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A 2-step solvable pro-p-group G is said to be rigid if it contains a normal series of
the form G = G1 > G2 > G3 = 1 such that the factor group A = G/G2 is torsion-
free Abelian, and the subgroup G2 is also Abelian and is torsion-free as a ZpA-module,
where ZpA is the group algebra of the group A over the ring of p-adic integers. For
instance, free metabelian pro-p-groups of rank ≥ 2 are rigid. We give a description of
algebraic sets in an arbitrary finitely generated 2-step solvable rigid pro-p-group G, i.e.,
sets defined by systems of equations in one variable with coefficients in G.

INTRODUCTION

Abstract rigid solvable groups and algebraic geometry over them were defined and studied in
[1-7]. In [8], the notion of a rigid metabelian pro-p-group was defined and some properties of such
groups were explored. We give the definition.

A 2-step solvable pro-p-group G is said to be rigid if it contains a normal series of the form

G = G1 > G2 > G3 = 1

such that the factor group A = G/G2 is torsion-free Abelian, and the subgroup G2 is also Abelian
and is torsion-free as a ZpA-module, where ZpA is the group algebra of the group A over the ring
of p-adic integers. Such a series (if it exists whatsoever) is defined by the group uniquely. We call
it a rigid series and denote it by Gi = ρi(G). Important examples of 2-step solvable rigid pro-
p-groups are free metabelian pro-p-groups of ranks ≥ 2. In [9], by analogy with abstract groups
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(see [10, 11]), elementary aspects of algebraic geometry over profinite groups, in particular, over
pro-p-groups, were propounded. Note that in profinite groups, the concept of an equation differs
from that used in abstract groups. Our objective is to receive information on algebraic sets in a
finitely generated 2-step solvable rigid pro-p-group G (i.e., sets defined by systems of equations in
one variable with coefficients in G), similar to one that was obtained in [12, 13] for abstract free
metabelian groups and wreath products of two free Abelian groups. We will use the definitions and
results in [9] concerning algebraic geometry over profinite groups, and in [8, 14] dealing directly
with 2-step solvable rigid pro-p-groups. For information on profinite groups, we ask the reader to
consult [15].

Thus let G be a finitely generated 2-step solvable rigid pro-p-group. That G is equationally
Noetherian follows, for example, from the fact that the coordinate group of every affine space Gn

is also a finitely generated 2-step solvable pro-p-group and, hence, satisfies the maximal condition
for normal subgroups. Consequently, the Zariski topology on Gn is Noetherian and an arbitrary
closed set in Gn is representable as a union of finitely many irreducible components, each of which
is an algebraic set. In [14], it was shown that the entire space Gn is irreducible. Here we handle
the case where n = 1. We formulate our basic results.

THEOREM 1. In a finitely generated 2-step solvable rigid pro-p-group G, irreducible algebraic
sets are divided into the following three types:

(1) singleton sets and the whole group G;
(2) cosets with respect to a subgroup ρ2(G);
(3) irreducible algebraic sets S which are not listed above and are such that the projection S

of a set S onto A = G/ρ2(G) is infinite, the mapping S → S is bijective, and the set S is defined
by canonical equation (2) (see below).

THEOREM 2. Let G be a finitely generated 2-step solvable rigid pro-p-group. Algebraic sets
in G are exactly the following:

(1) the whole group G;
(2) an irreducible algebraic set of type (3) in Theorem 1 or a union of such a set and a finite

number of cosets with respect to a subgroup ρ2(G);
(3) a set of the form

{g1, . . . , gl} ∪ gl+1 · ρ2(G) ∪ . . . ∪ gk · ρ2(G),

where g1, . . . , gl, gl+1, . . . , gk are in different cosets with respect to ρ2(G).

