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A SUFFICIENT CONDITION
FOR NONPRESENTABILITY
OF STRUCTURES IN HEREDITARILY
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We introduce a class of existentially Steinitz structures containing, in particular, the
fields of real and complex numbers. A general result is proved which implies that if M is
an existentially Steinitz structure then the following structures cannot be embedded in
any structure Σ-presentable with trivial equivalence over HF(M): the Boolean algebra
of all subsets of ω, its factor modulo the ideal consisting of finite sets, the group of
all permutations on ω, its factor modulo the subgroup of all finitary permutations, the
semigroup of all mappings from ω to ω, the lattice of all open sets of real numbers, the
lattice of all closed sets of real numbers, the group of all permutations of R Σ-definable
with parameters over HF(R), and the semigroup of such mappings from R to R.

Questions on the existence of computable presentations for particular algebraic structures have
always occupied an important place in computable structure theory. The same questions arise in
studying its various generalizations. For example, a generalization of the notion of a computable
structure is the notion of a Σ-definable structure over an admissible set introduced by Yu. L. Ershov
[1]. This notion arises naturally if, in the definition of a computable structure, the concept of
computability is replaced with its analog, Σ-definability (see [2, 3]). Therefore, the issues mentioned
are a natural extension of the range of problems related to constructive models. A most interesting
class of admissible sets for which it is quite reasonable to pose such questions is the class of
hereditarily finite superstructures over structures.
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First of all, the author was interested in Σ-presentability of some general mathematical
structures over HF(R), the hereditarily finite superstructure over the ordered field R of real
numbers. Motivation for the study of such questions can be found, for example, in [4, 5]. Previously,
the author together with M. V. Korovina obtained some results on Σ-presentability of countable
structures over HF(R). It is known that any countable structure is Σ-presentable over HF(R) with a
single parameter from R (see, e.g., [6]); in the same paper, we gave a characterization of countable
structures that possess such presentations without parameters. Currently, the countable case is
thought of as being understood, to a greater of lesser extent; therefore, questions on Σ-presentability
of uncountable structures over HF(R) become most interesting. For example, a series of matrix
groups, polynomial rings over R, etc., have such presentations. It is also worth mentioning some
results on presentations of the natural ordering on the reals [7, 8].

In this paper we deal with Σ-presentability of natural general uncountable mathematical
structures, such as the Boolean algebra P(ω) of all subsets of a countable set, its factor P(ω)∗

modulo the ideal of all finite sets, the lattices of all open and closed sets of the reals, the
group Sym (ω) of all permutations on ω, its quotient Sym (ω)∗ modulo the subgroup of all finitary
permutations, the semigroup ωω under composition of all functions from ω to ω, the group of all
permutations on R Σ-definable with parameters over HF(R), and the semigroup of all mappings
from R to R Σ-definable with parameters over HF(R).

The analysis of formerly obtained proofs for HF(R) has shown that these results can be
formulated and proven in a more general form—namely, for hereditarily finite superstructures over
so-called existentially Steinitz structures. The ordered field R and the field C of complex numbers
are particular cases of such structures. Moreover, some general and easily verifiable sufficient
conditions for non-Σ-presentability of structures and even for the absence of embeddings in such
structures have been revealed. Eventually the original proofs have been simplified and more general
results have been obtained. More exactly, in the paper we use a unified method to prove that there
are no Σ-presentations over HF(M) with trivial equivalence for all structures from the list above
(and even for all their extensions), provided that the structure M has a property, which here we call
the ∃-Steinitz or existential Steinitz property. Inasmuch as R and C are existentially Steinitz, all
these results also hold for R and C. For some of the structures above, the absence of presentations
of a particular kind (so-called one-dimensional Σ-presentations over HF(R)) was proven in [5]; for
ωω, the absence of Σ-presentations with trivial equivalence over HF(R) was proven by a more
complicated method in [9].

Now we pass to relevant definitions, notation, and auxiliary results. The reader is assumed to
be familiar with foundations of admissible set theory [2, 3], primarily with basic results concerning
hereditarily finite superstructures.

