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If a quasivariety A of algebraic systems of finite signature satisfies some generalization
of a sufficient condition for Q-universality treated by M. E. Adams and W. A. Dziobiak,
then, for any at most countable set {Si | i ∈ I} of finite semilattices, the lattice
∏
i∈I

Sub(Si) is a homomorphic image of some sublattice of a quasivariety lattice Lq(A).

Specifically, there exists a subclass K ⊆ A such that the problem of embedding a finite
lattice in a lattice Lq(K) of K-quasivarieties is undecidable. This, in particular, implies
a recent result of A. M. Nurakunov.

1. AUXILIARY DEFINITIONS AND RESULTS

In the present paper, we study complexity of the structure of lattices for (relative) quasivarieties
of algebraic systems. For an arbitrary fixed signature σ, K(σ) denotes the class of all σ-structures.
A. M. Nurakunov proved the following:

THEOREM 1.1 [1, Thm. 1]. Let σ be a signature with at least one at least unary operation.
Then there exists a quasivariety K ⊆ K(σ) such that a set of all (isomorphism types) of finite
sublattices of a quasivariety lattice Lq (K) is uncomputable.

In [2], a similar result was proved for varieties of Abelian groups with a single constant.
Theorem 1.1 implies that there is no algorithm which, given a finite lattice, determines whether

or not that lattice is embeddable in the lattice of quasivarieties under consideration. The existence
of quasivarieties with this property reflects the fact that quasivariety lattices may be extremely
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complex. Another measure of complexity is expressed in terms of the so-called concept of Q-
universality, which was introduced by M. V. Sapir [3] and has been explored by many other
authors. A lot of works dealt with the study of complexity of the structure of quasivariety lattices.
Among these, it is worth mentioning [4-20]. Based on ideas in [1], we established a link between
the two properties above. Namely, the following theorem was proved.

THEOREM 1.2 [21, Thm. 6.1.3]. A variety K(σ) of all σ-structures is Q-universal if and only
if there exists a subclass K ⊆ K(σ) such that a set of all (isomorphism types) of finite sublattices
of a quasivariety lattice Lq (K) is uncomputable.

It is well known that a class K(σ) is Q-universal iff σ contains either at least a binary predicate
symbol or at least a unary function symbol, or σ is at least countable. This fact was mentioned in
[22, Prop. 4.4] as a consequence of the results derived in [23] (see also [13]). With due regard for
Theorems 1.1 and 1.2, combined with the fact that the variety of all unars, as well as the variety
of all Abelian groups with one constant, is Q-universal, the following question was posed in [21]:
Is it true that every Q-universal quasivariety M contains a subclass K ⊆ M for which the set of
all finite sublattices of Lq (K) is uncomputable? (See Problem 5.1 below).

A positive answer to this question will be given in Theorem 4.2 for almost all known Q-
universal quasivarieties (see also discussion in Sec. 5). Namely, Theorem 4.2 states the following: if
a quasivariety M satisfies some generalization of a known condition that is sufficient for being Q-
universal (see [4, 22]), then the conclusion of Theorem 1.2 is also satisfied. The proof is underpinned
by a structural result, according to which the fact that a quasivariety M satisfies the above sufficient
condition for Q-universality implies that for every at most countable family {Si | i ∈ I} of finite
lower semilattices, there exists a subclass K ⊆ M such that Lq (K) ∼=

∏
i∈I

Sub (Si). This result is

the content of Theorem 3.4.
G. Birkhoff [24] and A. I. Mal’tsev [25] independently posed the question as to which lattices are

isomorphic to quasivariety lattices. Nowadays, this question is often referred to as the Birkhoff–
Mal’tsev problem (see [13, Chap. 5]). In view of Theorems 1.1, 1.2, and 4.2-4.4. the problem
mentioned may turn out to be more complicated (if not altogether hopeless) than expected: finding
a description of lattices isomorphic to quasivariety lattices, even for particular classes of algebraic
systems, might well be extremely difficult.

