THE COORDINATE GROUP OF AN AFFINE SPACE OVER A RIGID METABELIAN PRO-*p*-GROUP

S. G. Afanas'eva*

UDC 512.5

Keywords: rigid metabelian pro-p-group, affine space, coordinate group.

For a finitely generated 2-step solvable 2-graded rigid pro-p-group G, the coordinate group of an affine space G^m is found and the space G^m is stated to be irreducible in the Zariski topology.

In [1], rigid metabelian graded pro-p-groups were studied. Recall that a metabelian pro-p-group G is *rigid* if it has a normal series of the form

$$G = G_1 \geqslant G_2 \geqslant G_3 = 1 \tag{1}$$

with Abelian factors, in which case the factor group $A = G/G_2$ is torsion-free and G_2 is torsion-free as a $\mathbb{Z}_p A$ -module (here \mathbb{Z}_p is the ring of *p*-adic integers). In the case where a group is exactly 2-step solvable, the specified series (if it exists) is defined by the group uniquely; a nontrivial Abelian pro-*p*-group is rigid if it is torsion-free, and so we can put either $G_2 = 1$ or $G_1 = G_2$. Depending on these three options, a metabelian rigid pro-*p*-group is assigned a respective grading (1, 1), (1, 0), or (0, 1). A morphism between 2-graded rigid pro-*p*-groups with corresponding series of form (1) is a homomorphism $\varphi : G \to H$ such that $G_i \varphi \leq H_i$ (i = 1, 2, 3). In [1], it was proved that in the category of 2-graded rigid pro-*p*-groups, a coproduct operation exists, and its properties were explored. Denote by $G \circ H$ a coproduct of two 2-graded rigid pro-*p*-groups G and H.

In [2], by analogy with abstract groups [3, 4], definitions were couched and some fundamental facts proved concerning algebraic geometry over profinite groups. If the definitions mentioned are brought to bear on pro-*p*-groups, then an equation in x_1, \ldots, x_n over a given pro-*p*-group G is an expression of the form v = 1, where v is an element of the free pro-*p*-product $G * \langle x_1, \ldots, x_n \rangle$ of the group G and the free pro-*p*-group $\langle x_1, \ldots, x_n \rangle$. A set $S \subseteq G^n$ of solutions to some system

^{*}Supported by RFBR, project No. 12-01-00084.

Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia; melesheva@gmail.com. Translated from *Algebra i Logika*, Vol. 53, No. 3, p. 295-299, May-June, 2014. Original article submitted June 26, 2014.

 $\{v_i(x_1,\ldots,x_n)=1 \mid i \in I\}$ of equations is called an *algebraic subset* of an affine space G^n . The factor group of $G * \langle x_1, \ldots, x_n \rangle$ with respect to an annihilator S is called the *coordinate group* of an algebraic set S. On G^n , the Zariski topology is defined by taking all algebraic subsets to be a subbasis of a system of closed sets.

The main result of the paper is the following:

THEOREM 1. Let G be a finitely generated 2-step solvable 2-graded rigid pro-p-group, and let $F = \langle x_1, \ldots, x_n \rangle$ be a free metabelian pro-*p*-group of rank *n* which is treated with grading (1,0)for n = 1 and with grading (1, 1) for all other values of n. Then $G \circ F$ is G-discriminated by G.

From Theorem 1, using [2, Thm. 6], we deduce

THEOREM 2. Under the hypotheses of Theorem 1, the group $G \circ F$ is the coordinate group of an affine space G^n and the space G^n is irreducible.

The last theorem is similar to a corresponding statement proved for metabelian rigid abstract groups in [5] and for rigid abstract groups of any derived length in [6].

Proof of Theorem 1. The problem reduces to the case where F has rank 1. In fact, in view of [1, Cor. 1], $F = E_2 \circ E_1$, where $E_2 = \langle x_2, \ldots, x_n \rangle$ and $E_1 = \langle x_1 \rangle$. We have $G \circ F = (G \circ E_2) \circ E_1$. By induction, assume that $G \circ E_2$ is G-discriminated by G. To prove the theorem, it suffices to show that $(G \circ E_2) \circ E_1$ is $(G \circ E_2)$ -discriminated by $G \circ E_2$.

