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A metabelian pro-p-group G is rigid if it has a normal series of the form G = G1 �
G2 � G3 = 1 such that the factor group A = G/G2 is torsion-free Abelian and C = G2

is torsion-free as a ZpA-module. If G is a non-Abelian group, then the subgroup G2,
as well as the given series, is uniquely defined by the properties mentioned. An Abelian
pro-p-group is rigid if it is torsion-free, and as G2 we can take either the trivial subgroup
or the entire group. We prove that all rigid 2-step solvable pro-p-groups are mutually
universally equivalent. Rigid metabelian pro-p-groups can be treated as 2-graded groups
with possible gradings (1, 1), (1, 0), and (0, 1). If a group is 2-step solvable, then its
grading is (1, 1). For an Abelian group, there are two options: namely, grading (1, 0), if
G2 = 1, and grading (0, 1) if G2 = G. A morphism between 2-graded rigid pro-p-groups
is a homomorphism ϕ : G → H such that Giϕ � Hi. It is shown that in the category of
2-graded rigid pro-p-groups, a coproduct operation exists, and we establish its properties.

INTRODUCTION

In [1-7], rigid solvable groups were defined and explored, and many aspects of algebraic geometry
over such groups were studied. Important examples of rigid groups are free solvable groups. In [8],
by analogy with abstract groups [9, 10], foundations of algebraic geometry over profinite groups,
in particular, over pro-p-groups, were laid and a number of general facts were proved, which will
be used below. Relevant information on profinite groups can be found in [11].
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An extension of the concept of a rigid group to pro-p-groups involves some difficulties. Therefore,
we confine ourselves to the case of metabelian pro-p-groups where these problems do not arise. Thus
we say that a metabelian pro-p-group G is rigid if it has a normal series of the form

G = G1 � G2 � G3 = 1 (1)

such that the factor group A = G/G2 is torsion-free Abelian and C = G2 is torsion-free as a
ZpA-module. Recall that the group algebra ZpA is an algebra of power series in some (converging
to zero) set of commuting variables. If G is a non-Abelian group, then the subgroup C, as well
as series (1), is uniquely defined by these properties, since C coincides with the centralizer of any
nontrivial commutator of two elements of G. Consequently, C is a characteristic subgroup. An
Abelian pro-p-group is rigid if it is torsion-free, and as G2 in it we can take either the trivial
subgroup or the entire group. That free metabelian pro-p-groups are rigid can be derived from the
construction of the Magnus embedding (see [12, 13]).

The objective of the present paper is to carry over some important facts on abstract rigid
groups to metabelian rigid pro-p-groups. In [14], it was proved that (abstract) metabelian groups
that are universally equivalent to a free metabelian group are exactly (in our terminology) rigid
2-step solvable groups. We show that for pro-p-groups, the following holds:

THEOREM 1. All rigid 2-step solvable pro-p-groups are mutually universally equivalent.
In connection with Theorem 1, it is worth observing that the concept of a term and also the

concept of a universal theory in profinite groups are defined in a slightly different manner compared
to how these are defined in abstract groups (see [8]). As distinct from the abstract case, we do not
know whether a pro-p-group universally equivalent to a rigid 2-step solvable pro-p-group will be
rigid itself.

By analogy with [4], rigid metabelian pro-p-groups can be treated as 2-graded groups with
possible gradings (1,1), (1,0), and (0,1). If a group is 2-step solvable, then its grading is (1,1).
For an Abelian group, there are two options depending on the choice of series (1): grading (1,0),
if G2 = 1, and grading (0,1) if G2 = G. A morphism between 2-graded rigid pro-p-groups with
respective series of form (1) is a homomorphism ϕ : G → H such that Giϕ � Hi (i = 1, 2, 3).
We will prove that in the category of 2-graded rigid pro-p-groups, a coproduct operation exists.
Theorem 2 below and Theorem 1 (on abstract graded rigid groups) in [4] have similar formulations.

THEOREM 2. Let G and H be two 2-graded rigid pro-p-groups. Then there exists a 2-
graded rigid pro-p-group G ◦ H, which is called a 2-rigid product of G and H, satisfying the
following conditions:

(1) G and H embed in G ◦ H and generate this group;
(2) arbitrary homomorphisms

γ1 : G → L, γ2 : H → L
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of 2-graded rigid pro-p-groups extend to a homomorphism of the form

γ : G ◦ H → L.

