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FRIEDBERG NUMBERINGS
IN THE ERSHOV HIERARCHY
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A Friedberg numbering of the family of all sets for any given level of the Ershov hierarchy
is constructed, and we also consider different consequences of this result.

INTRODUCTION

In the paper we deal with one-to-one computable numberings in the Ershov hierarchy. These
numberings attract considerable interest by virtue of the fact that a computable one-to-one
numbering is (up to equivalence) a minimal element of the semilattice of computable numberings
for a given family of sets. The study of such numberings was pioneered by R. Friedberg, who showed
the existence of a one-to-one computable numbering for the family of all computably enumerable
sets. Later, the existence of a Σ−1

n -computable Friedberg numbering was stated for the family of
all Σ−1

n -sets [2].
Here the given result is generalized to all constructive ordinals, and we also consider different

properties of the numberings obtained.

1. BASIC DEFINITIONS

We embark directly on a description of the Ershov hierarchy. (General definitions and basic
facts can be found in [3].) A representation for sets in the Ershov hierarchy that we use differs only
slightly from the one in [4].
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Definition 1.1. For all a ∈ O (hereinafter, O is Kleene’s system of ordinal notation), a set A

is a Σ−1
a -set (belongs to the class Σ−1

a of the Ershov hierarchy) if there exist a computable function
f(x, s) and a partial computable function g(x, s) such that for all x ∈ ω, the following conditions
hold:

(1) A(x) = lim
s

f(x, s), f(x, 0) = 0;
(2) g(x, s)↓ → g(x, s + 1)↓ ≤o g(x, s) <o a;
(3) f(x, s) �= f(x, s + 1) → g(x, s + 1)↓ �= g(x, s).

A pair 〈f, g〉 is called a Σ−1
a -approximation to a set A.

Definition 1.2. A is a Π−1
a -set if, under the conditions of the previous definition, the

requirement that f(x, 0) = 0 is replaced with f(x, 0) = 1. A is a Δ−1
a -set if f(x, 0) = 0 is replaced

with the requirement that g(x, 0) is defined.
Note that if A is Σ−1

a then its complement A is Π−1
a , while every Δ−1

a -set is both Σ−1
a and Π−1

a .
The above defined Σ−1

a -approximation 〈f, g〉 to A can be strengthened by adding some
properties for the functions f and g.

We define a parity function e(a) for a ∈ O as follows: e(a) = 0, if a is a notation for an even or
limit ordinal, and e(a) = 1 if a a notation for an odd ordinal.

PROPOSITION 1.3. If a set A has a Σ−1
a -approximation 〈φ,ψ〉, then A has a Σ−1

a -
approximation 〈f, g〉 with the following properties:

correct parity, i.e.,
if f(x, s) = 0, then e(g(x, s)) = e(a) or g(x, s) is undefined,
if f(x, s) = 1, then e(g(x, s)) = 1 − e(a);
slowing down, i.e.,
for any s ∈ ω and any x > s, f(x, s) = 0,
for any s ∈ ω and any x > s, g(x, s) is undefined.
Proof. Correct parity. Let f(x, s) = φ(x, s) for all x, s ∈ ω.
(1) If ψ(x, s) is undefined, then g(x, s) is undefined.
(2) If ψ(x, s) is defined, then:
(2.1) if ψ(x, s) = b, where a = 2b (|a|O is a successor of |b|O), then:
(2.1.1) if φ(x, s) = 0, then g(x, s) is undefined (i.e., no change has been made as yet);
(2.1.2) if φ(x, s) = 1, then g(x, s) = ψ(x, s);
(2.2) if e(ψ(x, s)) �= e(a) and ψ(x, s) �= b, then:
(2.2.1) φ(x, s) = 0 ⇒ g(x, s) = c, where |c|O is a successor of |ψ(x, s)|O;
(2.2.2) φ(x, s) = 1 ⇒ g(x, s) = ψ(x, s);
(2.3) if e(ψ(x, s)) = e(a) and ψ(x, s) �= b, then:
(2.3.1) φ(x, s) = 1 ⇒ g(x, s) = c, where |c|O is a successor of |ψ(x, s)|O;
(2.3.2) φ(x, s) = 0 ⇒ g(x, s) = ψ(x, s).
Slowing down. For all x, s ∈ ω, put:
(1) if x ≤ s, then f(x, s) = φ(x, s) and g(x, s) = ψ(x, s);
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(2) if x > s, then f(x, s) = 0 and g(x, s) is undefined. �

The correct parity property allows us to assert the following: if, in constructing any set, an
element x at some step s experiences the maximum number of changes (i.e., g(x, s) = 0), then we
know exactly whether or not x will enter a given set (more specifically, f(x, s) = e(a)). The slowing
down property makes it possible to consider at each step s only changes of the first s elements.
In what follows, all Σ−1

a -approximations will be thought of as correct-parity Σ−1
a -approximations

with slowing down.

