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(P, a)-stable and (P, s)-stable Abelian groups are described. It is also proved that every
Abelian group is (P, p)-stable. In particular, results due to M. A. Rusaleev [6] and
T. A. Nurmagambetov [7] derive from these.

INTRODUCTION

The concept of P -stability is a particular case of the concepts of T ∗-stability in [1] and of
E∗-stability in [2]. These, in turn, are generalizations of the classical notion of stability going back
to M. Morley [3] and S. Shelah [4]. Research into P -stability deals also with the model theory for
elementary pairs with which many mathematicians, such as B. Poiazat, E. Bouscaren, T. Mustafin,
T. Nurmagambetov, A. Nurtazin, and others, have been concerned since 1980s. In our case the
study focuses in essence on a theory for pairs of models without the requirement of being elementary
for a P -submodel. In [5], it was shown that if no conditions are imposed on a predicate P then the
condition of being P -stable for a theory T is equivalent to T being definably equivalent to some
theory whose language consists only of unary predicate symbols. In [6], it was proved that if T is
a theory for a torsion-free Abelian group then T is P -stable whenever P defines an algebraically
closed subgroup. In [7], a result was announced which implies that under the generalized continuum
hypothesis, a theory for any Abelian group is P -stable if P defines an elementary subsystem.

In Sec. 2, we prove that a theory for any Abelian group is P -stable if P defines a pure subgroup.
This generalizes the above-mentioned results due to T. Nurmagambetov and M. Rusaleev. In Sec. 3,
we describe theories for Abelian groups that are P -stable if P defines an algebraically closed
subgroup. The main results of these two sections were announced in [8]. In Sec. 4, we characterize
theories for Abelian groups that are P -stable if P defines an arbitrary subgroup.
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1. TERMINOLOGY, NOTATION, AND PRELIMINARY RESULTS

In what follows, by a group we always mean an Abelian group. For a group A and for a natural
number n, A[n] denotes a subgroup like

{a | a ∈ A,na = 0}.

The letter p denotes a prime number. We recall some well-known concepts from Abelian group
theory. A p-group is one whose elements are all of order pk for some natural k. A maximal p-
subgroup of A is called a p-component of A and is denoted by Ap. A cyclic group of order n is
denoted by Cn. An elementary p-group is a direct sum of cyclic groups of order p. An elementary
group is an elementary p-group for some p. For a group A and for a cardinal λ, by A<λ we denote
a direct sum of λ copies of the group A. A group A is said to be bounded if there exists a natural
number n such that the order of any element of the group A does not exceed the given number n.
We often use the following facts from Abelian group theory.

(a) If the reduced part of a p-component Ap of a group A is bounded, then it is distinguished
by a direct summand in A and has the form B ⊕ C<λ

p∞ , where B is a bounded p-group, Cp∞ is a
quasicyclic group, and λ is some cardinal (see, e.g., [9, Chap. 5]). Below are two results that are
derived using Szmielew’s description of elementarily equivalent Abelian groups in [10] (see also [11,
Sec. 8.4]).

(b) If the reduced part of a p-component Ap of a group A is unbounded, then the group A is
elementarily equivalent to a group A ⊕ C<λ

p∞ for any cardinal λ.
(c) If a group A is unbounded, then the group A is elementarily equivalent to a group A⊕Q<λ,

where Q is the additive group of rational numbers, for any cardinal λ.
In this section, we fix a complete theory T in a language L. For convenience, to manipulate with

models of T , we also fix some sufficiently saturated model C of T and assume that all T -models
under consideration are elementary submodels of C. Such a T -model C is called a monster model
of T .

Finite sequences are called tuples, and we denote the set of all tuples of elements of a set U by
U<ω. The length of a tuple u is denoted by l(u). For simplicity, instead of u ∈ U<ω and D ⊆ U<ω,
we often use u ∈ U and D ⊆ U , respectively. Tuples of elements and tuples of variables in a model
are denoted by lower-case bold letters from, respectively, the beginning and the end of the Latin
alphabet: for instance, a,b, . . . and . . . ,x,y, z. If Φ(x) is an L-formula and A is an L-structure,
then Φ(A) denotes the set {a | A |= Φ(a),a ∈ A}.

For an L-structure A and its subset X, by aclA(X) we denote the set
⋃

{Φ(A) | |Φ(A)| < ω, Φ(x) is an L-formula with parameters in X}.

If aclA(X) = X, then we say that X is an algebraically closed substructure of A.
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If X is a subset in the monster model C, then we call X a set in the theory T . By L(X) we
denote a language which is obtained by adding to L the set X as a set of new constants. Denote
by T (X) the following set of formulas in the language L(X):

{ϕ(a) | a ∈ X, C |= ϕ(a), ϕ(x) is an L-formula}.

Clearly, T (X) is a complete theory in the language L(X).
The concept of E∗-stability was introduced in [2]. A particular case of this concept is the

concept P -stability.

Definition. Let a language LP be obtained by adding a new unary predicate symbol P to L.
Suppose Δ is some set of sentences in LP . A theory T is said to be PΔ-stable in cardinality λ if,
for any set X of cardinality at most λ in T , the set

TΔ(X) = (T (X) ∪ {P (a) | a ∈ X} ∪ Δ) (1)

has at most λ completions in the language (L(X))P .

Definition. A complete theory T is PΔ-stable if it is PΔ-stable in some infinite cardinality λ.

Definition. Let U be some set in a theory T and X and Y some sets of tuples of elements of
length n in U .

(1) We say that a pair 〈X,Y〉 is separable in a theory T (U) if there exists a formula Φ(z) in a
language L(U) such that l(z) = n and the following condition holds:

({Φ(a) | a ∈ X} ∪ {¬Φ(a) | a ∈ Y}) ⊆ T (U).

