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It is proved that a suitable free Abelian group of finite rank is not absolutely closed in
the class A2 of metabelian groups. A condition is specified under which a torsion-free
Abelian group is not absolutely closed in A2. Also we gain insight into the question
when the dominion in A2 of the additive group of rational numbers coincides with this
subgroup.

INTRODUCTION

The concept of a dominion was introduced in [1] for studying epimorphisms. In [2-5], dominions
were treated for various classes of universal algebras (see also the bibliography in [3]). In particular,
it was established that there exists a close relationship between dominions and amalgams (for
details, see [2]). At present, dominion theory is being most intensively studied for groups.

Let M be an arbitrary quasivariety of groups. In this event, for any group A in M and its
subgroup H, the dominion domM

A (H) of the subgroup H in A (in M) is defined as follows:

domM
A (H) = {a ∈ A | ∀M ∈ M∀f, g : A → M, if f |H= g |H , then af = ag}.

Here, as usual, f, g : A → M denote homomorphisms of the group A into the group M and f |H
stands for the restriction of f to H.

Note that dominions were thoroughly investigated for quasivarieties of Abelian groups [6-9].
Dominions in the class of nilpotent groups were dealt with in a series of papers; we refer the reader
to [5, 10, 11]. Recent trends are toward research on dominions in metabelian groups [12, 13].

A group H is said to be n-close in a class M if domM
A (H) = H for any group A =

gr(H,a1, . . . , an) in M that contains H and is generated modulo H by suitable n elements. A
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group H is said to be absolutely closed in a class M if H ≤ A entails domM
A (H) = H for any group

A in M.
In [5, Cor. 2], it was shown that studying absolutely closed groups reduces to treating n-closed

groups. This explains our interest in research into n-closed groups. In [5, Thm. 5], for instance,
we described all 1-closed Abelian groups in each quasivariety of torsion-free nilpotent groups of
class 2.

In the present paper, we prove that a suitable free Abelian group of finite rank is not absolutely
closed in the class A2 of metabelian groups. A condition is specified under which a torsion-free
Abelian group is not absolutely closed in A2. We work to gain insight into the question when the
dominion in A2 of the additive group of rational numbers coincides with this subgroup. For basic
notions in the theory of quasivarieties, the reader is referred to [14-17], and in group theory, to [18].

1. PRELIMINARIES

We recall certain of the notation and notions.
By writing A ≤ B we mean that A is a subgroup of a group B. Denote by gr(S) a group

generated by a set S, and by (a) a cyclic group generated by an element a. G′ is the commutator
subgroup of a group G and |a| is the order of an element a. Let N, Z, and Q be the set of natural
numbers, the set of integers, and the set of rational numbers, respectively. As usual, [a, b] =
a−1b−1ab and ab = b−1ab.

An embedding of a group A in a group B is any homomorphism ϕ : A → B, which is an
isomorphism of A onto Aϕ. If there exists an embedding of A in B then we say that A is embeddable
in B. A group G is said to be divisible if for any integer n > 0 and any element g ∈ G the equation
xn = g has at least one solution in G. It is well known that every divisible Abelian group G

decomposes into a direct product of groups isomorphic to quasicyclic p-groups and to the additive
group of rational numbers.

The cardinality of a maximal linearly independent system of elements of a torsion-free Abelian
group is referred to as the rank of that group. We recall the definition of a direct wreath product
of groups A and B. Take a direct degree A of A, consisting of all functions f : B → A with finite
support. For every b ∈ B, a map β : f → f b is given by the rule f b(y) = f(yb−1) for all y ∈ B.
The map β is an automorphism of the group A and the set of all such automorphisms is a group
isomorphic to B. An extension of A by this automorphism group is called a direct wreath product
of groups A and B and is denoted A � B. The group A is called a basic subgroup of the wreath
product.

Let ti(x), t′i(x) (i ∈ I), t(x), and t′(x) be group words over an alphabet x. We say that the
equality t(x) = t′(x) is deducible in a quasivariety M from the set {ti(x) = t′i(x) | i ∈ I} of
equalities if the implication

(∀x)
(

&
i∈I

ti(x) = t′i(x) → t(x) = t′(x)
)
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is true for every group in the quasivariety M.
We will need the following:

THEOREM (Dyck’s theorem; see [17, p. 281]). Let a group G in a given variety N have the
following representation:

G = gr({xi | i ∈ I} ‖ {rj(xj1 , . . . , xjl(j)
) = 1 | j ∈ J}).