Definition 1.4. We say that a set A m-reduces to a set B (written A ≤m B) if there exists a
computable function f such that x ∈ A ⇔ f(x) ∈ B for any x ∈ ω.

Notice that for A ≤m B, the fact that B belongs to some class of the Ershov hierarchy implies
that A belongs to the same class of the Ershov hierarchy.

We proceed with the definition of a computable numbering. Use will be made of the notion of
generalized computability, as in [5].

Definition 1.5. A numbering {νn}n∈ω (denoted hereinafter by ν) is Σ−1
a -computable if there

exist a computable function f(n, x, s) and a partial computable function g(n, x, s) such that for
any x and any n, the following conditions hold:

(1) {νn}(x) = lim
s

f(n, x, s), f(n, x, 0) = 0;
(2) g(n, x, s)↓ → g(n, x, s + 1)↓ �o g(n, x, s) <o a;
(3) f(n, x, s) �= f(n, x, s + 1) → g(n, x, s + 1)↓ �= g(n, x, s).
By analogy with Definition 1.1, a pair 〈f, g〉 is called a Σ−1

a -approximation to a numbering ν.
In a similar way, we introduce definitions of Π−1

a - and Δ−1
a -computable numberings.

Definition 1.6. We say that a numbering α reduces to a numbering β (α ≤ β) if there exists
a computable function f such that αn = βf(n) for any n.

Definition 1.7. We call η a Friedberg numbering if ηn �= ηm for any n �= m.

Definition 1.8. A numbering ν is said to be positive (decidable) if {〈x, y〉|νx = νy} is a
computably enumerable (computable) set.

Note that every Friedberg numbering is decidable and hence positive.

2. MAIN RESULT

We proceed to a construction of a Friedberg numbering for the family of all Σ−1
a -sets.

THEOREM 2.1 [2]. For any n > 0, there exists a Σ−1
n -computable Friedberg numbering of

the family of all Σ−1
n -sets.

Hereinafter, for ordinals corresponding to natural numbers, we use their natural notations.
The above result can somehow be extended to all constructive ordinals.
Let A be a Σ−1

a -set such that for e(a) = 0, A is not finite, and for e(a) = 1, A is not cofinite.
Let 〈ξ1, ξ2〉 be its Σ−1

a -approximation. Define a family T as follows:
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(1) {A,A
⋃
{0}, A

⋃
{0, 1}, . . . } if e(a) = 1;

(2) {A,A \ {0}, A \ {0, 1}, . . . } if e(a) = 0.
In what follows, in proving the main results, we use a Friedberg numbering of some subfamily

of T having additional properties. Now we show that such a numbering exists.

LEMMA 2.2. There exists a Σ−1
a -computable Friedberg numbering γ of some subfamily of T

such that:
for any n1 < n2,
{0, 1, . . . , n1} ⊂ γn1 ⊂ γn2 if e(a) = 1, and
γn2 ⊂ γn1 ⊂ {0, 1, . . . , n1} if e(a) = 0;
for any n, there is a unique s′ such that ρ(n, x, s′) �= ρ(n, x, s′ + 1) with any x ≤ n (more

precisely, ρ(n, x, s) is undefined for s ≤ s′, and then ρ(n, x, s) = 0). Notice also that s′ ≤ n.
Proof. Let 〈ξ1, ξ2〉 be a Σ−1

a -approximation to A. We construct a Σ−1
a -approximation 〈δ, ρ〉 to

a numbering γ.
Put δ(0, x, s) = ξ1(x, s) and ρ(0, x, s) = ξ2(x, s) for any x, s ∈ ω; δ(n, 0, 0) = 0 and ρ(n, 0, 0) is

undefined for all n > 0. Below if no mention is made of certain combinations (n, x, s), then we put
δ(n, x, s + 1) = δ(n, x, s) and ρ(n, x, s + 1) = ρ(n, x, s) for these.