If ϕ(x1, . . . , xk, z̄) is a formula, A is a structure, and p̄ ∈ A, then the set {〈a1, . . . , ak〉 | A |=
ϕ(a1, . . . , ak, p̄)} is denoted by ϕA[x1, . . . , xk, p̄]. We write A # B = C to signify the fact that two
conditions A ∪ B = C and A ∩ B = ∅ are satisfied simultaneously. As usual, sp(a) denotes the
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support of a [3], which is the set of all urelements taking part in the building of a. The cardinality
of a set A will be denoted by ‖A‖.

Recall the basic definition. Although it is given for predicate signatures only, every time we
speak about operations we will mean their graphs.

Definition 1 [1]. We say that the structure

A =
〈
A;Pm0

0 , . . . , P
mk−1

k−1

〉

is Σ-definable over HF(M) if there exist p̄ ∈ HF(M) and Σ-formulas V (x, z̄), E+(x, y, z̄),
E−(x, y, z̄), P+

0 (x1, . . . , xm0 , z̄), P−
0 (x1, . . . , xm0 , z̄), . . . , P+

k−1(x1, . . . , xmk−1
, z̄), and P−

k−1(x1, . . . ,

xmk−1
, z̄) such that:

(1) (E+)HF(M) [x, y, p̄] # (E−)HF(M) [x, y, p̄] =
(
V HF(M) [x, p̄]

)2;
(2) for all i < k,

(
P+

i

)HF(M) [x̄, p̄] #
(
P−

i

)HF(M) [x̄, p̄] =
(
V HF(M) [x, p̄]

)mi

;

(3) the set E = (E+)HF(M) [x, y, p̄] is a congruence on the structure

B =
〈
V HF(M)[x̄, p̄];

(
P+

0

)HF(M) [x̄, p̄] , . . . ,
(
P+

k−1

)HF(M) [x̄, p̄]
〉

,

and B/E ∼= A.
We need some refinement of this definition. Namely, we will distinguish between structures

of kind B/E (referred to as Σ-definable as before) and their isomorphic copies (referred to as Σ-
presentable). The relationship between these two notions is approximately the same as between
computable structures and structures having computable isomorphic copies.

Presentations in which the equivalence E in Definition 1 is trivial are said to be simple. In this
case, in the definition of Σ-presentability we can assume that B/E coincides with B. As usual,
in what follows we will suppose that operations on a structure are just relations corresponding to
their graphs.

Let M be a structure and A ⊆ M. An element a ∈ M is said to be ∃-algebraic over A if there
exist an ∃-formula ϕ(x, ȳ) and parameters b̄ ∈ A such that the set ϕM[x, b̄] is finite and contains a.
The set of all elements of M that are ∃-algebraic over A is denoted by CM

∃ (A). When working with
algebraic dependency, it will be convenient to use the notions and formulations, which (as far as
the author knows) were first employed by Metakides and Nerode in [10]. Under this approach, of
crucial importance are so-called Steinitz closure systems. The present paper also contains references
to some earlier approaches and formulations.

PROPOSITION 1. For any S,U ⊆ M, the following conditions are satisfied:
(1) S ⊆ CM

∃ (S);
(2) S ⊆ U → CM

∃ (S) ⊆ CM
∃ (U);

(3) if a ∈ CM
∃ (S), then there is a finite S0 ⊆ S such that a ∈ CM

∃ (S0);
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(4) CM
∃ (CM

∃ (S)) = CM
∃ (S).