The present paper is structured as follows. All basic definitions are couched in Sec. 2. For the
concepts undefined there, we ask the reader to consult [13, 24, 25]. In Sec. 3, we present the main
construction and prove auxiliary results, of which some are interesting in their own right (see, e.g.,
Thm. 3.4). In Sec. 4, basic results, Theorems 4.2-4.4, are proved. Finally, In Sec. 5, we discuss
applications of the obtained results and some related issues.

We assume that all classes are abstract, i.e., are closed under isomorphisms. For instance, writing
{Ai | i ∈ I} for some set I will always signify the set of isomorphism classes of systems in the set
{Ai | i ∈ I}.

246



2. BASIC DEFINITIONS

2.1. Semilattices. For a lower semilattice S = 〈S;∧〉, let Sub (S) denote the lattice of all lower
subsemilattices of S. It is not hard to see that for any two subsemilattices S0, S1 ∈ Sub (S), the set
S0 + S1 = {s0 ∧ s1 | s0 ∈ S0, s1 ∈ S1} is a least lower subsemilattice of S containing S0 ∪ S1, i.e.,
a lattice join of S0 and S1 in Sub (S).

2.2. Classes. Following [13], for a class K ⊆ K(σ), by Q(K) we denote a least quasivariety
containing K. We also use the following notation: H(K) is the class of all systems in K(σ) that are
homomorphic images of systems in K; P(K) is the class of all systems in K(σ) that are isomorphic
to Cartesian products of systems in K; Ps(K) is the class of all systems in K(σ) that are isomorphic
to subdirect products of systems in K; Ls(K) is the class of all systems in K(σ) that are isomorphic
to superdirect limits of systems in K; S(K) is the class of all systems in K(σ) that are isomorphic
to subsystems of systems in K.

A system A ∈ K ⊆ K(σ) is said to be l-projective in K if, for any superdirect spectrum
Λ = 〈I,Ai, ϕij〉 with lim−→Λ ∈ K in K and for every homomorphism ϕ : A → lim−→Λ, there exist an
i ∈ I and a homomorphism ψ : A → Ai such that ϕi∞ψ = ϕ. In particular, if ϕ is an embedding
then so is ψ. Thus if A ∈ K is l-projective in K and A is embeddable in a system belonging to
the class Ls(K), then A ∈ S(K). Obviously, any finite system of a finite signature is l-projective
in every quasivariety to which it belongs.

According to a result in [26],

Q(K) = LsSP(K) = LsPs(K)

(see also [13, Thm. 2.3.6]). Let K′ ⊆ K ⊆ K(σ). We refer to K′ as a K-quasiequational class if
K′ = K ∩ Mod (Σ) for some set Σ of quasi-identities of the signature σ. It is straightforward to
verify the following:

LEMMA 2.1. A class K′ is K-quasiequational iff K′ = K ∩ Q(K′).
Let Lq (K) be the class of all K-quasiequational subclasses in K. If Lq (K) is ordered with

respect to inclusion, then it forms a complete lattice, called the lattice of K-quasivarieties (the
lattice of quasivarieties for K, or simply the relative quasivariety lattice).

According to [3], a quasivariety K of a finite signature is Q-universal if Lq (K′) ∈ HS
(
Lq (K)

)

for any quasivariety K′ of a finite signature.
Let P be the set of all prime numbers. For a finite nonempty set F = {p1, . . . , pn} ⊆ P of

primes, we use [F ], [p | p ∈ F ], or [p1, . . . , pn] to denote the least common multiple of numbers
in F .