COROLLARY 1. (1) The group G ◦ H is defined by conditions (1) and (2) uniquely up to
isomorphism between 2-graded rigid pro-p-groups.

(2) The operation ◦, if treated as a coproduct operation, is commutative and associative.
(3) Let F1, . . . , Fn be free one-generated pro-p-groups with grading (1, 0). Then their 2-rigid

product F1 ◦ . . . ◦ Fn is a free metabelian pro-p-group of rank n.
Proof. We verify item (3) only. It suffices to note that any collection of homomorphisms Fi

into an arbitrary 2-rigid pro-p-group G, in particular, into a free metabelian pro-p-group, extends
to a homomorphism F1 ◦ . . . ◦ Fn → G.

1. AUXILIARY DEFINITIONS AND FACTS

1.1. Assume that a metabelian pro-p-group G has a normal Abelian subgroup C and G = G/C

is an Abelian group. Set g = gC for g ∈ G. The group G acts by conjugations x → xg = g−1xg

on C. Clearly, in fact, G acts and C can be treated as a right topological ZpG-module. Suppose
also that there is a pro-p-group which decomposes into a semidirect product of its subgroup G and

some normal Abelian subgroup D(G), which has the following matrix representation:

(
G 0

D(G) 1

)
.

We call the last group a splitting of G over C if an embedding of G in it is specified so that

g =

(
g 0

d(g) 1

)
, and D(G) is generated as a ZpG-module by elements d(g), g ∈ G.

The splitting

(
G 0

D(G) 1

)
is said to be free if, for any epimorphism γ : G → H, where the group

H has a normal Abelian subgroup L and Cγ � L, and for any splitting

(
H 0

D(H) 1

)
of the group

H over L, the mapping d(g) → d(gγ) determines a module epimorphism D(G) → D(H), which
agrees with a ring epimorphism ZpG → ZpH. Clearly, this gives rise to the splitting epimorphism

(
G 0

D(G) 1

)
→

(
H 0

D(H) 1

)
,

whose restriction to G coincides with γ. General considerations imply that if a free splitting exists
then it is defined uniquely up to isomorphism. Hence, for two free splittings

(
G 0

D(G) 1

)
,

(
G 0

D1(G) 1

)
,

the mapping d(g) → d1(g) determines a module isomorphism D(G) → D1(G), which in turn yields
a group isomorphism (

G 0
D(G) 1

)
→

(
G 0

D1(G) 1

)
.
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We say that the splitting (
G 0

D(G) 1

)

has a differential if the mapping d(g) → g − 1 determines an epimorphism (a differential) δ of the
module D(G) onto the difference ideal (G − 1) · ZpG of a group ring ZpG, and the kernel of this
epimorphism is C (here C is naturally identified with a submodule of D(G)).

Based on the Magnus embedding [12, 13], we construct a particular splitting with differential,
which will be called the Magnus splitting. To do this, we represent a group G as the factor group of
a free pro-p-group F with basis {xi | i ∈ I} (converging to one). Let ϕ1 : F → G and ϕ2 : F → G

be canonical epimorphisms and gi = xiϕ1, i ∈ I. Denote by T a right free topological ZpG-module
with basis {ti | i ∈ I} (converging to zero). Consider a module epimorphism ψ : T → (G−1) ·ZpG,
which is defined by a formula (

∑
tiui)ψ =

∑
(gi − 1)ui. Also consider the pro-p-group Magnus

homomorphism

τ : F →
(

G 0
T 1

)

defined by the mapping

xi →
(

gi 0
ti 1

)
, i ∈ I.

In view of the properties of the Magnus embedding, ker τ � ker ϕ1 � ker ϕ2 and

(ker ϕ2)τ =

(
1 0
U 1

)
,

where U = ker ψ. Consequently,

(ker ϕ1)τ =

(
1 0
U1 1

)
,

where U1 is some submodule of U . By construction, if we put D(G) = T/U1 then the group G

embeds in

(
G 0

D(G) 1

)
. Under this embedding, the image of C equals

(
1 0

U/U1 1

)
and can be

identified with a module U/U1. A homomorphism δ : D(G) → (G − 1) · ZpG is defined via ψ, and
the kernel of δ is C. By construction, d(gi)δ = gi − 1 holds for generating elements gi of the group
G, and so d(g)δ = g − 1 for all g ∈ G.

Proofs for the two splitting lemmas below repeat verbatim the proofs of appropriate statements
for abstract groups, given in [5].