Suppose that H ∈ N and the group H contains a set {gi | i ∈ I} of elements such that the equality
rj(gj1 , . . . , gjl(j)

) = 1 is true in H for every j ∈ J . Then a map xi → gi (i ∈ I) extends to a
homomorphism of G into H.

We recall the definition of a free metabelian square of a group with amalgamated subgroup.
Suppose that a group G in A2 is represented as

G = gr({xi | i ∈ I} ‖ {rj(x) = r′j(x) | j ∈ J}).

We take two groups G1 and G2 isomorphic to the group G and fix their representations

G1 = gr({xi | i ∈ I} ‖ {rj(x) = r′j(x) | j ∈ J}),
G2 = gr({yi | i ∈ I} ‖ {rj(y) = r′j(y) | j ∈ J}).

Assume that X = {xi | i ∈ I} and Y = {yi | i ∈ I} have an empty intersection.
Let H be a subgroup of G. Take an arbitrary set {hl(x) | l ∈ L} of group words over an

alphabet X = {xi | i ∈ I} whose set {hl(x) | l ∈ L} of values generate H in G. Consider a group
C which in A2 has the following representation:

C = gr(X ∪ Y ‖{rj(x) = r′j(x) | j ∈ J} ∪ {rj(y) = r′j(y) | j ∈ J}
∪ {hl(x) = hl(y) | l ∈ L}).

This group C = G ∗A2

H G is called the free metabelian square of a group G with an amalgamated
subgroup H. Maps λ : G → C and ρ : G → C, where xλ

i = xi and xρ
i = yi (i ∈ I), are embeddings;

subgroups Gλ, Gρ, and Hλ are again denoted by G1, G2, and H, respectively.
If H = (1) then the resulting group C is called a free product of groups G1 and G2 in A2. It is

well known that G1 ∩ G2 = domA2

G1
(H) (see, e.g., [2]).

2. ABSOLUTE CLOSEDNESS OF ABELIAN GROUPS

We know from [11, Thm. 3.11] that a free Abelian group is absolutely closed in the variety
N2 of nilpotent groups of class at most 2 iff it is cyclic. In the present section, we deal with a
similar problem within the class A2 of metabelian groups, showing that the dominion in A2 of an
Abelian subgroup of a torsion-free finitely generated metabelian group may fail to coincide with
this subgroup.
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LEMMA 1. A free Abelian group of infinite rank is not absolutely closed in the class of
metabelian groups.

Proof. Let R be a free Abelian group of infinite rank. We represent R as a direct product
R = H × T of free Abelian groups, where H is a group of countable rank. Take any finitely
generated metabelian group G such that its commutator subgroup contains a free Abelian subgroup
of countable rank. Assume that this subgroup is freely generated by elements xi (i ∈ P ), where P

is the set of all prime numbers. As G we may take, for instance, a direct wreath product Z � Z of
two infinite cyclic groups. Since xi ∈ G′, we conclude that gr(xi

i | i ∈ P ) is a free Abelian group of
countable rank. Denote it also by H.

Consider a group A = G× T . Suppose R = H × T is a subgroup of A. Let C = A ∗A2

R A be the
free metabelian square of A with amalgamated subgroup R. Images of elements xi under natural
embeddings λ : A → A1 ≤ C and ρ : A → A2 ≤ C are denoted by ai and bi, respectively. In
particular, elements ai

i and bi
i are equal in H ≤ C.

Since ap, bp ∈ C ′ for p ∈ P , we have [ap, bp] = 1. On the other hand, ap
p = bp

p entails (apb
−1
p )p = 1.

L = gr(Gλ, Gρ) is a finitely generated metabelian group and ap, bp ∈ L for p ∈ P . It is well
known that every finitely generated metabelian group satisfies the maximal condition for normal
subgroups [19]. This implies that the commutator subgroup of L has a finite set of element orders.
Hence apb

−1
p = 1 for some p ∈ P , ap = bp ∈ Aρ ∩ Aλ, and ap 	∈ R. Consequently, domA2

A (R) 	= R.
The lemma is proved.

