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TOTALLY P -STABLE ABELIAN GROUPS

E. A. Palyutin∗ UDC 510.67:512.57
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We give a complete description of Abelian groups that are totally P -stable for
the following four natural types of subgroups: arbitrary subgroups, pure subgroups,
elementary subsystems, and algebraically closed subgroups.

INTRODUCTION

Origins and development of the notion of P -stability and bibliographic references are contained
in [1]. For convenience, we cite some of the definitions and results from [1, 2], which will be used
in what follows.

1. TERMINOLOGY, NOTATION, AND PRELIMINARY RESULTS

For relevant information on the theory of Abelian groups, we ask the reader to consult, e.g.,
[3; 4, Sec. 8.4]. Necessary information on model theory can be found, e.g., in [4, 5]. Below by a
theory we mean an elementary theory in a language L. We recall some well-known concepts from
the theory of Abelian groups. Throughout, by a group we always mean an Abelian group.

For a group A and for a natural number n, we denote by A[n] the subgroup

{a | a ∈ A,na = 0},

and by nA the subgroup {na | a ∈ A}. The letter p will always stand for a prime number.
A group B is said to be divisible if nB = B for any natural n > 0. A group B is reduced if it

contains no nonzero divisible subgroups.
∗Supported by KN MON RK, project No. 0830/GF4.

Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia. Novosibirsk State
University, ul. Pirogova 2, Novosibirsk, 630090 Russia; palyutin@math.nsc.ru. Translated from Algebra i
Logika, Vol. 54, No. 4, pp. 463-492, July-August, 2015. Original article submitted January 19, 2015.

296 0002-5232/15/5404-0296 c© 2015 Springer Science+Business Media New York

DOI 10.1007/s10469-015-9350-9



A group all elements of which have order pk for some natural k is called a p-group. A maximal
p-subgroup of A is called the p-component of A and is denoted by Ap. An elementary p-group is a
direct sum of cyclic groups of order p. An elementary group is an elementary p-group for some p.
A group A is said to be bounded if there exists a natural number n such that nA = 0. For a group
A and for a cardinal λ, A<λ denotes a direct sum of λ copies of the group A.

Let ᾱ = 〈n1, . . . , nk〉 be a tuple of integers. For a tuple x = 〈x1, . . . , xk〉 of variables, ᾱx denotes
the term n1x1 + · · ·+nkxk; for a tuple a = 〈a1, . . . , ak〉 of elements of A, ᾱa stands for the element
n1a1 + · · · + nkak.

A subgroup P of A is said to be pure if nP = (P ∩nA) for any natural number n. This property
is equivalent to the fact that pkP = (P ∩ pkA) for any prime number p and any natural number k.

A substructure B of a structure A is said to be algebraically closed if B contains every finite set
X ⊆ A definable in A by a formula Φ(x) with parameters in B. Below the term an algebraically
closed subgroup will be understood in just this sense.

We will often use the following facts from the theory of Abelian groups.
If the p-component Ap of a group A is bounded then it is distinguished by a direct summand

in A (see, e.g., [3, Chap. 5]).
A divisible subgroup of A is a direct summand of A. The greatest divisible subgroup of A is

called the divisible part of A and is denoted by Ad. If A = Ad ⊕ C, then C is called the reduced
part of A. Using Szmielew’s description [6] of elementarily equivalent Abelian groups (see also [4,
Sec. 8.4]), we obtain the following two facts:

if the reduced part of the p-component Ap of a group A is unbounded, then, for any cardinal
λ, the group A is elementarily equivalent to a group A ⊕ C<λ

p∞ , where Cp∞ is a quasicyclic group;
if a group A is unbounded, then, for any cardinal λ, the group A is elementarily equivalent to

a group A ⊕ Q<λ, where Q is the additive group of rational numbers.
For a group A, for prime numbers p, and for natural numbers m, the Szmielew invariants of A

are the following cardinals:

αp,m(A) = min{dim((pmA)[p]/p(m+1)A)[p]), ω},
βp(A) = min{inf{dim(pnA)[p] | n ∈ ω}, ω},

γp(A) = min{inf{dim((A/A[pn])/p(A/A[pn]))|n ∈ ω}, ω},
ε(A) ∈ {0, 1} and (ε(A) = 0 ⇔ A is bounded).

THEOREM 1 [6]. Abelian groups A and B are elementarily equivalent if and only if their
Szmielew invariants coincide.

When we speak about Szmielew invariants of a complete theory T , we mean Szmielew invariants
of its models.

If T is some complete theory of Abelian groups, then the group

Σ(T ) = Qε(T ) ⊕
⊕

p,n

C
<αp,n(T )

p(n+1) ⊕
⊕

p

C
<βp(T )
p∞ ⊕

⊕

p

R
<γp(T )
p
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will have the same invariants as the theory T ; hence it will be a model of T . We call Σ(T ) the
standard model of T .

In this section, we fix a complete theory T in a language L. For convenience, to manipulate
with models of T , we (as is conventional in modern model theory) fix some sufficiently saturated
model C of T and assume that all T -models under consideration are elementary submodels of C.
Such a T -model C is called a monster model of T .

The set of all tuples of elements of a set U is denoted by U<ω. For the length of a tuple u,
we write l(u). For simplicity, instead of u ∈ U<ω, we will write u ∈ U . For the monster model C,
tuples of elements and tuples of variables are denoted by lower-case bold letters from, respectively,
the beginning and the end of the Latin alphabet: for example, a,b, . . . and . . . ,x,y, z.

Let A be an L-structure and Φ(x) an L-formula with parameters in A; then we put Φ(A) =
{a | A |= Φ(a),a ∈ A}. For an L-structure A and its subset X, by aclA(X) we denote the set

⋃
{Φ(A) | |Φ(A)| < ω,Φ(x) is an L-formula with parameters in X}.

If X is a subset of the monster model C, then we call X a set in the theory T . By L(X) we denote
a language which is obtained by adding to L the set X as a set of new constants. Denote by T (X)
the following set of formulas in the language L(X):

{ϕ(a) | a ∈ X,C |= ϕ(a), ϕ(x) is an L-formula without parameters}.

Clearly, T (X) is a complete theory in L(X) and is an extension of T .
Let a language LP be obtained by adding a new unary predicate symbol P to L.

Definition 1. Let T be a complete L-theory, Δ a set of LP -sentences, and X a set in T . Denote
by CT (Δ,X) the cardinality of a set of completions in a language (L(X))P of the set

TΔ(X) = (T (X) ∪ {P (a) | a ∈ X} ∪ Δ).

