DOMINIONS IN ABELIAN SUBGROUPS OF METABELIAN GROUPS

A. I. Budkin

404

UDC 512.57

Keywords: metabelian group, Abelian subgroup, dominion.

It is proved that a suitable free Abelian group of finite rank is not absolutely closed in the class A^2 of metabelian groups. A condition is specified under which a torsion-free Abelian group is not absolutely closed in A^2 . Also we gain insight into the question when the dominion in A^2 of the additive group of rational numbers coincides with this subgroup.

INTRODUCTION

The concept of a dominion was introduced in [1] for studying epimorphisms. In [2-5], dominions were treated for various classes of universal algebras (see also the bibliography in [3]). In particular, it was established that there exists a close relationship between dominions and amalgams (for details, see [2]). At present, dominion theory is being most intensively studied for groups.

Let \mathcal{M} be an arbitrary quasivariety of groups. In this event, for any group A in \mathcal{M} and its subgroup H, the *dominion* dom^{\mathcal{M}}_A(H) of the subgroup H in A (in \mathcal{M}) is defined as follows:

$$\operatorname{dom}_{A}^{\mathcal{M}}(H) = \{ a \in A \mid \forall M \in \mathcal{M} \,\forall f, g : A \to M, \text{ if } f \mid_{H} = g \mid_{H}, \text{ then } a^{f} = a^{g} \}.$$

Here, as usual, $f, g : A \to M$ denote homomorphisms of the group A into the group M and $f \mid_H$ stands for the restriction of f to H.

Note that dominions were thoroughly investigated for quasivarieties of Abelian groups [6-9]. Dominions in the class of nilpotent groups were dealt with in a series of papers; we refer the reader to [5, 10, 11]. Recent trends are toward research on dominions in metabelian groups [12, 13].

A group H is said to be *n*-close in a class \mathcal{M} if $\operatorname{dom}_{A}^{\mathcal{M}}(H) = H$ for any group $A = \operatorname{gr}(H, a_1, \ldots, a_n)$ in \mathcal{M} that contains H and is generated modulo H by suitable n elements. A

Pavlovskii road, 60a-168, Barnaul, 656064 Russia; budkin@math.asu.ru. Translated from *Algebra i Logika*, Vol. 51, No. 5, pp. 608-622, September-October, 2012. Original article submitted June 18, 2012; revised September 28, 2012.

group H is said to be *absolutely closed in a class* \mathcal{M} if $H \leq A$ entails $\operatorname{dom}_{A}^{\mathcal{M}}(H) = H$ for any group A in \mathcal{M} .

In [5, Cor. 2], it was shown that studying absolutely closed groups reduces to treating *n*-closed groups. This explains our interest in research into *n*-closed groups. In [5, Thm. 5], for instance, we described all 1-closed Abelian groups in each quasivariety of torsion-free nilpotent groups of class 2.

In the present paper, we prove that a suitable free Abelian group of finite rank is not absolutely closed in the class \mathcal{A}^2 of metabelian groups. A condition is specified under which a torsion-free Abelian group is not absolutely closed in \mathcal{A}^2 . We work to gain insight into the question when the dominion in \mathcal{A}^2 of the additive group of rational numbers coincides with this subgroup. For basic notions in the theory of quasivarieties, the reader is referred to [14-17], and in group theory, to [18].

1. PRELIMINARIES

We recall certain of the notation and notions.

By writing $A \leq B$ we mean that A is a subgroup of a group B. Denote by gr(S) a group generated by a set S, and by (a) a cyclic group generated by an element a. G' is the commutator subgroup of a group G and |a| is the order of an element a. Let \mathbb{N} , \mathbb{Z} , and \mathbb{Q} be the set of natural numbers, the set of integers, and the set of rational numbers, respectively. As usual, $[a,b] = a^{-1}b^{-1}ab$ and $a^b = b^{-1}ab$.

An embedding of a group A in a group B is any homomorphism $\varphi : A \to B$, which is an isomorphism of A onto A^{φ} . If there exists an embedding of A in B then we say that A is embeddable in B. A group G is said to be *divisible* if for any integer n > 0 and any element $g \in G$ the equation $x^n = g$ has at least one solution in G. It is well known that every divisible Abelian group G decomposes into a direct product of groups isomorphic to quasicyclic p-groups and to the additive group of rational numbers.