If in the proof of Lemma 1 as G we take the direct wreath product Z � Z of two infinite cyclic
groups then the group A in Lemma 1 will be 2-generated modulo R. Thus we have

COROLLARY 1. A free Abelian group of infinite rank is not 2-closed in the class of
metabelian groups.

THEOREM 1. There exists a free Abelian group of finite rank that is not absolutely closed
in the class of metabelian groups.

Proof. Let groups G, A, and C be as in Lemma 1. Suppose T = (1), i.e., G = A. Let

A = gr(x1, . . . , xn ‖ Σ1(x))

be a representation of A in A2 with generators x1, . . . , xn. Assume that values for the set {ti(x) |
i ∈ N} of group words freely generate a group H. Then the group C = A ∗A2

H A is represented in
A2 as follows:

C = gr(x1, . . . , xn, y1, . . . , yn ‖ Σ1(x),Σ1(y), {ti(x) = ti(y) | i ∈ N}).

Take any p ∈ P for which elements ap and bp such as in the proof of Lemma 1 are not contained
in H. Fix a group word t whose values t(x) ∈ A1 and t(y) ∈ A2 are equal in C and coincide with
elements ap (= t(x)) ∈ A1 and bp (= t(y)) ∈ A2.

By virtue of [16, Thm. 2.3.1], a well-known property of quasivarieties holds: if an infinite

implication (∀x)
(

&
i∈I

αi(x) → α(x)
)

holds in an arbitrary quasivariety K then a quasi-identity
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(∀x)
(

&
i∈F

αi(x) → α(x)
)

holds in K for some finite subset F ⊆ I. A similar statement for A2

follows from the property that any subgroup of a finitely generated metabelian group is finitely
generated (as a normal subgroup) [19].

The equality t(x1, . . . , xn) = t(y1, . . . , yn) is deducible in A2 from the set Σ = Σ1(x) ∪ Σ1(y) ∪
{ti(x) = ti(y) | i ∈ N} of relations for a group C, and so it is deducible in A2 from some finite
subset of this set. Hence there exists a natural number k such that t(x1, . . . , xn) = t(y1, . . . , yn) is
a consequence of Σ0 = Σ1(x) ∪ Σ1(y) ∪ {ti(x) = ti(y) | i = 1, . . . , k} in A2.

Consider groups C1 and F which in A2 have the following representations:

C1 = gr(x1, . . . , xn, y1, . . . , yn ‖ Σ1(x),Σ1(y), {ti(x) = ti(y) | i = 1, . . . , k}),
F = gr(x1, . . . , xn ‖ Σ1(x)).

If K is a subgroup of F generated by elements t1(x), . . . , tk(x), then K is a free Abelian group
freely generated by these elements. Clearly, C1 = F ∗A2

K F is the free metabelian square of the
group F with an amalgamated subgroup. In addition, the relation t(x1, . . . , xn) = t(y1, . . . , yn) is
deducible in A2 from the set Σ0 of relations. Therefore, a = b for values a = t(x1, . . . , xn) and
b = t(y1, . . . , yn) of these words in the group C1. This implies a = b ∈ F ρ ∩ F λ = domA2

F (K).
By Dyck’s theorem, there exists a natural homomorphism ϕ : C1 → C. Since aϕ = ap 	∈ H, we

have a 	∈ K. Thus domA2

F (K) 	= K. The theorem is proved.
We may take a 2-generated group to be G, and so the proof of Theorem 1 entails

COROLLARY 2. There exists a free Abelian group of finite rank that is not 2-closed in the
class of metabelian groups.

Problem. Is an infinite cyclic group absolutely closed in the class of metabelian groups?

THEOREM 2. If a free Abelian group of finite rank k is not absolutely closed in the class of
metabelian groups, then every torsion-free Abelian group of rank k is not absolutely closed in A2.

Proof. First let G be an arbitrary metabelian group, with a ∈ G and n ∈ N. We point out a
method for constructing a group G(n)(a) in A2 containing G, in which an nth root is extracted of
a. A similar argument was used in [20, proof of Lemma 3] (see also [21]).

