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DOMINIONS IN ABELIAN SUBGROUPS
OF METABELIAN GROUPS
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It is proved that a suitable free Abelian group of finite rank is not absolutely closed in
the class A? of metabelian groups. A condition is specified under which a torsion-free
Abelian group is not absolutely closed in A?. Also we gain insight into the question
when the dominion in A% of the additive group of rational numbers coincides with this

subgroup.

INTRODUCTION

The concept of a dominion was introduced in [1] for studying epimorphisms. In [2-5], dominions
were treated for various classes of universal algebras (see also the bibliography in [3]). In particular,
it was established that there exists a close relationship between dominions and amalgams (for
details, see [2]). At present, dominion theory is being most intensively studied for groups.

Let M be an arbitrary quasivariety of groups. In this event, for any group A in M and its
subgroup H, the dominion dom}'(H) of the subgroup H in A (in M) is defined as follows:

domXY(H) = {a € A|YM € MVf,g: A— M, if f |g=g |u, then o/ = a9}.

Here, as usual, f,g: A — M denote homomorphisms of the group A into the group M and f |y
stands for the restriction of f to H.

Note that dominions were thoroughly investigated for quasivarieties of Abelian groups [6-9].
Dominions in the class of nilpotent groups were dealt with in a series of papers; we refer the reader
to [5, 10, 11]. Recent trends are toward research on dominions in metabelian groups [12, 13].

A group H is said to be n-close in a class M if dom}'(H) = H for any group A =
gr(H,ay,...,a,) in M that contains H and is generated modulo H by suitable n elements. A
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group H is said to be absolutely closed in a class M if H < A entails domj){[(H) = H for any group
Ain M.

In |5, Cor. 2], it was shown that studying absolutely closed groups reduces to treating n-closed
groups. This explains our interest in research into n-closed groups. In |5, Thm. 5|, for instance,
we described all 1-closed Abelian groups in each quasivariety of torsion-free nilpotent groups of
class 2.

In the present paper, we prove that a suitable free Abelian group of finite rank is not absolutely
closed in the class A? of metabelian groups. A condition is specified under which a torsion-free
Abelian group is not absolutely closed in A2. We work to gain insight into the question when the
dominion in A? of the additive group of rational numbers coincides with this subgroup. For basic

notions in the theory of quasivarieties, the reader is referred to [14-17], and in group theory, to [18].

1. PRELIMINARIES

We recall certain of the notation and notions.

By writing A < B we mean that A is a subgroup of a group B. Denote by gr(S) a group
generated by a set S, and by (a) a cyclic group generated by an element a. G’ is the commutator
subgroup of a group G and |a| is the order of an element a. Let N, Z, and Q be the set of natural
numbers, the set of integers, and the set of rational numbers, respectively. As usual, [a,b] =
a~'b~'ab and a® = b~ 'ab.

An embedding of a group A in a group B is any homomorphism ¢ : A — B, which is an
isomorphism of A onto A%®. If there exists an embedding of A in B then we say that A is embeddable
in B. A group G is said to be divisible if for any integer n > 0 and any element g € GG the equation
"™ = g has at least one solution in G. It is well known that every divisible Abelian group G
decomposes into a direct product of groups isomorphic to quasicyclic p-groups and to the additive
group of rational numbers.

The cardinality of a maximal linearly independent system of elements of a torsion-free Abelian
group is referred to as the rank of that group. We recall the definition of a direct wreath product
of groups A and B. Take a direct degree A of A, consisting of all functions f: B — A with finite
support. For every b € B, amap 3 : f — f° is given by the rule f°(y) = f(yb™!) for all y € B.
The map 3 is an automorphism of the group A and the set of all such automorphisms is a group
isomorphic to B. An extension of A by this automorphism group is called a direct wreath product
of groups A and B and is denoted A B. The group A is called a basic subgroup of the wreath
product.

Let t;(x), ti(x) (¢ € I), t(x), and t/(z) be group words over an alphabet x. We say that the
equality t(x) = t/(z) is deducible in a quasivariety M from the set {t;(z) = t/(z) | ¢ € I} of
equalities if the implication

(#0) (& 10 = i) — t(0) = V()

i€l
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is true for every group in the quasivariety M.

We will need the following:
THEOREM (Dyck’s theorem; see [17, p. 281]). Let a group G in a given variety N have the

following representation:

G=gr({zi|iel} | {Tj(xj17""le(j)) =1[j€eJ}).

Suppose that H € N and the group H contains a set {g; | ¢ € I} of elements such that the equality
rj(gjl,...,gjl(j)) = 1 is true in H for every j € J. Then a map z; — ¢; (¢ € I) extends to a
homomorphism of G into H.