The cardinality of a maximal linearly independent system of elements of a torsion-free Abelian group is referred to as the rank of that group. We recall the definition of a direct wreath product of groups A and B. Take a direct degree \overline{A} of A, consisting of all functions $f: B \to A$ with finite support. For every $b \in B$, a map $\beta: f \to f^b$ is given by the rule $f^b(y) = f(yb^{-1})$ for all $y \in B$. The map β is an automorphism of the group \overline{A} and the set of all such automorphisms is a group isomorphic to B. An extension of \overline{A} by this automorphism group is called a *direct wreath product* of groups A and B and is denoted $A \wr B$. The group \overline{A} is called a *basic subgroup* of the wreath product.

Let $t_i(\overline{x}), t'_i(\overline{x})$ $(i \in I), t(\overline{x})$, and $t'(\overline{x})$ be group words over an alphabet \overline{x} . We say that the equality $t(\overline{x}) = t'(\overline{x})$ is *deducible* in a quasivariety \mathcal{M} from the set $\{t_i(\overline{x}) = t'_i(\overline{x}) \mid i \in I\}$ of equalities if the implication

$$(\forall \overline{x}) \left(\underset{i \in I}{\&} t_i(\overline{x}) = t'_i(\overline{x}) \to t(\overline{x}) = t'(\overline{x}) \right)$$

405

is true for every group in the quasivariety \mathcal{M} .

We will need the following:

THEOREM (Dyck's theorem; see [17, p. 281]). Let a group G in a given variety \mathcal{N} have the following representation:

$$G = \operatorname{gr}(\{x_i \mid i \in I\} \parallel \{r_j(x_{j_1}, \dots, x_{j_{l(j)}}) = 1 \mid j \in J\}).$$

Suppose that $H \in \mathbb{N}$ and the group H contains a set $\{g_i \mid i \in I\}$ of elements such that the equality $r_j(g_{j_1}, \ldots, g_{j_{l(j)}}) = 1$ is true in H for every $j \in J$. Then a map $x_i \to g_i$ $(i \in I)$ extends to a homomorphism of G into H.

We recall the definition of a free metabelian square of a group with amalgamated subgroup. Suppose that a group G in \mathcal{A}^2 is represented as

$$G = \operatorname{gr}(\{x_i \mid i \in I\} \parallel \{r_j(\overline{x}) = r'_j(\overline{x}) \mid j \in J\}).$$

We take two groups G_1 and G_2 isomorphic to the group G and fix their representations

$$G_1 = \operatorname{gr}(\{x_i \mid i \in I\} \parallel \{r_j(\overline{x}) = r'_j(\overline{x}) \mid j \in J\}),$$

$$G_2 = \operatorname{gr}(\{y_i \mid i \in I\} \parallel \{r_j(\overline{y}) = r'_j(\overline{y}) \mid j \in J\}).$$

Assume that $X = \{x_i \mid i \in I\}$ and $Y = \{y_i \mid i \in I\}$ have an empty intersection.

Let H be a subgroup of G. Take an arbitrary set $\{h_l(\overline{x}) \mid l \in L\}$ of group words over an alphabet $X = \{x_i \mid i \in I\}$ whose set $\{h_l(\overline{x}) \mid l \in L\}$ of values generate H in G. Consider a group C which in \mathcal{A}^2 has the following representation:

$$C = \operatorname{gr}(X \cup Y || \{r_j(\overline{x}) = r'_j(\overline{x}) \mid j \in J\} \cup \{r_j(\overline{y}) = r'_j(\overline{y}) \mid j \in J\}$$
$$\cup \{h_l(\overline{x}) = h_l(\overline{y}) \mid l \in L\}).$$

This group $C = G *_{H}^{A^{2}} G$ is called the *free metabelian square of a group* G with an amalgamated subgroup H. Maps $\lambda : G \to C$ and $\rho : G \to C$, where $x_{i}^{\lambda} = x_{i}$ and $x_{i}^{\rho} = y_{i}$ $(i \in I)$, are embeddings; subgroups G^{λ} , G^{ρ} , and H^{λ} are again denoted by G_{1} , G_{2} , and H, respectively.

If H = (1) then the resulting group C is called a *free product of groups* G_1 and G_2 in \mathcal{A}^2 . It is well known that $G_1 \cap G_2 = \operatorname{dom}_{G_1}^{\mathcal{A}^2}(H)$ (see, e.g., [2]).

2. ABSOLUTE CLOSEDNESS OF ABELIAN GROUPS

We know from [11, Thm. 3.11] that a free Abelian group is absolutely closed in the variety N_2 of nilpotent groups of class at most 2 iff it is cyclic. In the present section, we deal with a similar problem within the class \mathcal{A}^2 of metabelian groups, showing that the dominion in \mathcal{A}^2 of an Abelian subgroup of a torsion-free finitely generated metabelian group may fail to coincide with this subgroup.

LEMMA 1. A free Abelian group of infinite rank is not absolutely closed in the class of metabelian groups.