A cardinal function assigning to a cardinal λ the supremum of a set of cardinals such as

{CT (Δ,X) | X is a set in T, |X| � λ}

is called the PΔ-spectrum of the theory T and is denoted by ST (P,Δ).
A PΔ-spectrum is said to be maximal if ST (P,Δ)(κ) = 2κ for every infinite cardinal κ.

LEMMA 1 [2]. For every complete theory T in a finite or countable language L, for an
arbitrary set Δ of sentences in the language LP , and for any at most countable set X, the cardinal
CT (Δ,X) may assume only one of the following values: 2ω, ω, and n, where n ∈ ω.

Definition 2. Let Δ be some set of LP -sentences.
(1) A complete theory T in L is PΔ-stable if ST (P,Δ)(λ) � λ for some infinite cardinal λ.
(2) A complete theory T in L is PΔ-superstable if there exists a cardinal κ such that

ST (P,Δ)(λ) � λ for all cardinals λ � κ.
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(3) A complete theory T in L is totally PΔ-stable if ST (P,Δ)(λ) � λ for every infinite cardinal λ.
(4) A structure A is PΔ-(super)stable (totally PΔ-stable) if so is its theory.
Note that the PΔ-stability concept is a particular case of the concept of E∗-stability introduced

in [7].

Definition 3. Below we consider complete theories T of Abelian groups, taking as Δ the
following sets Δi, i ∈ {s, p, e, a}, of sentences:

(1) Δs says that a predicate P defines an arbitrary subgroup;
(2) Δp says that a predicate P defines a pure subgroup;
(3) Δe says that a predicate P defines an elementary subsystem;
(4) Δa says that a predicate P defines an algebraically closed subgroup.
For i ∈ {s, p, e, a}, instead of the terms PΔi-stability and PΔi-spectrum, we will use the terms

(P, i)-stability and (P, i)-spectrum.
In [1, 2], (P, i)-stable and (P, i)-superstable Abelian groups, as well as (P, i)-spectra for i ∈

{s, p, e, a}, were described completely. In the present paper, we give a description of totally (P, i)-
stable Abelian groups for i ∈ {s, p, e, a}.

A primitive formula in a language L is a formula of the form

∃x1 . . . ∃xnΦ,

where Φ is a conjunction of atomic formulas in the language L. A subset X of a structure A is said
to be primitive if X = Φ(A) for some primitive formula Φ(x).

In what follows, L denotes a language of the theory of Abelian groups, consisting of a binary
function symbol +, a unary function symbol −, and a constant symbol 0. By AG we denote the
theory of all Abelian groups defined by ordinary axioms for Abelian groups in L.

The lemma below is well known. Its proof is contained, for instance, in [4, 8].

LEMMA 2. Let T be a complete theory of Abelian groups. Every formula in the language of
Abelian groups is equivalent in T to a Boolean combination of primitive formulas.

In a similar way, we can prove the following:

LEMMA 3. Let A be an Abelian group and P its subgroup. Every LP -formula is equivalent
in Th (〈A,P 〉) to a Boolean combination of primitive LP -formulas.

It is easy to verify that every primitive formula Φ(x) in the language LP defines in the structure
〈A,P 〉 a subgroup of A. If P1 and P2 are subgroups of A and P2 ⊆ P1, then [P1 : P2] denotes the
number min{|P1/P2|, ω}, which is called the index of the subgroup P2 in the subgroup P1.

The following proposition is proved in exactly the same way as its counterpart for modules [8].

PROPOSITION 1. Let A1 and A2 be Abelian groups and P1 and P2 be their subgroups. For
structures 〈A1, P1〉 and 〈A2, P2〉 to be elementarily equivalent, it is necessary and sufficient that
for any primitive LP -formulas Φ(x) and Ψ(x) with the condition � Ψ(x) → Φ(x), the following
equality will hold:

[Φ(A1) : Ψ(A1)] = [Φ(A2) : Ψ(A2)],
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where Ai = 〈Ai, Pi〉.
The next lemma goes back to [6]; in the given form, it is contained, for instance, in [4,

Lemma 8.4.7].

LEMMA 4. Every primitive formula Φ(x1, . . . , xn) in the language of Abelian groups is
equivalent in the theory AG to a conjunction of formulas like α1x1 + . . . + αnxn = 0 and
∃yα1x1 + . . . + αnxn = pky for integers α1, . . . , αn, prime numbers p, and natural numbers k,
which are called standard formulas of, respectively, the first and second kind. In this case a prime
p in a standard formula of the second kind is referred to as a module of that formula.

Instead of ∃yα1x1 + · · · + αnxn = pky, we will write α1x1 + · · · + αnxn = 0 (mod pk).

Definition 4. A theory T in a countable language L is said to be PΔ-small if the set (T ∪ Δ)
has an at most countable number of completions in the language LP .

For complete theories of Abelian groups, for i ∈ {s, p, e, a}, instead of the term PΔi-small, we
use the term (P, i)-small.

2. TOTAL (P, p)-STABILITY

Lemma 4 gives rise to the following:

LEMMA 5. Let A be an Abelian group and P a pure group. For any primitive L-formula
Φ(x) and any tuple a ∈ P ,

A |= Φ(a) ⇔ P |= Φ(a).

The proof of the next lemma is contained, for instance, in [2, proof of Lemma 8].

LEMMA 6. For any primitive LP -formula Φ(x), there exists a primitive L-formula Φ∗(x) such
that for every Abelian group A and its arbitrary pure subgroup P , the formula Φ∗(x) defines in A

on the subgroup P the same predicate as is defined by the formula Φ(x) in the structure 〈A,P 〉.
Lemmas 3 and 6 immediately imply the following:

THEOREM 2. For a complete theory T of Abelian groups, the following conditions are
equivalent:

(1) T is totally (P, p)-stable;
(2) T is (P, p)-small.

LEMMA 7. Let P , B, and C be subgroups of A and C ⊆ B. Then

[B : C] = [(P ∩ B) : (P ∩ C] · [(P + B) : (P + C)].

Proof. Let X = {ai + P + C | i ∈ K} be the set of all elements of a group (P + B)/(P + C),
with ai ∈ B and (ai − aj) /∈ (P + C) if i �= j. Let Y = {bj + (P ∩ C) | j ∈ L} be the set of
all elements of a group (P ∩ B)/(P ∩ C), with bj ∈ (P ∩ B), j ∈ L, and (bi − bj) /∈ C if i �= j.
Consider a set Z = {ai + bj | i ∈ K, j ∈ L} of elements. We show that the set Z is a complete
system of representatives of C-classes in the group B. If i1 �= i2, then, for any j1 and j2, we have
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ai1 −ai2 /∈ (P +C) and bj1, bj2 ∈ P ; hence (ai1 + bj1)− (ai2 + bj2) /∈ (C +P ). If i1 = i2 and j1 �= j2,
then (ai1 + bj1) − (ai2 + bj2) = (bj1 − bj2) /∈ C.