In this event we say that Φ(z) separates X and Y (or separates the pair 〈X,Y〉) in T .
(2) Let Δ be some set of sentences in LP . We say that a pair 〈X,Y〉 is separable in a theory

TΔ(U) if there exists a formula Φ(z) in a language (L(U))P such that l(z) = n and the set

(TΔ(U) ∪ ({Φ(a) | a ∈ X} ∪ {¬Φ(a) | a ∈ Y}))

is compatible. In this case we say that Φ(z) separates X and Y (or separates the pair 〈X,Y〉) in
TΔ(U).

We cite the main theorem from [2] adapted to our case of E∗-presentations.

THEOREM 1. Let T be a complete theory in a language L and Δ some set of sentences in
a language LP . Then the following conditions are equivalent:

(a) T is PΔ-stable;
(b) for any set U in T , each pair 〈X,Y〉 of sets of tuples of elements of equal length in U that

is separable in TΔ(U) is separable in a theory T (U).
In [2], note, instead of a set in a theory T , we used a set of variables realizing some complete

type for a language L. Clearly, these concepts are equivalent.
We consider several important cases of PΔ-stability.
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(1) PΔ1-stability for Δ1 = ∅ is called (P, 1)-stability.
(2) A theory T is said to be (P, s)-stable if T is PΔs-stable for a set Δs consisting of sentences

expressing the fact that a predicate P is closed with respect to functions definable by function
symbols of L; i.e., P is a substructure.

(3) A theory T is said to be (P, a)-stable if T is PΔa-stable for a set Δa consisting of sentences
expressing the fact that a predicate P is an algebraically closed set; i.e. it contains all finite sets
definable in the structure C by L-formulas with parameters in the predicate P .

(4) A theory T is said to be (P, e)-stable if T is PΔe-stable for a set Δe consisting of sentences
expressing the fact that a predicate P is an elementary substructure.

Clearly, the following implications hold:
(P, 1)-stability ⇒ (P, s)-stability ⇒ (P, a)-stability ⇒ (P, e)-stability.
In [5], it was proved that a complete theory T is (P, 1)-stable iff T is definably equivalent to

some theory whose language consists of unary predicate symbols only. Obviously, a theory for any
infinite Abelian group cannot be interpreted within the theory of unary predicates. Below we will
show that any complete theory of Abelian groups is (P, e)-stable. Out of the above four types of
P -stability for Abelian groups, only (P, s)- and (P, a)-stabilities may be nontrivial. In the next
sections, we give a complete description of Abelian groups with these P -stability properties.

A primitive formula in a language L is a formula of the form

∃x1 . . . ∃xnΦ,

where Φ is a conjunction of atomic formulas in the language L. A set X of tuples in a structure A

is primitive if X = Φ(A) for some primitive formula Φ(x).
In what follows, L denotes a language of the theory of Abelian groups, consisting of a binary

function symbol +, a unary function symbol −, and a constant symbol 0. As usual, for terms t and
q in L, (t − q) stands for the term (t + (−q)). By AG we denote the theory of all Abelian groups
defined by ordinary axioms for Abelian groups in L.

The following lemma is proved in exactly the same way as the corresponding lemma for modules
(see, e.g., [11, 12]).

LEMMA 1. Let A be an Abelian group, P its subgroup, Φ(x;y) a primitive LP -formula,
l(x) = n, l(y) = m, b ∈ A, l(b) = m, and 0 an m-tuple consisting of zeros in the group A. Then
a formula Φ(A;0) defines a subgroup of Cartesian power 〈A,P 〉n, while a formula Φ(x;b) defines
either the empty set or a conjugacy class with respect to the subgroup Φ(A;0).

This immediately implies the following:

LEMMA 2. Let A be an Abelian group, P its subgroup, and Φ(x) a primitive LP -formula
with parameters in A. Suppose also that 〈A,P 〉 |= Φ(a) holds for some tuple a. Then there exists
a primitive LP -formula Ψ(x) with parameters in a which defines in 〈A,P 〉 the same predicate as
is defined by Φ(x).
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In view of Lemma 1, a proof for the next lemma does not differ in essence from the proof of
the corresponding lemma for complete theories of Abelian groups or modules (see [12, Thm. 1.1;
11, Lemma 8.4.5]).

LEMMA 3. Let A be an Abelian group and P its subgroup. In a theory Th(〈A;P 〉), every
LP -formula is equivalent to a Boolean combination of primitive LP -formulas.

If, in the previous three lemmas, as P we take a zero subgroup, then we obtain statements for
Abelian groups in L without a predicate P . Below, without further comment, we will use these
particular formulations of the given lemmas.

A useful consequence of Theorem 1 is

COROLLARY 1. Let T be a complete theory of Abelian groups and Δ some set of sentences
in LP . Then the following conditions are equivalent:

(1) T is PΔ-stable.
(2) For any model M = 〈A,P 〉 of a theory T ∗ = (T ∪ Δ) and for an arbitrary primitive LP -

formula Φ(x), there exists an L-formula Ψ(x) with parameters in P (M) that defines the same
predicate on the set P (M) in the structure M as is defined by Φ(x) in the structure M = 〈A,P 〉.

(3) For any model M = 〈A,P 〉 of a theory T ∗ = (T ∪Δ) and for an arbitrary LP -formula Φ(x),
there exists an L-formula Ψ(x) with parameters in P (M) that defines the same predicate on the
set P (M) in the structure M as is defined by Φ(x) in the structure M = 〈A,P 〉.

Proof. (3)⇒(2) Is trivial.
(2)⇒(3) Follows from Lemma 3.
It remains to show that condition (b) in Theorem 1 is equivalent to condition (3) in the corollary.
(b)⇒(3). Consider an arbitrary model M of T ∗ and a formula Φ(x) in LP . As a set U we take

P (M) for which

T (U) = {ϕ(a) | M |= ϕ(a), ϕ(x) is an L-formula, a ∈ U}.

As sets X and Y of tuples we consider {a | 〈A,P 〉 |= Φ(a),a ∈ U} and {a | 〈A,P 〉 |= ¬Φ(a),a ∈ U},
respectively. By property (b), there exists an L-formula Ψ(x) with parameters in U that defines a
pair 〈X,Y 〉 in T . Clearly, this formula will define the same predicate on P (M) in M as is defined
by Φ(x).

