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RIGID METABELIAN PRO-p-GROUPS
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A metabelian pro-p-group G is rigid if it has a normal series of the form G = G >
Go > G3 =1 such that the factor group A = G /G is torsion-free Abelian and C = Go
is torsion-free as a ZpA-module. If G is a non-Abelian group, then the subgroup G,
as well as the given series, is uniquely defined by the properties mentioned. An Abelian
pro-p-group 1s rigid if it is torsion-free, and as Go we can take either the trivial subgroup
or the entire group. We prove that all rigid 2-step solvable pro-p-groups are mutually
untversally equivalent. Rigid metabelian pro-p-groups can be treated as 2-graded groups
with possible gradings (1,1), (1,0), and (0,1). If a group is 2-step solvable, then its
grading is (1,1). For an Abelian group, there are two options: namely, grading (1,0), if
Gy =1, and grading (0,1) if Go = G. A morphism between 2-graded rigid pro-p-groups
is a homomorphism ¢ : G — H such that Gy < H;. It is shown that in the category of

2-graded rigid pro-p-groups, a coproduct operation exists, and we establish its properties.

INTRODUCTION

In [1-7], rigid solvable groups were defined and explored, and many aspects of algebraic geometry
over such groups were studied. Important examples of rigid groups are free solvable groups. In [§],
by analogy with abstract groups [9, 10|, foundations of algebraic geometry over profinite groups,
in particular, over pro-p-groups, were laid and a number of general facts were proved, which will

be used below. Relevant information on profinite groups can be found in [11].
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An extension of the concept of a rigid group to pro-p-groups involves some difficulties. Therefore,
we confine ourselves to the case of metabelian pro-p-groups where these problems do not arise. Thus

we say that a metabelian pro-p-group G is rigid if it has a normal series of the form
G=G12Gy2Gy=1 (1)

such that the factor group A = G/G5 is torsion-free Abelian and C' = G9 is torsion-free as a
ZpA-module. Recall that the group algebra Z,A is an algebra of power series in some (converging
to zero) set of commuting variables. If G is a non-Abelian group, then the subgroup C, as well
as series (1), is uniquely defined by these properties, since C' coincides with the centralizer of any
nontrivial commutator of two elements of G. Consequently, C' is a characteristic subgroup. An
Abelian pro-p-group is rigid if it is torsion-free, and as G9 in it we can take either the trivial
subgroup or the entire group. That free metabelian pro-p-groups are rigid can be derived from the
construction of the Magnus embedding (see [12, 13]).

The objective of the present paper is to carry over some important facts on abstract rigid
groups to metabelian rigid pro-p-groups. In [14], it was proved that (abstract) metabelian groups
that are universally equivalent to a free metabelian group are exactly (in our terminology) rigid

2-step solvable groups. We show that for pro-p-groups, the following holds:
THEOREM 1. All rigid 2-step solvable pro-p-groups are mutually universally equivalent.

In connection with Theorem 1, it is worth observing that the concept of a term and also the
concept of a universal theory in profinite groups are defined in a slightly different manner compared
to how these are defined in abstract groups (see [8]). As distinct from the abstract case, we do not
know whether a pro-p-group universally equivalent to a rigid 2-step solvable pro-p-group will be
rigid itself.

By analogy with [4], rigid metabelian pro-p-groups can be treated as 2-graded groups with
possible gradings (1,1), (1,0), and (0,1). If a group is 2-step solvable, then its grading is (1,1).
For an Abelian group, there are two options depending on the choice of series (1): grading (1,0),
if Gy = 1, and grading (0,1) if Go = G. A morphism between 2-graded rigid pro-p-groups with
respective series of form (1) is a homomorphism ¢ : G — H such that G;p < H; (i = 1,2,3).
We will prove that in the category of 2-graded rigid pro-p-groups, a coproduct operation exists.
Theorem 2 below and Theorem 1 (on abstract graded rigid groups) in [4] have similar formulations.