1. IRREDUCIBLE ALGEBRAIC SETS IN G

1.1. We recall some facts from [8] concerning splittings of pro-p-groups over Abelian normal
subgroups. Suppose that a metabelian pro-p-group G has an Abelian normal subgroup C and
G = G/C is an Abelian group. Put g = gC for g ∈ G. The group G acts by conjugations
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x → xg = g−1xg on C. Here, in fact, the group G acts and C can be treated as a right topological
ZpG-module. Assume that there is a pro-p-group that decomposes into a semidirect product of
its subgroup G and some Abelian normal subgroup D(G), which is represented in matrix form as

follows:

(
G 0

D(G) 1

)

. We call the last group a splitting of G over C if an embedding of G in it is

specified so that g =

(
g 0

d(g) 1

)

, and D(G) is generated as a ZpG-module by elements d(g), g ∈ G.

Among all splittings of G over C, we distinguish a free one. For the free splitting, the mapping
d(g) → g− 1 determines an epimorphism (a differential) δ of the module D(G) onto the difference
ideal (G − 1) · ZpG of the group ring ZpG, and the kernel of this epimorphism is C (here C is
naturally identified with a submodule of D(G)).

1.2. Let G be a finitely generated 2-step solvable rigid pro-p-group. Put A = G/ρ2(G), which
is a free Abelian pro-p-group. Let {a1, . . . , an} be its basis. The group algebra ZpA is an algebra of

(commutative) formal power series over Zp in a1−1, . . . , an−1. Let

(
A 0

D(G) 1

)

be a free splitting

of G over ρ2(G). In [8], it was mentioned that the module D(G) is torsion-free, and so our splitting
is also a 2-step solvable rigid pro-p-group. The group G is finitely generated, and hence the module
D(G) likewise is finitely generated.

Let F = 〈x1, . . . , xm〉 be a free metabelian pro-p-group. It was noted in [8] that as a group of
equations in variables x1, . . . , xm with coefficients in G we can treat the coordinate group Γ(Gm)
of an affine space Gm. In [8], this group is represented as a 2-graded product G◦F , which is also a
2-step solvable rigid pro-p-group. We show how to construct this product; more exactly, we outline
the construction of a free splitting of a group H = G ◦ F over ρ2(H) for the case where F = 〈x〉
has rank 1.

Let B = 〈b〉 be a free Abelian pro-p-group of rank 1. We introduce into consideration a group
C = A×B, a free one-generated ZpC-module z · ZpC, and a ZpC-module such as

D(H) = D(G)⊗ZpA ZpC ⊕ z · ZpC.

In [8], it was mentioned that D(H) is ZpC-torsion-free and D(G) is embedded in D(H). A free

splitting of H over ρ2(H) is

(
C 0

D(H) 1

)

, in which case x is identified with a matrix

(
b 0
z 1

)

and

H is generated by G and F . Clearly, the group G �
(

A 0
D(G) 1

)

is embedded in

(
C 0

D(H) 1

)

.

As noted, the ZpA-module D(G) is finitely generated and is torsion-free. By virtue of [8, proof
of Prop. 1], D(G) is embedded in some free ZpA-module TA with finite basis {t1, . . . , tm}, in which
case there exists a nonzero element e ∈ ZpA such that TA · e � D(G) � TA. This readily implies
that D(H) is embedded in a free ZpC-module such as

TC = TA ⊗ZpA ZpC + z · ZpC = t1 · ZpC + . . . + tm · ZpC + z · ZpC
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with basis {t1, . . . , tm, z}, and TC · e � D(H) � TC . Let

δ : D(H) → (C − 1) · ZpC

be a differential associated with the splitting of H over ρ2(H), whose kernel is ρ2(H). Note that
an arbitrary group A-epimorphism C → A determines a module epimorphism TC → TA + z ·ZpA,
which is consistent with a ring epimorphism ZpC → ZpA over which the modules in question are
treated.

Below we use the notation in Sec. 1.2 without further comment.

1.3. Consider an arbitrary equation f(x) = 1, where f ∈ H. Represent f as the matrix
(

f(b) 0
t1 · u1(b) + . . . + tm · um(b) + z · u(b) 1

)

,

where f(b) is the image of f in C. Clearly, the equation f(x) = 1 is equivalent to a system of the
form

f(b) = 1 ∧ t1 · u1(b) + . . . + tm · um(b) + z · u(b) = 0. (1)

The system depends on variables b and z, and we seek values for b and z in A and TA, respectively,

in which case the value x =

(
b 0
z 1

)

should belong to G.

