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LINEARLY MINIMAL JORDAN ALGEBRAS
OF CHARACTERISTIC OTHER THAN 2
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It is proved that every nontrivial linearly minimal Jordan algebra of characteristic other
than 2 is a division algebra. Then Zel’manov’s classification of Jordan division algebras
is applied to show that such an algebra is a field.

INTRODUCTION

An infinite algebraic structure M of a signature Σ is (definably) minimal if every subset of
M definable by a first-order Σ-formula over M is finite or cofinite. In particular, an infinite ring
〈R; +, ·, 0〉 is minimal if every subset of R definable in a language {=,+, ·, R} is finite or cofinite.

Research into nonassociative linearly minimal rings was initiated in [1] and then continued in [2],
where a new kind of minimality for rings and algebras was introduced—namely, linear minimality
(l-minimality).

We recall the definition of linearly minimal rings [2]. Let R = 〈R; +, ·, 0〉 be a ring and End (R)
the endomorphism ring of an Abelian group R+ = 〈R; +, 0〉. Then, for any element a of the ring,
multiplication maps la : x �→ a · x and ra : x �→ x · a are in End (R). Denote by Mult (R) a unital
subring of End (R) generated by the set of all multiplication maps. We say that an infinite ring R

is linearly minimal if every nonzero element of Mult (R) is a surjective map with finite kernel.
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Elementary examples of linearly minimal rings are (infinite) fields. It is easy to see that
every minimal ring is linearly minimal. Every infinite nonalgebraically closed field of positive
characteristic exemplifies a linearly minimal but not minimal ring [3].

Linearly minimal algebras can be defined similarly. Let A = 〈A; +, ·, 0〉 be an arbitrary algebra
(over a field F ). Then multiplication maps La : x �→ a · x and Ra : x �→ x · a are linear, for every
element a ∈ A. Thus La and Ra are in E(A), where E(A) is an algebra of all linear transformations
in A. In [4], the multiplication algebra T(A) is defined as an enveloping algebra of the set of all La

and Ra, a ∈ A; i.e., T(A) is the unital subalgebra of E(A) generated by all La and Ra, a ∈ A.

Definition 1 [2]. We say that an infinite algebra A is linearly minimal (l-minimal for short)
if every nonzero linear map from the multiplication algebra T(A) is a surjective map with finite
kernel.

The definition implies that every linearly minimal algebra is a linearly minimal ring. The
theorem below shows that the converse is almost always true. Recall that a ring (or algebra) is
trivial if a · b = 0 for any elements a and b.

THEOREM 1 [2]. A nontrivial linearly minimal ring is a linearly minimal algebra over a field
of its definable scalars. In addition, if the scalar field is infinite, then the ring itself is a field.

Thus, in what follows, we may deal with algebras only.
Obviously, every vector space can be transformed into a trivial algebra. Therefore, we will be

interested in just nontrivial algebras, and unless otherwise stated, all algebras under consideration
will be nontrivial.

Now we turn to Jordan rings and algebras of characteristic other than 2. Recall that R =
〈R; +, ·, 0〉 is a Jordan ring if it satisfies the following identities:

x · y = y · x, (C)

x2 · (y · x) = (x2 · y) · x, (J)

where x2 stands for x · x.
Similarly, A = 〈A; +, ·, 0〉 is a Jordan algebra if it satisfies (C) and (J).

Remark. It is easy to see that every associative commutative algebra is a particular case of a
Jordan algebra. Generally, Jordan algebras are thought of as being nonassociative. Except in the
formulation of the main result, we also try to adhere to this convention, which ensures convenience
of the investigation. Nontrivial associative linearly minimal rings and algebras have already been
described: these are fields [5].

Below we denote the Jordan product of elements a and b by a • b, keeping the notation a · b for
products in adjacent associative algebras.

Let J = 〈J ; +, •, 0〉 be a Jordan algebra over a field F of characteristic not 2. Suppose that
a ∈ J is any (fixed) element and Ra : x �→ a • x. The linear operator

Ua := 2R2
a − Ra2
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plays an important part in the theory of Jordan algebras. Since Ra, Ra2 ∈ T(J), it follows that
Ua ∈ T(J). In particular, if the algebra is linearly minimal, then either Ua ≡ 0 or Ua is a surjective
linear map with finite kernel. The following identity is the basic property of an operator U (called
the Macdonald identity in [6] and referred to as the fundamental formula in [7]):

UUxy = UxUyUx. (M)

In Sec. 1, we prove that every linearly minimal Jordan algebra is a division algebra. In
Sec. 2, we apply Zel’manov’s description of Jordan division algebras to show that linearly minimal
Jordan algebras are fields. In [1], it was stated (with no appeal to Zel’manov’s theorem) that
minimal Jordan rings are fields. Thus our main result strengthens this statement: the condition for
minimality can be replaced by a weaker requirement for linear minimality.