Proof. The first three properties are obvious. We prove the fourth one. Assume that a ∈
CM

∃ (CM
∃ (S)). Then there exists an ∃-formula with parameters ϕ(x, b0, . . . , bn−1) defining a finite

set containing a, and b0, . . . , bn−1 ∈ CM
∃ (S). Fix some parameters s̄ ∈ S and ∃-formulas ϕi(yi, s̄),

i < n, so that each set ϕM
i [yi, s̄] is finite and contains bi. For i < n, denote by c 0

i , . . . , c ki−1
i all

pairwise distinct elements of the set ϕM
i [yi, s̄]. Define

I =
{
〈m0, . . . ,mn−1〉 ∈ k0 × · · · × kn−1

∣
∣
∣‖ϕM[x, cm0

0 , . . . , c
mn−1

n−1 ]‖ < ω
}

,

I ′ = (k0 × · · · × kn−1) \ I.

Let
p =

{∥
∥
∥ϕM

[
x, cm0

0 , . . . , c
mn−1

n−1

]∥∥
∥

∣
∣
∣ 〈m0, . . . ,mn−1〉 ∈ I

}
.

It is not hard to see that the following ∃-formula with parameters s̄ defines a finite set containing
a (here we use ∃>pz as an abbreviation for “there exist at least p + 1 elements z such that . . . ”):

∃x0
0 . . . xk0−1

0 . . . x0
n−1 . . . x

kn−1−1
n−1

⎡

⎣
∧

i<n

∧

v<w<ki

xv
i �= xw

i ∧
∧

i<n,j<ki

ϕi(x
j
i , s̄)

∧
∨

〈m0,...,mn−1〉∈I

ϕ
(
x, xm0

0 , . . . , x
mn−1

n−1

)

∧
∧

〈m0,...,mn−1〉∈I′

∃>pzϕ
(
z, xm0

0 , . . . , x
mn−1

n−1

)
⎤

⎦ .

Consequently a ∈ CM
∃ (S), i.e., CM

∃ (CM
∃ (S)) ⊆ CM

∃ (S). The converse inclusion CM
∃ (S) ⊆

CM
∃ (CM

∃ (S)) follows from (1). The proposition is complete.
The property below is called the exchange property:
If a ∈ CM

∃ (A ∪ {b}) \ CM
∃ (A) then b ∈ CM

∃ (A ∪ {a}).∗

Recall that a pair consisting of a set with an operator on it is called a Steinitz closure system [10]
if this operator possesses the properties given in Proposition 1 and the above-mentioned exchange
property.

Definition 2. A structure M is said to be ∃-Steinitz if the ordered pair
〈
M;CM

∃
〉

is a Steinitz
closure system.

The following statement, which derives from general properties of Steinitz closure systems, is
mentioned in [10] and can be checked readily.

PROPOSITION 2. Let M be an ∃-Steinitz structure and B ⊆ M. Then this structure
remains ∃-Steinitz if we enrich the signature of M with constants for all elements of B.

∗Sometimes an equivalent formulation is used in which the conclusion is replaced with b ∈ CM
∃ (A ∪ {a}) \

CM
∃ (A).
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Recall that a set A is said to be independent with respect to an operator CM
∃ or simply

independent (whenever it is clear which operator is meant) if a /∈ CM
∃ (A \ {a}) for any a ∈ A.

Here we will exploit the following properties of ∃-Steinitz structures, which derive from the
general definition of Steinitz closure systems.

THEOREM 1. Let M be an ∃-Steinitz structure.
(1) If a (finite or infinite) sequence a0, a1, . . . satisfies the condition ai /∈ CM

∃ ({a0, . . . , ai−1})
for all i, then the set {a0, a1, . . .} is independent.

(2) Let A and B be independent sets and A ⊆ CM
∃ (B). Then ‖A‖ � ‖B‖.

(3) Any subset B of A that is independent with respect to CM
∃ is contained in a maximal

independent subset B ′ of A. In this case CM
∃ (B ′) ⊇ A. All such sets have the same cardinality.

Proof. The first statement follows easily from the basic properties of the operator CM
∃ . The

proof of the second statement can be found, for instance, in [11, Lemma 6.1.9]. The third statement
follows from the first two and the basic properties of CM

∃ .
The next theorem gives us some examples of existentially Steinitz structures.