3. MAIN CONSTRUCTION

Let A = {AX | X ∈ Pfin(ω)} be a class of systems. Consider the following properties:
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(P0) for any X ∈ Pfin(ω), the system AX is l-projective in Q(A), while the trivial congruence
is a cocompact element in the lattice of relative congruences ConQ(A)AX ;

(P1) A∅ is a trivial system;
(P2) if X = Y ∪ Z in Pfin(ω), then AX ∈ Q(AY ,AZ);
(P3) if ∅ �= X ∈ Pfin(ω) and AX ∈ Q(AY ), then X = Y ;
(P4) if AX ≤ B0 × B1 for some systems B0,B1 ∈ Q(A), then there exist Y0, Y1 ∈ Pfin(ω) such

that AY0 ∈ Q(B0), AY1 ∈ Q(B1), and X = Y0 ∪ Y1.
It is not hard to see that if the class A consists of finite systems, then (P4) is equivalent to the

following condition:
(P′

4) if AX ≤ B0 ×B1 for some finite systems B0,B1 ∈ Q(A), then there exist Y0, Y1 ∈ Pfin(ω)
such that AY0 ∈ Q(B0), AY1 ∈ Q(B1), and X = Y0 ∪ Y1.

Properties (P1)-(P3) and (P′
4) of algebraic systems were introduced in [27]. There, also, it was

shown that if a quasivariety K of a finite signature contains a class A = {AX | X ∈ Pfin(ω)}
of finite systems that possesses properties (P1)-(P3) and (P′

4), then the lattice Lq (K) does not
satisfy any nontrivial lattice identity. A similar set of conditions was found in [23] (see also [13,
Thm. 5.4.26]). In [4], properties (P1)-(P3) and (P′

4) were considered and the following was proved:

THEOREM 3.1 [4, Thm. 3.3]. If a quasivariety K of a finite signature contains a class
A = {AX | X ∈ Pfin(ω)} of finite systems that possesses properties (P1)-(P3) and (P′

4), then K

is Q-universal. Moreover, the ideal lattice of a free lattice of countable rank is embeddable in the
lattice Lq (K).

LEMMA 3.2. Suppose that a quasivariety K of a finite signature contains a class A = {AX |
X ∈ Pfin(ω)} of systems that possesses properties (P0)-(P4), and X,X0, . . . ,Xn ∈ Pfin(ω). The
inclusion AX ∈ SP(AX0 , . . . ,AXn) holds if and only if X = X0 ∪ . . . ∪ Xn.

Proof. If X = X0 ∪ . . . ∪ Xn, then applying property (P2) n times yields

AX ∈ Q(AX0, . . . ,AXn) = LsPs(AX0 , . . . ,AXn) ⊆ Q(A).

The system AX is l-projective in Q(A), and so

AX ∈ SP(AX0 , . . . ,AXn).

Now assume that AX ∈ SP(AX0 , . . . ,AXn). Then AX ≤ B0 × B1, where B0 ∈ SP(AX0 , . . . ,

AXn−1) and B1 = AI
Xn

for some set I. Consequently, B0,B1 ∈ Q(A). According to (P4), there
are sets Y0, Y1 ∈ Pfin(ω) for which X = Y0 ∪ Y1, AY0 ∈ Q(B0), and AY1 ∈ Q(B1) ⊆ Q(AXn).
The last inclusion implies Y1 = Xn in view of (P3), whence X = Y0 ∪ Y1 = Y0 ∪ Xn. Moreover,
AY0 ∈ Q(B0) ⊆ Q(AX0 , . . . ,AXn−1) ⊆ Q(A). Since AY0 is l-projective in Q(A), it is l-projective
in Q(AX0, . . . ,AXn−1), and hence AY0 ∈ SP(AX0 , . . . ,AXn−1). Now we apply the same argument
using property P4 to the last inclusion. The result follows by induction. �

THEOREM 3.3. Let S = 〈S;∧〉 be a finite lower semilattice and M be a quasivariety of
a finite signature containing a class A = {AX | X ∈ Pfin(ω)} of systems possessing properties
(P0)-(P4). Then there exists a class K ⊆ M for which Lq (K) ∼= Sub (S).
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Proof. Suppose that a �→ pa realizes an injective mapping of the set S into the set P . For each
a ∈ S, put X(a) = {pb ∈ P | b � a} and

K = {AX(a) | a ∈ S}.