1. LINEARLY MINIMAL JORDAN ALGEBRAS

We fix some Jordan algebra J = 〈J ; +, •, 0〉 over a field F of characteristic 
= 2. In what follows,
we assume that J is linearly minimal and nonassociative.

Thus J is a nontrivial algebra over a finite field F (which is even central in view of [2]). Let
b, c ∈ J so that b • c 
= 0.

LEMMA 1. Every nilpotent element of J is an annihilator.
Proof. Let a ∈ J be an element distinct from zero such that an = 0 for some natural n. By

virtue of [7, Thm. 5.2.2], we have Un
a = Uan = U0 ≡ 0. Hence Ua is not surjective, and linear

minimality implies that Ua ≡ 0. In particular, a3 = Uaa = 0, and also (a2)2 = a4 = a3 • a = 0.
Thus R(a2)2 ≡ 0. This yields

2(Ra2)2 = 2(Ra2)2 − R(a2)2 = Ua2 = U2
a = 0.

Hence Ra2 is not surjective, and again by linear minimality, we obtain Ra2 ≡ 0. Finally, 2R2
a =

2R2
a − Ra2 = Ua ≡ 0 entails Ra ≡ 0; so a is an annihilator.

Definition 2. An element x ∈ J is invertible if there exists y ∈ J such that Uxy = x and
UxUy = idJ . This y is called an inverse of x.

If J is a unital algebra, then Definition 2 is equivalent to known classical definitions of an
invertible element (see [6, 7]). We opt for this definition because it can be given for any Jordan
algebra (without the unitality assumption).

LEMMA 2. Every nilpotent element of J is invertible.
Proof. Let a ∈ J be a nonnilpotent element. Since Uaa = a3 
= 0, the linear minimality

condition implies that Ua is surjective and Ker Ua is finite. The map Uk
a is surjective and its

kernel Ker Uk
a is finite for every k = 0, 1, 2, . . . since |Ker Uk

a | = |Ker Ua|k (here, of course, we put
U0

a = idJ).

423



In view of [7, Thm. 5.2.2], the subalgebra 〈a〉 generated by the element a is associative, and
the set {a, a2, a3, . . .} should be finite, for otherwise J would be associative by [2, Lemma 5], which
clashes with our assumption. Thus, for some natural numbers m < n, we have am = an, whence
Uam = Um

a = Un
a = Uan and |Ker Ua|m = |Ker Ua|n. Hence KerUa = {0}; in other words, Ua is

bijective and invertible. If we apply U−1
a to the equality Um

a = Un
a we obtain Uaj = U j

a = idJ for
j = n − m. The least natural number j with this property is called the order of the operator Ua.

Now we note that a ∈ J = Ua(J), and so there exists y ∈ J such that Uay = a. By virtue of
identity (M), the following relation holds:

Ua = UUay = UaUyUa,

from which (applying U−1
a ) we derive UaUy = idJ . Hence a is invertible. Lemma 2 is proved.

LEMMA 3. Every nonzero element of J is invertible.
Proof. Let b, c ∈ J be elements such that b•c 
= 0. By Lemma 1, b is a nonnilpotent element. By

Lemma 2, b is invertible and Ker Ub = {0}. All annihilators of the algebra are contained in Ker Ub,
and so J does not have nonzero annihilators. Again in view Lemma 2, every nonzero element is
invertible.

THEOREM 2. J is a division algebra.
Proof. Let 0 
= x ∈ J be an arbitrary element. Then x is invertible as is Ux. Let k be the order

of Ux; then Ua = Uxk = Uk
x = idJ for a = xk. Hence a = Uaa = a3, and for e = a2, we have

e = a2 = a • a = a3 • a = a4 = e2.

Consequently, e = e2 and e is an idempotent. Notice that Ue = Ua2 = U2
a = idJ . By virtue of [7,

Prop. 5.2.4], e is the identity element of J. Thus J is unital. Every nonzero element is invertible,
so J is a division algebra.

2. LINEAR MINIMALITY OF JORDAN DIVISION ALGEBRAS

A description of Jordan division algebras of characteristic not 2 was obtained by Zel’manov [8].
It turned out that these may be only one of the following:

(a) an exceptional Jordan algebra, finite-dimensional over its center;
(b) a Jordan algebra H(D, ∗) of symmetric elements of an associative division algebra D with

respect to an involution ∗;
(c) an algebra D(+), where D is an associative division algebra;
(d) an F · 1 + M -algebra of a symmetric bilinear form on a vector space M .
We look at each of these types of Jordan division algebras from the standpoint of linear

minimality. First note that every element λ in the field of these algebras can be identified with an
element λ • 1. Therefore, we may assume that the algebras each contains its field (as part of its
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center; for definition of a center, see [7]). In addition, by virtue of [2], we may suppose that the
field F of an algebra is finite and char F = p > 2.