THEOREM 2. Let G and H be two 2-graded rigid pro-p-groups. Then there exists a 2-
graded rigid pro-p-group G o H, which is called a 2-rigid product of G and H, satisfying the
following conditions:

(1) G and H embed in G o H and generate this group;

(2) arbitrary homomorphisms

Y1:G—=L, »:H—L
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of 2-graded rigid pro-p-groups extend to a homomorphism of the form
vy:GoH — L.

COROLLARY 1. (1) The group G o H is defined by conditions (1) and (2) uniquely up to
isomorphism between 2-graded rigid pro-p-groups.

(2) The operation o, if treated as a coproduct operation, is commutative and associative.

(3) Let Fi,..., F, be free one-generated pro-p-groups with grading (1,0). Then their 2-rigid
product Fj o...o F, is a free metabelian pro-p-group of rank n.

Proof. We verify item (3) only. It suffices to note that any collection of homomorphisms F;
into an arbitrary 2-rigid pro-p-group G, in particular, into a free metabelian pro-p-group, extends

to a homomorphism Fjo...o F, — G.

1. AUXILIARY DEFINITIONS AND FACTS

1.1. Assume that a metabelian pro-p-group G has a normal Abelian subgroup C and G = G/C
is an Abelian group. Set g = gC for g € G. The group G acts by conjugations z — z9 = g~ lag
on C. Clearly, in fact, G acts and C can be treated as a right topological Z,G-module. Suppose

also that there is a pro-p-group which decomposes into a semidirect product of its subgroup G and
0

DG) 1
We call the last group a splitting of G over C' if an embedding of GG in it is specified so that

some normal Abelian subgroup D(G), which has the following matrix representation:

0
g = <d(g ) 1), and D(G) is generated as a Z,G-module by elements d(g), g € G.
g

G 0
The splitting 1> is said to be free if, for any epimorphism v : G — H, where the group

D(G)

H 0
H has a normal Abelian subgroup L and Cv < L, and for any splitting D) 1) of the group
H over L, the mapping d(g) — d(gy) determines a module epimorphism D(G) — D(H), which

agrees with a ring epimorphism Z,G — Z,H. Clearly, this gives rise to the splitting epimorphism

G 0 H 0
p@ 1) \pm) 1)’

whose restriction to G coincides with . General considerations imply that if a free splitting exists

then it is defined uniquely up to isomorphism. Hence, for two free splittings

G 0 G 0
DG) 1) \Di(G) 1)’

the mapping d(g) — di(g) determines a module isomorphism D(G) — D1 (G), which in turn yields

G 0\ _( G o
D(G) 1 Di(G) 1)

a group isomorphism
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We say that the splitting

G 0
D(G) 1

has a differential if the mapping d(g) — g — 1 determines an epimorphism (a differential) ¢ of the
module D(G) onto the difference ideal (G — 1) - Z,G of a group ring Z,G, and the kernel of this
epimorphism is C' (here C' is naturally identified with a submodule of D(G)).

Based on the Magnus embedding [12, 13], we construct a particular splitting with differential,
which will be called the Magnus splitting. To do this, we represent a group G as the factor group of
a free pro-p-group F' with basis {z; | i € I'} (converging to one). Let ¢; : F — G and ¢y : F — G
be canonical epimorphisms and g; = z;¢1, ¢ € I. Denote by T" a right free topological Z,G-module
with basis {t; | i € I} (converging to zero). Consider a module epimorphism ¢ : T' — (G — 1) - Z,,G,
which is defined by a formula (> t;u;)Y = > (g9; — 1)u;. Also consider the pro-p-group Magnus

T:F — ¢ o
T 1
;0
x; — Ji , i€ 1.
t; 1

In view of the properties of the Magnus embedding, ker 7 < ker 1 < ker (oo and

(ker po)T = <[1] ?) ,

1 0
k = s
e

where U; is some submodule of U. By construction, if we put D(G) = T/U; then the group G

homomorphism

defined by the mapping

where U = ker 7). Consequently,

G 0 1 0
embeds in . Under this embedding, the image of C' equals and can be
D(G) 1 u/v, 1

identified with a module U/U;. A homomorphism 6 : D(G) — (G — 1) - Z,G is defined via 1, and
the kernel of § is C'. By construction, d(g;)d = g; — 1 holds for generating elements g; of the group
G, and so d(g)0 =g —1for all g € G.