Define a mapping of the form

ϕ : Lq (K) → Sub (S) by the rule K′ �→ {a ∈ S | AX(a) ∈ K′}.

Claim 3.3.1. The mapping ϕ is well defined.
Proof. We need to show that ϕ(K′) ∈ Sub (S) for any K′ ∈ Lq (K). Let a, b ∈ ϕ(K′) and

c = a ∧ b. Hence AX(a),AX(b) ∈ K′. By virtue of X(c) = X(a) ∪ X(b) and Lemma 8, we have
AX(c) ≤ SP(AX(a),AX(b)), whence AX(c) ∈ Q(K′) ∩ K = K′ and c ∈ ϕ(K′). �

The mapping ϕ is obviously one-to-one and is meet-preserving.

Claim 3.3.2. The mapping ϕ is join-preserving.
Proof. It suffices to show that ϕ(K0 ∨ K1) ⊆ ϕ(K0) + ϕ(K1) for any K0,K1 ∈ Lq (K). Let

a ∈ ϕ(K0∨K1). Hence AX(a) ∈ K0∨K1 = Q(K0∪K1)∩K. Thus there are B0 ∈ K0 and B1 ∈ K1

with AX(a) ≤ B0 × B1. In view of (P4), there exist Y0, Y1 ∈ Pfin(ω) such that X(a) = Y0 ∪ Y1,
AY0 ∈ Q(B0) ⊆ Q(K0) ⊆ Q(A), and AY1 ∈ Q(B1) ⊆ Q(K1) ⊆ Q(A).

Both of the systems AY0 and AY1 are l-projective in Q(A), so they are l-projective in Q(K0)
and Q(K1), respectively. Consequently, AY0 ∈ SP(K0) and AY1 ∈ SP(K1). In other words, there
are elements a0, . . . , ak, b0, . . . , bn ∈ S for which AX(a0), . . . ,AX(ak) ∈ K0, AX(b0), . . . ,AX(bn) ∈ K1

and AY0 ∈ SP(AX(a0), . . . ,AX(ak)), AY1 ∈ SP(AX(b0), . . . ,AX(bn)). In view of Lemma 3.2,

AX(a) ∈ SP(AY0 ,AY1) ⊆ SP(AX(a0), . . . ,AX(ak),AX(b0), . . . ,AX(bn)).

If again we apply Lemma 3.2 we obtain

X(a) = X(a0) ∪ . . . ∪ X(ak) ∪ X(b0) ∪ . . . ∪ X(bn) = X(c0) ∪ X(c1) = X(c0 ∧ c1),

where c0 = a0 ∧ . . . ∧ ak ∈ ϕ(K0) and c1 = b0 ∧ . . . ∧ bn ∈ ϕ(K1). This implies a = c0 ∧ c1 ∈
ϕ(K0) + ϕ(K1). �

Claim 3.3.3. The mapping ϕ is surjective.
Proof. Let S′ ∈ Sub (S) and K′ = {AX(a) | a ∈ S′}. Clearly, ϕ(K′) = S′. In order to prove

that K′ ∈ Lq (K), it suffices to verify that Q(K′) ∩ K ⊆ K′. Indeed, suppose that a ∈ S and
AX(a) ∈ Q(K′) = LsPs(K′). The system AX(a) is l-projective in Q(A), so it is l-projective in
Q(K′). Consequently, AX(a) ∈ SP(K′). In other words, there are elements a0, . . . , ak ∈ S′ such
that AX(a0), . . . ,AX(ak) ∈ K′ and AX(a) ∈ SP(AX(a0), . . . ,AX(ak)). By virtue of Lemma 3.2, we
derive X(a) = X(a0)∪. . .∪X(ak) = X(a0∧. . .∧ak). Then a = a0∧. . .∧ak ∈ S′ and AX(a) ∈ K′. �

The theorem now follows from Claims 3.3.1-3.3.3. �
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THEOREM 3.4. Let M be a quasivariety of a finite signature containing a subclass A =
{AX | X ∈ Pfin(ω)} of systems possessing properties (P0)-(P4), suppose I ⊆ ω, and assume that
Si is an arbitrary finite nontrivial lower semilattice for any i ∈ I. Then there exists a subclass
K ⊆ M such that Lq (K) is a complete homomorphic image of some sublattice in Lq (M) and
Lq (K) ∼=

∏
i∈I

Sub (Si).