Proof. Let R be a free Abelian group of infinite rank. We represent R as a direct product $R = H \times T$ of free Abelian groups, where H is a group of countable rank. Take any finitely generated metabelian group G such that its commutator subgroup contains a free Abelian subgroup of countable rank. Assume that this subgroup is freely generated by elements x_i $(i \in P)$, where P is the set of all prime numbers. As G we may take, for instance, a direct wreath product $Z \wr Z$ of two infinite cyclic groups. Since $x_i \in G'$, we conclude that $gr(x_i^i \mid i \in P)$ is a free Abelian group of countable rank. Denote it also by H.

Consider a group $A = G \times T$. Suppose $R = H \times T$ is a subgroup of A. Let $C = A *_R^{A^2} A$ be the free metabelian square of A with amalgamated subgroup R. Images of elements x_i under natural embeddings $\lambda : A \to A_1 \leq C$ and $\rho : A \to A_2 \leq C$ are denoted by a_i and b_i , respectively. In particular, elements a_i^i and b_i^i are equal in $H \leq C$.

Since $a_p, b_p \in C'$ for $p \in P$, we have $[a_p, b_p] = 1$. On the other hand, $a_p^p = b_p^p$ entails $(a_p b_p^{-1})^p = 1$. $L = \operatorname{gr}(G^{\lambda}, G^{\rho})$ is a finitely generated metabelian group and $a_p, b_p \in L$ for $p \in P$. It is well known that every finitely generated metabelian group satisfies the maximal condition for normal subgroups [19]. This implies that the commutator subgroup of L has a finite set of element orders. Hence $a_p b_p^{-1} = 1$ for some $p \in P$, $a_p = b_p \in A^{\rho} \cap A^{\lambda}$, and $a_p \notin R$. Consequently, $\operatorname{dom}_A^{\mathcal{A}^2}(R) \neq R$. The lemma is proved.

If in the proof of Lemma 1 as G we take the direct wreath product $Z \wr Z$ of two infinite cyclic groups then the group A in Lemma 1 will be 2-generated modulo R. Thus we have

COROLLARY 1. A free Abelian group of infinite rank is not 2-closed in the class of metabelian groups.

THEOREM 1. There exists a free Abelian group of finite rank that is not absolutely closed in the class of metabelian groups.

Proof. Let groups G, A, and C be as in Lemma 1. Suppose T = (1), i.e., G = A. Let

$$A = \operatorname{gr}(x_1, \dots, x_n \parallel \Sigma_1(\overline{x}))$$

be a representation of A in A^2 with generators x_1, \ldots, x_n . Assume that values for the set $\{t_i(\overline{x}) \mid i \in \mathbb{N}\}$ of group words freely generate a group H. Then the group $C = A *_H^{A^2} A$ is represented in A^2 as follows:

$$C = \operatorname{gr}(x_1, \dots, x_n, y_1, \dots, y_n \parallel \Sigma_1(\overline{x}), \Sigma_1(\overline{y}), \{t_i(\overline{x}) = t_i(\overline{y}) \mid i \in \mathbb{N}\}).$$

Take any $p \in P$ for which elements a_p and b_p such as in the proof of Lemma 1 are not contained in H. Fix a group word t whose values $t(\overline{x}) \in A_1$ and $t(\overline{y}) \in A_2$ are equal in C and coincide with elements $a_p (= t(\overline{x})) \in A_1$ and $b_p (= t(\overline{y})) \in A_2$.

By virtue of [16, Thm. 2.3.1], a well-known property of quasivarieties holds: if an infinite implication $(\forall \overline{x}) \left(\underset{i \in I}{\&} \alpha_i(\overline{x}) \to \alpha(\overline{x}) \right)$ holds in an arbitrary quasivariety \mathcal{K} then a quasi-identity

 $(\forall \overline{x}) \left(\underset{i \in F}{\&} \alpha_i(\overline{x}) \to \alpha(\overline{x}) \right)$ holds in \mathcal{K} for some finite subset $F \subseteq I$. A similar statement for \mathcal{A}^2 follows from the property that any subgroup of a finitely generated metabelian group is finitely generated (as a normal subgroup) [19].

The equality $t(x_1, \ldots, x_n) = t(y_1, \ldots, y_n)$ is deducible in \mathcal{A}^2 from the set $\Sigma = \Sigma_1(\overline{x}) \cup \Sigma_1(\overline{y}) \cup \{t_i(\overline{x}) = t_i(\overline{y}) \mid i \in \mathbb{N}\}$ of relations for a group C, and so it is deducible in \mathcal{A}^2 from some finite subset of this set. Hence there exists a natural number k such that $t(x_1, \ldots, x_n) = t(y_1, \ldots, y_n)$ is a consequence of $\Sigma_0 = \Sigma_1(\overline{x}) \cup \Sigma_1(\overline{y}) \cup \{t_i(\overline{x}) = t_i(\overline{y}) \mid i = 1, \ldots, k\}$ in \mathcal{A}^2 .