Suppose that $F = \langle x \rangle$ has rank 1. Let G_i and F_i (i = 1, 2, 3) be respective members of series of form (1) for pro-*p*-groups G and F (note that $F_2 = 1$). Denote by $H = G \circ F$ a 2-rigid product of groups G and F with a series $H = H_1 > H_2 > H_3 = 1$. Let $A = G/G_2$ be a nontrivial free Abelian pro-*p*-group of finite rank and a_1, \ldots, a_m its free generators. For images of elements of F in F/F_2 , we keep the same notation.

Free splittings of groups G and F (see [1]) over G_2 and F_2 have respective forms $\begin{pmatrix} A & 0 \\ D(G) & 1 \end{pmatrix}$ 1

and
$$\begin{pmatrix} \langle x \rangle & 0 \\ t \cdot \mathbb{Z}_p[[y]] & 1 \end{pmatrix}$$
, where $x - 1 = y$ and $D(G)$ is a $\mathbb{Z}_p A$ -module. Let $C = A \times \langle x \rangle$. It follows from

[1] that a free splitting of the group H over H_2 has the form $\begin{pmatrix} C & 0 \\ D(H) & 1 \end{pmatrix}$, where the $\mathbb{Z}_p C$ -module D(H) equals

$$D(G) \bigotimes_{\mathbb{Z}_p A} \mathbb{Z}_p C \oplus t \cdot \mathbb{Z}_p C.$$

We need to prove that H is G-discriminated by G. Let h_1, \ldots, h_s be a tuple of nontrivial elements of H, which we want to discriminate. We may assume that $h_i \in H_2$ (i = 1, ..., s). Indeed, if $h_i \notin H_2$, then h_i can be replaced by $[h_i, h]$, where $h = \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix}$ is some nontrivial element of G_2 . Thus let $h_i = \begin{pmatrix} 1 & 0 \\ v_i & 1 \end{pmatrix} \in H_2$ $(i = 1, \dots, s)$. In essence, we must discriminate a tuple of nonzero

elements $V = \{v_1, \ldots, v_s\}$ in the module D(H). It follows from [1] that every element $v \in D(H)$

is uniquely representable as $v = \sum_{k=0}^{\infty} u_k y^k + t\alpha$, where $u_k \in D(G)$ and $\alpha \in \mathbb{Z}_p C$. We partition the set V into two subsets V_1 and V_2 , where V_1 consists of those v for which $\alpha = 0$ and V_2 consists of the other v. We search for a required homomorphism in the form

$$\tau_g: G \xrightarrow{id} G, \ x \mapsto g = \begin{pmatrix} gG_2 & 0 \\ u & 1 \end{pmatrix} \in G,$$

where $gG_2 = a_1^{\beta}$. First we find a suitable value for β and then correct g by means of an element of G_2 .

The algebra $\mathbb{Z}_p A$ coincides with an algebra $\mathbb{Z}_p[[z_1, \ldots, z_m]]$ of formal power series in variables $z_i = a_i - 1$ $(1 \leq i \leq m)$. It is known [1] that a finitely generated torsion-free $\mathbb{Z}_p A$ -module D(G) embeds in a free module T of finite rank, and we let t_1, \ldots, t_l be its free generators. We claim that $D(G) \bigotimes_{\mathbb{Z}_p A} \mathbb{Z}_p C$ embeds in $T \bigotimes_{\mathbb{Z}_p A} \mathbb{Z}_p C = t_1 \cdot \mathbb{Z}_p C \oplus \ldots \oplus t_l \cdot \mathbb{Z}_p C$. Consider a canonical homomorphism $\varphi : D(G) \bigotimes_{\mathbb{Z}_p A} \mathbb{Z}_p C \to T \bigotimes_{\mathbb{Z}_p A} \mathbb{Z}_p C$. Take a nonzero element $w \in D(G) \bigotimes_{\mathbb{Z}_p A} \mathbb{Z}_p C$. According to [1], the element w is uniquely representable as $\sum u_k y^k$, where $u_k \in D(G)$. Choose a minimal k_0 for which $u_{k_0} \neq 0$. The element u_{k_0} is representable as $t_1 \gamma_1 + \ldots + t_l \gamma_l$ in the module T, where γ_i are not all equal to zero. Then the image of w in $T \bigotimes_{\mathbb{Z}_p A} \mathbb{Z}_p C$ is distinct from zero since every element of $T \bigotimes_{\mathbb{Z}_p A} \mathbb{Z}_p C$ is also uniquely representable as $\sum u_k y^k$, where $u_k \in T$.