(A) In [2], it was proved that a nonassociative linearly minimal Jordan algebra can have only
a finite center, and that it should be infinite-dimensional over its center. Thus exceptional Jordan
division algebras that are finite-dimensional over their centers cannot be linearly minimal.

(B) Let D be an (infinite) associative division algebra of characteristic p > 2. Recall that a
Jordan algebra D(+) is defined by Jordan multiplication

a • b =
1
2
(a · b + b · a),

where · denotes multiplication in D. A linear transformation ∗ of the algebra D is called an
involution if

(a∗)∗ = a and (a · b)∗ = b∗ · a∗

for all a, b ∈ D. By definition, H(D, ∗) = {a ∈ D : a∗ = a}. It is easy to see that H(D, ∗) is a
subalgebra of D(+).

We may assume that D is not commutative; otherwise, the algebra D(+) = D, as well as any
of its subalgebras, would be associative, which is a contradiction with our initial assumption.

ASSERTION. D(+) cannot contain a linearly minimal nonassociative subalgebra.
Proof. Assume the contrary, letting J be a linearly minimal subalgebra of D(+) and letting J

not be a field. If we had a · b = b · a for all a, b ∈ J , then J would be a commutative subalgebra of
D and, consequently, J would be a field, a contradiction. Therefore, there exist a, b ∈ J for which
a · b 
= b · a. We fix these a and b and consider the linear operator

ϕ := la − ra,

where linear maps la : x �→ a · x and ra : x �→ x · a are defined over D. Since la commutes with ra

and p is the characteristic of the algebra, we obtain

ϕp = (la − ra)p = lpa − rp
a = lap − rap .

Moreover, for any natural k, we have

ϕpk
= (la − ra)p

k
= l

apk − r
apk .

Recall that any 1-generated subalgebra of a Jordan algebra is associative. In particular, 〈a〉 is
an associative subalgebra of J (and of D(+)).

If 〈a〉 were infinite, then J would be associative, which contradicts our assumption. Thus the
subalgebra 〈a〉 is finite, hence it is a field. Let |〈a〉| = pk, where k is a positive integer. Then

apk
= a.
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An element has the same degree in D and D(+), so

ϕpk
= (la − ra)p

k
= la − ra = ϕ.

Since ϕ(b) 
= 0, we have ϕpk
(b) = ϕ(b) 
= 0. Then ϕ2(b) 
= 0. An operator ϕ2 � J belongs to the

multiplication algebra for J : i.e.,

ϕ2(x) = (la − ra)2(x) = (la2 + ra2 − 2lara)(x) = 2(Ra2 − Ua)(x),

where Ra2 : x �→ x • a2. Consequently, ϕ2 � J ∈ T(J) and ϕ2 � J 
≡ 0. Thus, in view of J being

linearly minimal, the operator ϕ2 � J is surjective as is ϕpk−1 � J = (ϕ2 � J)
pk−1

2 (here use is made
of the fact that pk − 1 is an even number).

Let c ∈ J so that ϕpk−1(c) = a. Then ϕ(c) = ϕpk
(c) = ϕ(a) = 0, which is a contradiction with

ϕpk−1(c) = ϕpk−2(ϕ(c)) = a 
= 0. The assertion is proved.
Thus the algebra H(D, ∗) in Zel’manov’s list either is a field or is not linearly minimal.
(C) The assertion above implies that if D is an associative division algebra, then the algebra

D(+) either is a field or is not linearly minimal.
(D) Recall that for an F · 1+ M -algebra of a symmetric bilinear form f(x, y) on a vector space

M , the Jordan product is defined as follows:

(α · 1 + x) • (β · 1 + y) := (αβ + f(x, y)) · 1 + (βx + αy)

for α, β ∈ F and x, y ∈ M .
An element e := 1 · 1 + 0 is unity in this algebra. An element a is invertible if there exists b for

which a • b = e and a2 • b = a. That b is called an inverse of a.
If f(x, x) = 0 for some nonzero vector x ∈ M , then a = 0 · 1 + x is not invertible, since

a2 = a • a = 0 and a2 • b = 0 
= a for any b.
As noted, checking our F ·1+M -algebra for linear minimality, we may assume that the field F

is finite, char F = p > 2, and the space M is infinite-dimensional over F . Chevalley’s theorem [9]
implies that the equation f(x, x) = 0 has a nontrivial solution in M (in fact, for this, it is sufficient
that dimF M ≥ 3), which yields a noninvertible element 0 · 1 + x of the algebra.

Thus a Jordan division algebra of the form F · 1 + M cannot be linearly minimal.
The main result of the paper is the following:

COROLLARY. There does not exist a linearly minimal nonassociative Jordan algebra of
characteristic other than 2.
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