Proof. Consider a partition
⋃
i∈I

Pi ⊆ P of a subset of the set P of prime numbers such that

|Pi| = |Si| for any i ∈ I. By virtue of Theorem 3.3 applied to a semilattice Si, i ∈ I, and a set
Pi of primes, there is a subclass Ki ⊆ M such that Lq (Ki) ∼= Sub (Si). In addition, the proof of
Theorem 3.3 and condition (P3) imply that the class Ki ∩ Kj contains just a trivial system for
i �= j. Put

K =
⋃

i∈I

Ki and R = Q(K).

Claim 3.4.1. A mapping of the form

ϕ : Lq (R) → Lq (K) acting by the rule R′ �→ R′ ∩ K

is a complete lattice homomorphism onto.
Proof. It is not hard to see that the mapping ϕ is well defined and is meet-preserving. In

order to prove that ϕ preserves arbitrary joins, we assume that Rn ∈ Lq (R) for all n ∈ N . Let
X =

⋃
n∈N

Rn. It suffices to verify that Q(X) ∩ K ⊆ Q(X ∩ K). Indeed, let A ∈ Q(X) ∩ K. Since

A ∈ K, there are an index i ∈ I and an element a ∈ Si such that

A = AX(a) ∈ Q(X) ∩ Ki ⊆ Q(X) = LsPs(X) ⊆ Q(A).

The system AX(a) is l-projective in Q(A), so it is l-projective in Q(X). Thus AX(a) ∈ SP(X). In
view of property (P0), there exist systems B0, . . . ,Bk ∈ X ⊆ Q(A) such that AX(a) ≤ B0×. . .×Bk.
By virtue of (P4), there are sets Y0, Y1 ∈ Pfin(ω) for which X(a) = Y0∪Y1, AY1 ∈ Q(B0×. . .×Bk−1),
and AY0 ∈ Q(Bk) ⊆ X. Since AY1 is l-projective in Q(A), it is l-projective in Q(B0 × . . .×Bk−1).
Thus AY1 ∈ SP(B0 × . . . × Bk−1).

The system AY1 is l-projective in Q(B0× . . .×Bk−1), so AY1 ≤ BJ
0 × . . .×BJ

k−1 for some set J .
By (P4) again, there exist sets Y2, Y3 ∈ Pfin(ω) such that Y1 = Y2∪Y3, AY3 ∈ Q(BJ

0 × . . .×BJ
k−2) ⊆

Q(B0 × . . . × Bk−2), and AY2 ∈ Q(Bk−1) ⊆ X. Therefore, X(a) = Y0 ∪ Y2 ∪ Y3. If we proceed by
induction we see that there exist sets Z0, . . . , Zk ∈ Pfin(ω) for which X(a) = Z0 ∪ . . . ∪ Zk and
AZj ∈ Q(Bj) ⊆ X with any j � k. By Lemma 3.2, AX(a) ∈ SP(AZ0 , . . . ,AZk

).
We have AZj ∈ X ⊆ Q(K) = LsPs(K) for any j � k. Since AZj is l-projective in Q(A), it

is l-projective in Q(K). Thus AZj ∈ SP(K). By virtue of (P0), there are a finite set {aj,m | m ∈
M(j)} ⊆

⋃
i∈I

Si and systems AX(aj,m), m ∈ M(j), such that AZj ≤
∏

m∈M(j)

AX(aj,m). In view of
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Lemma 3.2, therefore, Zj =
⋃

m∈M(j)

X(aj,m). Hence

X(a) =
⋃

m∈M(0)

X(a0,m) ∪ . . . ∪
⋃

m∈M(k)

X(ak,m).