Consider groups C_1 and F which in \mathcal{A}^2 have the following representations:

$$C_1 = \operatorname{gr}(x_1, \dots, x_n, y_1, \dots, y_n \parallel \Sigma_1(\overline{x}), \Sigma_1(\overline{y}), \{t_i(\overline{x}) = t_i(\overline{y}) \mid i = 1, \dots, k\}),$$

$$F = \operatorname{gr}(x_1, \dots, x_n \parallel \Sigma_1(\overline{x})).$$

If K is a subgroup of F generated by elements $t_1(\overline{x}), \ldots, t_k(\overline{x})$, then K is a free Abelian group freely generated by these elements. Clearly, $C_1 = F *_K^{\mathcal{A}^2} F$ is the free metabelian square of the group F with an amalgamated subgroup. In addition, the relation $t(x_1, \ldots, x_n) = t(y_1, \ldots, y_n)$ is deducible in \mathcal{A}^2 from the set Σ_0 of relations. Therefore, a = b for values $a = t(x_1, \ldots, x_n)$ and $b = t(y_1, \ldots, y_n)$ of these words in the group C_1 . This implies $a = b \in F^{\rho} \cap F^{\lambda} = \operatorname{dom}_F^{\mathcal{A}^2}(K)$.

By Dyck's theorem, there exists a natural homomorphism $\varphi : C_1 \to C$. Since $a^{\varphi} = a_p \notin H$, we have $a \notin K$. Thus dom^{\mathcal{A}^2} $(K) \neq K$. The theorem is proved.

We may take a 2-generated group to be G, and so the proof of Theorem 1 entails

COROLLARY 2. There exists a free Abelian group of finite rank that is not 2-closed in the class of metabelian groups.

Problem. Is an infinite cyclic group absolutely closed in the class of metabelian groups?

THEOREM 2. If a free Abelian group of finite rank k is not absolutely closed in the class of metabelian groups, then every torsion-free Abelian group of rank k is not absolutely closed in \mathcal{A}^2 .

Proof. First let G be an arbitrary metabelian group, with $a \in G$ and $n \in \mathbb{N}$. We point out a method for constructing a group $G^{(n)}(a)$ in \mathcal{A}^2 containing G, in which an nth root is extracted of a. A similar argument was used in [20, proof of Lemma 3] (see also [21]).

Let Z_n be a cyclic group of order n, c its generator, and K a basic subgroup of the wreath product $G \wr Z_n$ of groups G and Z_n . For any $y \in G$, put $\overline{y}(x) = y$ for all $x \in Z_n$. Denote by $\varphi : G \to G \wr Z_n$ an embedding under which $y^{\varphi} = \overline{y}$ for each $y \in G$. Consider $C = \operatorname{gr}(cf, G^{\varphi})$, where f(1) = a and f(x) = 1 with $x \neq 1$. The element c centralizes the subgroup G^{φ} . Therefore, the commutator subgroup C' of C is contained in the commutator subgroup K' of K; hence Cis a metabelian group. Note that $(cf)^n = \overline{a}$. Identifying the subgroup G^{φ} with the group G (i.e., identifying every element $y \in G$ with \overline{y}) produces a group C such that $G \leq C$ and an nth root is extracted of a. Put $G^{(n)}(a) = C$. The nth root of a constructed is denoted by $\sqrt[n]{a}$.

Two important properties of the group $G^{(n)}(a)$ are the following:

(1) if $a, b \in G$ and [a, b] = 1, then elements $\sqrt[n]{a}$ and b commute in $G^{(n)}(a)$;

(2) $\operatorname{gr}(\sqrt[n]{a}, a_2, \ldots, a_m) \cap G = \operatorname{gr}(a, a_2, \ldots, a_m)$, where a, a_2, \ldots, a_m are arbitrary pairwise commuting elements of G.

Let G be a given torsion-free Abelian group of rank k, a_1, \ldots, a_k a maximal linearly independent system of elements of G, and

$$A_{i} = \{ g \in G \mid (\exists n) (n \in \mathbb{N} \& n \neq 0 \& g^{n} \in (a_{i})) \}$$

the isolator of a subgroup (a_i) in G. It is not hard to see that G decomposes into a direct product of its subgroups A_1, \ldots, A_k and each group A_i has rank 1. (In particular, A_i is a locally cyclic group.) We assume that A_1, \ldots, A_l are not cyclic groups, whereas A_{l+1}, \ldots, A_k are infinite cyclic ones. If l = 0, then G is a free Abelian group of rank k, and by the hypothesis of the theorem, Gis not absolutely closed in \mathcal{A}^2 . Suppose l > 0.

