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PERIODIC GROUPS SATURATED WITH FINITE
SIMPLE GROUPS OF TYPES U3 AND L3
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Suppose that M is a set whose elements are simple three-dimensional unitary groups
U3(q) and linear groups L3(q) over finite fields. We prove that a periodic group saturated
with groups of M is locally finite and isomorphic to U3(Q) or L3(Q) for some locally
finite field Q.

A group G is said to be saturated with groups of a set R of groups if every finite subgroup of
G is contained in a subgroup of G isomorphic to a group of R.

In [1], it was proved that a periodic group saturated with groups of a finite set F of groups
isomorphic to finite simple groups U3(q) or L3(q) is isomorphic to an element of F. In [2], it was
shown that a periodic group saturated with simple groups of T = {U3(q), L3(q) | q is even} is
isomorphic to a unitary or linear group of degree 3 over some locally finite field of characteristic 2.
Our goal is to generalize these results.

THEOREM. Suppose that a periodic group G is saturated with groups of the set

M = {U3(q), L3(q) | q is a power of a prime, q � 3}.

Then G is isomorphic to U3(Q) or L3(Q) for some locally finite field Q.

1. PRELIMINARY RESULTS

Let GF (q) be a finite field of order q, SL3(q) = SL+
3 (q) be a group of matrices of degree 3 with

determinants equal to 1, and SU3(q) = SL−
3 (q) be a group of unitary matrices of degree 3 over a
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field GF (q2), i.e., a subgroup of SL3(q2) consisting of matrices m such that mmT is the identity
matrix, where T denotes transposition, and m is obtained from m by replacing every element mij

with mq
ij.

Denote by ϕ the natural homomorphism of SL3(q2) onto PSL3(q2) (with kernel consisting of
scalar matrices), and we will use the same notation for the restriction of ϕ to SL3(q) and SU3(q).

Thus

SL3(q)ϕ = PSL3(q) = L3(q) = L+
3 (q),

SU3(q)ϕ = PSU3(q) = U3(q) = L−
3 (q).

Now let q be odd.
Put

i =

⎡

⎢
⎣

1 0 0
0 −1 0
0 0 −1

⎤

⎥
⎦

ϕ

, j =

⎡

⎢
⎣

−1 0 0
0 1 0
0 0 −1

⎤

⎥
⎦

ϕ

,

b =

⎡

⎢
⎣

0 −1 0
0 0 1

−1 0 0

⎤

⎥
⎦

ϕ

, w =

⎡

⎢
⎣

0 0 1
0 −1 0
1 0 0

⎤

⎥
⎦

ϕ

.

Obviously, i, j, b, w ∈ Lε
3(q), where ε ∈ {+,−}. Define

A = 〈i, j〉, B = 〈w, j〉, V = 〈b, w〉.

PROPOSITION 1. Suppose that L = Lε
3(q), where q is odd, and i, j, b, w and A, B, V are

elements and subgroups of L defined as above. Then:
(1) A and B are four-groups, i.e., elementary Abelian subgroups of order 4, AB is the dihedral

group of order 8, b is of order 3, and V is isomorphic to the symmetric group of degree 3.
(2) D = CL(A) is the direct product of a cyclic group of order q − ε1 and a cyclic group of

order (q − ε1)/(3, q − ε1), and
NL(A) = NL(D) = D � V.

(3) If an element of NL(A) induces by conjugation an automorphism of A of order 3, then its
order equals 3.

(4) All involutions of L are conjugate in L, every four-group of L is conjugate to A, L has an
element of order 8, and every Abelian section of a Sylow 2-subgroup of L is generated by three
elements.

(5) There exists v ∈ L for which jv = j and iv = w.
(6) If (q, ε) �∈ {(3,+), (5,−)}, then for every four-subgroup C �= A of NL(A) it is true that

L = 〈NL(A), CL(C)〉. If (q, ε) = (3,+), then L = 〈NL(A), NL(C)〉. If (q, ε) = (5,−), then
〈NL(A), NL(C)〉 � A7.
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Proof. Items (1)-(3) can be verified by direct calculations (see, e.g., [1]). Item (4) was proved
in [3].

(5) By (4), there exists v1 ∈ L such that Av1 = B. According to (2), V v1 induces via conjugation
in B the full automorphism group of B, acting doubly transitively on the set of involutions in B.
This yields the desired result.

(6) Obviously, C contains an involution t not belonging to CL(A), and

|CNL(A)(t)| = |CCL(A)(t)〈t〉| = 2|CCL(A)(w)|.

It is straightforward to verify that |CCL(A)(w)| = (q − ε1)/(3, q − ε1). Therefore, |CNL(A)(C)| �
2(q − ε1)/(3, q − ε1). Since A and C are conjugate in L, we have |CL(C)| = (q − ε1)2/(3, q − ε1),
which implies that CL(C) �≤ NL(A) except for the case q = 3, ε = +. NL(A) is not maximal in
L only if L � U3(5) [4, pp. 378, 379]. Therefore, it remains to consider the cases where (q, ε) ∈
{(3,+), (5,−)}, for which (6) is readily verifiable using [5].