On the other hand, take an arbitrary element a ∈ B. Let (a−ai) ∈ (C +P ). Clearly, (a−ai) ∈
(B ∩ (C + P ). Since ((a − ai) + C) ⊆ B, we have

(((a − ai) + C) ∩ P ) ⊆ (P ∩ B).

Then there is bj for which

(bj + (P ∩ C)) ∩ ((a − ai) + C) ∩ P �= ∅.

If
e ∈ (bj + (P ∩ C)) ∩ ((a − ai) + C) ∩ P,

then (e + (P ∩ C)) = (bj + (P ∩ C)) and

(e + (P ∩ C)) ⊆ ((a − ai) + C).

Consequently, (bj + C) = ((a − ai) + C); i.e., (a − (ai + bj)) ∈ C. �

THEOREM 3. Let A1 and A2 be Abelian groups and P1 and P2 be their pure subgroups. For
structures 〈A1, P1〉 and 〈A2, P2〉 to be elementarily equivalent, it is necessary and sufficient that
the conditions P1 ≡ P2 and A1/P1 ≡ A2/P2 be satisfied.

Proof. The necessity is obvious. In view of Proposition 1, to prove the sufficiency, we need to
show that in the case where P1 ≡ P2 and A1/P1 ≡ A2/P2, the equality

[Φ(A1) : Ψ(A1)] = [Φ(A2) : Ψ(A2)], (1)

where Ai = 〈Ai, Pi〉, holds for any primitive LP -formulas Φ(x) and Ψ(x) with the condition that
� Ψ(x) → Φ(x). The required statement follows from Lemmas 5-7. �

Definition 5. For every Abelian group A, put

Sh(A) = {〈p, n〉 | αp,n(A) �= 0, n < ω, } ∪ {p | βp(A) �= 0} ∪ {p | γp(A) �= 0}.

Definition 6. An Abelian group A is Szmielew bounded if the set Sh(A) is finite. As usual, a
complete theory T of Abelian groups is Szmielew bounded if its models are Szmielew bounded.

PROPOSITION 2. For an Abelian group A to be Szmielew bounded, it is necessary and
sufficient that there exist a finite set σ(A) of primes with the following properties:

(1) every element of A is divisible by each prime number p not belonging to σ(A);
(2) for every prime number p not belonging to σ(A), the p-component Ap of A is zero;
(3) for every prime number p, the reduced part of the p-component Ap of A is bounded.
Proof. Let

X = {p | αp,n(A) �= 0 for some n},
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Y = {p | βp(A) �= 0},
Z = {p | γp(A) �= 0}.

Necessity. Let Sh(A) be a finite set. As σ(A) we take a finite set (X ∪ Y ∪ Z). Property (2)
follows from the inclusion (X∪Y ) ⊆ σ(A). Property (1) follows from property (2) and the inclusion
Z ⊆ σ(A). We verify (3). Suppose that for some prime p, the reduced part H of the p-component Ap

of A is unbounded. Clearly, property (3) is preserved under the passage to elementarily equivalent
groups. If we look at the form of the standard model of T = Th (A) we see that the set {〈p, n〉 |
αp,n(A) �= 0} is infinite, which is a contradiction with Sh(A) being finite.

Sufficiency. Suppose that properties (1)-(3) hold for some finite set σ(A). Property (1) implies
finiteness of Z; property (2) entails finiteness of Y ; finiteness of the set {〈p, n〉 | αp,n(A) �= 0}
follows from properties (2) and (3). Thus Sh(A) is finite. �

LEMMA 8. Let A be an Abelian p-group. For the reduced part of A to be bounded, it is
necessary and sufficient that there exist a natural number n for which the following condition holds:

(∗) pnA is a divisible group.
Proof. We represent A as C ⊕ B, where C is a divisible group and B a reduced group.
Necessity. If pnB = 0 then pnA = pnC = C; i.e., condition (∗) holds.
Sufficiency. Suppose that (∗) is satisfied. We may assume that pnA ⊆ C; in particular, pnB ⊆ C.

Since (B ∩ C) is a zero subgroup, pnB = 0. �

LEMMA 9. Let p be a prime and D a divisible p-subgroup of A. Let the reduced part of
the p-component Ap be unbounded. Then the reduced part of the p-component of a group A/D is
unbounded.

Proof. We represent the p-component Ap as B ⊕ D ⊕ E, where D ⊕ E is the largest divisible
subgroup of Ap. In order to prove that the reduced part of the p-component (A/D)p of A/D

is unbounded, it suffices to show that the groups B ⊕ E and (A/D)p are isomorphic. We claim
that the desired isomorphism will be a mapping ϕ assigning to an element b + e ∈ B ⊕ E an
element (b + e) + D. That ϕ is injective follows from the fact that (B + E) ∩ D = 0. Clearly,
ϕ(B ⊕ E) ⊆ (A/D)p. It remains to show that if a + D ∈ (A/D)p then a ∈ Ap. The condition
a + D ∈ (A/D)p implies pka ∈ D for some k. In view of D ⊆ Ap, we have a ∈ Ap. �

LEMMA 10. Let an Abelian group A be Szmielew bounded. Then, for any pure subgroup P

of A, the groups P and A/P are Szmielew bounded, in which case as σ(P ) and σ(A/P ) we can
take the set σ(A).

Proof. We show that the subgroup P is Szmielew bounded. Property (1) in Proposition 2
follows from the fact that P is pure. Property (2) for P is an immediate consequence of property (2)
for A. Property (3) follows from Lemma 8 and the fact that P is a pure subgroup.

Now we argue to state that the subgroup A/P is Szmielew bounded. Property (1) is obtained
based on the fact that the formula ∀x∃ypy = x is positive and is therefore preserved under
homomorphisms. Suppose that property (2) for A/P fails, i.e., there exist p /∈ σ(A) and a /∈ P
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with the condition pa ∈ P . The subgroup P is pure, and so there exists b ∈ P with the condition
pb = pa, i.e., p(b − a) = 0. Since a /∈ P , we obtain (b − a) �= 0, which clashes with the property
that A[p] = 0.

We verify property (3) for A/P . Let D be the largest divisible subgroup of the p-component Ap

of a group A. We show that the reduced part of the p-component of a group A/(P +D) is bounded.
By hypothesis, we have pkAp ⊆ D for some k. Suppose that the reduced part of the p-component
of A/(P + D) is unbounded. Then there exists an element a ∈ A such that p(k+1)a ∈ (P + D) and
pka /∈ (P + D). The subgroup P is pure, and D is a divisible group; so P + D is a pure subgroup
of A. Consequently, there is an element b ∈ (P + D) with the condition p(k+1)b = p(k+1)a. Then
p(k+1)(a− b) = 0; in particular, (a− b) ∈ Ap. By the choice of a number k, we have pk(a− b) ∈ D,
which clashes with the conditions b ∈ (P + D) and pka /∈ (P + D).