At the moment, we construct a sequence of groups B_1, \ldots, B_l as follows. First, fix some representation of A_1 : namely,

$$A_1 = \operatorname{gr}(x_1, x_2, x_3, \dots || x_i^{n_i} = x_{i-1}, i = 2, 3, \dots).$$

Take a group such as in Theorem 1 (denoted A) containing a free Abelian group $H = \operatorname{gr}(a_1, \ldots, a_k)$ of rank k such that $D = \operatorname{dom}_A^{A^2}(H) \neq H$. Put

 $R_{1} = A, b_{1} = a_{1};$ $R_{2} = R_{1}^{(n_{2})}(b_{1}), b_{2} = {}^{n_{2}}\sqrt{b_{1}};$ $R_{i+1} = R_{i}^{(n_{i+1})}(b_{i}), b_{i+1} = {}^{n_{i+1}}\sqrt{b_{i}} (i = 2, 3, ...).$ Then $R_{1} \subset R_{2} \subset R_{3} \subset ...$ Let $B_{1} = \bigcup_{i \in \mathbb{N}} R_{i}.$

A group B_j (j = 2, ..., l) is constructed given the representation

$$A_j = \operatorname{gr}(x_1, x_2, x_3, \dots || x_i^{m_i} = x_{i-1}, i = 2, 3, \dots)$$

as follows. Consider sequences like

$$T_1 = B_{j-1}, \ b_1 = a_j,$$

$$T_2 = T_1^{(m_2)}(b_1), \ b_2 = {}^{m_2} \sqrt{b_1},$$

...,

$$T_{r+1} = T_r^{(m_{r+1})}(b_r), \ b_{r+1} = {}^{m_{r+1}} \sqrt{b_r},$$

. . . .

Put $B_j = \bigcup_{i \in \mathbb{N}} T_i, B = B_l.$

The above construction for B shows that the subgroup C_i generated by all roots of a_i $(i \leq l)$ is isomorphic to the group A_i . Properties (1) and (2) for $G^{(n)}(a)$ imply that the group $M = \operatorname{gr}(C_1, \ldots, C_l, a_{l+1}, \ldots, a_k)$ decomposes into a direct product $M = C_1 \times \ldots \times C_l \times (a_{l+1}) \times \ldots \times (a_k)$, and so $M \cong G$. In addition, $M \cap A = H$.

Since $A \subseteq B$ and $H \subseteq M$, the definition of a dominion entails $D = \text{dom}_A^{\mathcal{A}^2}(H) \subseteq \text{dom}_B^{\mathcal{A}^2}(M)$. Hence $D \subseteq \text{dom}_B^{\mathcal{A}^2}(M) \cap A$. If $\text{dom}_B^{\mathcal{A}^2}(M) = M$, then $D \subseteq M \cap A = H$, which is false. Consequently, $\text{dom}_B^{\mathcal{A}^2}(M) \neq M$. The theorem is proved.

It follows from the proof of Theorem 1 that as A we can take a 2-generated group. Then the group B constructed from A is generated modulo M by two elements, i.e., has the form B = gr(x, y, M). We derive the following:

COROLLARY 3. A torsion-free Abelian group of finite rank k (where k is as in the formulation of Theorem 2) is not 2-closed in the variety of metabelian groups.

COROLLARY 4. There exists a torsion-free divisible Abelian group of finite rank that is not 2-closed in \mathcal{A}^2 .

3. DOMINION OF THE ADDITIVE GROUP OF RATIONAL NUMBERS

THEOREM 3. Let $G = \operatorname{gr}(A, H)$ be a metabelian group and A and H groups. In addition, let H be isomorphic to the additive group of rational numbers. Suppose also that the normal closure $M = H^G$ of the subgroup H in the group G is a torsion-free Abelian group, $A' \cap M = (1)$, and $M \neq [A, M]$. Then $\operatorname{dom}_{G}^{\mathcal{A}^2}(H) = H$.

Proof. Fix an arbitrary nonidentity element h in H. First we show that $H \cap [A, M] = (1)$. If $u \in A$ and $t \in M$ then $[u, t] = t^{-u}t$. This implies that [A, M] is generated by elements of the form $h^q h^{-qa}, q \in \mathbb{Q}, a \in A$.