By recursion on s, we define functions δ, ρ, and an auxiliary function k.
(1) Step s = 1. Put k(1, 1) = 0, δ(1, 0, 1) = e(a), and ρ(1, 0, 1) = 0, and for all x > 0, let

δ(1, x, 1) = ξ1(x, 1) and ρ(1, x, 1) = ξ2(x, 1).
(2) Step s + 1.
(2.1) For all n ≤ s in increasing order,
(2.1.1) if, for some n′ < n, it is true that δ(n′, x, s) = δ(n, x, s) with all x ≤ s, then we put

k(n, s + 1) = k(n, s) + 1, and otherwise, put k(n, s + 1) = k(n, s);
(2.1.2) for all x < k(n, s + 1), put δ(n, x, s + 1) = e(a) and ρ(n, x, s + 1) = 0, and for x ≥

k(n, s + 1), let δ(n, x, s + 1) = ξ1(x, s + 1) and ρ(n, x, s + 1) = ξ2(x, s + 1);
(2.2) put k(s + 1, s + 1) = k(s, s + 1) + 1.
Put δ(n, x, s+1) = e(a) and ρ(n, x, s+1) = 0 for all x < k(s+1, s+1); δ(n, x, s+1) = ξ1(x, s)

and ρ(n, x, s + 1) = ξ2(x, s + 1) for x ≥ k(s + 1, s + 1).
Pass to the next step s.
The numbering γ is constructed. �

Finally, let S be a Σ−1
a -computable family that includes a family T and a set ω if e(a) = 1, or

the empty set if e(a) = 0.

THEOREM 2.3. For every notation of a nonzero ordinal a ∈ O, there is a Σ−1
a -computable

Friedberg numbering of the family S.
Proof. Let α be a Σ−1

a -computable numbering for S. There is no loss of generality in assuming
that α0 = ∅, if a denotes an even ordinal, and α0 = ω if a denotes an odd ordinal. We will
construct a Σ−1

a -computable Friedberg numbering β of S, and also a ∅
′-partial computable function

h (approximable by partial computable functions hs) using a numbering γ such as in Lemma 2.2.
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Let 〈φ,ψ〉 and 〈δ, ρ〉 be Σ−1
a -approximations to numberings α and γ, respectively. We construct an

approximation 〈f, g〉 to a numbering β.
Requirements for the construction.
(1) If αn = αn′ for some n′ < n, then h(n) is undefined.
(2) If αn �= αn′ for all n′ < n, then either h(n) is defined and αn = βh(n), or αn = γx for some

x and there exists m ∈ ω \ range(h) such that αn = βm.
(3) Every set βm, m /∈ range(h), coincides with γy for some y.
(4) For any y, there is a unique m such that βm = γy.
Construction of a numbering β.
Step s = 0. Define
f(n, x, 0) = 0 and g(n, x, 0)↑ for all natural n and x;
f(0, x, s) = e(a) and g(0, x, s) = 0 for any x and for s > 0;
h(0) = h0(0) = 0 and h0(n)↑ for any n > 0.
Step s + 1. For every n ≤ s, we consecutively perform the following actions.
(s + 1.1) If hs(n) is defined, and for some number n′ < n,

φ(n′, x, s) = φ(n, x, s) for all x ∈ [0, hs(n) + 1],

then we assume that hs+1(n) is undefined.
(s+1.2) If hs(n) is defined, n > 0, and for some numbers s′ < s and m ∈ range(hs′)\range(hs),

f(m,x, s) = f(hs(n), x, s) for all x ∈ [0, hs(n) + 1],

then we assume that hs+1(n) is undefined.
(s + 1.3) If hs(n) is defined, while hs+1(n) becomes undefined as a result of actions (s + 1.1)

and (s + 1.2), then, for every such number n (in increasing order), we put

f(hs(n), x, s′) = δ(y, x, s′ + y), g(hs(n), x, s′) = ρ(y, x, s′ + y)

for all s′ > s, where y is some natural number greater than is any number mentioned previously
in the construction.