(3)⇒(b). Let a set U in T and a pair 〈X,Y〉 of sets of tuples of elements in U be given.
Suppose that Φ(x;y) is an LP -formula, b is a tuple of elements in U , l(b) = l(y), and X and Y

are separated by a formula Φ(x;b) in a theory TΔ(A). By the definition of separability in TΔ(A),
the set

W = (TΔ(U) ∪ ({Φ(a;b) | a ∈ X} ∪ {¬Φ(a;b) | a ∈ Y}))

is compatible. Take an arbitrary model M of the set W . By property (3), there exists an L-formula
Ψ(x;y) with parameters in P (M) that defines the same predicate on the set P (M) in M as is
defined by Φ(x;y). By the definition of a theory TΔ(U), we have U ⊆ P (M), and hence b ∈ P (M).
Obviously, a formula Ψ(x;b) will separate X and Y in T .
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The formula Ψ(x;y) may have parameters that do not enter the set U . We show that there
exists a formula Θ(x) with parameters in U that separates X and Y in T . By Lemma 3, we may
assume that the formula Ψ(x;b) is a disjunction of formulas ϕ1(x), . . . , ϕk(x) each of which is
a conjunction of primitive formulas and their negations. A conjunction of primitive formulas is
equivalent to one primitive formula. Therefore, we may assume that formulas ϕi(x) have the form

(Φ(x) ∧ ¬Ψ1(x) ∧ . . . ∧ ¬Ψn(x)),

where Φ(x),Ψ1(x), . . . ,Ψn(x) are primitive L-formulas (with parameters). In view of Lemma 2, it
suffices to show that each of the formulas Φ(x),Ψ1(x), . . . ,Ψn(x) has a solution in the set (X ∪Y ).
If Φ(x) has no solution in X, then the disjunctive term ϕi(x) of the formula Ψ(x;b) can be removed
from the latter formula without violating the separability of X and Y via the thus obtained new
formula. If Ψj(x) has no solution in Y , then the formula ¬Ψj(x;b) can be removed from ϕi(x)
without violating the separability of X and Y via the thus obtained new formula. �

Note: The reader unacquainted with [2] may well take the readily grasped property (3) in
Corollary 1 to be the definition of PΔ-stability for a theory T .

2. (P, p)-STABILITY OF ABELIAN GROUPS

The next lemma goes back to [10]; in the given form, it is contained in [11, Lemma 8.4.7].

LEMMA 4. Any primitive formula Φ(x1, . . . , xn) in the language of Abelian groups is
equivalent in the theory AG to a conjunction Ψ(x1, . . . , xn) of formulas like α1x1 + . . . + αnxn = 0
and ∃yα1x1 + . . . + αnxn = pky for integers α1, . . . , αn, prime numbers p, and natural numbers k,
which are called standard formulas of, respectively, the first and second kind. In this case a prime
p in a standard formula of the second kind is referred to as a module of that formula.

As is known, a subgroup P of a group A is said to be pure if nP = (P ∩ nA) for any natural
number n. This property is equivalent to the fact that pkP = (P ∩ pkA) for any prime p and for
an arbitrary natural k.

COROLLARY 2. Let A be an Abelian group, P its pure subgroup, and Φ(x1, . . . , xn) a
primitive formula in the language of Abelian groups. Then, for any a1, . . . , an ∈ P , the following
condition holds:

A |= Φ(a1, . . . , an) ⇔ P |= Φ(a1, . . . , an). (2)

Proof. By virtue of Lemma 4, we may assume that the formula Φ is a conjunction of standard
formulas. Therefore, we will think of Φ as a standard formula. If Φ is a standard formula of the
first kind, then condition (2) is satisfied, since Φ is a quantifier-free formula. If Φ is a standard
formula of the second kind, then condition (2) is satisfied, since the subgroup P is pure in A. �

Remark 1. We may assume that a primitive LP -formula Φ(x) has the form

∃y1 . . . ∃yk(P (y1) ∧ . . . ∧ P (yk) ∧ Ψ),
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where Ψ is a primitive L-formula. Indeed, if Φ contains a subformula of the form P (t) for some
term t, then Φ is equivalent to a formula ∃y(P (y)∧Φ∗), where the variable y does not occur in Φ,
while Φ∗ is obtained by replacing P (t) with y = t in Φ.

Definition. A theory T is said to be (P, p)-stable if T is PΔp stable for a set Δp consisting of
sentences expressing the fact that P is a pure subgroup.

In [8], note, (P, p)-stability as defined above was called (P, s)-stability.

THEOREM 2. Every complete theory T of Abelian groups is (P, p)-stable.
Proof. Let Φ(x1, . . . , xn) be a primitive LP -formula. By Remark 1, we may assume that

Φ(x1, . . . , xn) has the form

∃y1 . . . ∃yk(P (y1) ∧ . . . ∧ P (yk) ∧ Ψ),

where Ψ(x1, . . . , xn; y1, . . . , yk) is a primitive L-formula.
Let A be a model of a theory T and P a pure subgroup of A. In view of Corollary 2, any

elements a1, . . . , an, b1, . . . , bk ∈ P satisfy the property

A |= Ψ(a1, . . . , an; b1, . . . , bk) ⇔ P |= Ψ(a1, . . . , an; b1, . . . , bk). (3)

This yields the equivalence

〈A,P 〉 |= Φ(a1, . . . , an) ⇔ P |= ∃y1 . . . ∃ykΨ(a1, . . . , an; y1, . . . , yk) (4)

for all elements a1, . . . , an ∈ P . By Corollary 2, any elements a1, . . . , an ∈ P satisfy the property

P |= ∃y1 . . . ∃ykΨ(a1, . . . , an; y1, . . . , yk)
⇔ A |= ∃y1 . . . ∃ykΨ(a1, . . . , an; y1, . . . , yk).