For a group G and a set L of groups, we denote by L(1) the set of subgroups of G that are
isomorphic to elements of L.

PROPOSITION 2. Let A and B be nonempty sets of finite groups of even orders and G be
a periodic group saturated with groups of A ∪ B. Suppose that the following conditions hold:

(1) if A ∈ A, B ∈ B, and SA and SB are Sylow 2-subgroups of A and B, respectively, then SA

is not isomorphic to any subgroup of SB , and SB is not isomorphic to any subgroup of SA;
(2) A(1) �= ∅ �= B(1).
Then for every natural number t there exist At, Bt ≤ G such that At ∈ A(1), Bt ∈ B(1), and

|At ∩ Bt| is divisible by 2t.
The proof is by induction on t. Let A ∈ A(1), B ∈ B(1), a be an involution in A, and b be

an involution in B. Then 〈a, b〉 is a finite group contained in some subgroup C of (A ∪ B)(1). If
C ∈ A(1), then we set A1 = C and B1 = B; if, however, C ∈ B(1), then we set A1 = A and
B1 = C. In any case |A1 ∩ B1| is divisible by 2, and the conclusion of the proposition is true for
t = 1.

Suppose that we have already found Am ∈ A(1) and Bm ∈ B(1) such that n = |Am ∩ Bm| is
divisible by 2t−1. If n is divisible by 2t, then the conclusion of the proposition is true for At = Am

and Bt = Bm. Let n not be divisible by 2t and S be a Sylow 2-subgroup of Am∩Bm. By hypothesis,
S is a Sylow 2-subgroup neither in Am nor in Bm; hence NAm(S) has an element x such that Sx is
an involution in N(S)/S, and NBm(S) has an element y such that Sy is an involution in N(S)/S.
The subgroup 〈S, x, y〉 is finite and, therefore, lies in C ∈ A(1) ∪ B(1). If C ∈ A(1), then we set
At = C and Bt = Bm; if C ∈ B(1), then we set At = Am and Bt = C. In any case |At ∩ Bt| is
divisible by 2t. The proposition is proved.

PROPOSITION 3 (V. D. Mazurov). Let H be a proper normal subgroup of a group G. If
x3 = 1 for every element of G \ H, then H is nilpotent.
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Proof. Suppose x ∈ G \ H. Then (hx−1)3 = 1 for every h ∈ H. Since

(hx−1)3 = hhxhx2
x−3 = hhxhx2

,

x induces in H a splitting automorphism of order 3. By Lemma 6 in [6], which was proved by
Mazurov, the conclusion of the proposition is true.

2. PROOF OF THE THEOREM

Suppose that the theorem is false. Set A = {L3(q), U3(q) | q is odd} and B = {L3(2m), U3(2m) |
m � 2}.

LEMMA 1. G is saturated with groups of A, i.e., B(1) = ∅.
Proof. Assume the contrary. By virtue of [1], A(1) �= ∅. We show that the conditions of

Proposition 2 are satisfied. Indeed, by Proposition 1(4), Sylow subgroups of groups of the set A

have elements of order 8, and the periods of Sylow 2-subgroups of B equal 4. On the other hand,
groups of B contain elementary Abelian sections of order 16, while Sylow 2-subgroups of groups
of A lack such sections.

By Proposition 2, M(1) contains subgroups A and B, where A ∈ A(1) and B ∈ B(1), such
that |A ∩ B| is divisible by 212, which is impossible. Indeed, on the one hand, a Sylow 2-subgroup
of A ∩ B (being a subgroup of B) contains an elementary Abelian section of order 24, and on the
other hand, the rank of every elementary Abelian 2-section of A is at most three. The lemma is
proved.

LEMMA 2. Let A0 be a set of groups isomorphic to groups of A(1). Then A0 is infinite.
Proof. If A0 is finite, then, by [1], G is a finite group of the set M, which is a contradiction

with the assumption. The lemma is proved.

LEMMA 3. All involutions in G are conjugate. All four-groups in G are conjugate.
Proof. If a and b are involutions in G, then 〈a, b〉 is a finite subgroup in R ∈ M(1) and a and

b are conjugate in R by Prop. 1(4). If K1 and K2 are four-groups in G, then by the above there
exists g ∈ G such that K1 ∩Kg

2 �= 1. Hence 〈K1,K
g
2 〉 is a finite subgroup, and again the statement

follows from Prop. 1(4). The lemma is proved.
By Lemma 2, A(1) contains a subgroup L0 isomorphic to U3(q), where q > 5 and is odd, or

to L3(q), where q > 3 and is odd. We identify L0 with L defined in Proposition 1 and borrow the
notation from that proposition. Let N = NG(A), CA = CG(A), and CB = CG(B).