(s + 1.4) If hs(n) is undefined for n � s, then, for every such n (in increasing order), we set
hs+1(n) equal to a least m which is not in

⋃
s′�s

range(hs) and differs from the value of hs+1(n′) for

all n′ < n.
(s + 1.5) If hs(n) is defined, while hs+1(n) has not become undefined as a result of actions

(s + 1.1) or (s + 1.2), then we put hs+1(n) = hs(n).
(s+1.6) If hs+1(n) is defined, then we set f(hs+1(n), x, s+1) = φ(n, x, s+1) and g(hs+1(n), x, s+

1) = ψ(n, x, s + 1) for all x ∈ ω.
Now we show that all the requirements stated above are fulfilled.
(1) In view of (s+1.1), if αn = αn′ for some n′ < n, then hs(n) is undefined for infinitely many

steps s.
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(2) If αn �= αn′ for all n′ < n, then h(n) becomes undefined at the expense of (s + 1.1) not
more than finitely many times. If h(n) becomes undefined at the expense of (s + 1.2) infinitely
often for a same number m, then αn = βm = γy for some y, as required. If we assume that
h(n) becomes undefined at the expense of (s + 1.2) infinitely often for infinitely many m, then
φ(n, x, s) = f(hs(n), x, s) = δ(y, x, s) for ever larger y. Hence φ(n, x, s) = e(a) for any x; also
αn = ω, if e(a) = 1, and αn = ∅ if e(a) = 0. Then αn coincides with α0, and there is no need to
search a place for αn in the numbering β.

(3) Is fulfilled by virtue of (s + 1.4).
(4) Consider some y. In view of (s + 1.2) and (s + 1.4), there exists at most one m for which

βm = γy. We choose a least n such that αn = γy. Then either h(n) is defined and βh(n) = γy, or,
as in (2), we can show that there is a number m such that βm = γy.

All the requirements are thus fulfilled. We show that the resulting numbering is Σ−1
a -

computable.
(1) A function f on any tuple (n, x, s) is computed in finitely many steps; hence it is computable.
(2) For any natural m, βm is constructed in the same way as αn up to some step s; then,

possibly, a transition to a numbering γy occurs for some natural n and y. If a transition does not
take place, then f(m,x, s) = φ(n, x, s) and g(m,x, s) = ψ(n, x, s); hence β is Σ−1

a -computable. If
a transition will occur, then f(m,x, s) = φ(n, x, s) and g(m,x, s) = ψ(n, x, s), for all s ≤ s′, and
f(m,x, s) = δ(y, x, s+ y) and g(m,x, s) = ρ(y, x, s+ y) for s′ < s. The slowing down property and
the correct parity property for a numbering α, as well as the choice of y and the properties of a
numbering γ, imply that the following relations hold:

φ(n, x, s′) �= δ(y, x, s′ + 1 + y) ⇒ ρ(y, x, s′ + 1 + y) <o ψ(n, x, s′),

φ(n, x, s′) = δ(y, x, s′ + 1 + y) ⇒ ρ(y, x, s′ + 1 + y) ≤o ψ(n, x, s′);

hence the properties of a Σ−1
a -approximation are also preserved. �

The family of all Σ−1
a -sets satisfies the hypothesis of Theorem 2.3. (That the family of all Σ−1

a -
sets is Σ−1

a -computable was proved, for instance, in [6]; as a family T we can take the family of all
initial segments or the family of its complements.)

COROLLARY 2.4. For any notation of a nonzero ordinal a ∈ O, the family of all Σ−1
a -sets

has a Σ−1
a -computable Friedberg numbering.

We take a set Ξ−1
a (an m-universal set for the class Σ−1

a ; for details, see [3]) for constructing
a numbering γ, and also a Σ−1

a -computable family S containing T such that every set A ∈ S is
Σ−1

a -proper (i.e., A ∈ Σ−1
a , but A �∈ Σ−1

b for any b <O a). According to Theorem 2.3, the family S

has a Σ−1
a -Friedberg numbering but has no Σ−1

b -computable numbering for any b <O a.
We now turn to other big families—the family of all Π−1

a -sets and the family of all Δ−1
a -sets.

The family of all Π−1
a -sets consists of complements of all elements of the class Σ−1

a . Hence as a Π−1
a -

computable Friedberg numbering for the family of all Π−1
a -sets we can take a numbering β′

x = βx,
where β is a Σ−1

a -computable Friedberg numbering for the family of all Σ−1
a -sets.
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For the family of all Δ−1
a -sets, the situation is somewhat more complicated.