(5)

In view of (4) and (5), an L-formula ∃y1 . . . ∃ykΨ(x1, . . . , xn; y1, . . . , yk) in the group A defines
on P (A) the same predicate as is defined by the formula Φ(x1, . . . , xn) in the structure 〈A;P 〉.
Now the required result follows from Corollary 1. �

COROLLARY 3 [6]. A torsion-free Abelian group is (P, a)-stable.
Proof. In a torsion-free Abelian group A, for any element a ∈ A and for an arbitrary natural

n, there exists at most one b ∈ A with nb = a. Therefore, every algebraically closed torsion-free
subgroup of A is pure, and we can apply Theorem 2. �

3. (P, a)-STABLE ABELIAN GROUPS

Recall that a substructure B of a structure A is said to be algebraically closed if B contains
every finite set X ⊆ A definable in A by a formula Φ(x) with parameters in the substructure B.
Below the term an algebraically closed subgroup will be understood in just this sense.

LEMMA 5. For any group A and for a set X ⊆ A, the set aclA(X) is a union of finite primitive
sets definable by primitive formulas with parameters in the set X.
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Proof. Lemma 3 implies that aclA(X) is a union of finite sets U definable over X via a
conjunction of a primitive formula Φ(x) and negations of primitive formulas Ψ1(x), . . . ,Ψk(x).
Thus the set Φ(A) is covered by sets Ψ1(A), . . . ,Ψk(A) and finitely many singletons. Recall that
nonempty primitive sets are conjugacy classes with respect to some subgroup. If the set Φ(A) were
infinite, then singleton sets would have infinite index in Φ(A), and by Neumann’s lemma, would
be inessential in this cover; i.e., the set U would turn out to be empty. �

An upper bound for element orders of a group A of the form pk for a natural number k is called
the p-height of the group A. If there is no such bound, then we say that the p-height of A is infinite.

In proofs of the next two lemmas, use is made of the following:

Remark 2. Let A be a group and X and Y its infinite disjoint subsets; moreover, every
permutation of a set Z = (X ∪ Y ) will extend to an automorphism of the group A. Then a pair
〈X,Y 〉 is inseparable in a theory T (Z), where T = Th(A).

Indeed, let ϕ(x) be an L-formula with parameters in a finite set U ⊆ Z and let A |= ϕ(a) for
some a ∈ (Z \ U). Then A |= ϕ(b) for any b ∈ (Z \ U), if we choose an automorphism of A that
translates a into b and keeps elements of the set U fixed.

LEMMA 6. If the subgroup A(p) = (A[p] ∩ pA) of A is infinite, then the theory T = Th(A)
is not (P, a)-stable. Moreover, for any infinite cardinality λ, there exists a set X of cardinality λ

in T for which the set TΔa(X) has 2λ completions in the language LP .
Proof. Let λ be an infinite cardinal. Consider some λ-saturated T -model of A. Suppose that

for some prime p, A(p) = (A[p] ∩ pA) is an infinite subgroup.
If A is a group and p is a prime, then we say that a Szmielew invariant βp(A) is finite if there

exists a natural number k such that (pkA)[p]) is a finite group. Otherwise, we say that βp(A) is
infinite.

Case 1. Let the Szmielew invariant βp(A) be finite.
Assume that k∗ is a maximal natural number for which there exists a subgroup B of A that is

a direct summand of the group A and is isomorphic to a group C<λ
pk∗ . Since βp(A) is finite, then the

reduced part of a p-component Ap is bounded. The subgroup (A[p] ∩ pA) is infinite, the structure
A is λ-saturated, and βp(A) is finite; therefore, such a number k∗ exists and k∗ > 1.

We choose one generator in each direct summand in the decomposition of the group B and
use these to form a set S. Let X = p(k∗−1)S. Partition the set X into two arbitrary subsets V

and W . Let Y = V and Y ∗ = {p(k∗−2)d | d ∈ S, p(k∗−1)d ∈ W}. We show that the subgroup
PV = aclA(Y ∪ Y ∗) satisfies the condition (Y ∩ pPV ) = ∅. Assume the contrary. By Lemma 5,
there exists a finite primitive set U containing some element a∗ ∈ PV for which pa∗ = a with some
a ∈ Y . In view of Lemma 4, the set U is defined by a conjunction Θ of standard formulas with
parameters in (Y ∪ Y ∗).

Let Φ(x, a1, . . . , an; d∗1, . . . , d
∗
m) be a conjunctive term of the formula Θ, which is a standard

formula of the first kind, where a1, . . . , an ∈ Y and d∗1, . . . , d
∗
m ∈ Y ∗. Let Φ be of the form

nx = m1a1 + . . . + mnan + k1d
∗
1 + . . . + kmd∗m.
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The formula Φ is realized by the element a∗. Therefore,

na∗ = m1a1 + . . . + mnan + k1d
∗
1 + . . . + kmd∗m.

Multiplying the above equality by p yields

na = k1pd∗1 + . . . + kmpd∗m. (6)

The elements a, pd∗1, . . . , pd∗m are contained in different direct summands, and (6) implies that each
of the numbers n, k1, . . . , km is divisible by p. Let n∗ = n/p. Thus Φ has the form

n∗px = m1a1 + . . . + mnan + k1d
∗
1 + . . . + kmd∗m.

Therefore, all elements of the set (a∗ + A[p]) realize the formula Φ.
Suppose Φ(x, a1, . . . , an; d∗1, . . . , d

∗
m) is a conjunctive term of the formula Θ, which is a standard

formula of the second kind. We may assume that Θ has the form

nx ≡qt
m1a1 + . . . + mnan + k1d

∗
1 + . . . + ksd

∗
s,

where a1, . . . , an ∈ Y , d∗1, . . . , d
∗
m ∈ Y ∗, t is a natural number, and q is a prime. If q = p, then all

elements of the subgroup B are divisible by qt. Therefore, all elements of the set a∗ +B realize the
formula Φ.