LEMMA 1. For a given splitting

(
G 0

D(G) 1

)
of a pro-p-group G over C, the following

conditions are equivalent:
(1) the splitting is free;
(2) the splitting has a differential;
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(3) the splitting is isomorphic to the Magnus splitting.

LEMMA 2. A free splitting of any subgroup H � G over H ∩C is induced by a free splitting

of G over C. Hence, if

(
G 0

D(G) 1

)
is a free splitting of G and D(H) is a ZpH-submodule of D(G)

generated by elements d(h), h ∈ H, then

(
H 0

D(H) 1

)
is a free splitting of H.

COROLLARY 2. Let G be a rigid metabelian pro-p-group with a respective series of form

(1), C = G2, and

(
G 0

D(G) 1

)
be a free splitting of G over C. Then the module D(G) is ZpG-

torsion-free; i.e., the splitting is also a rigid metabelian pro-p-group.
In fact, D(G) is an extension of the torsion-free module C by the torsion-free module

(G − 1) · ZpG.

1.2. We need to augment a group ring over which a given torsion-free module will be treated.
To do this, we use the following:

LEMMA 3. Let E be a torsion-free pro-p-module over a ring Zp[[X]] of formal power series in
a set X (converging to zero) of commuting variables, Zp[[X,Y ]] be a ring of formal power series in
a set X ∪ Y (converging to zero) of commuting variables, and X ∩ Y = ∅. Consider a topological
tensor product such as

E
⊗

Zp[[X]]

Zp[[X,Y ]] = E′.

Then E′, being a Zp[[X,Y ]]-module, is also torsion-free. If {Mk | k ∈ K} is the set of all monomials
in Y , then every element of E′ is uniquely representable as

∑
k

vkMk, where vk ∈ E. In particular,

E embeds in E′.
Proof. In a standard manner, the argument reduces to the case where X and Y are finite sets.

Clearly,
Zp[[X,Y ]] = Zp[[X]]

⊗

Zp

Zp[[Y ]],

and so
E

⊗

Zp[[X]]

Zp[[X,Y ]] = E
⊗

Zp

Zp[[Y ]].

The module E, being a Zp-module, is free, with basis {ei | i ∈ I} (converging to zero). The
totality {Mk | k ∈ k} of all monomials in Y form a basis for Zp[[Y ]] treated as a Zp-module. The
monomials will be ordered lexicographically. We may assert that every element v of E′ is uniquely
representable as

v =
∑

i,k

eiMkαi,k =
∑

k

vkMk,

where
αi,k ∈ Zp, vk =

∑

i

eiαi,k ∈ E.
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Let
v �= 0, 0 �= β =

∑

k

βkMk ∈ Zp[[X,Y ]], βk ∈ Zp[[X]].

Suppose that Mk1 and Mk2 are minimal monomials occurring in the decompositions of v and β,
respectively, with nonzero coefficients vk1 and βk2 . Then the minimal monomial Mk1Mk2 will occur
in the decomposition of vβ with a nonzero coefficient vk1βk2 . Therefore, vβ �= 0. The lemma is
proved.

2. UNIVERSAL EQUIVALENCE OF RIGID METABELIAN PRO-p-GROUPS

2.1. Let A = 〈a1, . . . , am〉 be a finitely generated Abelian pro-p-group or rank m, and let

T = t1 · ZpA + . . . + tn · ZpA

be a finitely generated free ZpA-module of rank n. Denote by Wn,m a group of matrices

(
A 0
T 1

)
.

PROPOSITION 1. Every finitely generated 2-graded rigid pro-p-group embeds in a group
of the form Wn,m.

Proof. Let G be a finitely generated 2-graded rigid pro-p-group. If G is an Abelian group with
grading (1,0) or (0,1), then everything is obvious: we embed G in A in the former case and embed
G in the additive group of the module T in the latter case. Let G be a 2-step solvable group, and
let C be a normal Abelian subgroup such as in the definition of rigidity. Consider a free splitting(

G 0
D(G) 1

)
of G over C. Set A = G, which is a free Abelian pro-p-group of finite rank. We know

that D(G) is a finitely generated torsion-free ZpA-module. Therefore, it suffices to embed D(G) in
a free module of finite rank.