We recall the definition of a free metabelian square of a group with amalgamated subgroup.

Suppose that a group G in A? is represented as

G =gr({x; [ i€ I} || {rj(z) =rj(x) | j € T}).

We take two groups G7 and G9 isomorphic to the group G and fix their representations

Gr=gr({zi |i € I} || {rj(x) =rj(x) | j € J}),
Gy =gr({yi [ i € I} || {rj(y) =7j(y) | j € J}).

Assume that X = {z; |i € I} and Y = {y; | i € I} have an empty intersection.
Let H be a subgroup of G. Take an arbitrary set {hj(xz) | | € L} of group words over an
alphabet X = {xz; | i € I} whose set {hj(z) | | € L} of values generate H in G. Consider a group

C which in A? has the following representation:

C=gr(XUY [{rj(z) =rj(z) [ j € T} U{rjly) =rjy) | j € J}
U{lu(z) = hu(y) | L € L}).

This group C = G *flz G is called the free metabelian square of a group G with an amalgamated
subgroup H. Maps A : G — C' and p: G — C, where IZ)‘ = xz; and 2 = y; (i € I), are embeddings;
subgroups G*, G?, and H* are again denoted by G1, G, and H, respectively.

If H = (1) then the resulting group C is called a free product of groups G1 and Go in A%. It is
well known that G1 N G2 = doméj (H) (see, e.g., [2]).

2. ABSOLUTE CLOSEDNESS OF ABELIAN GROUPS

We know from [11, Thm. 3.11] that a free Abelian group is absolutely closed in the variety
Ny of nilpotent groups of class at most 2 iff it is cyclic. In the present section, we deal with a
similar problem within the class A? of metabelian groups, showing that the dominion in A? of an
Abelian subgroup of a torsion-free finitely generated metabelian group may fail to coincide with

this subgroup.
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LEMMA 1. A free Abelian group of infinite rank is not absolutely closed in the class of
metabelian groups.

Proof. Let R be a free Abelian group of infinite rank. We represent R as a direct product
R = H x T of free Abelian groups, where H is a group of countable rank. Take any finitely
generated metabelian group G such that its commutator subgroup contains a free Abelian subgroup
of countable rank. Assume that this subgroup is freely generated by elements z; (i € P), where P
is the set of all prime numbers. As G we may take, for instance, a direct wreath product Z{ Z of
two infinite cyclic groups. Since z; € G’, we conclude that gr(a:é | i € P) is a free Abelian group of
countable rank. Denote it also by H.

Consider a group A = G x T'. Suppose R = H x T is a subgroup of A. Let C = A *“}%2 A be the
free metabelian square of A with amalgamated subgroup R. Images of elements z; under natural
embeddings A : A — A < C and p: A — Ay < C are denoted by a; and b;, respectively. In
particular, elements ag and bﬁ are equal in H < C.

Since ay, b, € C” for p € P, we have [a,, by] = 1. On the other hand, aj = b} entails (ayb, )P =
L = gr(G*,G?) is a finitely generated metabelian group and ap,b, € L for p € P. It is well
known that every finitely generated metabelian group satisfies the maximal condition for normal
subgroups [19]. This implies that the commutator subgroup of L has a finite set of element orders.
Hence ayb, 1 =1 for some p € P, a, = b, € AP N A*, and a, ¢ R. Consequently, domﬁz)(R) #+ R.
The lemma is proved.

If in the proof of Lemma 1 as G we take the direct wreath product Z{ Z of two infinite cyclic

groups then the group A in Lemma 1 will be 2-generated modulo R. Thus we have

COROLLARY 1. A free Abelian group of infinite rank is not 2-closed in the class of

metabelian groups.

THEOREM 1. There exists a free Abelian group of finite rank that is not absolutely closed
in the class of metabelian groups.
Proof. Let groups G, A, and C be as in Lemma 1. Suppose 7' = (1), i.e., G = A. Let

A=gr(zy,...,z, || 21(x))

be a representation of A in A? with generators z1,...,z,. Assume that values for the set {t;(z) |
i € N} of group words freely generate a group H. Then the group C = A *fIQ A is represented in

A? as follows:

C=gr(@, s tn i, yn || 20(2), 21(y), {ti(2) = tiy) [ i € N}).

Take any p € P for which elements a, and b, such as in the proof of Lemma 1 are not contained
in H. Fix a group word ¢t whose values t(z) € A; and t(y) € Ay are equal in C and coincide with
elements a, (= t(z)) € Ay and b, (= t(y)) € As.