Suppose that the reduced part of the p-component of A/P is unbounded. Obviously, the
subgroup D + P is a divisible subgroup of A/P . The groups A/(P + D) and (A/P )/(D + P ) are
isomorphic, and by Lemma 9, the reduced part of the p-component of A/(P + D) is unbounded,
which is a contradiction with the above. �

PROPOSITION 3. There exist only countably many complete theories of Szmielew bounded
Abelian groups.

Proof. The required statement follows immediately from the definition of Szmielew bounded
Abelian groups and Theorem 1, since the Szmielew invariants each assumes at most countably
many values. �

Definition 7. For an Abelian group A, by Sh(A) we denote the set

{〈p, n〉 | αp,n(A) �= 0, n < ω, } ∪ {〈p, β〉 | βp(A) �= 0} ∪ {〈p, γ〉 | γp(A) �= 0}.

THEOREM 4. For a theory of an Abelian group A to be (P, p)-small, it is necessary and
sufficient that the group A be Szmielew bounded.

Proof. Necessity. Suppose that Sh(A) is an infinite set. Then the set Sh(A) will also be infinite.
For any subset X ⊆ Sh(A), we take a subgroup PX of the standard model Σ(Th (A)) generated
by its direct summands

{
C

<αp,n(T )

p(n+1)

∣∣∣ 〈p, n〉 ∈ X
}

,
{

C
<βp(T )
p∞

∣∣∣ 〈p, β〉 ∈ X
}

,
{

R
<γp(T )
p

∣∣∣ 〈p, γ〉
}

.

The subgroup PX is a direct summand of the group Σ(Th (A)) and is therefore pure in
Σ(Th (A)). If X and Y are different subsets of Sh(A), then the groups PX and PY will have
different Szmielew invariants. Consequently, PX and PY are not elementarily equivalent. The set
Sh(A) is infinite, and the theory Th (A) is not (P, p)-small.

The sufficiency follows from Theorem 3, Lemma 10, and Prop. 3. �

Theorems 2 and 4 can be combined to yield

THEOREM 5. For a theory of an Abelian group A to be totally (P, p)-stable, it is necessary
and sufficient that the group A be Szmielew bounded.
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3. TOTAL (P, e)-STABILITY

The proposition below is well known (see, e.g., [8]).

PROPOSITION 4. Let A be an Abelian group and P its subgroup. For the subgroup P to be
an elementary subsystem of the group A, it is necessary and sufficient that P be a pure subgroup
and the property A ≡ P hold.

Clearly, elementary subsystems of A will be pure subgroups. As in the previous section,
therefore, Lemma 6 implies the following:

THEOREM 6. For a complete theory T of Abelian groups, the following conditions are
equivalent:

(1) T is totally (P, e)-stable;
(2) T is (P, e)-small.

Definition 8. For an Abelian group A, by Shω(A) we denote the set

{〈p, n〉 | αp,n(A) = ω, n ∈ ω} ∪ {p | βp(A) = ω} ∪ {p | γp(A) = ω}.

Definition 9. An Abelian group A is Szmielew ω-bounded if the set Shω(A) is finite. As usual, a
complete theory T of Abelian groups is Szmielew ω-bounded if its models are Szmielew ω-bounded.

LEMMA 11. Suppose that for an Abelian group A and for a prime number p, we have
βp(A) < ω. Then the following conditions are equivalent:

(1) the reduced part of the p-component Ap of A is finite;
(2) A[p] is a finite subgroup.
Proof. (1)⇒(2) Follows from the fact that βp(A) is a finite invariant.
(2)⇒(1) Let A[p] be finite and Ap = B⊕D, where D is a maximal divisible subgroup in Ap. By

induction on n, it is easy to show that for any natural n, the subgroup A[pn] is finite. Suppose that
B is an infinite subgroup. Then there exists a sequence {an | n ∈ ω} of elements of infinite p-height
in B with the properties pa0 = 0 and pa(n+1) = an. Obviously, the subgroup generated by the set
{an | n ∈ ω} is isomorphic to a group Cp∞ , which is a contradiction with B being reduced. �

Remark 1. It is not hard to verify that for any subgroup H of A, the following isomorphism
holds:

(A/H)/p(A/H) � A/(pA + H).

PROPOSITION 5. For an Abelian group A to be Szmielew ω-bounded, it is necessary and
sufficient that there exist a finite set σω(A) of primes with the following properties:

(1) for any prime p not belonging to σω(A), A[p] is a finite subgroup;
(2) for any prime p not belonging to σω(A), A/pA is a finite group;
(3) for any prime p, {〈p, n〉 | αp,n(A) = ω, n ∈ ω} is a finite set.
Proof. Consider the sets

X = {p | αp,n(A) = ω for some n},
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Y = {p | βp(A) = ω},
Z = {p | γp(A) = ω}.

Necessity. Let Shω(A) be a finite set. Property (3) is obvious. As σω(A) we take a finite set
(X ∪ Y ∪ Z). Suppose that property (1) fails, i.e., for some p /∈ (X ∪ Y ∪ Z), the subgroup A[p]
is infinite. By Lemma 11, the reduced part of the p-component Ap of A is infinite. In view of
the fact that p /∈ X, the group A contains a subgroup of the form C<ω

pk , for any natural k. By
the compactness theorem, there is a model of Th (A) having a subgroup of the form C<ω

p∞ , which
contradicts the condition that p /∈ Y .

We verify property (2). Suppose that for some p /∈ (X ∪ Y ∪ Z), the group A/pA is infinite.
Property (1) and the condition p /∈ Y imply that the subgroup A[pk] is finite for any natural number
k. Consequently, the group A/(pA + A[pk]) is infinite for any natural k. In view of Remark 1, we
obtain γp(A) = ω, which is a contradiction with the condition that p /∈ Z.

Sufficiency. Suppose that properties (1) and (2) hold. Property (1) implies the inclusion (X ∪
Y ) ⊆ σ(A). Properties (1) and (2), combined with Remark 1, yield the inclusion Z ⊆ σ(A). In
view of (X ∪ Y ∪ Z) being finite and property (3), we conclude that Shω(A) is finite. �

LEMMA 12. Let A be an Abelian group and the group A/pA be finite for a prime p. Then
p(A/P ) = A/P for any elementary subsystem P of A; in particular, γp(A/P ) = 0.