Now we represent D(G) as a factor module T/U , where

T = t1 · ZpA + . . . + tn · ZpA

is a free ZpA-module of rank n and U is an isolated submodule. Let {u1, . . . , ur} be a maximal
system of elements of U that is linearly independent over ZpA. Using elementary transformations
over ZpA of the form ui �→ uiα + ujβ, where α �= 0, and renaming ti ↔ tj , we can bring the given
system into the form

⎧
⎪⎨

⎪⎩

u′
1 = t1β + 0 + . . . + 0 − tr+1β1,r+1 − . . . − tnβ1,n,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u′
r = 0 + . . . + 0 + trβ − tr+1βr,r+1 − . . . − tnβr,n,

where β �= 0. Consequently, the following relations hold in T/U :
⎧
⎪⎨

⎪⎩

t1β = tr+1β1,r+1 + . . . + tnβ1,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

trβ = tr+1βr,r+1 + . . . + tnβr,n.
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Now we embed T in the vector space

T = t1 · Q(A) + . . . + tn · Q(A)

over the field of fractions, Q(A), of a ring ZpA. Let U be a subspace generated by U , and also by
elements u′

1, . . . , u
′
r. Since U is an isolated submodule, T ∩U = U . Clearly, dim(T/U ) = n− r and

images of elements tr+1, . . . , tn constitute a basis for T/U . The images of these elements in T/U

will likewise be denoted by t1, . . . , tn. We have
⎧
⎪⎨

⎪⎩

t1 = (tr+1β
−1)β1,r+1 + . . . + (tnβ−1)β1,n,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tr = (tr+1β
−1)βr,r+1 + . . . + (tnβ−1)βr,n.

Therefore, the module T/U embeds in a free module with generators tr+1β
−1, . . . , tnβ−1. The

proposition is proved.
We need the following simple fact.

LEMMA 4. Let F be a field, B an infinite subset in F , and

v1 = (v11, . . . , v1k), . . . , vq = (vq1, . . . , vqk)

nonzero rows in F k. Then there exists a tuple (β1, . . . , βk) ∈ Bk such that all linear combinations
β1vi1 + . . . + βkvik are distinct from zero, where 1 ≤ i ≤ q.

PROPOSITION 2. A group Wn,m is discriminated by a group W1,1.

Proof. First we show that the group Wn,m is discriminated by a group Wn,1 =

(
〈a〉 0
S 1

)
,

where S = s1 · Zp〈a〉 + . . . + sn · Zp〈a〉 is a free Zp〈a〉-module.
The algebra ZpA coincides with an algebra Zp[[y1, . . . , ym]] of formal power series in variables

yi = ai−1, and the algebra Zp〈a〉 coincides with an algebra Zp[[y]] of series in a variable y = a−1.
Consider a set of q nonidentity elements of the group Wn,m, which we want to discriminate:

i.e.,
{

wi =

(
zi 0

t1ui1 + . . . + tnuin 1

)
�= 1

∣∣∣∣∣ uij ∈ Zp[[y1, . . . , ym]], 1 � i � q, 1 � j � n

}
.

The following system of disjunctions holds:
⎧
⎪⎨

⎪⎩

u11 �= 0 ∨ . . . ∨ u1n �= 0 ∨ z1 − 1 �= 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uq1 �= 0 ∨ . . . ∨ uqn �= 0 ∨ zq − 1 �= 0.

(2)

The inequality zi − 1 �= 0 can be treated as ui,n+1 �= 0. Since system (2) is satisfied, there exist
nonzero members among elements of each of the sets Ui = {ui1, ui2, . . . , uin, ui,n+1}. In these, we
choose minimal nonzero homogeneous components.
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Every mapping (1 + yi) �→ (1 + y)αi = 1 + αiy + . . . , where αi ∈ Zp, 1 ≤ i ≤ m,
determines a homomorphism 〈a1, . . . , am〉 → 〈a〉 between pro-p-groups and a homomorphism
ϕ : Zp[[y1, . . . , ym]] → Zp[[y]] between algebras of formal power series, and then a group
homomorphism Wn,m → Wn,1 arises under a mapping tj �→ sj, 1 ≤ j ≤ n. Denote by vij the
image of an element uij under the homomorphism ϕ.

Let f(y1, . . . , ym) be a homogeneous polynomial of degree l. Its image f(y1, . . . , ym)ϕ has a
minimal homogeneous component f(α1, . . . , αm)yl. Obviously, there are values α1, . . . , αm ∈ Zp

such that f(α1, . . . , αm) �= 0. If as the polynomial f(y1, . . . , ym) we take a product of homogeneous
components of least degrees of nonzero elements uij , then, under an appropriate homomorphism
ϕ, the image vij of a nonzero element uij will be nonzero.