Next suppose that $H \cap [A, M] \neq (1)$. Then $h^n \in [A, M]$ for some integer n. Hence h^n can be represented as

$$h^n = (h^{q_1} h^{-q_1 a_1}) \dots (h^{q_l} h^{-q_l a_l})$$

for suitable rational numbers q_1, \ldots, q_l and suitable elements $a_1, \ldots, a_l \in A$. For each integer r, $r \neq 0$, consider an element of the form

$$g_r = (h^{r^{-1}q_1} h^{-r^{-1}q_1a_1}) \dots (h^{r^{-1}q_l} h^{-r^{-1}q_la_l}).$$

Clearly, $g_r \in [A, M]$ and $g_r^r = h^n$. Since the extraction of a root in a torsion-free Abelian group is unique, we see that $g_r \in H$, so $H \subseteq [A, M]$, and hence $M \subseteq [A, M]$, which is false. Thus $H \cap [A, M] = (1)$. Note that the equalities $A' \cap M = (1)$ and $H \cap [A, M] = (1)$ and the inclusion $H \subseteq M$ entail $H \cap A'[A, M] = (1)$.

Consider a natural homomorphism $\varphi : G \to G/A'[A, M]$. Since $H \cap A'[A, M] = (1)$, φ maps H onto H^{φ} isomorphically. Furthermore, $G/A'[A, M] = H^{\varphi}A^{\varphi}$. For H^{φ} is a divisible group, it is distinguished by a direct factor in the Abelian group G^{φ} , i.e., $G^{\varphi} = H^{\varphi} \times B$ for a suitable subgroup B of G^{φ} . Let $\pi : G^{\varphi} \to H^{\varphi}$ be a projection and $\psi : H^{\varphi\pi} \to G$ an isomorphic embedding under which $h^{\varphi\pi\psi} = h$. Then a map $\varphi\pi\psi : G \to H$ is identical on H, and so $\operatorname{dom}_{G}^{\mathcal{A}^{2}}(H) = H$. The theorem is proved.

Given G, we construct a new group \widetilde{G} . Let $G = \operatorname{gr}(a, H)$, H be a torsion-free Abelian group of rank 1 (i.e., every two elements in H are linearly dependent), the normal closure $M = H^G = \prod_{l=0}^k H^{a^l}$ of H in G be a direct product of subgroups H^{a^l} $(l = 0, \ldots, k)$, and $(a) \cap M = (1)$.

Fix an arbitrary nonidentity element $h \in H$. An element $h^{a^{k+1}}$ belongs to $M = \prod_{l=0}^{k} H^{a^{l}}$, and so we can write it in the form

$$h^{a^{k+1}} = \prod_{i=0}^k h^{l_i a^i}$$

Here l_0, \ldots, l_k are appropriate (uniquely determined) rational numbers.

Let $H_{ij} \cong H$, $\varphi_{ij} : H \to H_{ij}$ be an isomorphism, and $h^{ij} = h^{\varphi_{ij}}$. Assume that $H_{00} = H$, φ_{00} is an identical map, and $R = \prod_{i,j=0}^{k} H_{ij}$. Define automorphisms $\alpha, \beta : R \to R$ that act on subgroups $\prod_{j=0}^{k} H_{ij}$ and $\prod_{i=0}^{k} H_{ij}$ as does the element *a* on the group *M*. The automorphisms α and β are defined

by the formulas

$$(h^{ij})^{\alpha} = h^{i,j+1} \text{ for } 0 \le j \le k-1, \ 0 \le i \le k, (h^{ik})^{\alpha} = \prod_{j=0}^{k} (h^{ij})^{l_j}, \ 0 \le i \le k,$$
(1)

$$(h^{ij})^{\beta} = h^{i+1,j} \text{ for } 0 \le i \le k-1, \ 0 \le j \le k, (h^{kj})^{\beta} = \prod_{i=0}^{k} (h^{ij})^{l_i}, \ 0 \le j \le k.$$
(2)

We show that $\alpha\beta = \beta\alpha$. Clearly, $(h^{ij})^{\alpha\beta} = (h^{ij})^{\beta\alpha}$ for $i \neq k$ and $j \neq k$. We compute $(h^{ik})^{\alpha\beta}$ and $(h^{ik})^{\beta\alpha}$ for $i \neq k$ as follows:

$$(h^{ik})^{\alpha\beta} = \prod_{j=0}^{k} ((h^{i,j})^{l_j})^{\beta} = \prod_{j=0}^{k} (h^{i+1,j})^{l_j}$$
$$(h^{ik})^{\beta\alpha} = (h^{i+1,k})^{\alpha} = \prod_{j=0}^{k} (h^{i+1,j})^{l_j}.$$