Proof. Take any a ∈ A. There is only a finite number k of conjugacy classes with respect to
a subgroup pA, and P ≡ A; so |P/pP | = k. Since P is an elementary subsystem, divisibility by p

of elements of the subgroup P coincides in the group A and in the subgroup P . Thus there exists
b ∈ P ∩ (a + pA), i.e., a − b = pc for some c ∈ A. Hence (a + P ) ∈ p(A/P ). �

LEMMA 13. Suppose that the subgroup A[p] of A is finite for a prime p. Then (A/P )[p] = 0 for
any elementary subsystem P of A; in particular, the Szmielew invariants βp(A/P ) and αp,n(A/P ),
n < ω, are equal to zero.

Proof. Suppose that pa ∈ P for some a ∈ A. The set X = {b | pb = pa} will be the conjugacy
class of the subgroup A[p]. Consequently, X is finite. Since P is an elementary subsystem of A, we
have X ⊆ P �.

LEMMA 14. Let the Szmielew invariant αp,n(A) of a group A be finite for a prime number
p and for a natural number n. Then the Szmielew invariant αp,n(A/P ) of a group A/P is equal to
zero for any elementary subsystem P of the group A.

Proof. Suppose that the Szmielew invariant αp,n(A/P ) of A/P is not equal to zero. Hence,
for some a ∈ A, the following conditions hold: a /∈ P , pa ∈ P , (a + P ) ∈ pn(A/P ), and (a + P ) /∈
p(n+1)(A/P ). Replacing, if necessary, the element a by some element of a+P , we may assume that
pnb = a for some b. Since P � A, there is an element e ∈ P with p(n+1)e = pa. Consequently, for
an element f = (a − pne), the conditions f ∈ A[p] and f ∈ pnA hold. Since αp,n(A) is finite and
P � A, there is an element h ∈ (pnP )[p] with (f − h) ∈ p(n+1)A. Hence (a + P ) ∈ p(n+1)(A/P ),
which contradicts the hypothesis. �
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Proposition 5 and Lemmas 12-14 entail

PROPOSITION 6. Let an Abelian group A be Szmielew ω-bounded. Then for elementary
subsystems P there are at most countably many elementary theories for groups A/P .

THEOREM 7. For a theory of an Abelian group A to be (P, e)-small, it is necessary and
sufficient that the group A be Szmielew ω-bounded.

Proof. The sufficiency follows from Theorem 3 and Prop. 6.
Necessity. Suppose that a theory of an Abelian group A is not Szmielew ω-bounded. Then a

standard model S of Th (A) has the form

S = E ⊕
⊕

B∈X

B<ω, (2)

where the set X consists of infinitely many groups B like Cpn , Cp∞ , and Rp. Consider an arbitrary
subset Y ⊆ X. Then a group S can be represented as

S = PY ⊕
⊕

B∈Y

B, (3)

where the subgroup PY is isomorphic to A and is a direct summand of A. Direct summands are
pure subgroups, and by Proposition 4, PY � A. If Y1 �= Y2, then A/PY1 and A/PY2 will not be
elementarily equivalent. Thus the group A is not (P, e)-small. �

Theorems 6 and 7 give rise to

THEOREM 8. For a complete theory T of Abelian groups, the following conditions are
equivalent:

(1) T is totally (P, e)-stable;
(2) T is Szmielew ω-bounded.

4. TOTAL (P, a)-STABILITY

An elementary subsystem is algebraically closed, and Theorem 7 entails the following property:
(A) if an Abelian group A is (P, a)-small, then the group A is Szmielew ω-bounded.
Furthermore, if an Abelian group A is totally (P, a)-stable (in particular, (P, a)-stable), then,

by [1, Thm. 3], the following properties hold:
(B) for any prime p, the subgroup (pA)[p] of A is finite;
(C) for any prime p, either the subgroup A[p] of A is finite or its Szmielew invariant γp(A) is

finite.

Remark 2. Using property (B) and induction on k, we can readily show that (pA)[pk] is a
finite subgroup for any k (see also [1, p. 415, property (3)]).

Remark 3. Remark 2 implies that for every algebraically closed subgroup P of A, the following
property holds:
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(B∗) (P ∩ p(k+1)A) ⊆ pkP for any natural k; moreover, if p(k+1)a ∈ P for a ∈ A, then pa ∈ P

(see also [1, Lemma 9]).

LEMMA 15. Suppose that A = P ⊕ B and the group B has no primitive ∅-definable finite
nonzero subgroups. Then P is an algebraically closed subgroup of A.

The proof follows from [1, Lemma 5] and the fact that primitive formulas are filtering. �

PROPOSITION 7. If a theory of an Abelian group A is (P, a)-small, then the following
property holds:

(D) the set W = {p | γp(A) �= 0} is finite.
Proof. In a group, which is a direct sum of groups of the form Rp for prime p, there are no

nonzero finite subgroups. Using Lemma 15, we see that for any subset X ⊆ W , a standard model
C of Th (A) can be represented as

C = PX ⊕
⊕

p∈X

Rp,

where PX is some algebraically closed subgroup of C. If X1 �= X2, then the groups C/PX1 and
C/PX2 will not be elementarily equivalent. Consequently, for an infinite set W , Th (A) is not
(P, a)-small. �

Definition 10. Suppose that γp(A) is a finite Szmielew invariant. By [2, Lemma 15], pA/p2A

is a finite group.
Let X and P be algebraically closed subgroups of A and X ⊆ P . In what follows, the subgroups

P will be changed, while the subgroup X will be kept fixed.
Consider a group such as

GP = (pA ∩ P )/((pA ∩ X) + pP ).

By property (B∗), we have P ∩ p2A ⊆ pP . Consequently,

|GP | � |(pA ∩ P )/((pA ∩ X) + (P ∩ p2A)|.

Then
|GP | � |(pA ∩ P )/(P ∩ p2A)| � |pA/p2A|.

Therefore, the group GP is finite. Obviously, pGP = 0.
Take elements aP

1 , . . . , aP
n ∈ (pA ∩ P ) such that the elements

aP
1 + ((pA ∩ X) + pP ), . . . , aP

n + ((pA ∩ X) + pP ) (4)

will form a basis in the group GP treated as a vector space over a field consisting of p elements.
Consider a finite set like

W P = {k1a
P
1 + · · · knaP

n | k1 < p, . . . , kn < p}.
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In the subgroup (pA ∩ X), take elements b1, . . . , bm, one from each conjugacy p2A-class having
nonempty intersection with (X ∩ pA).

Denote by U the set {b1, . . . , bm}.
Remark 4. The choice of elements b1, . . . , bm does not depend on the subgroup P ; therefore,

we choose them equal for different subgroups P .