From (2), we derive
⎧
⎪⎨

⎪⎩

v11 �= 0 ∨ . . . ∨ v1n �= 0 ∨ v1,n+1 �= 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vq1 �= 0 ∨ . . . ∨ vqn �= 0 ∨ vq,n+1 �= 0.

Consequently, the images of all elements of the set {wi | 1 � i � q} are distinct from 1. Hence the
group Wn,m is discriminated by the group Wn,1.

It remains to prove that Wn,1 is discriminated by the group

W1,1 =

(
〈a〉 0

t · Zp〈a〉 1

)
.

Consider q nonidentity elements of Wn,1,
{(

zi 0
s1vi1 + . . . + snvin 1

)∣∣∣∣∣ vij ∈ Zp[[y]], 1 � i � q, 1 � j � n

}
.

We arrive at the following system of disjunctions:
⎧
⎪⎨

⎪⎩

s1v11 + . . . + snv1n �= 0 ∨ z1 �= 1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s1vq1 + . . . + snvqn �= 0 ∨ zq �= 1.

(3)

A mapping given by the rule sk �→ βkt, a �→ a, where βk ∈ Zp, 1 ≤ k ≤ n, extends naturally to
a homomorphism ψ of the group Wn,1 into W1,1.

If the inequality zi �= 1 holds, then the image of the element
(

zi 0
s1vi1 + . . . + snvin 1

)

under the homomorphism ψ will be a nonidentity element. Therefore, we assume that the first of
the inequalities holds in each row in (2). Under this mapping, the nonzero elements of the module
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S are sent to elements ⎧
⎪⎨

⎪⎩

tβ1v11 + . . . + tβnv1n,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

tβ1vq1 + . . . + tβnvqn.

(4)

By Lemma 4, there exist β1, . . . , βn ∈ Zp such that the elements in (4) will be nonzero. Hence the
group Wn,1 is discriminated by the group W1,1. The proposition is proved.

2.2. We recall the following definition from [8]. Let G be a pro-p-group. A universal theory for
G is a set of formulas true on G having the form ∀x1, . . . , xnΦ(x), where Φ(x) is a disjunction of
a finite system of equalities and inequalities of the form v(x) = 1 or v(x) �= 1, where v(x) is an
element of a free pro-p-group 〈x1, . . . , xn〉.

Now we are in a position to prove Theorem 1. Propositions 1 and 2 imply that a finitely
generated rigid 2-step solvable pro-p-group G is discriminated by the group W1,1. Conversely, if in
G we take a pair of elements a ∈ G \ G2, 1 �= b ∈ G2, then these generate a subgroup isomorphic
to W1,1. Consequently, the group W1,1 is discriminated by the group G. If we consider two rigid
2-step soluble pro-p-groups, then each of them is locally discriminated by the other and the two
have equal universal theories. Theorem 1 is proved.

3. COPRODUCT OF RIGID METABELIAN PRO-p-GROUPS

The proof of Theorem 2 is partially the same as in [4, proof of Thm. 1].
(1) Under the conditions of the theorem, let Gi and Hi (i = 1, 2, 3) be members of respective

series of form (1), A = G = G/G2, and B = H = H/H2. We construct a free splitting (see Lemma 1

above) for the desired group E = G◦H given free splittings

(
A 0

D(G) 1

)
and

(
B 0

D(H) 1

)
of groups

G and H over G2 and H2, respectively. Set C = A × B. Let {ai | i ∈ I} be a basis for the free
Abelian pro-p-group A and {bj | j ∈ J} be one for B; then {ai, bj | i ∈ I, j ∈ J} is a basis of C.
We have

ZpA = Zp[[xi | i ∈ I]], ZpB = Zp[[yj | j ∈ J ]], ZpC = Zp[[xi, yj | i ∈ I, j ∈ J ]],

where ai = 1 + xi and bj = 1 + yj (i ∈ I, j ∈ J). Consider the right ZpC-module

T = D(G)
⊗

ZpA

ZpC ⊕ D(H)
⊗

ZpB

ZpC.

