3.1. For any Turing Machine M , there exists a normalized Turing machine M ′

computing the same function.
Proof. If, in the machine, nonfinal states qi are renamed into qj and vice versa, and their

corresponding rules in the program are interchanged, then the operation of the machine on any
input will not change. Therefore, starting with a first state, we can normalize all rules renaming,
if necessary, states into which transitions take place. �

In what follows, we consider only normalized Turing machines, omitting the word “normalized”
for brevity. Denote by P the set of all possible programs of such machines.

LEMMA 3.2. The number of Turing machines of size n is equal to

|Pn| = 42n
n∏

i=1

(2i + 2)2.

Proof. For each of the two rules corresponding to a state qi, there are 2i + 2 options to choose
the state for transiting into another state (including the final one), and there are two record symbol
variants and two shift variants. Multiplying these quantities for all n states (twice for each), we
obtain the desired result. �

Let M be any Turing machine. Denote by c(M) the set of machines obtained from M by adding
any number of new states and assigning arbitrary rules for the new states to the program M , so
that the machine remains normalized. All the machines obtained compute the same function as
M , since new states are inaccessible on any input, and the machines operate in fact in accordance
with the program of M .
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LEMMA 3.3. For any machine M , the set c(M) is not negligible.
Proof. Let M have k states. Consider a set of machines c(M)k+n of size k + n with n new

states. We count the number of such machines. It is equal to the number of fragments of programs
for the new states. For a state qi, i = k + 1, . . . , k + n, we can have (4(2i + 2))2 options to choose
the appropriate rules. Altogether we obtain

|c(M)k+n| = 42n
k+n∏

i=k+1

(2i + 2)2.

Therefore,

ρ(c(M)) = lim
n→∞

|c(M)k+n|
|Pk+n|

= lim
n→∞

42n
k+n∏

i=k+1

(2i + 2)2

42(k+n)
k+n∏
i=1

(2i + 2)2

= lim
n→∞

1

42k
k∏

i=1
(2i + 2)2

= lim
n→∞

const = const > 0. �

THEOREM 3.4. The set K0 ⊆ P of programs is generically complete in the class of recursively
enumerable sets of natural numbers.

Proof. Since K0 is m-complete, it follows that for any recursively enumerable set A ⊆ N there
exists a total computable function h : N → P such that x ∈ A ⇔ h(x) ∈ K0 for any x ∈ N.
A function f : N × N → P realizing the generic relation from the set A to K0 is constructed as
follows. Fix a number x ∈ N. Consider a set c(h(x)) = {P0, P1, P2, . . .}, where the programs are
enumerated in order of increasing size, and programs of equal size are enumerated in lexicographic
order. Put f(x, n) = Pn. We show that the function f realizes the generic relation. Properties (1)
and (2) in the definition of a generic relation are obviously satisfied. Property (3) follows from
Lemma 3.3. Property (4) derives from the m-completeness of K0 and the fact that all programs in
c(h(x)) on input 0 operate in the same way as the program h(x). �
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