LEMMA 1. Every equation v(b) = 0 in a variable b, where 0 
= v(b) ∈ ZpC, has at most
finitely many roots in A.

Proof. Recall that ZpC is a ring of formal power series over Zp in a1− 1, . . . , an− 1, y = b− 1.
The pro-p-topology on ZpC is defined by the powers of the maximal ideal which is generated by
the elements p, a1 − 1, . . . , an − 1, y. We can represent ZpC as a ring of formal power series in y

with coefficients in ZpA. For any a ∈ A, the series v(b) = v(1 + y) is expanded in the powers
of y − (a − 1). If v(a) = 0, then v(b) is divisible by y − (a − 1) in the ring ZpC. If, in addition,
v(a′) = 0 where a 
= a′ ∈ A, then v(b) is divisible by (y − (a− 1))(y − (a′ − 1)). Now we choose an
s such that v(b) does not belong to the sth power of the ideal of ZpC generated by the elements
a1 − 1, . . . , an − 1, y. Then the equation v(b) = 0 cannot have s roots in A. The lemma is proved.

1.4. We pass to a classification of irreducible algebraic sets in G, i.e., to the proof of Theorem 1.
(1) Irreducibility of a singleton set is obvious. Irreducibility of the whole group G (as mentioned)

was proved in [14].
(2) Notice that every coset g · ρ2(G) is defined by an equation [g−1x, d] = 1, where d is an

arbitrary nontrivial element of ρ2(G). That g · ρ2(G) is irreducible is shown in the following:

LEMMA 2. If some equation f(x) = 1 distinguishes in S = g · ρ2(G) a nonempty proper
subset, then this subset is a singleton.

Proof. We have noted that an equation of the form f(x) = 1 reduces to system (1). Suppose
that this equation has a solution belonging to S. Then the value of a variable b should be equal to
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the image g of an element g in A. In view of this, the second equation in system (1) can be written
in the form

t1 · u1(g) + . . . + tm · um(g) + z · u(g) = 0.

If u(g) 
= 0, then z, and hence x, will be defined uniquely. If u(g) = 0, then ui(g) must also equal
zero, and S as a whole satisfies f(x) = 1, which contradicts the hypothesis. The lemma is proved.

The above argument implies

LEMMA 3. If an irreducible algebraic set in G is contained in a union of finitely many cosets
with respect to ρ2(G), then either it is a singleton or coincides with one of the cosets.

(3) Now we consider an irreducible algebraic set S in G, which is not entered into items (1)
and (2), and study its properties.

Lemma 3 implies that the projection S of a set S onto A is infinite.
Let f(x) = 1 be a nontrivial equation which complies with the set S. Take system (1)

corresponding to this equation. The first equation f(b) = 1 in the system considered should be
trivial; otherwise, S is contained in some coset with respect to ρ2(G). Therefore,

f(x) =

(
1 0

t1 · u1(b) + . . . + tm · um(b) + z · u(b) 1

)

∈ ρ2(H).

Thus system (1) is left only with the second equation

t1 · u1(b) + . . . + tm · um(b) + z · u(b) = 0. (2)

Notice that S cannot satisfy two such noncollinear equations over ZpC; otherwise, these yield
an equation in which u(b) ≡ 0, and S will satisfy a system of the form u1(b) = 0 ∧ . . .∧ um(b) = 0,
which, by Lemma 1, defines either the empty set or the union of finitely many cosets with respect
to ρ2(G).

For u1(b), . . . , um(b), u(b), we choose all common roots b = d1, . . . , dk (with due regard for
multiplicity) belonging to A, if such exist, and put

v(b) = (y − (d1 − 1)) . . . (y − (dk − 1)).