3. THE FAMILY OF ALL Δ−1
a -SETS

In order to construct a Friedberg numbering for the family of all Δ−1
a -sets using the construction

given in Sec. 2, we need a computable numbering for the family of all Δ−1
a -sets, and also a suitable

additional family T . As T we can take a family constructed on the set ω, if e(a) = 1, or on the set
∅ if e(a) = 0.

In [7], it was proved that there does not exist a Δ−1
a -computable numbering of the family of

all Δ−1
a -sets for any a ∈ O. However, by analogy with the family of all computable sets (Δ−1

1 ), for
which there exists a computable (Σ−1

1 -computable) numbering, we have

PROPOSITION 3.1. For any ordinal notation of a nonzero ordinal a ∈ O, there exists a
Σ−1

a -computable numbering of the family of all Δ−1
a -sets.

Proof. In [8], it was shown that the class Δ−1
a has an m-universal set. If a is a notation for a

limit ordinal, then we can take
⊕

b<oa

Ξ−1
b to be such a set, and if a = 2b for some b, then we take

Ξ−1
b

⊕
Ξ−1

b . If a = 2b for some b, then it is easy to see that A ∈ Δ−1
a iff A = A1 ∩ C

⋃
A2 ∩ C,

where C is a computable set, A1 ∈ Σ−1
b , and A2 ∈ Π−1

b .
Let νn be a Δ−1

a -computable numbering for all Σ−1
b -sets and μn a Δ−1

a -computable numbering
for all Π−1

b -sets. Let κn be a universal function in the class of unary partial computable functions
and κt

n be the result of computing κn after t steps. With the help of κt
n, we can exhaustively search

all computable sets. (That is, we will use exhaustive search of all partial computable functions,
and if a function is neither increasing nor total, then we stop the computation, obtaining, for each
n, either a finite set, or a computable set definable by an increasing computable function.) The
resulting set will be involved in determining which of the numberings νn or μn should be used for
a given n.

Our present goal is to construct a numbering α〈l,m,n〉 for all Δ−1
a -sets. To do this, we build

up functions f(〈l,m, n〉, x, s) and g(〈l,m, n〉, x, s). Let functions φ1(l, x, s) and ψ1(l, x, s) define a
numbering νn, and let φ2(m,x, s) and ψ2(m,x, s) define μn.

Construction.
For all l,m, n, x, s ∈ ω, we define the pair

〈f(〈l,m, n〉, x, s), g(〈l,m, n〉, x, s)〉.

Let k be a minimal natural number such that one of the following conditions holds:
(1) κs

n(k) is undefined;
(2) κs

n(k) > x;
(3) κs

n(k) = x;
(4) κs

n(k) < x and κs
n(k + 1) ≤ κs

n(k).
Depending on which of the conditions is satisfied, functions f and g are defined thus:
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(1) f(〈l,m, n〉, x, s) = 0 and g(〈l,m, n〉, x, s) is undefined;
(2) an element x is not within the range of an increasing computable function, in which case

our functions are defined in the same way as for the second numbering, i.e., f(〈l,m, n〉, x, s) =
φ2(m,x, s) and g(〈l,m, n〉, x, s) = ψ2(m,x, s);

(3) x belongs to the computable set under construction, in which case our functions are defined
in the same way as for the first numbering, i.e., f(〈l,m, n〉, x, s) = φ1(l, x, s) and g(〈l,m, n〉, x, s) =
ψ1(l, x, s);

(4) since κs
n(k + 1) ≤ κs

n(k), the function κn is not increasing, and, as in the second case, x is
in the complement of the computable set under construction; hence f(〈l,m, n〉, x, s) = φ2(m,x, s)
and g(〈l,m, n〉, x, s) = ψ2(m,x, s).

Let f1(〈l,m, n〉, x, 0) = 0 and f1(〈l,m, n〉, x, s + 1) = f(〈l,m, n〉, x, s); g1(〈l,m, n〉, x, 0) is
undefined and g1(〈l,m, n〉, x, s+1) = g(〈l,m, n〉, x, s). The numbering α definable by the functions
f1 and g1 is Σ−1

a -computable.
Let a be a notation for a limit ordinal; then coding the class of sets m-reducible to

⊕
b<oa

Ξ−1
b is

a simple matter. Let a be a Kleene notation for a limit ordinal, a = 3 ∗ 5e, and b = κe(m) for some
sequence b <O a. For any m ∈ ω, as νm we take a Σ−1

b -computable numbering of the family of all
Σ−1

b -sets for one of b’s in the specified sequence. Define a numbering such as

ν〈n,m〉(x) =

⎧
⎨

⎩
ν

κe(m)
n (x), κe(m)↓;

∅, κe(m)↑.