Similarly, for $j \neq k$, we derive

$$(h^{kj})^{\alpha\beta} = (h^{k,j+1})^{\beta} = \prod_{i=0}^{k} (h^{i,j+1})^{l_i},$$
$$(h^{kj})^{\beta\alpha} = \prod_{i=0}^{k} ((h^{ij})^{l_i})^{\alpha} = \prod_{i=0}^{k} (h^{i,j+1})^{l_i}.$$

Now we find $(h^{kk})^{\alpha\beta}$ and $(h^{kk})^{\beta\alpha}$: namely,

$$(h^{kk})^{\alpha\beta} = \prod_{j=0}^{k} ((h^{kj})^{l_j})^{\beta} = \prod_{j=0}^{k} \left(\prod_{i=0}^{k} (h^{ij})^{l_i} \right)^{l_j} = \prod_{i,j=0}^{k} (h^{ij})^{l_i l_j},$$

411

$$(h^{kk})^{\beta\alpha} = \left(\prod_{i=0}^{k} (h^{ik})^{l_i}\right)^{\alpha} = \left(\prod_{i=0}^{k} \left(\prod_{j=0}^{k} (h^{ij})^{l_j}\right)^{l_i} = \prod_{i,j=0}^{k} (h^{ij})^{l_i l_j}$$

We see that $(h^{ij})^{\alpha\beta} = (h^{ij})^{\beta\alpha}$, i.e., $\alpha\beta = \beta\alpha$.

Consider a group $B = (b_1) \times (b_2)$, where $|b_1| = |b_2| = |a|$. Let $\gamma : B \to \operatorname{gr}(\alpha, \beta)$ be a homomorphism under which $b_1^{\gamma} = \alpha$, $b_2^{\gamma} = \beta$. This gives rise to a semidirect product $\widetilde{G} = R\lambda B$ of groups R and B. Therefore, \widetilde{G} is the desired metabelian group.

If $G = \operatorname{gr}(a, H)$, H is a torsion-free Abelian group of rank 1, the normal closure $M = H^G = \prod_{l \in \mathbb{Z}} H^{a^l}$ is a direct product of subgroups H^{a^l} $(l \in \mathbb{Z})$, and $(a) \cap M = (1)$, then the group \widetilde{G} is constructed in a similar manner. In this event $R = \prod_{i,j \in \mathbb{Z}} H_{ij}$ and the definition of \widetilde{G} defies equalities (1) and (2).

THEOREM 4. Let $G = \operatorname{gr}(a, H)$, where H is isomorphic to the additive group of rational numbers. Suppose that the normal closure $M = H^G$ of H in G is a torsion-free Abelian group. Then $\operatorname{dom}_{G}^{\mathcal{A}^{2}}(H) = H$.

Proof. Note that if G is an Abelian group then $\operatorname{dom}_{G}^{\mathcal{M}}(H) = H$ in view of [6, Thm. 1]. Below we assume that G is non-Abelian.

We claim that $(a) \cap M = (1)$. Suppose $(a) \cap M \neq (1)$. Let n be the least positive integer for which $a^n \neq 1$ and $a^n \in M$. Since $a^n \in M$ and M is a divisible Abelian group, $a^n = v^n$ for some $v \in M$. This yields $(v^n)^a = v^n$. Keeping in mind that M is an Abelian group and $v, v^a \in M$, we conclude that $(v^a v^{-1})^n = 1$. On the other hand, M is torsion free, and hence $v^a v^{-1} = 1$. The equality $a^n = v^n$ entails $(av^{-1})^n = 1$. If $(av^{-1})^r \in M$ for some r, 0 < r < n, then $a^r \in M$, which is a contradiction with n being minimal. Thus $(av^{-1}) \cap M = (1)$. Obviously, M is contained in the group $\operatorname{gr}(av^{-1}, H)$, whence $G = \operatorname{gr}(av^{-1}, H)$. If we take an element av^{-1} in place of a we face the case $(a) \cap M = (1)$, as claimed.

Thus we will assume that $(a) \cap M = (1)$. Consider M as a vector space over a field \mathbb{Q} of rational numbers. Obviously, a induces a linear transformation of the vector space M (a acts on M by conjugation). Fix an arbitrary nonidentity element $h \in H$. If M is an infinite-dimensional vector space, then $\{h^{a^l} \mid l \in \mathbb{Z}\}$ is its basis. Hence $M = \prod_{l \in \mathbb{Z}} H^{a^l}$. If M is a finite-dimensional vector space then the set $\{h^{a^l} \mid l \in \mathbb{Z}\}$ is its basis. Hence $M = \prod_{l \in \mathbb{Z}} H^{a^l}$. If M is a finite-dimensional vector

space, then the set $\{h^{a^l} \mid l = 0, ..., k\}$ is a basis in M for some k. Hence $M = \prod_{l=0}^{k} H^{a^l}$. Therefore, the above-described construction can be applied to G.