LEMMA 4. N = CA · V and CA is an Abelian group of rank 2. In particular, N is countable
and locally finite.

Proof. Let d ∈ CA. Then db ∈ NG(A) and 〈A, db〉 lies in a finite subgroup L1 of M(1). Since
db induces by conjugation in A an automorphism of order 3, by Proposition 1(3) applied to L1

instead of L, we have (db)3 = 1. According to Proposition 3, CA is nilpotent and is therefore locally
finite. If now d1, d2 ∈ CA, then K = 〈A, d1, d2〉 lies in CR(A) for some subgroup R ∈ M(1). By
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Proposition 1(2), K is Abelian and its rank is at most two. Thus CA is an Abelian group of rank
at most two; in particular, it is countable. Since N is a finite extension of CA, N is locally finite
and countable. The lemma is proved.

In view of Lemma 4, N is countable, i.e., N = {n1, n2, n3, . . . }. Consider now two sequences of
subgroups

N0, N1, N2, . . . ; L0, L1, . . .

constructed according to the following rules: L0 = L and N0 = N ∩L0 = NL0(A). If N0 = N , then
the process ends. Otherwise, we suppose that L1 is a subgroup of A(1) that contains N0 and the
first numbered element ni, which is not in N0. Let N1 = N ∩ L1 = NL1(A). If N1 = N , then the
process ends. Otherwise, we choose in A(1) a subgroup L2 containing N1 and the first numbered
element in N , which is not in N1. Set N2 = N∩L2 = NL2(A). If we continue this process eventually
we arrive at a sequence L0, L1, L2, . . . of subgroups of A(1) such that the union of a sequence

N0 < N1 < N2 < . . . ,

where Nl = N ∩ Ll, coincides with N .

LEMMA 5. Ll−1 ≤ Ll for every l = 1, 2, . . . .
Proof. By Proposition 1, V,A,B ≤ N0 ≤ N0 ∩ L1. Let v ∈ L0, jv = j, iv = w, and v1 ∈ L1,

jv1 = j, iv1 = w. Then c = v1v
−1 ∈ C, i.e., v1 = cv. Since CA is Abelian, L1 ≥ CL1(A)v1 =

CL1(A)cv = CL1(A)v = CN1(A)v ≥ CN (A)v = CL0(A)v = CL0(A
v) = CL0(B). Thus CL0(B) ≤ L1,

and by Proposition 1,
L0 = 〈N0, CL0(B)〉 ≤ 〈N1, L1〉 = L1.

If we have already stated that Ll−1 ≥ L0 and Nl−1 �= Nl, then the same argument shows that
Ll−1 = 〈Nl−1, CLl−1

(B)〉 ≤ 〈Nl, Ll〉 = Ll. The lemma is proved.
The union X of an ascending chain L0, L1, . . . is a locally finite group, which, by [7], is a group

of Lie type over some locally finite field Q. Clearly, X � U3(Q) or L3(Q). Furthermore, N ≤ X.

LEMMA 6. If T is a dihedral subgroup of order 8 in X, then NG(T ) ≤ X.
Proof. We may assume that T ≥ A, so T ≤ N , and hence T ≤ Nl ≤ Ll for some l. If C is the

second four-subgroup of T , then Ll has an element v mapping A into C. If now x ∈ N(T ), then
either Ax = A and x ∈ N(A) ≤ N ≤ X, or Ax = C and x = nv, where n ∈ N(A). In any case
x ∈ X. The lemma is proved.

LEMMA 7. X = G.
Proof. Suppose the contrary. If every involution of G belongs to X, then X � G and G =

XNG(A) ≤ X. Therefore, there exist an involution g ∈ G \ X and a finite subgroup containing
〈j, g〉 and not lying in X. Thus there exists a subgroup M ∈ A(1) not lying in X and containing
j. We show that M can be chosen so that M ∩ X will contain a four-subgroup. Otherwise, i /∈ M

and CM (j)\X contains an involution m /∈ X. Now we can replace M with a subgroup M1 ∈ A(1),
containing 〈i, j,m〉. Without loss of generality, we may assume that M contains A. By Proposition 1,
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NM (A) has a four-subgroup C, which is distinct from A, and Ax = C for some x ∈ M . On the
other hand, C ≤ N ≤ X, and so there exists y ∈ X such that Ay = C; i.e., x = ny, where n ∈ N .
Hence x ∈ X.

Thus S = 〈NM (A), NM (C)〉 ≤ X. Since S �= M , by Proposition 1(6), M � U3(5) and S � A7

is a maximal subgroup in M . Now a Sylow 2-subgroup T of S is a dihedral group of order 8. By
Lemma 6, its normalizer R = NM (T ) in M lies in X but not in S. Therefore, M = 〈R,S〉 ≤ X, a
contradiction. The lemma is completed, which proves the theorem.
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