Let Φ be of the form

nx ≡pt
m1a1 + . . . + mnan + k1d

∗
1 + . . . + ksd

∗
s.

The formula Φ is realized by a∗, so

na∗ ≡pt
m1a1 + . . . + mnan + k1d

∗
1 + . . . + ksd

∗
s. (7)

Case 1(a). Let t < k∗.
The subgroup B is a direct sum of cyclic group of order pk∗, hence all elements b ∈ B[p] are

divisible by p(k∗−1), and so all elements of the set (a∗ + B[p]) realize Φ.
Case 1(b) Let t � k∗.
Multiplying equality (5) by p yields the equivalence

na ≡pt
k1pd∗1 + . . . + kmpd∗m. (8)

The elements a, pd∗1, . . . , pd∗m are contained in different direct summands and are not divisible by
pt. This, together with equivalence (8), implies each of the numbers n, k1, . . . , km is divisible by p.
Let n∗ = n/p. Thus Φ has the form

n∗px ≡pt
m1a1 + . . . + mnan + k1d

∗
1 + . . . + kmd∗m.
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Therefore, all elements of the set (a∗ + B[p]) realize Φ. In this way each conjunctive term of the
formula Θ is realized by all elements of (a∗ + B[p]). Since B[p] is an infinite set, we are led to a
contradiction with U being finite.

Case 2. Let the Szmielew invariant βp(A) be infinite.
Since the group A is λ-saturated, A contains a subgroup B of the form C<λ

p∞ , where Cp∞ is a
quasicyclic p-group. The subgroup B is divisible and is distinguished by a direct summand in the
group A. Let

A = B ⊕ A∗.

Choose one element of order p2 in each direct summand in the decomposition of B and use these
to form a set S. Let X = pS. Partition X into two arbitrary sets V and W . Suppose Y = V

and Y ∗ = {d | pd ∈ W}. We show that the subgroup PV = aclA(Y ∪ Y ∗) satisfies the condition
(Y ∩ pPV ) = ∅. Assume the contrary. By Lemma 5, there exists a finite primitive set U containing
some element a∗ ∈ PV for which pa∗ = a with some a ∈ Y . In view of Lemma 4, the set U is
defined by a conjunction Θ of standard formulas with parameters in (Y ∪Y ∗). Since B is a divisible
group, all elements of the set a∗ + B realize standard formulas of the second kind that are realized
by the element a∗.

As in Case 1, we may show that if Φ is a conjunctive term of the formula Θ, which is a standard
formula of the first kind, then all elements of the set (a∗ + B[p]) realize Θ. Hence in the present
case, too, we arrive at a contradiction with U being finite.

Thus (Y ∩ pPV ) = ∅. By virtue of Y ∗ ⊆ PV , the formula ∃y(P (y) ∧ py = x) is true for all
elements of the set W = pY ∗ and is false for all elements of the set V = Y . For V1 = V2, therefore,
it is true that Th(〈A,PV1〉) = Th(〈A,PV2〉). Hence the set TΔa(X) has 2λ completions in the
language LP . �

Definition. For a group A and for a prime number p, we say that a Szmielew invariant γp(A) is
finite if there exists a natural number k such that (A/A[pk])/p(A/A[pk ]) is a finite group. Otherwise,
we say that γp(A) is infinite.

LEMMA 7. Suppose that for some prime p, A[p] is an infinite subgroup of A and the Szmielew
invariant γp(A) is infinite. Then the theory Th(A) is not (P, a)-stable. Moreover, for any infinite
cardinality λ, there exists a set X of cardinality λ in T for which TΔa(X) has 2λ completions in
the language LP .

Proof. In view of the previous lemma, we may assume that A(p) = (A[p] ∩ pA) is a finite
subgroup. Then the reduced part of a p-component Ap of A is bounded. Since divisible subgroups
and bounded pure subgroups are direct summands, the p-component Ap of A is distinguished by
a direct summand.

Let λ be an infinite cardinal. Consider

B = A ⊕ R<λ
p ,
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where Rp is a subgroup of rational numbers with denominators not divisible by p. The Szmielew
invariant γp(A) is infinite, and so the group B has the same Szmielew invariants as the group A.
Consequently, B is a model of the theory T = Th(A). If we replace A with B we may assume that
A contains as a direct summand the following group:

H = Ap ⊕ R<λ
p .

In each direct summand Rp in the decomposition of H, we choose an element representing an
identity in that summand and use these to form a set U . Let X = {pa | a ∈ U}. Partition the set
X into two arbitrary sets V and W . Suppose Y = V and Y ∗ = {a | a ∈ U, pa ∈ W}. We show that
the subgroup PV = aclA(Y ∪ Y ∗) satisfies the condition (Y ∩ pPV ) = ∅. Assume the contrary. By
Lemma 5, there exists a finite primitive set S containing some element e ∈ PV for which pe = a

with some a ∈ Y . In view of Lemma 4, the set S is defined by a conjunction Θ of standard formulas
with parameters in (Y ∪ Y ∗).

Let Φ(x, b1, . . . , bk; d∗1, . . . , d
∗
m) be a conjunctive term of the formula Θ, where b1, . . . , bk ∈ Y ,

d∗1, . . . , d
∗
m ∈ Y ∗, and Φ has the form

nx = m1b1 + . . . + mkbk + k1d
∗
1 + . . . + kmd∗m. (9)

The formula Φ is realized by the element e, so

ne = m1b1 + . . . + mkbk + k1d
∗
1 + . . . + kmd∗m.

If we multiply this equality by p we obtain

na = m1pb1 + . . . + mkpbk + k1pd∗1 + . . . + kmpd∗m. (10)

The elements b1, . . . , bk, d
∗
1, . . . , d

∗
m are contained in different direct summands and a ∈ Y . This,

together with equality (10), implies that k1 = . . . = km = 0, and among the numbers m1, . . . ,mk,
only one number mi is distinct from zero. Thus (10) has the form na = mipa. Since this equality is
satisfied in a group isomorphic to Rp, and it is a torsion-free group, we obtain n = mip. Therefore,
n is divisible by p, and the set of solutions for Φ contains (e + A[p]).