Definition 11. Elements aP
1 , . . . , aP

n are called outer parameters, while b1, . . . , bm are called
inner parameters.

Definition 12. An equivalence whose classes consist of conjugacy classes of the subgroup p2A

in the group pA is denoted by εp.
For a tuple c = 〈c1, . . . , cs〉, we denote by x ∈ c the formula

(z = c1 ∨ · · · ∨ z = cs).

Similarly, for a finite set C, by x ∈ C we denote the formula
∨

a∈C

x = a.

LEMMA 16 [12, Lemma 19]. Let Th (A) have a nonmaximal (P, a)-spectrum and let the
Szmielew invariant γp(A) be equal to zero. Then each εp-class has an element of a finite subgroup
(pA)[pn] for some natural n.

LEMMA 17 [2, Lemma 14]. (1) Let some algebraically closed subgroup P of A be bounded.
Then the p-component Ap of A is bounded for any prime p, i.e., pnAp = 0 for some n.

(2) Let pnAp = 0 for a prime p and some n. By Remark 2, the subgroup (pA)[pn] is finite and,
consequently, is contained in any algebraically closed subgroup P . Suppose also that

Φp(z) = ∃x∃y(x ∈ (pA)[pn] ∧ (z − x) = py).

Then any bounded algebraically closed subgroup P and every element a ∈ P satisfy the property

A |= ∃ya = py ⇔ P |= Φp(a).

(3) Assume that for a prime number p and for a natural number n, we have pnAp = 0, and

Φpk(x) = ∃z(Φp(z) ∧ x = p(k−1)z)

for k > 1, where the formula Φp(z) is as in item (2). Then an arbitrary bounded algebraically
closed subgroup P , any number k > 1, and every element a ∈ P enjoy the property

A |= ∃ya = pky ⇔ P |= Φpk(a).
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LEMMA 18. Suppose that for an Abelian group A and for a prime number p, the Szmielew
invariant γp(A) is finite. Then, for any algebraically closed subgroup P and any natural number
k � 1, there exists a formula ΨP

pk(x) with parameters in the set

{aP
1 , . . . , aP

n } ∪ U,

for which the following properties hold:
(1) for any a ∈ P ,

P |= ΨP
pk(a) ⇔ a ∈ pkA;

(2) this property derives from (1) if in ΨP
pk(x) we replace any outer parameter aP

i ∈ {aP
1 , . . . , aP

n }
by any element of the class aP

i + pP ;
(3) if the Szmielew parameter γp(A) is equal to zero, then all parameters of the formula ΨP

pk(x)
with property (1) can be taken from the set {b1, . . . , bm} of inner parameters.

Proof. Case 1. Let k = 1. As ΨP
p (x) we may take the formula

2x ∈ pP ∨ ∃z(z ∈ U ∧ (x − z) ∈ pP ) ∨ ∃z∃u(z ∈ W P ∧ u ∈ U ∧ (x − z − u) ∈ pP ).

Since (W P ∪ U) ⊆ pA, P |= ΨP
p (a) implies a ∈ pA.

Let a ∈ (pA ∩ P ). If a ∈ pP , then the formula ΨP
p (a) is obviously true in P .

Let a ∈ ((pA ∩ X) + pP ). Consider an element c ∈ (pA ∩ X) for some a ∈ (c + pP ). By the
choice of elements b1, . . . , bm, there is b ∈ U such that (c− b) ∈ p2A. Since P ∩ p2A ⊆ pP , we have
(a − b) ∈ pP . Hence P |= ΨP

p (a).
It remains to look into the situation where

a ∈ ((pA ∩ P ) \ ((pA ∩ X) + pP ).

By the choice of elements aP
1 , . . . , aP

n , there is b ∈ W P such that (a − b) ∈ ((pA ∩ X) + pP ). Once
we consider the situation where a ∈ ((pA∩X)+pP ), we will see that there exists an element c ∈ U

such that (a − b − c) ∈ pP . Therefore, P |= ΨP
p (a).

Case 2. Let k > 1. In virtue of property (B), as the formula ΨP
pk(x) we can take a formula of

the form
∃z(x = p(k−1)z ∧ ΨP

p (z)).

Property (2) follows from the form of ΨP
pk(x).

Lemma 16, the algebraic closedness of a subgroup X, and property (2) can be combined to
produce property (3). �

PROPOSITION 8. If A is a totally (P, a)-stable group, then it can be represented as

A = B ⊕ C,

where B is a direct sum of finitely many infinite elementary groups, and for any prime p, the
p-components Cp of the group C are finite.
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Proof. In view of property (B), for any prime p, the p-component Ap is bounded and,
consequently, is distinguished by a direct summand in A. Furthermore, (B) implies that the group
Ap is a direct sum of an elementary group and a finite group. Thus, with property (A) in mind,
we obtain the desired decomposition of A. �

LEMMA 19 [2, Lemma 17]. If A[p] is a finite subgroup, then any standard formula of the
form ᾱx = 0 (mod pk) and any tuple a ∈ P satisfy

A |= ᾱa = 0 (mod pk) ⇔ P |= ᾱa = 0 (mod pk).

THEOREM 9. For a complete theory of an Abelian group A to be totally (P, a)-stable, it is
necessary and sufficient that the group A be (P, a)-small and properties (B) and (C) hold.

Proof. The necessity of the conditions above was noticed at the beginning of the section.
Sufficiency. Assume the contrary. This means that there exist an Abelian group A satisfying

properties (B) and (C), which is (P, a)-small (in particular, properties (A) and (D) hold), and a
set X in T = Th (A) such that the structures

〈Aλ, Pλ〉, λ < 2ω,

satisfy the following conditions:
(i) X ⊆ Pλ for every λ < 2ω;
(ii) if λ < μ < 2ω, then 〈Aλ, a〉a∈X ≡ 〈Aμ, a〉a∈X ;
(iii) if λ < μ < 2ω, then Th (〈Aλ, Pλ, a〉a∈X ) �= Th (〈A,Pμ, a〉a∈X ).
We may assume that statements (1)-(4) (see below) hold.
(1) Abelian groups Aλ, λ < 2ω, coincide. In fact, in view of the extension theorem, we may

assume that the groups have equal cardinality κ. By virtue of condition (ii), it follows by the
Keisler–Shelah theorem that there exists an ultrafilter U such that ultrapowers AU

λ , λ < 2ω, are
isomorphic. The isomorphic groups Aλ, λ < 2ω, are denoted by A.