Construct a Σ−1
a -approximation 〈f, g〉 to a numbering ν using Σ−1

b -approximations 〈fm, gm〉 to
numberings νm. For any s, n,m, x ∈ ω, put:

(1) if κs
e(m) is defined, then f(〈n,m〉, x, s) = fκe(m)(n, x, s) and g(〈n,m〉, x, s) = gκe(m)(n, x, s);

(2) if κs
e(m) is undefined, then f(〈n,m〉, x, s) = 0 and g(〈n,m〉, x, s) is undefined.

The resulting numbering will obviously be Σ−1
a -computable. �

In a similar way, we can construct a Π−1
a -computable numbering for the family of all Δ−1

a -sets.
Thus we have

COROLLARY 3.2. For every notation of a nonzero ordinal a ∈ O, there exist Σ−1
a - and

Π−1
a -computable Friedberg numberings of the family of all Δ−1

a -sets.

4. CONSEQUENCES

In the final part of the paper, we give some consequences of the main result.

PROPOSITION 4.1. Let S be a Σ−1
a -computable family and T be as in Lemma 2.2. Then

the family S
⋃
{∅} \ T for e(a) = 0 (or S

⋃
{ω} \ T for e(a) = 1) has a Σ−1

a -computable numbering.
Proof. Let α′ be a Σ−1

a -computable numbering for S. As a numbering α we take the following:
(1) α0 = ∅, if e(a) = 0, and α0 = ω if e(a) = 1;
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(2) αn+1 = α′
n.

We will use the numbering γ constructed in Lemma 2.2 (the application itself will be altered),
and also a modification of the construction in Sec. 2.

We introduce changes in the construction.
At step s + 1, actions (s + 1.2) and (s + 1.3) will be changed.
(s + 1.2) If hs(n) is defined, n > 0, and for some number m < s,

δ(m,x, s) = f(hs(n), a, s) for all x ∈ [0, hs(n) + 1],

then we assume that hs+1(n) is undefined.
(s + 1.3) If hs(n) is defined, whereas hs+1(n) became undefined while taking substeps 1 and 2,

then, for every such number n (in increasing order), we put

f(hs(n), x, s′) = e(a), g(hs(n), x, s′) = 0 for all s′ > s.

The construction proceeds as follows. First we construct βn as some αn′ and pass to the
construction of ∅ (or ω) if αn′ coincides with αm, m < n′, or with some γy. By virtue of the
correct parity property, no extra alterations will occur.

It is easy to see that the resulting numbering is positive, and the set of numbers of ∅ (or ω)
in this numbering is computably enumerable, while all other sets occur only once. For our further
reasoning, however, we need only Σ−1

a -computability of a numbering β. �

In [9], it was shown that for every finite level n of the Ershov hierarchy, each infinite
computable family containing ∅ (for n even) or ω (for n odd) has infinitely many computable
positive undecidable numberings, which are pairwise incomparable with respect to reducibility of
numberings. (For n = 1, this was first proved in [10]). Subsequently, the result was generalized in
[11] to all levels Σ−1

a of the Ershov hierarchy, where a is a notation for any nonzero computable
ordinal.

THEOREM 4.2 [9-11]. Let S be a Σ−1
a -computable infinite family and ∅ ∈ S, if e(a) = 0, or

ω ∈ S if e(a) = 1. Then S has infinitely many Σ−1
a -computable positive undecidable numberings,

which are pairwise incomparable with respect to reducibility of numberings.
Note that in the numberings specified in Theorem 4.2, the set of numbers of ∅ (or ω) is

computably enumerable, while all other sets occur only once.
Let F = S

⋃
{∅} \ T be an infinite Σ−1

a -computable family such as in Proposition 4.1 (i.e., S

has infinitely many elements that do not occur in T ). According to Theorem 4.2, there exists a
Σ−1

a -computable positive undecidable numbering α of F . Let M be the set of numbers of ∅ (or ω).
Now we construct a Σ−1

a -computable Friedberg numbering β for a family F
⋃

T (construct
〈f, g〉, a Σ−1

a -approximation to β), and also a computable function h(s, n).
Let 〈φ,ψ〉 be a Σ−1

a -approximation with slowing down to α and 〈δ, ρ〉 a Σ−1
a -approximation to

γ (according to Lemma 2.2). Let {Ms}s∈ω be an increasing sequence of finite sets which, in the
limit, gives M , M0 = ∅, and Ms ⊆