By virtue of [16, Thm. 2.3.1|, a well-known property of quasivarieties holds: if an infinite

implication (Vz) Zézl ai(z) — a(z) | holds in an arbitrary quasivariety X then a quasi-identity
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(Vz) &F a;(x) — a(z) ) holds in X for some finite subset F© C I. A similar statement for A2
S

follows from the property that any subgroup of a finitely generated metabelian group is finitely
generated (as a normal subgroup) [19].

The equality t(z1,...,2n) = t(y1,. .., yn) is deducible in A? from the set ¥ = %1 (x) U X (y) U
{t;(x) = t;(y) | i € N} of relations for a group C, and so it is deducible in A? from some finite
subset of this set. Hence there exists a natural number k such that t(x1,...,2,) = t(y1,...,yn) is
a consequence of Yo = N1 () US (y) U {t;(z) = ti(y) |i=1,...,k} in A%

Consider groups C; and F which in \A? have the following representations:

Cl = gr(xla"' yLns Y1y - -5 Yn || El(x)azl(y)a{ti(x) = tl(y) ‘ L= 1?"'ak})?
F=gr(zy,...,z, || X1(x)).

If K is a subgroup of F' generated by elements t1(x),...,tx(x), then K is a free Abelian group
freely generated by these elements. Clearly, C; = F *5) F' is the free metabelian square of the
group F' with an amalgamated subgroup. In addition, the relation t(z1,...,2,) = t(y1,...,Yn) is
deducible in A? from the set Xy of relations. Therefore, a = b for values a = t(x1,...,7,) and
b=t(y1,...,yn) of these words in the group C;. This implies a = b € F* N FA = dom“}12 (K).

By Dyck’s theorem, there exists a natural homomorphism ¢ : C; — C. Since a¥ = a, ¢ H, we
have a ¢ K. Thus domjé12 (K) # K. The theorem is proved.

We may take a 2-generated group to be G, and so the proof of Theorem 1 entails

COROLLARY 2. There exists a free Abelian group of finite rank that is not 2-closed in the

class of metabelian groups.
Problem. Is an infinite cyclic group absolutely closed in the class of metabelian groups?

THEOREM 2. If a free Abelian group of finite rank & is not absolutely closed in the class of
metabelian groups, then every torsion-free Abelian group of rank k is not absolutely closed in A2,

Proof. First let G be an arbitrary metabelian group, with ¢ € G and n € N. We point out a
method for constructing a group G (a) in A? containing G, in which an nth root is extracted of
a. A similar argument was used in |20, proof of Lemma 3] (see also [21]).

Let Z, be a cyclic group of order n, c its generator, and K a basic subgroup of the wreath
product G Z,, of groups G and Z,. For any y € G, put y(z) = y for all z € Z,. Denote by
¢ : G — G Z, an embedding under which y¥ = y for each y € G. Consider C' = gr(cf, G¥),
where f(1) = a and f(x) = 1 with  # 1. The element ¢ centralizes the subgroup G¥. Therefore,
the commutator subgroup C’ of C' is contained in the commutator subgroup K’ of K; hence C
is a metabelian group. Note that (cf)"™ = a. Identifying the subgroup G¥ with the group G (i.e.,
identifying every element y € G with y) produces a group C such that G < C' and an nth root is
extracted of a. Put G (a) = C. The nth root of a constructed is denoted by {/a.

Two important properties of the group G™ (a) are the following:

(1) if a,b € G and [a,b] = 1, then elements {/a and b commute in G (a);
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(2) gr(Va,ag,...,am) NG = gr(a,az,...,ay), where a,as,...,a, are arbitrary pairwise
commuting elements of G.
Let G be a given torsion-free Abelian group of rank k, a1, ..., a; a maximal linearly independent

system of elements of GG, and
Ai={9€G|(En)(neN&n#0&g" € (a;))}

the isolator of a subgroup (a;) in G. It is not hard to see that G decomposes into a direct product
of its subgroups A, ..., A; and each group A; has rank 1. (In particular, A; is a locally cyclic
group.) We assume that Aq,..., A; are not cyclic groups, whereas A1, ..., Ay are infinite cyclic
ones. If [ = 0, then G is a free Abelian group of rank k, and by the hypothesis of the theorem, G
is not absolutely closed in A?. Suppose I > 0.