We have a ∈ Si, so
⋃

j�k

{aj,m | m ∈ M(j)} ⊆ Si. Thus, for any j � k, it is true that Zj =
⋃

m∈M(j)

X(aj,m) = X(cj), where cj =
∧

m∈M(j)

aj,m ∈ Si, since the last set is a lower semilattice.

Hence AZj = AX(cj) ∈ X ∩ Ki and AX(a) ∈ SP(AZ0 , . . . ,AZk
) ⊆ Q(X ∩ K), as desired.

Finally, the mapping ϕ is surjective by virtue of the fact that ϕ
(
Q(X)

)
= Q(X)∩K = X holds

for any X ∈ Lq (K). �

Claim 3.4.2. For every i ∈ I, a mapping of the form

ϕi : Lq (K) → Lq (Ki) acting by the rule K′ �→ K′ ∩ Ki

is a complete lattice homomorphism onto.
Proof. Obviously, the mapping ϕi is well defined and preserves arbitrary meets. In order

to prove that ϕi preserves arbitrary joins, we assume that Xn ∈ Lq (K) for all n ∈ N . Put
X =

⋃
n∈N

Xn. It suffices to show that Q(X) ∩ Ki ⊆ Q(X ∩ Ki). Indeed, let an element a ∈ Si be

such that
AX(a) ∈ Q(X) ∩Ki ⊆ Q(X) = LsPs(X) ⊆ Q(A).

The system AX(a) is l-projective in Q(A), so it is l-projective in Q(X). Thus AX(a) ∈ SP(X). In
view of (P0), there are systems B0, . . . ,Bk ∈ X for which AX(a) ≤ B0 × . . . × Bk. Since X ⊆ K,
we conclude that for every j � k, there are an index i(j) ∈ I and an element aj ∈ Si(j) such that
Bj = AX(aj) ∈ X ∩ Ki(j); i.e., AX(a) ≤ AX(a0) × . . . × AX(ak). In view of Lemma 3.2, we derive
X(a) = X(a0) ∪ . . . ∪X(ak). By virtue of the fact that a ∈ Si, we have a0, . . . , ak ∈ Si. Therefore,
i(j) = i and AX(aj ) ∈ X ∩ Ki for all j � k. Hence AX(a) ∈ Q(X ∩ Ki), as desired.

Finally, the mapping ϕi is surjective. Indeed, let Y ∈ Lq (Ki). Consider X = Q(Y)∩K. Then
ϕi(X) = Q(Y) ∩ K ∩ Ki = Q(Y) ∩Ki = Y. �

Claim 3.4.3. A mapping of the form

ϕ : Lq (K) →
∏

i∈I

Lq (Ki) acting by the rule K′ �→
〈
ϕi(K′) | i ∈ I

〉

is an isomorphism.
Proof. According to Claim 3.4.2, the mapping ϕ is a homomorphism. Obviously, ϕ is injective.

We show that ϕ is surjective. Indeed, let Yi ∈ Lq (Ki) for all i ∈ I and let Y =
⋃
i∈I

Yi. Consider a

class X = Q(Y)∩K. We need to show that ϕi(X) = Yi for all i ∈ I. We have ϕi(X) = X∩Ki =
Q(Y)∩K∩Ki = Q(Y)∩Ki. In view of Yi ⊆ Q(Y)∩Ki, it suffices to verify that Q(Y)∩Ki ⊆ Yi.