THEOREM 2. (1) Any model of a strongly minimal model complete theory is ∃-Steinitz.
(2) Any model complete field is an ∃-Steinitz structure.
(3) Any model complete ordered field is an ∃-Steinitz structure.
(4) Any real-closed field (in particular, the ordered field R of real numbers) and any algebraically

closed field (in particular, the field C of complex numbers) are ∃-Steinitz structures.
Proof. (1) Follows immediately from [11, Lemma 6.1.4]; (2) and (3) are quite obvious; (4) is

an immediate consequence of the previous two. The theorem is complete.
A set of s-terms is the smallest set that contains ∅ and all variables and is such that for any its

elements t1, . . . , tk, the expression {t1, . . . , tk} also belongs to this set. If a1, . . . , an are urelements
and τ(x1, . . . , xn) is an s-term, then the value τ(a1, . . . , an) in a hereditarily finite superstructure
is defined in an obvious way. It is also clear that each element of a hereditarily finite superstructure
is a value for an appropriate s-term on some urelements.

The basic result, which will imply all other statements of the paper, is the following:

THEOREM 3. Assume that M is an ∃-Steinitz structure of a finite signature. Let A be an
arbitrary structure of a finite signature such that there exist a family (Fi)i<ω of unary operations
definable by terms with parameters and a family (Ai)i<ω of subsets of A satisfying the following
conditions:

(1) all sets Fi [Ai] are uncountable;
(2) for any sequence (ai)i<ω ∈

∏

i<ω
Ai, there exists an element b ∈ A such that Fi(b) = Fi(ai)

for all i < ω.
Then A cannot be embedded in any structure possessing a simple Σ-presentation with

parameters over HF(M).
Proof. Suppose that the structures A and M satisfy the conditions of the theorem, but

nevertheless there exist parameters p̄ ∈ M, a structure B Σ-definable with parameters p̄ and
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trivial equivalence over HF(M), and an isomorphism γ from A to B. For each operation Fi, fix its
termal presentation with parameters, Fi(x) = ti(x, c i

0, . . . , c
i
ni−1). Put

S = {p̄} ∪
⋃

i<ω, j<ni

sp
(
γc i

j

)
.

Note that the set S is at most countable. Expand the structure M by adding to its signature new
constants for elements of S. Denote the so obtained structure by M∗. In view of Proposition 2, M∗

will also be an ∃-Steinitz structure.
Define elements ai ∈ A by induction on i < ω. Assume that all aj, j < i, are already defined.

Take ai to be any element of Ai such that sp(γFi(ai)) contains at least one element of the set

M∗ \CM∗
∃

(
⋃

j<i
sp (γFj(aj))

)

. This is possible in virtue of the following:

(1) ‖S‖ � ω implies that the set CM∗
∃

(⋃
j<i sp (γFj(aj))

)
is at most countable;

(2) γ is a bijection, and by assumption, the set of elements of kind γFi(x), x ∈ Ai, is
uncountable.

Therefore, at most countably many elements of Ai cannot be taken as the desired ai. We choose
ai from among the remaining uncountably many elements of Ai. The description of the construction
of ai is complete.

For this sequence (ai)i<ω, we take an element b such as in the hypothesis of the theorem. In
fact, in the rest of the proof, we will find out that the cardinality of the set sp(γb) cannot be finite,
which is a contradiction.

First we construct some sequence of elements of M∗. Assume that we have already defined all
elements r0, . . . , ri−1 so that:

(i) each member of the sequence r0, . . . , ri−1 does not belong to the value of CM∗
∃ on the set of

all its predecessors in the sequence;
(ii) for all j < i, rj ∈ sp(γFj(aj)).
Let ri be an arbitrary element in sp(γFi(ai)) which does not belong to the set

CM∗
∃

⎛

⎝
⋃

j<i

sp (γFj(aj))

⎞

⎠ .

Such an element exists by the choice of ai. It is easy to verify that all the conditions above will be
satisfied if we replace i with i + 1, and the construction can be continued to infinity.