At the moment, we construct a sequence of groups Bi,...,B; as follows. First, fix some

representation of A;: namely,

A1 = gI‘(SUl,SUQ,I:)” ce H 56?7‘ = Ti—1, 1= 2,3, .. )
Take a group such as in Theorem 1 (denoted A) containing a free Abelian group H = gr(aq, ..., ax)
of rank k such that D = domf)(H) # H. Put

R1 = A, b1 = aj,
Ry = RU"™ (b)), by = "a/by;
Rit1 = R (by), by = "oon/by (i = 2,3,...).

Then R{ C Ro C R3 C.... Let By = URz

€N
A group Bj (j =2,...,1) is constructed given the representation
Aj =gr(zy,zo,z3,... || )" =xi_1,1=2,3,...)

as follows. Consider sequences like

Ty = Bj_1, by = aj,
Ty =T (by), by = ™2/by,

ey

Topy =T (by), brgr = ™ 0/by,

PutBj: Uﬂ,B:Bl
€N
The above construction for B shows that the subgroup C; generated by all roots of a; (i <)
is isomorphic to the group A;. Properties (1) and (2) for G (a) imply that the group M =
gr(Cy,...,Crap41, ..., a) decomposes into a direct product M = Cy X...x Cy X (aj+1) X ... %X (ag),
and so M = G. In addition, M N A = H.
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Since A C B and H C M, the definition of a dominion entails D = dom“j2 (H) C domgz(M).
Hence D C domeLZ(M)ﬂA. If dom/Bl2 (M) = M, then D C MNA = H, which is false. Consequently,
dom/B[Q(M ) # M. The theorem is proved.

It follows from the proof of Theorem 1 that as A we can take a 2-generated group. Then
the group B constructed from A is generated modulo M by two elements, i.e., has the form
B = gr(x,y, M). We derive the following:

COROLLARY 3. A torsion-free Abelian group of finite rank k (where k is as in the

formulation of Theorem 2) is not 2-closed in the variety of metabelian groups.

COROLLARY 4. There exists a torsion-free divisible Abelian group of finite rank that is not
2-closed in A2,

3. DOMINION OF THE ADDITIVE GROUP OF RATIONAL NUMBERS

THEOREM 3. Let G = gr(A, H) be a metabelian group and A and H groups. In addition, let
H be isomorphic to the additive group of rational numbers. Suppose also that the normal closure
M = H€ of the subgroup H in the group G is a torsion-free Abelian group, A’ N M = (1), and
M # [A, M]. Then dom’ (H) = H.

Proof. Fix an arbitrary nonidentity element h in H. First we show that H N [A4, M] = (1). If
u € A and t € M then [u,t] = t~"¢t. This implies that [A, M] is generated by elements of the form
hip~1 q € Q, a € A.

Next suppose that H N [A, M] # (1). Then h™ € [A, M] for some integer n. Hence A" can be
represented as

h"* = (hfhh—fhal) . (th h_Qlal)

for suitable rational numbers ¢1,...,q and suitable elements aq,...,a; € A. For each integer r,

r # 0, consider an element of the form
gr = (hr_l‘ﬂh_T_l‘““l) e (hr_lq’h_r_l‘““l).

Clearly, g € [A, M] and g = h™. Since the extraction of a root in a torsion-free Abelian group
is unique, we see that g, € H, so H C [A, M], and hence M C [A, M], which is false. Thus
HN[A,M] = (1). Note that the equalities AN M = (1) and H N [A, M] = (1) and the inclusion
H C M entail HNA'[A,M] = (1).

Consider a natural homomorphism ¢ : G — G/A'[A, M]. Since H N A'[A, M| = (1), ¢ maps
H onto H¥ isomorphically. Furthermore, G/A'[A, M] = H?A%. For H¥ is a divisible group, it is
distinguished by a direct factor in the Abelian group G%, i.e., G¥ = H¥ x B for a suitable subgroup
B of G¥. Let m : G¥ — HY be a projection and ¢ : H¥™ — G an isomorphic embedding under
which h¢™ = h. Then a map opmt) : G — H is identical on H, and so dom“G42 (H) = H. The

theorem is proved.
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Given GG, we construct a new group G. Let G = gr(a, H), H be a torsion-free Abelian group of

rank 1 (i.e., every two elements in H are linearly dependent), the normal closure M = H% = H H"

of H in G be a direct product of subgroups HY (1=0,...,k),and (a) N M = (1).