The elements u1(b), . . . , um(b), u(b) are divisible by v(b) in ZpC; we let u′
1(b), . . . , u

′
m(b), u′(b) be

the corresponding quotients. It may turn out that a matrix of the form
(

1 0
t1 · u′

1(b) + . . . + tm · u′
m(b) + z · u′(b) 1

)

is not in ρ2(H). Recall that the conditions required for the matrix

(
1 0
t 1

)

, where t ∈ TC , to belong

to ρ2(H) are the inclusion t ∈ D(H) and the equality tδ = 0. These conditions are satisfied by the
following matrix: (

1 0
(t1 · u′

1(b) + . . . + tm · u′
m(b) + z · u′(b))e 1

)

.
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Indeed, te ∈ D(H) for any t ∈ TC , while the quality

((t1 · u′
1(b) + . . . + tm · u′

m(b) + z · u′(b))e)δ = 0

follows from

((t1 · u′
1(b) + . . . + tm · u′

m(b) + z · u′(b))v(b)e)δ

= ((t1 · u1(b) + . . . + tm · um(b) + z · u(b))e)δ = 0.

Note that the equation v(b) = 0 corresponds to the group equation

(
1 0

t · v(b) 1

)

= 1, where t 
= 0

and

(
1 0
t 1

)

∈ ρ2(G). We may assert that Eq. (2) is equivalent to a system of two equations:

namely,
v(b) = 0 ∧ t1 · u′

1(b) · e + . . . + tm · u′
m(b) · e + z · u′(b) · e = 0, (3)

each of which (as is (2)) is realized in the form of a group equation. Clearly, our set S should
satisfy the second of these equations, in which the coefficients at t1, . . . , tm, z do not any longer
have common roots in A.

We say that Eq. (2) corresponding to the group equation is canonical if u1(b), . . . , um(b), u(b)
have no common roots in A.

LEMMA 4. An irreducible algebraic set S of type (3) in G satisfies some canonical equation
and is exactly a set of solutions for such an equation.

Proof. Above we have stated that S satisfies some canonical equation. Assume that the set S′

of solutions for this equation is larger than S. Then there exists another canonical equation which
complies with S and truncates in S′ a proper subset. Let t(b, z) = t1·u1(b)+. . .+tm·um(b)+z·u(b) be

the left part of the first equation, t′(b, z) the left part of the second equation, and g =

(
g 0

d(g) 1

)

∈

S′\S. Since t(b, z) and t′(b, z) should be collinear over the ring ZpC, there are v(b), w(b) ∈ ZpC that
have no common roots in A and are such that t(b, z) · v(b) = t′(b, z) · w(b). We have t(g, d(g)) = 0
and t′(g, d(g)) 
= 0, so w(g) = 0. Hence the whole coset g · ρ2(G), which is an irreducible algebraic
set, satisfies an equation t(b, z) · v(b) = 0. This coset may satisfy an equation t(b, z) = 0 only if
b = g is a common root of all u1(b), . . . , um(b), u(b), which contradicts the hypothesis. Therefore,
v(g) = 0, which clashes with the fact that v(b) and w(b) have no common roots in A. The lemma
is proved.

LEMMA 5. If S is an irreducible algebraic set of type (3) in G, (2) is a canonical equation
defining this set, and a ∈ S, then u(a) 
= 0.

Proof. Otherwise, the element a would be a common root for u1(b), . . . , um(b), u(b), which
contradicts the definition of a canonical equation. The lemma is proved.
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To complete the proof of Theorem 1, we need to state that the projection S → S � A is an
injective mapping. Indeed, if we fix the value b = a ∈ S and consider canonical equation (2) for S,
then u(a) 
= 0 by Lemma 5. Therefore, the value z, and hence the value x, will be defined uniquely.

2. EXAMPLES

Notice that irreducible sets of type (3) in G exist—for instance, centralizers of elements of G

not lying in ρ2(G).
We give a more complicated example of an irreducible algebraic set of type (3) in a free

metabelian pro-p-group G = 〈g1, . . . , gn〉 of rank n ≥ 3. As a group of equations in x over G

we take a free metabelian pro-p-group H = 〈g1, . . . , gn, x〉. The splitting construction here reduces
to the Magnus embedding (see [16, 17]). Let

A = G/G′ = 〈a1, . . . , an〉, C = H/H ′ = 〈a1, . . . , an, b〉

be free Abelian pro-p-groups, and let

D(G) = TA = t1 · ZpA + . . . + tm · ZpA, D(H) = TC = t1 · ZpC + . . . + tm · ZpC

be free modules. Free splittings for G and H have the forms
(

A 0
TA 1

)

,

(
C 0
TC 1

)

.