⋂
{0, 1, . . . , s}.
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Also consider an auxiliary numbering ν = α
⊕

γ. Its Σ−1
a -approximation 〈τ, σ〉 is defined thus:

(1) τ(2n, x, s) = φ(n, x, s) and σ(2n, x, s) = ψ(n, x, s);
(2) τ(2n + 1, x, s) = δ(n + 1, x, s), σ(2n + 1, x, s) = ρ(n + 1, x, s), τ(1, x, s) = 0, and σ(1, x, s)

is undefined.
Requirements for the construction.
(1) If n �∈ M , then β2n = αn.
(2) If n ∈ M , then β2n = γy for some y.
(3) For any n, β2n+1 = γy with some y.
(4) For any n1 and any n2, βn1 �= βn2 .
Construction for β.
Step s = 0. For any n and any x, assume f(n, x, 0) = 0 and g(n, x, 0) is undefined. Let y′ = 0,

k = 0, h(0, 2n) = 2n, and h(0, 2n + 1) = 1. Below if no mention is made of certain combinations
(n, x, s), then we put h(s + 1, n) = h(s, n), f(n, x, s + 1) = f(n, x, s), and g(n, x, s + 1) = g(n, x, s)
for these.

Step s + 1. For all n ≤ s, consider the following actions.
(s + 1.1) For all n ∈ Ms+1 \ Ms (in increasing order), put
(s + 1.1.1) h(s + 1, 2n) = 2y′′ + 2, where y′′ is a natural number larger than y′ and s;
(s+1.1.2) for all y′ < y ≤ y′′ (in increasing order), put h(s+1, 2k +1) = 2y +1 and k := k +1;
(s + 1.1.3) put y′ = y′′.
Pass to the next n in action (s + 1.1).
(s + 1.2) For all n �∈ Ms+1, set h(s + 1, 2n) = h(s, 2n) and h(s + 1, 2n + 1) = h(s, 2n + 1).
(s + 1.s + 1.3) For all n, set f(n, x, s + 1) = τ(h(s + 1, n), x, s + 1) and g(n, x, s + 1) =

σ(h(s + 1, n), x, s + 1).
The description of the construction is completed.
We verify whether the above requirements are fulfilled.
(1) If n �∈ M , then the set αn will always be constructed in β2n at the expense of actions

(s + 1.2) and (s + 1.3).
(2) If n ∈ M , then, starting with some s, the set γx is constructed in β2n at the expense of

action (s + 1.1). New errors will not appear due to the slowing down property.
(3) Is fulfilled since the set M is infinite and there is always at least one element between y′

and y′′ + 1.
(4) Is fulfilled in virtue of α being positive and γ being a Friedberg numbering.
We have thus constructed a Σ−1

a -computable Friedberg numbering β for F
⋃

T (more exactly,
for the family F

⋃
T \ {∅}, if e(a) = 0, and for the family F

⋃
T \ {ω} if e(a) = 1; however, either

element can readily be added to the numbering constructed).
Let α1 and α2 be incomparable positive undecidable Σ−1

a -computable numberings for F and
β1 and β2 be their corresponding Σ−1

a -computable numberings for F
⋃

T .
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PROPOSITION 4.3. The numberings β1 and β2 are incomparable with respect to
reducibility of numberings.

Proof. Assume β1 ≤ β2. There exists a computable function f for which β1
n = β2

f(n). Then
α1

⊕
η ≤ α2

⊕
η via the same function f . Here ηn = ∅, if e(a) = 0, and ηn = ω if e(a) = 1 for

any n. In view of η ≡ η, α1 ≤ α2, a contradiction. �

THEOREM 4.4. The family of all Σ−1
a -sets has infinitely many pairwise incomparable Σ−1

a -
computable Friedberg numberings for any notation of a nonzero ordinal a ∈ O.