Clearly, $V_1\tau_g$ is completely defined by the value $x\tau_g$ modulo G_2 , i.e., by the choice of $\beta \in \mathbb{Z}_p$. Now we expand $v \in V_1$ in terms of the basis elements t_1, \ldots, t_l of the module $T \bigotimes_{\mathbb{Z}_p A} \mathbb{Z}_p C : v = t_1w_1 + \ldots + t_lw_l$, where $w_i \in \mathbb{Z}_p[[z_1, \ldots, z_m, y]]$, and one of these coefficients should be other than zero. Choose a value for β so that for any $v \in V_1$, the image of a corresponding coefficient in $\mathbb{Z}_p A$ will not be zero, and if $v \in V_2$ and $v = \sum_k u_k y^k + t\alpha$, then the image of α , denoted $\overline{\alpha}$, will be other than zero as well.

The existence of an appropriate value for β follows from the following simple fact. Let W be a finite set of nonzero elements of $\mathbb{Z}_p C$. Then there exists $\beta \in \mathbb{Z}_p$ such that under the homomorphism $\overline{\tau} : \mathbb{Z}_p C \to \mathbb{Z}_p A$ defined by the mapping $A \xrightarrow{id} A$, $x \mapsto a_1^\beta$, the images of all elements in W are distinct from zero.

Choose an arbitrary element $v = \sum_{k=0}^{\infty} u_k y^k + t\alpha \in V_2$. For some $g = \begin{pmatrix} gG_2 & 0 \\ u & 1 \end{pmatrix} \in G$, where $gG_2 = a_1^{\beta}$, consider the image of v under the homomorphism τ_g . We have chosen β so that $\overline{\alpha} \neq 0$. Let $g' = gg_2$, where $g_2 = \begin{pmatrix} 1 & 0 \\ u' & 1 \end{pmatrix} \in G_2$. We have $v\tau_{g'} = v\tau_g + u'\overline{\alpha}$. Clearly, we can select a $g_2 \in G_2$ for which the image of every element $v \in V_2$ under the homomorphism $\tau_{g'}$ is not equal to zero. Theorem 1 is proved.

REFERENCES

- S. G. Afanas'eva and N. S. Romanovskii, "Rigid metabelian pro-*p*-groups," *Algebra and Logic*, 53, No. 2, 102-113 (2014).
- S. G. Melesheva, "Equations and algebraic geometry over profinite groups," Algebra and Logic, 49, No. 5, 444-455 (2010).
- G. Baumslag, A. Myasnikov, and V. Remeslennikov, "Algebraic geometry over groups. I: Algebraic sets and ideal theory," J. Alg., 219, No. 1, 16-79 (1999).
- A. Myasnikov and V. N. Remeslennikov, "Algebraic geometry over groups. II: Logical foundations," J. Alg., 234, No. 1, 225-276 (2000).
- 5. V. N. Remeslennikov and N. S. Romanovskii, "Irreducible algebraic sets in metabelian groups," *Algebra and Logic*, **44**, No. 5, 336-347 (2005).
- N. S. Romanovskii, "Coproducts of rigid groups," Algebra and Logic, 49, No. 6, 539-550 (2010).