By Corollary 2, this module is torsion-free, and D(G) and D(H) embed in T . Consequently,

M =

(
C 0
T 1

)
will be a metabelian rigid pro-p-group. Clearly, the differentials

δG : D(G) → (A − 1)Zp(A), δH : D(H) → (B − 1)Zp(B)
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extend to a ZpC-module homomorphism δ : T → (C − 1)ZpC. The homomorphism is surjective
since the image contains sets (A − 1)Zp(A) and (B − 1)Zp(B), which generate a difference ideal

(C − 1)Zp(C) over ZpC. Elements of a pro-p-group M of the form

(
c 0
t 1

)
, where tδ = c − 1,

constitute a subgroup denoted G ◦ H. By construction, G ◦ H contains G and H as subgroups.
We prove that G ◦ H is generated by its subgroups G and H. It suffices to state that the

submodule ker δ of T , which is identified with some normal subgroup of M , is contained in the
subgroup 〈G,H〉. The mutual commutant [G,H] lies in ker δ and is also a normal subgroup of M .
Let

g =

(
g 0

d(g) 1

)
∈ G, h =

(
h 0

d(h) 1

)
∈ H, g = a, h = b.

Then the commutator [g, h] is identified with d(g)(b − 1)− d(h)(a− 1); so the element d(h)(a− 1)
is comparable with d(g)(b − 1) modulo [G,H]. A ZpC-module D(H) ⊗ZpB ZpC is generated by
elements of the form d(h); hence it lies in D(G)

⊗
ZpA ZpC + D(H) + [G,H]. Consequently, an

element t ∈ ker δ can be represented as t1 + t2 + t3, where t1 ∈ D(G)
⊗

ZpA ZpC, t2 ∈ D(H),
and t3 ∈ [G,H]. We have 0 = t1δ + t2δ, t1δ ∈ (A − 1)ZpC, and t2δ ∈ (B − 1)ZpB. Since
(A−1)ZpC∩ZpB = 0, it follows that t1δ = 0 and t2δ = 0. The definition of a free splitting implies
that t2 is identified with an element of H. Let {Mk | k ∈ k} be the set of all monomials in yi. In
view of Lemma 3, each element of D(G)

⊗
ZpA ZpC is uniquely representable as

∑
k

vkMk, where

vk ∈ D(G). Since t1δ = 0, all vkδ are equal to 0. Therefore, vk is identified with an element of G,
and t1 with an element of 〈G,H〉. Statement (1) of Theorem 2 is proved. Moreover, we can assert
that the pro-p-group M constructed is a free splitting of G ◦ H over a normal Abelian subgroup,
which is identified with ker δ.

(2) There is no loss of generality in assuming that a pro-p-group L is generated by its subgroups

Gγ1 and Hγ2. Consider a free splitting

(
L 0

D(L) 1

)
of the pro-p-group L over L2, where L2 stands

for a respective member of a series of form (1). By Lemma 2, we may suppose that the free splittings
(

Gγ1 0
D(Gγ1) 1

)
,

(
Hγ2 0

D(Hγ2) 1

)

of groups Gγ1 and Hγ2 over Gγ1 ∩ L2 and Hγ2 ∩ L2, respectively, are contained in

(
L 0

D(L) 1

)
.

The epimorphisms
γ1 : G → Gγ1, γ2 : H → Hγ2

determine splitting epimorphisms such as
(

G 0
D(G) 1

)
→

(
Gγ1 0

D(Gγ1) 1

)
,

(
H 0

D(H) 1

)
→

(
Hγ2 0

D(Hγ2) 1

)
,
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which we denote by the same symbols γ1 and γ2.
Obviously, there exists an epimorphism

γ : C = A × B = G × H → L,

which extends
G → Gγ1, H → Hγ2.

We lift it up to an epimorphism ZpC → ZpL between group rings. By construction, a splitting of

the group M = G ◦ H has the form

(
C 0

D(M) 1

)
, where

D(M) = D(G)
⊗

ZpG

ZpC ⊕ D(H)
⊗

ZpH

ZC.

Since the group L is generated by Gγ1 and Hγ2, we have

D(L) = D(Gγ1) · ZpL + D(Hγ2) · ZpL.

The epimorphisms
D(G) → D(Gγ1), D(H) → D(Hγ2), ZpC → ZpL

yield a module epimorphism D(M) → D(L), which together with γ determines a pro-p-group
epimorphism (

C 0
D(M) 1

)
→

(
L 0

D(L) 1

)
.

The last-mentioned epimorphism restricted to G ◦ H will be the desired homomorphism γ.
Theorem 2 is proved.
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