k
Fix an arbitrary nonidentity element h € H. An element patt! belongs to M = [[ H “l, and so

we can write it in the form
k
+1 _ H hliai‘
1=0

Here ly, ..., are appropriate (uniquely determined) rational numbers.
Let H;; = H, ¢;; : H — H;; be an isomorphism, and hii = h¥ii. Assume that Hog = H, poo 18
k

an identical map, and R = ][] H;;. Define automorphisms «, 3 : R — R that act on subgroups
i,j=0
k k
H H;; and H H;; as does the element a on the group M. The automorphisms « and 3 are defined

by the formulas
(R9)* =t for 0 < j<k—1, 0<i<k,
. ko 1
(ke = T1 ()5, 0 < i <k, ®

§=0
()8 = hiFbifor0<i<k—1, 0<j <k,
A ko 2
(Wh3)P = T, 0< < k. )
i=0
We show that af = Ba. Clearly, (h7)* = (h)5% for i # k and j # k. We compute (h**)*8 and
(R*)Be for i # k as follows:
' k k

(hzk)aﬁ _ H hz,j H hz+1,j
§=0

Jj=0

k
(hzk)ﬁ hz+1 k\a H hH_l’]
7=0

Similarly, for j # k, we derive

(hkj)aﬂ _ (hk,jJrl)ﬁ _ ﬁ(hi,j+1)li’
k izok
(hkj)ﬁa _ H((hij)li)a _ H(hi’j+1)li.
=0 1=0

Now we find (h*¥)*# and (h**)5<: namely,

L k
(hkk) H hk] _ H (H hz] ) H (hij)lilj’

Jj=0 Jj=0 ,5=0
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k

k « k k .
(hkk)ﬂa _ (H(hzk)lz> _ H H(hlj — H (hij)lilj'

i=0 i=0 \j=0 i,j=0

We see that (b)) = (h7)5% ie. aff = fo.

Consider a group B = (b1) x (b2), where |by| = |ba| = |a|. Let v : B — gr(a,3) be a
homomorphism under which b] = «, by = 3. This gives rise to a semidirect product G = RAB of
groups R and B. Therefore, G is the desired metabelian group.

If G = gr(a, H), H is a torsion-free Abelian group of rank 1, the normal closure M = HS =

II H is a direct product of subgroups H® (I € Z), and (a) N M = (1), then the group G
leZ
is constructed in a similar manner. In this event R = [[ H;; and the definition of G defies

6T
equalities (1) and (2).

THEOREM 4. Let G = gr(a, H), where H is isomorphic to the additive group of rational
numbers. Suppose that the normal closure M = HY of H in G is a torsion-free Abelian group.
Then dom#’ (H) = H.

Proof. Note that if G is an Abelian group then dom}(H) = H in view of [6, Thm. 1|. Below
we assume that G is non-Abelian.

We claim that (a) N M = (1). Suppose (a) N M # (1). Let n be the least positive integer for
which a™ # 1 and a”™ € M. Since a” € M and M is a divisible Abelian group, @™ = v™ for some
v € M. This yields (v")* = v". Keeping in mind that M is an Abelian group and v,v* € M,
we conclude that (v%v~!)" = 1. On the other hand, M is torsion free, and hence v®v~! = 1. The
equality a” = v" entails (av™1)" = 1. If (av™1)" € M for some 7, 0 < r < n, then a” € M, which
is a contradiction with n being minimal. Thus (av~') N M = (1). Obviously, M is contained in the
group gr(av—!, H), whence G = gr(av™!, H). If we take an element av~! in place of a we face the
case (a) N M = (1), as claimed.

Thus we will assume that (a) " M = (1). Consider M as a vector space over a field Q of
rational numbers. Obviously, a induces a linear transformation of the vector space M (a acts on
M by conjugation). Fix an arbitrary nonidentity element h € H. If M is an infinite-dimensional

ector space, then ' |1 €7} is its basis. Hence M = g is a finite-dimensional vector
vect then {h® |l € Z} is its basis. H M H®* . 1f M is a finite-di ional vect
leZ

k
space, then the set {h“l |l=0,...,k} is a basis in M for some k. Hence M = [] H® . Therefore,

1=0
the above-described construction can be applied to G.
~ k
Consider the group G. First let M = [[ H o' Tt is not hard to see that
=0

gr(Hoo, b1) = gr(Hoo, Hot, - - -, Hox, b1) = G,
gr(Hoo, b2) = gr(Hoo, Hio, - - -, Hyo, b2) = G,
gr(Hoo, b1) Ngr(Hoo, b)) = Hop = H.
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This implies dom#” (H) = H. If M = [[ H, then

leZ

gr(Hoo, b1) = G, gr(Hoo, b2) =2 G, gr(Hoo,b1) Ngr(Hoo, b2) = Hoo = H,

and so domé12 (H) = H. The theorem is proved.
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