Suppose a ∈ Si and AX(a) ∈ Q(Y). The system AX(a) is l-projective in Q(A), so it is l-
projective in Q(Y). Thus AX(a) ∈ SP(Y). By virtue of (P0), there are systems B0, . . . ,Bk ∈ Y
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such that AX(a) ≤ B0 × . . . × Bk. Since Y ⊆ K, we conclude that for any j � k, there exist
an index i(j) ∈ I and an element aj ∈ Si(j) for which Bj = AX(aj) ∈ Y ∩ Ki(j) = Yi(j); i.e.,
AX(a) ≤ AX(a0) × . . . × AX(ak). By Lemma 3.2, X(a) = X(a0) ∪ . . . ∪ X(ak). In view of the fact
that a ∈ Ai, we have a0, . . . , ak ∈ Si. Therefore, i(j) = i and AX(aj) ∈ Yi for all j � k. Hence
AX(a) ∈ Q(Yi) ∩ Ki = Yi. �

According to Theorem 3.3 and Claim 3.4.3,

Lq (K) ∼=
∏

i∈I

Lq (Ki) ∼=
∏

i∈I

Sub (Si). �

A generalized version of Theorem 3.1 is

COROLLARY 3.5. If a variety K of a finite signature contains a class A = {AX | X ∈
Pfin(ω)} of systems that possesses properties (P0)-(P4), then K is Q-universal. Moreover, the ideal
lattice of a free lattice of countable rank is embeddable in the lattice Lq (K).

Proof. We need only consider a set {Bn | n > 0}, where Bn is the semilattice of all subsets of
an n-element set under intersection, and then apply Theorem 3.4. �

4. THE PROPERTY OF BEING UNCOMPUTABLE

LEMMA 4.1 [1, Lemma 3]. Let L be an infinite computable set of mutually nonembeddable,
subdirectly irreducible finite lattices containing at least three elements, K a lattice, and L0 ⊆
L ∩ S(K) a set such that K ≤s

∏
{L | L ∈ L0}.

(i) If the set L0 is computably enumerable but not computable, then the set of all finite
sublattices of K is also computably enumerable but not computable.

(ii) If the set L0 is not computably enumerable, then the set of all finite sublattices of K is not
computably enumerable either.

THEOREM 4.2. Let M be a quasivariety of a finite signature containing a class A = {AX |
X ∈ Pfin(ω)} of systems possessing properties (P0)-(P4). Then there exists a subclass K ⊆ M

such that the set of isomorphism types of the class of all finite sublattices of Lq (K) is computably
enumerable but not computable.

Proof. Let N ⊆ ω\{0, 1, 2} be a computably enumerable but not computable set. By virtue of
Theorem 3.4 applied to a class {Kn | n ∈ N}, where Kn is the finite lower semilattice depicted in
Fig. 1, there exists a subclass K ⊆ M such that

Lq (K) ∼=
∏

n∈N

Sub (Kn).

According to [1, Lemma 17], the lattice Sub (Kn) is subdirectly irreducible for any n > 2. By virtue
of [1, Lemma 18], the lattice Sub (Km) is embeddable in Sub (Kn) iff m = n. Let L = {Sub (Kn) |
n > 2} and L0 = {Sub (Kn) | n ∈ N}. Then L0 ⊆ L ∩ S

(
Lq (K)

)
. Consequently, Lq (K) has the

required property in view of Lemma 4.1(i). �
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Fig. 1. The lower semilattice Kn (a crown).

THEOREM 4.3. Let M be a variety of a finite signature containing a class A = {AX | X ∈
Pfin(ω)} of systems possessing properties (P0)-(P4). Then there exists a subclass K ⊆ M such
that the set of isomorphism types of the class of all finite sublattices of Lq (K) is not computably
enumerable.

Proof. If in the proof of Theorem 4.2 we examine the set N ⊆ ω\{0, 1, 2}, which is not
computably enumerable, and use Lemma 4.1(ii), then we obtain the result required. �

Applying the construction given in Theorem 4.2 to different sets N0 and N1 produces different
classes K0 and K1. Since there exists an uncountable set of subsets in ω that are not computably
enumerable, we derive the following:

THEOREM 4.4. Let M be a quasivariety of a finite signature containing a class A = {AX |
X ∈ Pfin(ω)} of systems possessing properties (P0)-(P4).

(i) There is a countable set of classes K ⊆ M such that the set of isomorphism types of the
class of all finite sublattices of Lq (K) is computably enumerable but not computable.