(2) For subgroups Pλ, λ < 2ω, and for primes p for which A[p] is an infinite subgroup, the
following sets do not depend on λ:

(α) {εp(a) | a ∈ (pA ∩ Pλ)};
(β) {εp(a) | a ∈ pPλ};
(γ) {εp(a) | a ∈ (X ∩ pPλ)}.
Indeed, Lemma 16, the property X ⊆ Pα, α < 2ω, and property (D) imply that for almost all

primes p, the sets (α), (β), and (γ) coincide with the set of all εp-classes. For other p (finite in
number by property (D)), these sets are finite in view of (C). Therefore, among Pα, α < 2ω, there
are continuum many subgroups for which statement (2) holds.

(3) For subgroups Pλ, λ < 2ω, and for primes p for which γp(A) is a finite Szmielew invariant
not equal to zero, the subgroups of GP in Definition 10 have equal cardinality. This follows from
the property of GP being finite, property (D), and Prop. 7.

Statement (3) gives rise to the following:
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Remark 5. In the case where the invariant γp(A) is finite and is not equal to zero, there
exists a natural number n such that for any λ < 2ω, the subgroup Pλ contains elements aλ

1 , . . . , aλ
n

satisfying the conditions of Definition 10 for P = Pλ. In this event we may assume that for any
α < β < 2ω and for every i ∈ {1, . . . , n}, the elements aα

i and aβ
i sit in a same εp-class, and that

class contains no elements of the set X.
(4) If λ < μ < 2ω, then 〈A,Pλ〉 ≡ 〈A,Pμ〉.
The statement follows from the fact that A is (P, a)-small.

Remark 6. We may assume that a primitive LP -formula Φ(x) has the form

∃y1 · · · ∃yk(P (y1) ∧ · · · ∧ P (yk) ∧ Ψ),

where Ψ is a primitive L-formula. Indeed, if Φ contains a subformula of the form P (t) for some
term t, then Φ is equivalent to a formula ∃y(P (y)∧Φ∗), where the variable y does not occur in Φ,
while the formula Φ∗ is obtained from Φ by replacing P (t) by y = t.

In view of Lemma 3, any LP -formula ϕ(x) is equivalent in the theory T ∗ to a Boolean
combination of primitive formulas. If now we show that every primitive LP -formula Φ(x) defines
in models 〈A,Pα〉, α < 2ω, the sole predicate on a set X, then we will arrive at a contradiction
with condition (iii).

Thus, to prove Theorem 9, it suffices to show the validity of the following:

LEMMA 20. Every primitive LP -formula Φ(x) defines in models 〈A,Pα〉, α < 2ω, the sole
predicate on a set X.

Proof. Let Φ(x1, . . . , xn) be a primitive LP -formula. By Remark 6, we may assume that it has
the form

∃y1 · · · ∃yk(P (y1) ∧ · · · ∧ P (yk) ∧ Ψ),

where Ψ(x1, . . . , xn; y1, . . . , yk) is a primitive L-formula. By virtue of Lemma 4, the formula
Ψ(x1, . . . , xn; y1, . . . , yk) is equivalent in AG to a conjunction of standard formulas. Truth of
standard formulas of the first kind on elements of the subgroup Pα in the group A is equivalent to
their being true in Pα.

By statements (2) and (3), Lemma 19, and the construction of ΨP
pk(x), it follows from Lemma 18

and property (iv) that there exists a formula Θ(x1, . . . , xn; y1, . . . , yk; z1, . . . , zs), not depending on
α, such that for every α < 2ω, there are parameters aα

1 , . . . , aα
s in (Pα ∩ pA) such that for any

c1, . . . , cn; b1, . . . , bk ∈ Pα,

A |= Ψ(c1, . . . , cn; b1, . . . , bk) ⇔ Pα |= Θ(c1, . . . , cn; b1, . . . , bk; aα
1 , . . . , aα

s ). (5)

The parameters aα
1 , . . . , aα

s in order of their appearance in Lemma 18 will be related to a respective
prime p. By Lemma 19, we may assume that if the subgroup A[p] is finite, then there are no
parameters among aα

1 , . . . , aα
s relating to a prime p. In addition, in view of Lemma 17, we will

assume that all parameters aα
1 , . . . , aα

s are inner if the subgroup Pα is bounded. By Lemma 16,
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we can suppose that if the Szmielew invariant γp(A) is equal to zero, then all parameters of the
formula relating to p are inner.

Lemma 18(2) implies the following: if we replace an outer parameter aα
i corresponding to a

prime p by any element of the set aα
i + pPα, then equivalence (5) will be preserved.

Equivalence (5) and the form of a formula Φ yield the equivalence

〈A,Pα〉 |= Φ(c1, . . . , cn) ⇔ Pα |= ∃y1 · · · ∃ykΘ(c1, . . . , cn; y1, . . . , yk; aα
1 , . . . , aα

s ) (6)

for any elements c1, . . . , cn ∈ Pα.
Looking over the form of formulas ΨP

pk(x) in Lemma 18 and the form of a formula ΦP
pk(x) in

Lemma 17, we conclude that the formula Θ(x1, . . . , xn; y1, . . . , yk; aα
1 , . . . , aα

s ) is a disjunction of
primitive formulas. Moreover, if we replace its outer parameter relating to a prime p by an εp-
equivalent element of the subgroup Pα, then every formula among the members of this disjunction
will be equivalent in Pα to the initial formula. The existential quantifier distributes over disjunction.
Therefore, in view of the form of formulas ΨP

pk(x) in Lemma 18 and the form of a formula ΦP
pk(x)

in Lemma 17, and also statement (2), in order to prove the lemma, it suffices to show that the
following statement holds.

(∗∗) Let Δ(x;y; z) be a primitive L-formula without parameters. Let b be a tuple of inner
parameters. For every α < 2ω, we choose tuples aα of outer parameters such that every element
aα

i of aα is assigned some prime number p not depending on α, with aα
i ∈ (pA∩Pα). Moreover, for

any α and any β, the elements aα
i and aβ

i sit in one εp-class, and that class contains no elements
of the subgroup X; in particular, it contains no elements of the subgroups pA[pn] for any n. Let
Δ(x;b;aα) be a formula in which any parameter of aα relating to a prime p is replaced by an
εp-equivalent element of the subgroup Pα, and let it be equivalent in Pα to the initial formula.
Then the predicates

{(Δ(Pα;b;aα) ∩ X) | α < 2ω}

coincide.
Let aα = 〈aα

1 , . . . , aα
s 〉 and z̄ = 〈z1, . . . , zs〉. If, for any α < 2ω, the formula Δ(x;b;aα) in the

group Pα on the set X defines an empty predicate, then there is nothing to prove. Below we assume
that there exists α such that

(Δ(Pα;b;aα) ∩ X) �= ∅. (7)

By virtue of Szmielew’s theorem, we may assume that the formula Δ(x;y; z) is a conjunction of
standard formulas. Consider all possible types of conjunctive terms appearing in Δ(x;y; z).