Let Φ(x, b1, . . . , bk; d∗1, . . . , d
∗
m) be a conjunctive term of the formula Θ, which is a standard

formula of the second kind. We may assume that Θ has the form

nx ≡qt
m1b1 + . . . + mkbk + k1d

∗
1 + . . . + kmd∗m,

where b1, . . . , bk ∈ Y , d∗1, . . . , d
∗
m ∈ Y ∗, t is a natural number, and q is a prime. If q = p, then all

elements of the subgroup A[p] are divisible by qt, and so all elements of the set e + A[p] realize the
formula Φ.

Let Φ be of the form

nx ≡pt
m1b1 + . . . + mkbk + k1d

∗
1 + . . . + kmd∗m.
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The element e realizes Φ, so

ne ≡pt
m1b1 + . . . + mkbk + k1d

∗
1 + . . . + kmd∗m. (11)

In particular,
ne ≡p m1b1 + . . . + mkbk + k1d

∗
1 + . . . + kmd∗m. (12)

The elements b1, . . . , bk are divisible by p, hence

ne ≡p k1d
∗
1 + . . . + kmd∗m. (13)

Since pe ∈ Y , we have e = b + c, where b ∈ (U \ Y ∗) and c ∈ A[p]. Thus the elements e and
k1d

∗
1+. . .+kmd∗m are contained in different direct summands, and ne is divisible by p. The elements

b and c likewise belong to different direct summands, i.e., nb is divisible by p. The element b is not
divisible by p, hence the number n should be divisible by p. Consequently, the set of solutions for
Φ contains a set (e + A[p]).

In this way each conjunctive term of the formula Θ is realized by all elements of the set (e+A[p]).
Since A[p] is an infinite set, we are led to a contradiction with S being finite.

Thus (Y ∩ pPV ) = ∅. By virtue of Y ∗ ⊆ PV , the formula ∃y(P (y) ∧ py = x) is true for all
elements of the set W = pY ∗ and is false for all elements of the set V = Y . For V1 = V2, therefore,
it is true that Th(〈A,PV1〉) = Th(〈A,PV2〉). Hence the set TΔa(X) has 2λ completions in the
language LP . �

Our next goal is to show that a group A not satisfying the hypotheses of Lemmas 6 and 7 has
the property of being (P, a)-stable. In what follows, we assume that A enjoys the following two
properties.

(1) For any prime number p, the subgroup (A[p] ∩ pA) equal to a subgroup (pA)[p] is finite.
(2) For any prime number p, either A[p] is a finite subgroup or there exists a natural number

n∗ such that (A/A[pn∗
])/p(A/A[pn∗

]) is a finite elementary Abelian p-group.
Below we assume that P is an algebraically closed subgroup of A.
Property (1) entails the following property.
(3) For any prime p and for an arbitrary natural k � 1, (pA)[pk] is a finite subgroup and hence

is contained in P

We prove (3) by induction on k. For k = 1, this is exactly property (1). Let (pA)[p(k−1)] be a
finite subgroup. On the set (pA)[pk], we define the following equivalence:

α = {〈a, b〉 | a, b ∈ (pA)[pk], pa = pb}.

For any a ∈ (pA)[pk], we have pa ∈ (pA)[p(k−1)], and so the number of α-classes does not exceed
the cardinality of the set (pA)[p(k−1)], which is finite by the inductive assumption. If elements
a, b ∈ (pA)[pk] are contained in one α-class, then the element (a − b) belongs to the subgroup
(pA)[p]. By property (1), (pA)[p] is finite; hence each α-class is finite. In this way (pA)[pk] is finite.
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LEMMA 8. If A[p] is a finite subgroup, then

A |= Φ(a) ⇔ P |= Φ(a)

for any standard formula Φ(x) of the second kind with module p and for an arbitrary tuple a ∈ P

of length l(x).
Proof. Let A[p] be finite. Using induction on k, we show that A[pk] is a finite subgroup for any

k. Let A[p(k−1)] be finite. On the set A[pk], we define the following equivalence:

α = {〈a, b〉 | a, b ∈ A[pk], pa = pb}.

For any a ∈ A[pk], we have pa ∈ A[p(k−1)], and so the number of α-classes does not exceed the
cardinality of the set A[p(k−1)], which is finite by the inductive assumption. If elements a, b ∈ A[pk]
are contained in one α-class, then the element (a− b) belongs to the subgroup A[p]. By hypothesis,
A[p] is finite; hence each α-class is finite. In this way A[pk] is finite.

For any element a ∈ P , the cardinality of the set

a/pk = {d | d ∈ A, pkd = a}

does not exceed the cardinality of A[pk]; hence it is finite. The subgroup P is algebraically closed
and the set a/pk is defined in A by a formula with parameter a; so a/pk is contained in P . Thus a

is divisible by pk in A iff a is divisible by pk in P . �

LEMMA 9. Let p be a prime. If an element a ∈ P is divisible by pk, k > 1, in the group A,
then a is divisible by p(k−1) in the subgroup P . Moreover, if pkb = a then pb ∈ P .

Proof. Take an arbitrary element b for which pkb = a. The set

{d | p(k−1)d = a, d ∈ pA}

is definable via a parameter a and coincides with a set (pb + (pA)[p(k−1)], which is finite in view of
property (3) and hence is contained in P . In particular, pb ∈ P . �

LEMMA 10. Let A[p] be an infinite subgroup. Then there exists a finite set Zp ⊆ P of
elements divisible by p in the group A, in which case if an element a ∈ P is divisible by p in A,
then, for some b ∈ Zp and some c ∈ (pA)[pn∗

], an element ((a − b) + c) is divisible by p2 in A. In
particular (by Lemma 9), the element (a − b) + c is divisible by p in the subgroup P . The number
n∗ is as in property (2).