(ii) There is a set of classes K ⊆ M having the cardinality of the continuum such that the set
of isomorphism types of the class of all finite sublattices of Lq (K) is not computably enumerable.

5. DISCUSSION AND APPLICATIONS

Theorems 3.4 and 4.2-4.4 can be applied to many (almost all) known Q-universal quasivarieties,
since in appropriate (and cited below) works it was stated that these contain a subclass of finite
systems with (P1)-(P4) and are Q-universal. Among such classes, it is worth mentioning the
following: varieties of commutative rings with unity and MV -algebras [4; 22, Prop. 3.5] (see also
[12, 13]); varieties of De Morgan algebras and Kleene algebras [5]; varieties of distributive p-algebras
and Heyting algebras [27]; varieties of p-semilattices [28], distributive lattices with a quantifier [6],
and modular lattices [29]; some varieties of commutative semigroups [11]; some classes of graphs
[14] (see also [21]); some varieties of bounded lattices [7, 10].

In [8], it was proved that every finite-to-finite universal quasivariety contains a class of finite
systems possessing properties (P1)-(P4). Consequently, Theorems 3.4, 4.2, and 4.3 can be applied to
such quasivarieties as well. Among these are the following: the quasivariety of all (0, 1)-lattices (all
posets) with n constants (n � 2) and the quasivariety of all distributive lattices with n constants
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(n � 3) [30]; the quasivariety of all left (resp., right) normal idempotent semigroups containing
a regular involution as an additional operation [31]; the quasivariety of all directed graphs [32].
In [8], note, it was stated that the quasivariety of all undirected graphs likewise is universal (see
also [16]).

A quasivariety for which Theorems 4.2-4.4 are valid was first exemplified in [1]. There, too, it
was established that there exists a subquasivariety K of the variety of all unars (algebras whose
signature contains a single unary function symbol) such that the set of all isomorphism types of the
class of finite sublattices of Lq (K) is computably enumerable but not computable (not computably
enumerable, resp.). The second example of a similar type (a quasivariety of Abelian groups with
a single constant) was found in [2], where it was proved that the quasivariety in question is Q-
universal. Other examples of such classes were obtained in [21, 33, 34]. In particular, these are a
quasivariety of directed graphs, and also a class of differential groupoids. Moreover, as noted, it
was shown in [21] that the class K(σ) of all systems of a signature σ is Q-universal iff there exists
a class K ⊆ K(σ) such that the set of all isomorphism types of the class of finite sublattices of
Lq (K) is computably enumerable but not computable (not computably enumerable, resp.). In this
connection, the following problems arise.

Problem 5.1. Is it true that a Q-universal class K ⊆ K(σ) of systems of a signature σ contains
a subclass K′ ⊆ K such that the set of all isomorphism types of the class of finite sublattices of
Lq (K′) is computably enumerable but not computable? Does there exist a class K that is not
Q-universal but nevertheless possesses the above-mentioned property?

Theorem 4.2 gives a positive answer to the first question for almost all known Q-universal
quasivarieties (see the discussion above). However, the answer to the second question is still not
known.

In [35], it was stated that varieties of Cantor algebras are Q-universal. In proving this fact,
use was made of another sufficient condition for Q-universality, introduced in [13]. Although
Theorem 3.1 cannot be applied to those varieties (since all systems in them are infinite), it follows
from [35, proofs of Thm. 2.7 and Lemma 3.1] that in the varieties in question, there exist classes
of systems possessing properties (P0)-(P4). Thus Theorems 4.2-4.4 turn out to be valid in this case
too.

Problem 5.2. Is it true that a quasivariety (generated by a single semigroup), whose Q-
universality was established in [3], contains a class K such that the set of all isomorphism types of
the class of finite sublattices of Lq (K) is computably enumerable but not computable?

Issues related to the problems under consideration were also taken up in [3, 16-20, 22, 23, 33,
34, 36-42].
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