Proofs for the two splitting lemmas below repeat verbatim the proofs of appropriate statements

for abstract groups, given in [5].

0

LEMMA 1. For a given splitting
D(G) 1

> of a pro-p-group G over C, the following

conditions are equivalent:
(1) the splitting is free;
(2) the splitting has a differential;
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(3) the splitting is isomorphic to the Magnus splitting.

LEMMA 2. A free splitting of any subgroup H < G over H N (' is induced by a free splitting

G 0
of G over C'. Hence, if D@) 1 is a free splitting of G and D(H) is a Z,H-submodule of D(G)

H 0
D(H) 1
COROLLARY 2. Let G be a rigid metabelian pro-p-group with a respective series of form

G 0
(1), C = G2, and ) be a free splitting of G over C. Then the module D(G) is Z,G-

D(G)

torsion-free; i.e., the splitting is also a rigid metabelian pro-p-group.

generated by elements d(h), h € H, then < ) is a free splitting of H.

In fact, D(G) is an extension of the torsion-free module C' by the torsion-free module
(G —-1)-Z,G.

1.2. We need to augment a group ring over which a given torsion-free module will be treated.
To do this, we use the following:

LEMMA 3. Let E be a torsion-free pro-p-module over a ring Zy[[X]] of formal power series in
a set X (converging to zero) of commuting variables, Z,[[X, Y]] be a ring of formal power series in

a set X UY (converging to zero) of commuting variables, and X NY = @. Consider a topological

E ® —F.

Zp[[X]]
Then E', being a Z,[[X, Y]]-module, is also torsion-free. If { M}, | k € K} is the set of all monomials

in Y, then every element of E’ is uniquely representable as > v My, where vy € E. In particular,
k

tensor product such as

E embeds in E'.
Proof. In a standard manner, the argument reduces to the case where X and Y are finite sets.

Clearly,

Z,[[X, Y]] = ®Z

and so

E Q) X Y]] =EQZIY]]
Zyp

Zp[[X]]

The module E, being a Z,-module, is free, with basis {e; | i € I} (converging to zero). The
totality {M}, | k € k} of all monomials in Y form a basis for Z,[[Y]] treated as a Z,-module. The

monomials will be ordered lexicographically. We may assert that every element v of E’ is uniquely

v=>_ eiMpaip = vpMy,
ik

k

representable as

where
Q) € Zp, V = Zeiaw cF.

)
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Let
v#0, 0# B =Y By € Zy[[X, Y]], B € Zy[[X]].

k
Suppose that My, and M}, are minimal monomials occurring in the decompositions of v and f3,
respectively, with nonzero coefficients vy, and Bi,. Then the minimal monomial My, My, will occur
in the decomposition of v with a nonzero coeflicient vy, Bx,. Therefore, v3 # 0. The lemma is

proved.

2. UNIVERSAL EQUIVALENCE OF RIGID METABELIAN PRO-p-GROUPS

2.1. Let A = (ay,...,an) be a finitely generated Abelian pro-p-group or rank m, and let

T=t-ZpA+ ...+t ZpA

A0
be a finitely generated free Z,A-module of rank n. Denote by W, ,,, a group of matrices (T 1) .

PROPOSITION 1. Every finitely generated 2-graded rigid pro-p-group embeds in a group
of the form W, p,.