Proof. Suppose that there exists an infinite set U ⊆ P of elements divisible by p in the group
A, and for any distinct elements a, b ∈ U and for arbitrary c ∈ (pA)[pn∗

]), the element (a− b)+ c is
not divisible by p2 in the group A. For each a ∈ U , we choose a∗ for which pa∗ = a. By property (2),
there exist different a, b ∈ U , e ∈ A[pn∗

], and d ∈ A such that (a∗ − b∗)+ e = pd. Multiplying by p,
we obtain the equality (a−b)+pe = p2d, which contradicts the assumption since pe ∈ (pA)[pn∗

]). �

For a finite set X = {a1, . . . , an} ⊆ A, z ∈ X denotes a formula of the form (z = a1 ∨ . . . ∨ z =
an). In view of property (3), (pA)[pn∗

] is a finite set and hence is contained in P .
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Remark 3. Lemma 10 implies that there exists an L-formula Ψ(x) with parameters in the
subgroup P such that for any element a ∈ P , the condition P |= Ψ(a) is equivalent to a ∈ pA.

In fact, as Ψ(x) we may take the formula

∃z∃u∃v(z ∈ Zp ∧ u ∈ (pA)[pn∗
] ∧ (z − x + u) = pv),

where Zp is as in Lemma 10. For an element a of P that is divisible by p in A, the condition
P |= Φ(a) is derived from Lemma 10. On the other hand, if P |= Φ(a), then, for some b ∈ Zp and
some c ∈ (pA)[pn∗

], an element d = (b− a) + c is divisible by p in P . Since b and c are divisible by
p in A, a is divisible by p in A.

LEMMA 11. Let Φ(x1, . . . , xn) be a formula in the language of Abelian groups.
(a) There exists a formula Φ∗(x1, . . . , xn) in the language of Abelian groups, with parameters

in P such that any a1, . . . , an ∈ P satisfy the condition

A |= Φ(a1, . . . , an) ⇔ P |= Φ∗(a1, . . . , an).

(b) There exists a formula Φ♦(x1, . . . , xn) in the language of Abelian groups, with parameters
in P such that any a1, . . . , an ∈ P satisfy the condition

P |= Φ(a1, . . . , an) ⇔ A |= Φ♦(a1, . . . , an).

Proof. By virtue of Lemmas 3 and 4, we may assume that the formula Φ is a Boolean
combination of standard formulas. Therefore, we can think of Φ as a standard formula. If Φ
is a standard formula of the first kind then as Φ∗ and Φ♦ we can take the formula Φ. Let Φ
be a standard formula of the second kind; i.e., Φ has the form ∃yt = pky, where t is a linear
combination of variables x1, . . . , xn. Instead of t(x1, . . . , xn) and t(a1, . . . , an), we will use t(x) and
t(a), respectively. If A[p] is a finite subgroup, then (in view of Lemma 8) as Φ∗ and Φ♦ we can
take the formula Φ. Let A[p] be an infinite subgroup and Zp a finite set such as in Lemma 10.

(a) If k = 1, then as Φ∗ we can take a formula Ψ(t), where Ψ(x) is as in Remark 3.
If k > 1, then (in view of Lemma 9) as Φ∗ we may take a formula of the form

∃y(t = p(k−1)y ∧ Ψ(y)),

where Ψ is as above.
(b) Consider a formula such as

Δ(x) = ∃z∃w∃y(z ∈ Zp ∧ (z − x + w = p2y ∧ w ∈ (pA)[pn∗
] ∧ ((z + w) /∈ pP )).

Since Zp and (pA)[pn∗
] are finite sets, the condition (z + w) /∈ pP ) is expressed via a Boolean

combination of formulas like z = a and w = b, where a ∈ Zp and w ∈ (pA)[pn∗
]. Indeed, let

W = {〈a, b〉 | a ∈ Zp, b ∈ (pA)[pn∗
], (a + b) /∈ pP}.
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The set W is finite, and as a formula (z + w) /∈ pP we can take
∨

{(z = a ∧ w = b) | 〈a, b〉 ∈ W}.

Let A |= Δ(a) for an element a ∈ P . Then there exist elements d ∈ Zp, b ∈ (pA)[pn∗
], and

c ∈ A for which (d − a + b) = p2c and (d + b) is not divisible by p in P . The elements d, b, and
(d − a + b) are divisible by p in A, and so a is divisible by p in A. On the other hand, (d − a + b)
is divisible by p in P in view of Lemma 9. If a were divisible by p in P , then (d + b) would belong
to a subgroup pP , which contradicts the condition that (d + b) /∈ pP . Hence a /∈ pP .

Let a ∈ pA and a /∈ pP for a ∈ P . By virtue of Lemma 10, there exist d ∈ Zp, b ∈ (pA)[pn∗
],

and c ∈ A such that (d − a + b) = p2c. By Lemma 9, we have (d − a + b) ∈ pP , and in view of the
condition a /∈ pP , we obtain (d + b) /∈ pP .

In this way, for any element a ∈ P , the condition A |= Δ(a) is equivalent to the fact that a is
divisible by p in the group A but is not divisible by p in the subgroup P . Clearly, as Φ♦ we can
take a formula of the form

∃y(t = pky ∧ ¬Δ(py)). �

THEOREM 3. For an Abelian group A, its theory T = Th(A) is (P, a)-stable if and only if
the group A satisfies the following conditions:

(1) for any prime p, (pA)[p] is a finite subgroup of A;
(2) for any prime p, either A[p] is a finite subgroup of A or its Szmielew invariant γp(A) is

finite.
Proof. If none of the conditions (1) or (2) is satisfied, then it follows by Lemmas 6 or 7 that

T will not be (P, a)-stable.
Suppose that (1) and (2) are both satisfied and Φ(x1, . . . , xn) is a primitive LP -formula. In

view of Remark 1, we may assume that Φ has the form

∃y1 . . . ∃ys(P (y1) ∧ . . . ∧ P (ys) ∧ Ψ(y1, . . . , ys;x1, . . . , xn)),

where Ψ is a primitive L-formula. By Lemma 11(a), there exists an L-formula Ψ∗(y1, . . . , ys;
x1, . . . , xn) with parameters in P such that for any elements b1, . . . , bs, a1, . . . , an ∈ P ,

A |= Ψ(b1, . . . , bs; a1, . . . , an) ⇔ P |= Ψ∗(b1, . . . , bs; a1, . . . , an).