Consider the group \widetilde{G} . First let $M = \prod_{l=0}^{k} H^{a^{l}}$. It is not hard to see that

$$gr(H_{00}, b_1) = gr(H_{00}, H_{01}, \dots, H_{0k}, b_1) \cong G,$$

$$gr(H_{00}, b_2) = gr(H_{00}, H_{10}, \dots, H_{k0}, b_2) \cong G,$$

$$gr(H_{00}, b_1) \cap gr(H_{00}, b_2) = H_{00} = H.$$

412

This implies $\operatorname{dom}_{G}^{\mathcal{A}^{2}}(H) = H$. If $M = \prod_{l \in \mathbb{Z}} H^{a^{l}}$, then

 $\operatorname{gr}(H_{00}, b_1) \cong G, \ \operatorname{gr}(H_{00}, b_2) \cong G, \ \operatorname{gr}(H_{00}, b_1) \cap \operatorname{gr}(H_{00}, b_2) = H_{00} = H,$

and so $\operatorname{dom}_{G}^{\mathcal{A}^{2}}(H) = H$. The theorem is proved.

REFERENCES

- J. R. Isbell, "Epimorphisms and dominions," Proc. Conf. Cat. Alg., La Jolla 1965, Springer-Verlag, New York (1966), pp. 232-246.
- 2. P. V. Higgins, "Epimorphisms and amalgams," Coll. Math., 56, No. 1, 1-17 (1988).
- A. I. Budkin, "Dominions in quasivarieties of universal algebras," Stud. Log., 78, Nos. 1/2, 107-127 (2004).
- A. I. Budkin, "Lattices of dominions of universal algebras," Algebra Logika, 46, No. 1, 26-45 (2007).
- A. I. Budkin, "Dominions of universal algebras and projective properties," *Algebra Logika*, 47, No. 5, 541-557 (2008).
- S. A. Shakhova, "Lattices of dominions in quasivarieties of Abelian groups," Algebra Logika, 44, No. 2, 238-251 (2005).
- S. A. Shakhova, "Distributivity conditions for lattices of dominions in quasivarieties of Abelian groups," *Algebra Logika*, 45, No. 4, 484-499 (2006).
- 8. S. A. Shakhova, "A property of the intersection operation in lattices of dominions in quasivarieties of Abelian groups," *Izv. Altai Gos. Univ.*, No. 1-1(65), 41-43 (2010).
- S. A. Shakhova, "The existence of a dominion lattice in quasivarieties of Abelian groups," *Izv. Altai Gos. Univ.*, No. 1-1(69), 31-33 (2011).
- A. Magidin, "Dominions in varieties of nilpotent groups," Comm. Alg., 28, No. 3, 1241-1270 (2000).
- 11. A. Magidin, "Absolutely closed nil-2 groups," Alg. Univ., 42, Nos. 1/2, 61-77 (1999).
- A. I. Budkin, "Dominions in quasivarieties of metabelian groups," Sib. Mat. Zh., 51, No. 3, 498-505 (2010).
- A. I. Budkin, "The dominion of a divisible subgroup of a metabelian group," *Izv. Altai Gos. Univ.*, No. 1-2(65), 15-19 (2010).
- 14. A. I. Budkin, *Quasivarieties of Groups* [in Russian], Altai State University, Barnaul (2002).
- A. I. Budkin and V. A. Gorbunov, "Toward a theory of quasivarieties of algebraic systems," *Algebra Logika*, 14, No. 2, 123-142 (1975).

- V. A. Gorbunov, Algebraic Theory of Quasivarieties, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1999).
- 17. A. I. Mal'tsev, Algebraic Systems [in Russian], Nauka, Moscow (1970).
- M. I. Kargapolov and Yu. I. Merzlyakov, *Fundamentals of Group Theory* [in Russian], Nauka, Moscow (1982).
- P. Hall, "Finiteness conditions for soluble groups," Proc. London Math. Soc., 4, 419-436 (1954).
- A. I. Budkin, "The axiomatic rank of a quasivariety containing a free solvable group," Mat. Sb., 112(154), No. 4(8), 647-655 (1980).
- 21. A. I. Budkin, *Q-Theories of Finitely Generated Groups. Quasi-Identities, Quasivarieties,* LAP, Saarbrücken, Germany (2012).