Proof. Let G be a finitely generated 2-graded rigid pro-p-group. If G is an Abelian group with
grading (1,0) or (0,1), then everything is obvious: we embed G in A in the former case and embed
G in the additive group of the module T in the latter case. Let G be a 2-step solvable group, and

let C' be a normal Abelian subgroup such as in the definition of rigidity. Consider a free splitting
G 0

D(G)
that D(G) is a finitely generated torsion-free Z,A-module. Therefore, it suffices to embed D(G) in

a free module of finite rank.

of G over C. Set A = G, which is a free Abelian pro-p-group of finite rank. We know

Now we represent D(G) as a factor module T'/U, where
T=t-ZpA+... 4ty ZpA

is a free Z,A-module of rank n and U is an isolated submodule. Let {u1,...,u,} be a maximal
system of elements of U that is linearly independent over Z,A. Using elementary transformations
over Z,A of the form u; — u;o + u;3, where a # 0, and renaming ¢; < t;, we can bring the given

system into the form

vy =t 4+ 0 + ...+ 0 — tepifBiprr — o0 — B,

u;n = 0 + ...+ 0 + &8 — trJrlﬂr,rJrl - ... T tnﬂr,nu
where 3 # 0. Consequently, the following relations hold in T'/U:

B = trp1bir41 + o0+ thBig

trﬁ = tr—l—lﬁr,r—i—l + ...+ tnﬁr,n-
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Now we embed T in the vector space
T=t1-QA)+...+t, - Q(A)

over the field of fractions, Q(A), of a ring Z,A. Let U be a subspace generated by U, and also by
elements u, ..., u.. Since U is an isolated submodule, TNU = U. Clearly, dim(7'/U) = n —r and
images of elements t,11,...,t, constitute a basis for T/U. The images of these elements in 7'/U
will likewise be denoted by t1,...,t,. We have

t1 = (1B B + oo+ (BB,

tr = (tr—i—lﬂil)ﬁr,’r-i-l + ...+ (tnﬁil)ﬁr,n-

Therefore, the module T/U embeds in a free module with generators t,,137%,... ¢, 1. The
proposition is proved.

We need the following simple fact.

LEMMA 4. Let F be a field, B an infinite subset in F', and

v = (Vi1, --+, Vik)s ---» Vg = (Vgls- -, VUgk)

nonzero rows in F*. Then there exists a tuple (B1y...,0k) € B* such that all linear combinations

Brvi1 + ... + By, are distinet from zero, where 1 < i < q.
PROPOSITION 2. A group W, ,, is discriminated by a group Wi 1.

0
Proof. First we show that the group W,, ,, is discriminated by a group W, 1 = (<g> 1)’

where S = s1-Zy(a) + ...+ sn - Zp(a) is a free Zy(a)-module.
The algebra Z,A coincides with an algebra Zy[[y1, ..., ym]] of formal power series in variables
y; = a; — 1, and the algebra Z,(a) coincides with an algebra Z,|[[y]] of series in a variable y = a — 1.

Consider a set of ¢ nonidentity elements of the group W, ,,, which we want to discriminate:

w; = = 0 1
i
tiuil + ...+ thuin 1

The following system of disjunctions holds:

ie.,

Uij EZPHy17-~'7ymH7 1<i<% 1 <]<n}

............................................. (2)
U #0 V. ...V oy, #F0 Vozg —1#0.

The inequality z; — 1 # 0 can be treated as u; ,+1 # 0. Since system (2) is satisfied, there exist
nonzero members among elements of each of the sets U; = {wj1, wi2, ..., Win, Uint1}. In these, we

choose minimal nonzero homogeneous components.
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Every mapping (1 + y) — (1 +y)% = 1+ oy + ..., where oy € Zp, 1 < i < m,
determines a homomorphism (a,...,a,) — (a) between pro-p-groups and a homomorphism
0 Zpllyr,--- yml] — Zplly]] between algebras of formal power series, and then a group
homomorphism W,, ;, — W, 1 arises under a mapping ¢; — s;, 1 < j < n. Denote by v;; the
image of an element u;; under the homomorphism ¢.