The sequence (ri)i<ω that we have constructed is infinite and consists of pairwise distinct
elements. By Theorem 1, the set of its elements is independent with respect to CM∗

∃ .
Furthermore, by the choice of b, for each i < ω we have ri ∈ sp(γFi(ai)) = sp(γFi(b)). We show

that ri ∈ CM∗
∃ (sp(γb)). For the operation Fi, we have fixed a term ti(x, c̄) built from signature

operations of the structure A with parameters c̄ ∈ A so that Fi(x) = ti(x, c̄) for all x ∈ A. We have

γFi(b) = γti(b, c̄) = ti(γb, γc̄).
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Since γb and all elements of γc̄ are values of s-terms from sp(γb) ∪ sp(γc̄), and sp(γc̄) ⊆ S, the
property x ∈ sp(γFi(b)), which is equivalent to x ∈ sp(ti(γb, γc̄)), can be expressed by a Σ-formula
with parameters in sp(γb) ∪ S. For the property mentioned is Σ-presentable, we can express it as
an infinite disjunction of ∃-formulas [12]. Taking into account this fact and the finiteness of the
set sp(γFi(b)), we see that sp(γFi(b)) ⊆ CM∗

∃ (sp(γb)). Since ri ∈ sp(γFi(b)) and i is an arbitrary
number, we conclude that {ri | i < ω} is an infinite independent subset of a finite set CM∗

∃ (sp(γb)).
Let m be the cardinality of an arbitrary maximal independent subset of sp(γb). Clearly, m < ω.
Since {ri | i < ω} ⊆ CM∗

∃ (sp(γb)), it follows from Theorem 1 that ω � m, which is a contradiction.
The theorem is complete.

COROLLARY 1. Let M be an arbitrary ∃-Steinitz structure and A =
∏

i<ω
Ai be the Cartesian

product of a countable family of uncountable Boolean algebras Ai, i < ω. Then A has no embedding
in any structure having a simple Σ-presentation with parameters over HF(M).

Proof. It suffices to apply Theorem 3 taking functions x ∩ ci as Fi(x), where ci are units of
respective Boolean algebras Ai, and taking the whole set A as Ai, i < ω.

COROLLARY 2. Let M be an arbitrary ∃-Steinitz structure. Then the Boolean algebra
P(ω) of all subsets of ω has no embedding in any structure having a simple Σ-presentation with
parameters over HF(M).

Proof. Since the Boolean algebra P(ω) is uncountable and is isomorphic to its ωth Cartesian
power, the result follows from Corollary 1.

COROLLARY 3. Let M be an arbitrary ∃-Steinitz structure. Then the factor P(ω)∗ of the
Boolean algebra P(ω) of all subsets of ω modulo the ideal of finite sets has no embedding in any
structure having a simple Σ-presentation with parameters over HF(M).

Proof. The statement follows from the fact that P(ω) is isomorphically embedded in P(ω)∗,
and Corollary 2.

Before we formulate further results, it is pertinent to note that the lattice of open sets has
cardinality 2ω since any open set is the union of an at most countable family of open balls with
rational centers and rational radii.

COROLLARY 4. Let M be an arbitrary ∃-Steinitz structure. Then:
(1) The lattice of all open subsets of R

m, m > 0, has no embedding in any structure having a
simple Σ-presentation with parameters over HF(M).

(2) The lattice of all closed subsets of R
m, m > 0, has no embedding in any structure having

a simple Σ-presentation with parameters over HF(M).
Proof. (1) Apply Theorem 3, taking Fi(x) to be the function x ∩Ci, where Ci = (i, i + 1/2)×

R
m−1, and letting Ai be the class of all open sets.

(2) Follows from (1) and the property that the lattice of closed subsets is dually isomorphic to
the lattice of open subsets. The corollary is complete.

Corollary 5(1) was previously proved in [5] for the one-dimensional case and the superstruc-
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ture HF(R).