In this case

g1 =

(
a1 0
t1 1

)

, . . . , gn =

(
an 0
tn 1

)

, x =

(
b 0
z 1

)

.

We point out a differential such as

δ : t1u1 + . . . + tmum + zu → (a1 − 1)u1 + . . . + (am − 1)um + yu.

LEMMA 6. If S is an irreducible algebraic set of type (3) in a free metabelian pro-p-group
G, (2) is a canonical equation defining this set, and the values b = a ∈ A and z = t ∈ TA give a

solution for the equation, then

(
a 0
t 1

)

∈ G.

Proof. By Lemma 5, u(a) 
= 0. Then the element u(a) should divide all u1(a), . . . , um(a) in
the ring ZpA. Let u′

1(a), . . . , u′
m(a) be the corresponding quotients. We obtain t = −t1u

′
1(a)− . . .−

tmu′
m(a). Since

(a1 − 1)u1(b) + . . . + (am − 1)um(b) + yu(b) = 0,

we have
(a1 − 1)u1(a) + . . . + (am − 1)um(a) + (a− 1)u(a) = 0.
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The latter implies
−(a1 − 1)u′

1(a)− . . .− (am − 1)u′
m(b) = a− 1;

i.e., tδ = a − 1. Then

(
a 0
t 1

)

∈ G (see properties of the Magnus embedding in [16, 17]). The

lemma is proved.
Consider an equation of the form

(t1y − z(a1 − 1))y + (t2(a3 − 1)− t3(a2 − 1))(a − 1)2 = 0. (4)

The left part of the equation is in ker δ, so (4) corresponds to the group equation. The condition
for roots which we imposed on a canonical equation is also satisfied.

Let S be the set of solutions for Eq. (4). Consider S. For the value b in A to belong to S, it is
necessary and sufficient that the appropriate value of the coefficient at z in the left part of Eq. (4)
will divide in ZpA the values of the coefficients at t1, t2, t3. This occurs exactly when the value y

divides a1 − 1, and conversely, a1 − 1 divides the value y. It is straightforward to verify that such
values b constitute the set A1 \ Ap

1, where A1 is a subgroup generated by the element a1.
In [12, 13], irreducible algebraic sets were studied for two kinds of abstract metabelian rigid

groups: wreath products of two nontrivial free Abelian groups and a free metabelian group of rank
≥ 2. The situation there is similar to the one considered here; however, it turns out that canonical
equation (2) defining an irreducible algebraic set of type (3) possesses an additional property: the
element u(b) in canonical equation (2) does not actually depend on b. Based on this, we succeeded
in completely describing projections of sets of type (3) in A. For the case of an abstract free
metabelian group, these projections have the form

D = D0  d1 ·A′  . . .  ds · A′;

here D0 is a finite set, A′ is a nontrivial cyclic subgroup of A, s ≥ 1, D is contained in some coset
d · A′′, and A′′ is a cyclic subgroup of A containing A′. The last example given shows that for
pro-p-groups, a similar result does not hold.

3. ALGEBRAIC SETS IN G

3.1. Every subset closed in the Zariski topology in a finitely generated 2-step solvable rigid
pro-p-group G is a union of finitely many irreducible algebraic sets, which are characterized in
Theorem 1. However, this union itself may not be an algebraic set. In Theorem 2, therefore,
we describe which of the unions mentioned are algebraic sets. Properly speaking, the proof of
Theorem 2 follows the line of argument of a similar theorem in [13], which treats algebraic sets in
an abstract free metabelian group and in a wreath product of two free Abelian groups.