Let Zn be a cyclic group of order n, c its generator, and K a basic subgroup of the wreath
product G � Zn of groups G and Zn. For any y ∈ G, put y(x) = y for all x ∈ Zn. Denote by
ϕ : G → G � Zn an embedding under which yϕ = y for each y ∈ G. Consider C = gr(cf,Gϕ),
where f(1) = a and f(x) = 1 with x 	= 1. The element c centralizes the subgroup Gϕ. Therefore,
the commutator subgroup C ′ of C is contained in the commutator subgroup K ′ of K; hence C

is a metabelian group. Note that (cf)n = a. Identifying the subgroup Gϕ with the group G (i.e.,
identifying every element y ∈ G with y) produces a group C such that G ≤ C and an nth root is
extracted of a. Put G(n)(a) = C. The nth root of a constructed is denoted by n

√
a.

Two important properties of the group G(n)(a) are the following:
(1) if a, b ∈ G and [a, b] = 1, then elements n

√
a and b commute in G(n)(a);
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(2) gr( n
√

a, a2, . . . , am) ∩ G = gr(a, a2, . . . , am), where a, a2, . . . , am are arbitrary pairwise
commuting elements of G.

Let G be a given torsion-free Abelian group of rank k, a1, . . . , ak a maximal linearly independent
system of elements of G, and

Ai = {g ∈ G | (∃n)(n ∈ N & n 	= 0& gn ∈ (ai))}

the isolator of a subgroup (ai) in G. It is not hard to see that G decomposes into a direct product
of its subgroups A1, . . . , Ak and each group Ai has rank 1. (In particular, Ai is a locally cyclic
group.) We assume that A1, . . . , Al are not cyclic groups, whereas Al+1, . . . , Ak are infinite cyclic
ones. If l = 0, then G is a free Abelian group of rank k, and by the hypothesis of the theorem, G

is not absolutely closed in A2. Suppose l > 0.
At the moment, we construct a sequence of groups B1, . . . , Bl as follows. First, fix some

representation of A1: namely,

A1 = gr(x1, x2, x3, . . . ‖ xni
i = xi−1, i = 2, 3, . . .).

Take a group such as in Theorem 1 (denoted A) containing a free Abelian group H = gr(a1, . . . , ak)
of rank k such that D = domA2

A (H) 	= H. Put
R1 = A, b1 = a1;
R2 = R

(n2)
1 (b1), b2 = n2

√
b1;

Ri+1 = R
(ni+1)
i (bi), bi+1 = ni+1

√
bi (i = 2, 3, . . .).

Then R1 ⊂ R2 ⊂ R3 ⊂ . . . . Let B1 =
⋃

i∈N

Ri.

A group Bj (j = 2, . . . , l) is constructed given the representation

Aj = gr(x1, x2, x3, . . . ‖ xmi
i = xi−1, i = 2, 3, . . .)

as follows. Consider sequences like

T1 = Bj−1, b1 = aj ,

T2 = T
(m2)
1 (b1), b2 = m2

√
b1,

. . . ,

Tr+1 = T (mr+1)
r (br), br+1 = mr+1

√
br,

. . . .

Put Bj =
⋃

i∈N

Ti, B = Bl.

The above construction for B shows that the subgroup Ci generated by all roots of ai (i ≤ l)
is isomorphic to the group Ai. Properties (1) and (2) for G(n)(a) imply that the group M =
gr(C1, . . . , Cl, al+1, . . . , ak) decomposes into a direct product M = C1× . . .×Cl×(al+1)× . . .×(ak),
and so M ∼= G. In addition, M ∩ A = H.
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Since A ⊆ B and H ⊆ M , the definition of a dominion entails D = domA2

A (H) ⊆ domA2

B (M).
Hence D ⊆ domA2

B (M)∩A. If domA2

B (M) = M , then D ⊆ M∩A = H, which is false. Consequently,
domA2

B (M) 	= M . The theorem is proved.
It follows from the proof of Theorem 1 that as A we can take a 2-generated group. Then

the group B constructed from A is generated modulo M by two elements, i.e., has the form
B = gr(x, y,M). We derive the following:

COROLLARY 3. A torsion-free Abelian group of finite rank k (where k is as in the
formulation of Theorem 2) is not 2-closed in the variety of metabelian groups.