Let f(y1,...,Ym) be a homogeneous polynomial of degree [. Its image f(yi,...,ym)e has a
minimal homogeneous component f(a,...,,)y'. Obviously, there are values ai,...,am € Z,
such that f(aq,...,an) # 0. If as the polynomial f(y1,...,yn) we take a product of homogeneous
components of least degrees of nonzero elements wu;;, then, under an appropriate homomorphism
¢, the image v;; of a nonzero element u;; will be nonzero.

From (2), we derive

Vg1 #0 V. ..oV vy #0 Vv # 0.

Consequently, the images of all elements of the set {w; | 1 < i < ¢} are distinct from 1. Hence the
group W, ., is discriminated by the group W, 1.

It remains to prove that W, 1 is discriminated by the group

[ {a) O
I%J_<LZA® J'

Consider ¢ nonidentity elements of W, 1,

Z 0
$1Vi1 4+ ... + SpUin 1

We arrive at the following system of disjunctions:

vﬁeZAML1<i<q,1<j<n}.

$1v11 + ... A+ Spvn #F 0V oz #£1,
............................................ (3)

A mapping given by the rule s, — Bit, a — a, where 3, € Zy,, 1 < k < n, extends naturally to
a homomorphism 1) of the group W, into W1 ;.
If the inequality z; # 1 holds, then the image of the element

23 0
S$1Vi1 + - .- + Spvip 1

under the homomorphism 1 will be a nonidentity element. Therefore, we assume that the first of

the inequalities holds in each row in (2). Under this mapping, the nonzero elements of the module
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S are sent to elements
tﬂlvu + e —|— tﬂnvln,

........................... (4)

By Lemma 4, there exist f1,..., 8, € Z, such that the elements in (4) will be nonzero. Hence the
group W, 1 is discriminated by the group Wi 1. The proposition is proved.

2.2. We recall the following definition from [8]. Let G be a pro-p-group. A universal theory for
G is a set of formulas true on G having the form Vzi,...,z,®(x), where ®(z) is a disjunction of
a finite system of equalities and inequalities of the form v(z) = 1 or v(z) # 1, where v(x) is an
element of a free pro-p-group (z1,...,2y).

Now we are in a position to prove Theorem 1. Propositions 1 and 2 imply that a finitely
generated rigid 2-step solvable pro-p-group G is discriminated by the group W ;. Conversely, if in
G we take a pair of elements a € G\ G2, 1 # b € G5, then these generate a subgroup isomorphic
to Wi,1. Consequently, the group Wi 1 is discriminated by the group G. If we consider two rigid
2-step soluble pro-p-groups, then each of them is locally discriminated by the other and the two

have equal universal theories. Theorem 1 is proved.

3. COPRODUCT OF RIGID METABELIAN PRO-p-GROUPS

The proof of Theorem 2 is partially the same as in [4, proof of Thm. 1].

(1) Under the conditions of the theorem, let G; and H; (i = 1,2,3) be members of respective
series of form (1), A = G = G/G2, and B = H = H/Hs. We construct a free splitting (see Lemma 1
above) for the desired group E = GoH given free splittings ( A O) and ( b O) of groups

D(G) 1 D(H) 1
G and H over G9 and Ha, respectively. Set C = A x B. Let {a; | i € I} be a basis for the free
Abelian pro-p-group A and {b; | j € J} be one for B; then {a;,b; | i € I,j € J} is a basis of C.
We have

LpA = Lpllzi | i € I)], ZpB = Zy[ly; | j € Jl], ZpC = Zp[[zi,y; | i € 1,5 € J],
where a; =14+ 2; and bj =1+y; (i € I, j € J). Consider the right Z,C-module

T = D(G) Q) Z,C & D(H) (X) Z,C.
ZpA Zp,B

By Corollary 2, this module is torsion-free, and D(G) and D(H) embed in T. Consequently,