(1) Take a standard formula Φ0(x;b) without outer parameters, which is a conjunctive term
of the formula Δ(x;b; z).

If Φ0 is a standard formula of the first kind, then its truth in Pα on tuples of X is equivalent
to its being true in A; therefore, this truth does not depend on α.

Let Φ0 be a standard formula of the second kind modulo p. If A[p] is a finite subgroup, then
the fact that truth of Φ0 on tuples of X does not depend on α follows from Lemma 19.
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Let A[p] be an infinite subgroup. Then the Szmielew invariant γp(A) is finite. In view of
statement (2)(γ), the set X ∩ pPα does not depend on α. Property (B∗) for P = X with any
k > 1 entails the following:

a ∈ (X ∩ pkPα) ⇔ ∃b(b ∈ X ∧ b(k−1) = a ∧ b ∈ pPα).

Therefore, since the set X ∩ pPα is independent of α, it follows that X ∩ pkPα is independent of α

for any k.
(2) Consider a formula Φ1(x;b;aα) = n̄b + m̄aα + s̄x = 0, which is a conjunctive term of the

formula Δ(x;b;aα) and is true in Pα on some tuple of X.
In view of case (1), we may assume that the tuple m̄ consists of nonzero elements. Suppose

that tuples bα and k̄ are obtained from aα and m̄ by deleting the first element. Then

Φ1(x;b;aα) = n̄b + k̄bα + m1a
α
1 + s̄x = 0,

where aα
1 relates to a prime number p. Take an arbitrary element d ∈ p2Pα. If m1d �= 0, then

the formulas n̄b + k̄bα + m1a1 + s̄x̄ = 0 and n̄b + k̄bα + m1(a1 + d) + s̄x̄ = 0 have no common
solutions in Pα. This, by virtue of property (7), clashes with the fact that the elements a1 and
(a1 + d) are εp-equivalent, and the truth of Δ(x; aα

1 , . . . , aα
s ) is preserved under the replacement of

parameters relating to a prime p by εp-equivalent parameters. Thus m1p
2Pα = 0. By statement (4),

the structures 〈A,Pα〉, α < 2ω, are elementarily equivalent, and so all subgroups Pα, α < 2ω, are
bounded. In view of Lemma 17, the formula Φ1(x;b;aα) is equivalent to a formula without outer
parameters, and we can now use case (1).

(3) Consider a conjunctive term of Δ(x;b;aα) of the form Φ2(x) = k̄bα+na+m̄x = 0 (mod pk),
where the parameter a relates to a number q �= p. We may assume that the number n is not divisible
by pk. Let Φ2(x) be true in Pα on some tuple of X.

Take an arbitrary element d ∈ q2Pα. Suppose nd �= 0 (mod pk). Then the formulas k̄bα +
na + m̄x = 0 (mod pk) and k̄bα + n(a + d) + m̄x = 0 (mod pk) have no common solutions in Pα.
Indeed, if we had k̄bα + na + m̄c = 0 (mod pk) and k̄bα + n(a + d) + m̄c = 0 (mod pk) for some
tuple c ∈ Pα, then, choosing an appropriate remainder, we would obtain nd = 0 (mod pk), which is
impossible by assumption. On the other hand, solutions for the formula Δ(x;b;aα) with a replaced
by (a+d) should coincide since these elements are εq-equivalent. Thus nq2Pα ⊆ pkPα. The number
q2 is not divisible by p, so nPα ⊆ pkPα. In view of statement (4), this is true for any α < 2ω.
Therefore, na = 0 (mod pk). Consequently, the formula Φ2(x) is equivalent in Pα to a formula
k̄bα + m̄x = 0 (mod pk), which is true for any α < 2ω.

It remains to consider formulas of the form n̄b+ s̄aα + m̄x = 0 (mod pk), where all elements of
the tuples b and aα relate to a number p.

(4) Let a conjunctive term of Δ(x;b;aα) be of the form

Φ3(x) = n̄b + s̄aα + m̄x = 0 (mod pk), (8)
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where all elements of the tuples b and aα relate to a number p.
We will assume that there is a tuple c ∈ X, which is a solution for the formula Φ3(x) in some

subgroup Pα. We can suppose that with decreasing k, the tuple c is no longer a solution for the
thus obtained formula. We may also assume that each of the coefficients of Φ3(x) is not divisible
by pk. In view of case (1), the tuple s̄ has nonzero length and consists of nonzero elements.

The parameters of aα and b in order of their appearance in Lemma 18 will belong to the
subgroup pA. Since c is a solution in P for the formula Φ3(x), the element m̄c belongs to the
subgroup pA.

We can suppose that all numbers in the tuple s̄ are of the form p(k−1)li, where li is not divisible
by p. Otherwise, by the truth-preserving property, if we replaced the parameter ai by any other
element of the set ai + pPα, then we would have p(k−r)mPα ⊆ pkPα, where m is not divisible by p

and r > 0. The number m is not divisible by p, and so p(k−r)Pα ⊆ pkPα, which is a contradiction
with k being minimal. The number li is not divisible by p, and we may assume that li < p.

Let l̄ be a tuple of the same length as that of s̄, composed of the multipliers li. Suppose that
for some tuples c ∈ X and e ∈ Pα,

n̄b + p(k−1) l̄aα + m̄c = pke. (9)

Elements of the tuple aα belong to the subgroup pA, and for some tuple fα ∈ A, pfα = aα. From
(9), we derive

pk(l̄fα + e) ∈ X. (10)

Using Remark 3, we obtain p(l̄fα + e) ∈ X. Consequently, l̄aα + pe ∈ X. We have arrived at a
contradiction with the fact that sequence (4) in Definition 10 forms a basis in the group GP treated
as a vector space over a field consisting of p elements. �

We formulate the remaining question in terms of the following:

Conjecture. For a complete theory of an Abelian group A to be totally (P, a)-stable, it is
necessary and sufficient that the group A be Szmielew ω-bounded and properties (B), (C), and (D)
hold.

5. TOTAL (P, s)-STABILITY

THEOREM 10. For an Abelian group A, the following conditions are equivalent:
(1) a theory of A is totally (P, s)-stable;
(2) a theory of A is (P, s)-stable;
(3) a group A is a direct sum of a finite group and finitely many elementary Abelian groups.
Proof. That (2) and (3) are equivalent was proved in [1].
The implication (1)⇒(2) is obvious.
We show that (2)⇒(1). It follows from [2, Thm. 8] that if a theory T of a group A is (P, s)-

stable then, for any cardinal λ, the value of a cardinal function ST (P, s)(λ) does not exceed ω, i.e.,
condition (1) holds. �
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