3.2. First we verify that the sets specified in the formulation of Theorem 2 are indeed algebraic.
Consider a set such as in item (2), which has the form S ∪ g1 · ρ2(G) ∪ . . . ∪ gk · ρ2(G), where S is
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an irreducible algebraic set of type (3). Let S be defined by canonical equation (2). Obviously, the
equation

(t1 · u1(b) + . . . + tm · um(b) + z · u(b))(g1 − b) . . . (gk − b) = 0

defines the required set.
We continue to consider a set such as in item (3) in Theorem 2: namely,

P = {g1, . . . , gl} ∪ gl+1 · ρ2(G) ∪ . . . ∪ gk · ρ2(G),

where g1, . . . , gl, gl+1, . . . , gk are in different cosets with respect to ρ2(G). There is no loss of
generality in assuming that these cosets are all distinct from ρ2(G). First assume that the finite
part {g1, . . . , gl} is missing; i.e., the set has the form g1 · ρ2(G) ∪ . . . ∪ gk · ρ2(G). In this case it is

defined by an equation t · (g1 − b) . . . (gk − b) = 0, where 1 
=
(

1 0
t 1

)

∈ ρ2(G).

Suppose now that by induction, the set

P ′ = {g1, . . . , gl−1} ∪ gl · ρ2(G) ∪ gl+1 · ρ2(G) ∪ . . . ∪ gk · ρ2(G)

is algebraic. Denote by L the centralizer of gl in G. The equation

[x, gl](g1−b)...(gl−1−b)(gl+1−b)...(gk−b) = 1

defines the set

P ′′ = L ∪ g1 · ρ2(G) ∪ . . . ∪ gl−1 · ρ2(G) ∪ gl+1 · ρ2(G) ∪ . . . ∪ gk · ρ2(G).

It remains to observe that P = P ′ ∩ P ′′. Indeed, all components of P ′ but the coset gl · ρ2(G) are
contained in P ′′. This coset has no elements in common with all sets constituting P ′′, except L. In
view of L ∩ gl · ρ2(G) = {gl}, we obtain the result required.

3.3. The next three lemmas show that Theorem 2 indeed describes all algebraic sets in G.

LEMMA 7. If P is a proper algebraic set in G and P ⊇ S, where S is an irreducible algebraic
set of type (3) or a coset with respect to ρ2(G), then S is an irreducible component of the set P .

Proof. Clearly, S is contained in some irreducible component. If S is a coset with respect to
ρ2(G), then it cannot be contained in another coset or in an irreducible algebraic set of type (3). If
S is an irreducible algebraic set of type (3), then S is a set of solutions for any canonical equation
of form (2) that it satisfies; so S cannot be included in a larger irreducible algebraic set of type (3),
nor can it be contained in any coset with respect to ρ2(G). Hence, in either case S coincides with
an appropriate irreducible component. The lemma is proved.

LEMMA 8. Let P be a proper algebraic set in G and S be an irreducible component of
type (3) in P . Then the remaining components (if they exist) are cosets with respect to ρ2(G).

Proof. It suffices to show that if g ∈ P \ S, then the coset g · ρ2(G) is entirely in P . It follows
by Lemma 7 that this coset will be an irreducible component, and irreducible components of this
sort, combined with S, will yield P .
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Consider an arbitrary nontrivial equation f(x) = 1 which complies with P . By virtue of
f(S) = 1,

f(x) =

(
1 0

t1 · u1(b) + . . . + tm · um(b) + z · u(b) 1

)

∈ ρ2(H).

Therefore, the equation f(x) = 1 is rewritten in form (2), and then in the form of system (3) (see
Sec. 1.4). As noted, S is exactly the set of solutions for the second equation in system (3). The
element g must not satisfy this equation; hence v(g) = 0 and the whole coset g · ρ2(G) satisfies
f(x) = 1. The lemma is proved.

LEMMA 9. If an algebraic set P in G contains two elements of the coset g · ρ2(G), then this
coset is entirely contained in P .

Proof. Otherwise, the algebraic set P ∩ g · ρ2(G) contains more than two elements, which
contradicts Lemma 2. The lemma is proved.
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