C 0
M = (T ) will be a metabelian rigid pro-p-group. Clearly, the differentials

5S¢ D(G) — (A —1)Zy(A), 6 : D(H) — (B — 1)Z,(B)
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extend to a Z,C-module homomorphism ¢ : 7" — (C' — 1)Z,C. The homomorphism is surjective

since the image contains sets (A — 1)Z,(A) and (B — 1)Z,(B), which generate a difference ideal
0
(C = 1)Zy(C) over Z,C. Elements of a pro-p-group M of the form j Nk where t§ = ¢ — 1,

constitute a subgroup denoted G o H. By construction, G o H contains G and H as subgroups.
We prove that G o H is generated by its subgroups G and H. It suffices to state that the
submodule ker § of T', which is identified with some normal subgroup of M, is contained in the

subgroup (G, H). The mutual commutant [G, H] lies in ker § and is also a normal subgroup of M.

Let
g= 9 0 €G, h= b0 €H, g=a, h=5b.
d(g) 1 a(h) 1

Then the commutator [g, h] is identified with d(g)(b — 1) — d(h)(a — 1); so the element d(h)(a — 1)
is comparable with d(g)(b — 1) modulo [G, H]. A Z,C-module D(H) ®z,p Z,C is generated by
elements of the form d(h); hence it lies in D(G) ®ZPA Z,C + D(H) + |G, H]. Consequently, an
element ¢ € kerd can be represented as t1 + ¢ + t3, where ty € D(G) @y 4 ZpC, t2 € D(H),
and t3 € [G,H]|. We have 0 = t16 + t26, t16 € (A — 1)Z,C, and t36 € (B — 1)Z,B. Since
(A-1)Z,CNZyB = 0, it follows that t;6 = 0 and t20 = 0. The definition of a free splitting implies
that ¢y is identified with an element of H. Let {Mj, | k € k} be the set of all monomials in y;. In
view of Lemma 3, each element of D(G) ®Zp 4 Z,C' is uniquely representable as %kak, where

v € D(G). Since t10 = 0, all v are equal to 0. Therefore, vy is identified with an element of G,
and t; with an element of (G, H). Statement (1) of Theorem 2 is proved. Moreover, we can assert
that the pro-p-group M constructed is a free splitting of G o H over a normal Abelian subgroup,
which is identified with ker §.

(2) There is no loss of generality in assuming that a pro-p-group L is generated by its subgroups

D(L)

for a respective member of a series of form (1). By Lemma 2, we may suppose that the free splittings
Gy 0 Hy, 0
D(Gy) 1) \D(Hy) 1

L 0
of groups Gvy; and H~, over Gy; N Ly and H~y N Lo, respectively, are contained in (D(L) 1).

L 0
G~v1 and H~,. Consider a free splitting ( ) of the pro-p-group L over Lo, where Lo stands

The epimorphisms

7 :G— Gy, v2: H— Hy

determine splitting epimorphisms such as
G 0 G'yl 0 H 0 H Y2 0
- ) - b
p@ 1) \p@Gw) 1) \b@) 1) \DH) 1
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which we denote by the same symbols v; and ~s.

Obviously, there exists an epimorphism
y:C=AxB=GxH — L,

which extends
G — Gv1, H— H~s.
We lift it up to an epimorphism Z,C — Z,L between group rings. By construction, a splitting of

C 0
the group M = G o H has the form , where
D(M) 1

D(M) = D(G) Q) Z,C @ D(H) ) ZC.
Z,G Z,H
Since the group L is generated by Gy, and H~,, we have
D(L) = D(Gv1) - ZpL + D(H~2) - ZyL.

The epimorphisms
D(G) — D(Gm), D(H) — D(H~2), Z,C — Z,L

yield a module epimorphism D(M) — D(L), which together with v determines a pro-p-group

c 0 L 0
pw) 1) \pw) 1)

The last-mentioned epimorphism restricted to G o H will be the desired homomorphism .

epimorphism

Theorem 2 is proved.
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