COROLLARY 4. There exists a torsion-free divisible Abelian group of finite rank that is not
2-closed in A2.

3. DOMINION OF THE ADDITIVE GROUP OF RATIONAL NUMBERS

THEOREM 3. Let G = gr(A,H) be a metabelian group and A and H groups. In addition, let
H be isomorphic to the additive group of rational numbers. Suppose also that the normal closure
M = HG of the subgroup H in the group G is a torsion-free Abelian group, A′ ∩ M = (1), and
M 	= [A,M ]. Then domA2

G (H) = H.
Proof. Fix an arbitrary nonidentity element h in H. First we show that H ∩ [A,M ] = (1). If

u ∈ A and t ∈ M then [u, t] = t−ut. This implies that [A,M ] is generated by elements of the form
hqh−qa, q ∈ Q, a ∈ A.

Next suppose that H ∩ [A,M ] 	= (1). Then hn ∈ [A,M ] for some integer n. Hence hn can be
represented as

hn = (hq1h−q1a1) . . . (hqlh−qlal)

for suitable rational numbers q1, . . . , ql and suitable elements a1, . . . , al ∈ A. For each integer r,
r 	= 0, consider an element of the form

gr = (hr−1q1h−r−1q1a1) . . . (hr−1qlh−r−1qlal).

Clearly, gr ∈ [A,M ] and gr
r = hn. Since the extraction of a root in a torsion-free Abelian group

is unique, we see that gr ∈ H, so H ⊆ [A,M ], and hence M ⊆ [A,M ], which is false. Thus
H ∩ [A,M ] = (1). Note that the equalities A′ ∩ M = (1) and H ∩ [A,M ] = (1) and the inclusion
H ⊆ M entail H ∩ A′[A,M ] = (1).

Consider a natural homomorphism ϕ : G → G/A′[A,M ]. Since H ∩ A′[A,M ] = (1), ϕ maps
H onto Hϕ isomorphically. Furthermore, G/A′[A,M ] = HϕAϕ. For Hϕ is a divisible group, it is
distinguished by a direct factor in the Abelian group Gϕ, i.e., Gϕ = Hϕ×B for a suitable subgroup
B of Gϕ. Let π : Gϕ → Hϕ be a projection and ψ : Hϕπ → G an isomorphic embedding under
which hϕπψ = h. Then a map ϕπψ : G → H is identical on H, and so domA2

G (H) = H. The
theorem is proved.
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Given G, we construct a new group G̃. Let G = gr(a,H), H be a torsion-free Abelian group of

rank 1 (i.e., every two elements in H are linearly dependent), the normal closure M = HG =
k∏

l=0

Hal

of H in G be a direct product of subgroups Hal
(l = 0, . . . , k), and (a) ∩ M = (1).

Fix an arbitrary nonidentity element h ∈ H. An element hak+1 belongs to M =
k∏

l=0

Hal , and so

we can write it in the form

hak+1
=

k∏

i=0

hlia
i
.

Here l0, . . . , lk are appropriate (uniquely determined) rational numbers.
Let Hij

∼= H, ϕij : H → Hij be an isomorphism, and hij = hϕij . Assume that H00 = H, ϕ00 is

an identical map, and R =
k∏

i,j=0
Hij. Define automorphisms α, β : R → R that act on subgroups

k∏

j=0
Hij and

k∏

i=0
Hij as does the element a on the group M . The automorphisms α and β are defined

by the formulas
(hij)α = hi,j+1 for 0 ≤ j ≤ k − 1, 0 ≤ i ≤ k,

(hik)α =
k∏

j=0
(hij)lj , 0 ≤ i ≤ k,

(1)

(hij)β = hi+1,j for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k,

(hkj)β =
k∏

i=0
(hij)li , 0 ≤ j ≤ k.

(2)

We show that αβ = βα. Clearly, (hij)αβ = (hij)βα for i 	= k and j 	= k. We compute (hik)αβ and
(hik)βα for i 	= k as follows:

(hik)αβ =
k∏

j=0

((hi,j)lj )β =
k∏

j=0

(hi+1,j)lj ,

(hik)βα = (hi+1,k)α =
k∏

j=0

(hi+1,j)lj .