Let Θ(x1, . . . , xn; z1, . . . , zs) be an L-formula, c1, . . . , cs ∈ P , and

Θ(x1, . . . , xn; c1, . . . , cs) = ∃y1 . . . ∃ysΨ∗(y1, . . . , ys;x1, . . . , xn).

Suppose also that for any a1, . . . , an ∈ P , the following condition holds:

〈A,P 〉 |= Φ(a1, . . . , an) ⇔ P |= Θ(a1, . . . , an; c1, . . . , cs).
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By virtue of Lemma 11(b), for an L-formula Θ♦(x1, . . . , xn; z1, . . . , zs) and for any a1, . . . , an ∈ P ,

P |= Θ(a1, . . . , an; c1, . . . , cs) ⇔ A |= Θ♦(a1, . . . , a;c1, . . . , cs).

Thus an L-formula Θ♦(x1, . . . , xn; c1, . . . , cs) with parameters in P will define the same
predicate on P (A) in the group A as is defined by Φ(x1, . . . , xn) in the structure 〈A;P 〉. It remains
to apply Corollary 1. �

4. (P, s)-STABLE ABELIAN GROUPS

Recall that a direct sum of cyclic groups of order p, where p is some fixed prime, is called an
elementary Abelian group.

THEOREM 4. A group A is (P, s)-stable if and only if A is a direct sum of finitely many
elementary groups and a finite group.

Proof. First we show that a (P, s)-stable group A is bounded. Suppose the contrary. Then
a model of Th(A) will be the group B = (A ⊕ M ⊕ N), where M and N are isomorphic to a
group Q<ω, and Q is the additive group of rational numbers. In the subgroup M , we take a set X

consisting of identities of each of its direct summands isomorphic to Q. In the subgroup N , we take
a similar set Y . Clearly, every permutation of the set Z = (X ∪Y ) extends to an automorphism of
the group B. By Remark 2, the sets X and Y are inseparable in the theory T (Z). In the structure
〈A,P 〉, where P is generated by a set (M ∪ Y ), however, X and Y are separated, for instance, by
a formula ∃y(P (y) ∧ 2y = x).

Thus a (P, s)-stable group A is bounded; i.e., it is a finite direct sum of bounded p-groups for
some primes p. If some of these direct summands were not a direct sum of an elementary group
and a finite group, then (pA)[p] would be an infinite subgroup for some prime p. By Lemma 6, A

is not (P, a)-stable; moreover, it will not be (P, s)-stable.
Now we show that Th(A), where A is a direct sum of finitely many elementary groups and a

finite group, is a (P, s)-stable theory.
In any p-component Ap of A, pkAp is a finite subgroup for any natural number k � 1. The

group A is a direct sum of its p-components for distinct prime p. For any prime p, therefore, the
subgroup pkA consists of elements of the form (a + b), where a ∈ pkAp and b has order coprime
to p.

Let P be an arbitrary subgroup of A. As in the proof of Theorem 3, it suffices to show that a
pair 〈A;P 〉 of groups satisfies properties (a) and (b) in Lemma 11. As in the proof of Lemma 11,
we need only assume that Φ = ∃yt = pky, where t is a linear combination of variables x1, . . . , xn.

(a) Let X = (P ∩ pkAp) = {a1 . . . an}. Denote by z ∈ X a formula (z = a1 ∨ . . . ∨ z = an).
Suppose that n∗ is the least common multiple of the element orders of A, pk∗ is the greatest order
of elements of a p-component Ap of A, and m∗ = n∗/pk∗ . Obviously, m∗ is coprime to p. Denote
by Θ(x) a formula m∗x = 0. Clearly, every element of the set Θ(A) is divisible by pk in A, for any
natural k.
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We show that as Φ∗ we can take a formula of the form

∃z∃w(t(x) = (z + w) ∧ z ∈ X ∧ Θ(w)).

Indeed, if P |= Φ∗(a) for a tuple a ∈ P , then, as noted, the element t(a) is divisible by pk in A,
i.e., A |= Φ(a).

Let t(a) be divisible by pk in A; i.e., t(a) = e + b, where e ∈ pkAp and b has order coprime to
p. The order of the element b is a divisor of the number m∗; hence m∗t(a) = m∗e. The order of e

is coprime to m∗; so there exists an integer l such that lm∗e = e. In this way lm∗t(a) = e, which,
in view of the condition t(a) ∈ P , yields e ∈ X. Consequently, b ∈ P , and hence P |= Φ∗(a).

(b) Let Y = pkPp. Since Y ⊆ X, the set Y is finite, and so there exists a formula with
parameters in P expressing the condition that z ∈ Y . As a formula Φ♦(x) we take

∃z∃w(t(x) = (z + w) ∧ z ∈ Y ∧ Θ(w)).

Suppose P |= Φ(a), i.e., t(a) = pkd for some d ∈ P . The subgroup P is also a direct sum of its
q-components for distinct prime q. Therefore, the subgroup pkP consists of elements of the form
(a + b), where a ∈ pkPp and b has order coprime to p. Consequently, A |= Φ♦(a).

Assume that A |= Φ♦(a) for a tuple a ∈ P ; i.e., t(a) = e+b for elements e ∈ pkPp and b ∈ Θ(A).
Since e, t(a) ∈ P , we have b ∈ P . The condition e ∈ Y implies that there exists an element d ∈ P

for which pkd = e. The order of b is coprime to p, and hence the element b is divisible by pk in
the subgroup generated by b; in particular, there exists an element g ∈ P with pkg = b. Thus
t(a) = pkh for h = (d + g), i.e., P |= Φ(a). �
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