We consider yet another way of using the construction from Sec. 2, the idea behind which arose
from the following:

THEOREM 4.5 [12]. Let S be a Σ−1
1 -computable family. Suppose that there exist two disjoint

Σ−1
1 -computable subfamilies S1,S2 ⊆ S such that S1

⋃
S2 = S, and

(1) S2 has a Σ−1
1 -computable Friedberg numbering;

(2) every finite subset of an element of S1 has infinitely many extensions to S2.
Then S possesses a Σ−1

1 -computable Friedberg numbering.
From the result cited above, we only use the partition of a family into two computable

subfamilies, one of which has a Friedberg numbering. Our further reasoning seems interesting
because there we attempt to avoid fixed complexity of families for obtaining a bigger class of
Friedberg numberings.

PROPOSITION 4.6. Let S1 and S2 be infinite families of sets such that:
(1) S1

⋂
S2 = ∅;

(2) S1 has a Σ−1
a -computable numbering;

(3) S2 has a Σ−1
b -computable Friedberg numbering, if e(a) = 0, and has a Π−1

b -computable
Friedberg numbering if e(a) = 1.
Then S = S1

⋃
S2 possesses a Σ−1

b+oa-computable Friedberg numbering.
Hereinafter, +O is a partial computable function satisfying |b +O a|O = |b|O + |a|O for a, b ∈ O.
Proof. Again we appeal to the construction in Sec. 2. Let ν be a Σ−1

a -computable numbering
for the family S1. Put α = ν ⊕ ν, i.e., repeat the numbering ν twice in the numbering α. Initially,
no restrictions on ν are imposed. Therefore, ν may have only finitely many repetitions, whereas
every element in α occurs at least twice. In this way, we create an appropriate reserve of numbers
onto which elements of S2 will be put. As γ we use the corresponding Friedberg numbering for S2

by first changing its approximation 〈δ, ρ〉 as follows:
for all n, x ∈ ω and for all s such that δ(n, x, 0) = δ(n, x, 1) = . . . = δ(n, x, s) = 0 (i.e., a first

change has not yet occurred), put ρ(n, x, s) = b.
We describe changes to be entered into the construction.
Since S1 and S2 are disjoint, action (s + 1.2) will not be needed, which makes it unnecessary

to keep in α0 the set ω (or ∅). At step 0, in addition, we define y = 0.
(s + 1.3) If hs(n) is defined, while hs+1(n) has become undefined as a result of action (s +

1.1), then, for every such number n (in increasing order), we put f(hs(n), x, s′) = δ(y, x, s′) and
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g(hs(n), x, s′) = ρ(y, x, s′) for all s′ > s. Define y = y + 1. Pass to the next n. In this action, a
position that has become vacant in the numbering β is filled by the next element of S2.

(s + 1.6) If hs+1(n) is defined, then we put f(hs+1(n), x, s + 1) = φ(n, x, s + 1) and
g(hs+1(n), x, s + 1) = b +O ψ(n, x, s + 1) for all x ∈ ω. In this action, we create an additional
possibility for changes of elements in β, which might be needed in passing from the construction
of an element of α to an element of γ.

We show that the resulting numbering is Σ−1
b+0a-computable. First we construct a new element

of the numbering (as a Σ−1
a -set) while preserving the possibility for making another b changes. For

this, action (s + 1.6) is responsible. Next, if either (s + 1.1) or (s + 1.2) has been performed, then
we start constructing Σ−1

b - or Π−1
b -sets, depending on e(a).

If e(a) = 0, then, before performing action (s+1.1), the minimum possible value of g is b, while
the value of f is 0. Hence, after performing action (s + 1.1), the construction of a Σ−1

b -set starting
with δ which takes on the value 0 will introduce no additional errors.

If e(a) = 1, then, for g minimal, the value of f is 1, while the construction of a Π−1
b -set starts

with δ which takes on the value 1. Additional errors will not appear. �

Consider a family S = {{2x, 2x + 1} | x ∈ A}
⋃
{{2x}, {2x + 1} | x �∈ A}, where A is a

computably enumerable uncomputable set. It is easy to see that this family is Σ−1
1 -computable and

has no Σ−1
1 -computable Friedberg numberings (see, e.g., [13]). The family {{2x}, {2x+1} | x �∈ A}

is Σ−1
2 -computable, while the family {{2x, 2x + 1} | x ∈ A} has a Σ−1

1 -computable Friedberg
numbering. Hence, by Proposition 4.6, S possesses a Σ−1

3 -computable Friedberg numbering.
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