Similarly, for j 	= k, we derive

(hkj)αβ = (hk,j+1)β =
k∏

i=0

(hi,j+1)li ,

(hkj)βα =
k∏

i=0

((hij)li)α =
k∏

i=0

(hi,j+1)li .

Now we find (hkk)αβ and (hkk)βα: namely,

(hkk)αβ =
k∏

j=0

((hkj)lj )β =
k∏

j=0

(
k∏

i=0

(hij)li
)lj

=
k∏

i,j=0

(hij)lilj ,
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(hkk)βα =

(
k∏

i=0

(hik)li
)α

=

⎛

⎜
⎝

k∏

i=0

⎛

⎝
k∏

j=0

(hij

⎞

⎠

lj
⎞

⎟
⎠

li

=
k∏

i,j=0

(hij)lilj .

We see that (hij)αβ = (hij)βα, i.e., αβ = βα.
Consider a group B = (b1) × (b2), where |b1| = |b2| = |a|. Let γ : B → gr(α, β) be a

homomorphism under which bγ
1 = α, bγ

2 = β. This gives rise to a semidirect product G̃ = RλB of
groups R and B. Therefore, G̃ is the desired metabelian group.

If G = gr(a,H), H is a torsion-free Abelian group of rank 1, the normal closure M = HG =
∏

l∈Z

Hal is a direct product of subgroups Hal
(l ∈ Z), and (a) ∩ M = (1), then the group G̃

is constructed in a similar manner. In this event R =
∏

i,j∈Z

Hij and the definition of G̃ defies

equalities (1) and (2).

THEOREM 4. Let G = gr(a,H), where H is isomorphic to the additive group of rational
numbers. Suppose that the normal closure M = HG of H in G is a torsion-free Abelian group.
Then domA2

G (H) = H.
Proof. Note that if G is an Abelian group then domM

G (H) = H in view of [6, Thm. 1]. Below
we assume that G is non-Abelian.

We claim that (a) ∩ M = (1). Suppose (a) ∩ M 	= (1). Let n be the least positive integer for
which an 	= 1 and an ∈ M . Since an ∈ M and M is a divisible Abelian group, an = vn for some
v ∈ M . This yields (vn)a = vn. Keeping in mind that M is an Abelian group and v, va ∈ M ,
we conclude that (vav−1)n = 1. On the other hand, M is torsion free, and hence vav−1 = 1. The
equality an = vn entails (av−1)n = 1. If (av−1)r ∈ M for some r, 0 < r < n, then ar ∈ M , which
is a contradiction with n being minimal. Thus (av−1)∩M = (1). Obviously, M is contained in the
group gr(av−1,H), whence G = gr(av−1,H). If we take an element av−1 in place of a we face the
case (a) ∩ M = (1), as claimed.

Thus we will assume that (a) ∩ M = (1). Consider M as a vector space over a field Q of
rational numbers. Obviously, a induces a linear transformation of the vector space M (a acts on
M by conjugation). Fix an arbitrary nonidentity element h ∈ H. If M is an infinite-dimensional
vector space, then {hal | l ∈ Z} is its basis. Hence M =

∏

l∈Z

Hal . If M is a finite-dimensional vector

space, then the set {hal | l = 0, . . . , k} is a basis in M for some k. Hence M =
k∏

l=0

Hal . Therefore,

the above-described construction can be applied to G.

Consider the group G̃. First let M =
k∏

l=0

Hal . It is not hard to see that

gr(H00, b1) = gr(H00,H01, . . . ,H0k, b1) ∼= G,

gr(H00, b2) = gr(H00,H10, . . . ,Hk0, b2) ∼= G,

gr(H00, b1) ∩ gr(H00, b2) = H00 = H.
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This implies domA2

G (H) = H. If M =
∏

l∈Z

Hal , then

gr(H00, b1) ∼= G, gr(H00, b2) ∼= G, gr(H00, b1) ∩ gr(H00, b2) = H00 = H,

and so domA2

G (H) = H. The theorem is proved.
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