COROLLARY 5. Let M be an arbitrary ∃-Steinitz structure. Then the following structures
have no embeddings in any structure having a simple Σ-presentation with parameters over HF(M):

(1) the group Sym (ω) of all permutations on ω;
(2) the group Sym (ω)∗ (the factor group of Sym (ω) modulo the subgroup of all finitary

permutations).
Proof. (1) Since the Cartesian power Sym (ω)ω is embeddable in Sym (ω), it suffices to prove

our corollary for the group Sym (ω)ω. We view the group Sym (ω)ω as the set of all functions from
ω to Sym (ω), which in turn will sometimes be viewed as infinite sequences 〈f(0), f(1), . . .〉. Define
projections pri : Sym (ω)ω → Sym (ω), i < ω, by the rule

pri (〈f(0), f(1), . . .〉) = f(i).

For an arbitrary q ∈ Sym (ω), define elements qi ∈ Sym (ω)ω by setting

prj(qi) =

⎧
⎨

⎩

q if i = j,

1 otherwise.

Define the support of an element f ∈ Sym (ω) as follows:

Supp (f) = {x ∈ ω | f(x) �= x}.

Define also an element p ∈ Sym (ω) as

p =
∏

i<ω

(2i, 2i + 1),

and define the set

A =
{
f ∈ Sym (ω) | f2 = 1 ∧ Supp (f) consists of even numbers

}
.

Let

Ai =
{
f ∈ Sym (ω)ω | f2 = 1 ∧ pri(f) ∈ A

}
,

Fi(x) = pixpix.

It remains to verify the conditions of Theorem 3. Since p2
i = 1, it follows that for any x ∈ Ai,

the element Fi(x) = pixpix is the product of x conjugated via pi and the x itself, and pri(Fi(x)) is
the product of pri(x) ∈ A (whose support is a subset of the set of even numbers) and its conjugate
pxp (whose support is a subset of the set of odd numbers); moreover, pri(Fj(x)) = 1 for all i �= j.
Therefore, condition (1) in Theorem 3 is satisfied.

Consider a family (ai)i<ω ∈
∏

i<ω
Ai. Define b as b = 〈pr0(a0), pr1(a1) . . .〉. Note that b ∈

⋂

i<ω
Ai.

In view of the above remark on the structure of Fi(b), we obtain Fi(b) = Fi(ai) for all i < ω.
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(2) Since the group Sym (ω) is embeddable in the group Sym (ω)∗, condition (2) follows from (1).
The proof is complete.

Remark. In our proof, we did not use the group operation of inversion −1. Therefore, the
group Sym (ω) being considered in the signature consisting of the multiplication operation and the
constant for the unit element cannot be embedded in a structure with a simple Σ-presentation over
an ∃-Steinitz structure.

The following corollary was previously proved in [9] for the particular case M = R but using a
more complicated method.

COROLLARY 6. Let M be an arbitrary ∃-Steinitz structure. Then the semigroup ωω of all
functions from ω to ω cannot be embedded in a structure having a simple Σ-presentation with
parameters over HF(M).

Proof. The statement follows from Corollary 5 and the fact that the group Sym (ω) being
considered without the inversion operation is embeddable in ωω. The corollary is complete.

COROLLARY 7. Let M be an arbitrary ∃-Steinitz structure.
(1) The group of all permutations on R that are Σ-definable over HF(R) cannot be embedded

in any structure having a simple Σ-presentation with parameters over HF(M).
(2) The semigroup of all mappings from R to R that are Σ-definable over HF(R) cannot be

embedded in any structure having a simple Σ-presentation with parameters over HF(M).
Proof. It is not hard to see that for any permutation f ∈ Sym (ω), the mapping

f̂(x) =

⎧
⎨

⎩

f(x) if x ∈ ω,

x otherwise

is a permutation on R Σ-definable with appropriate parameters over HF(R), and the mapping
f �→ f̂ is an isomorphic embedding.

(1) Follows from Corollary 5.
(2) Follows immediately from (1).
The corollary is complete.

Question. Will similar statements hold true for the Σ-presentability of structures over
hereditarily finite superstructure without the extra requirement of triviality for the equivalence E?
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