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It is proved that a free solvable group of derived length at least 4 has an algorithmically
undecidable universal theory.

INTRODUCTION

In [1], it was proved that a free solvable group of derived length at least 2 has an algorithmically
undecidable elementary theory. In [2], it was stated that a free metabelian group of derived length
2 and some other solvable groups, for instance, left-iterated direct wreath products of torsion-free
Abelian groups, have decidable universal theories. In particular, it was pointed out that a noncyclic
free metabelian group and a direct wreath product of two nontrivial torsion-free Abelian groups are
universally equivalent (i.e., have the same universal theory). Universal theories for free metabelian
groups, as well as for groups close to these, were explored further in [3, 4]: axiomatics was worked
out, properties of theories were investigated, and so on.

For free solvable groups of derived length at least 3, groups of different ranks are also universally
equivalent to each other. The question whether their universal theories are decidable was taken up
in [5]. It was established that an arbitrary Diophantine equation over the field of rational numbers
is interpreted via ∃-formulas in a free solvable group of derived length at least 3; however, the
question if the Diophantine problem is decidable over Q remains open. The main result of the
present paper is the following:

THEOREM. A free solvable group F of derived length at least 4 has an undecidable universal
theory, or, which is equivalent, an undecidable ∃-theory.
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The proof is based on the interpretation of an arbitrary Diophantine equation in a group F

over Z by using methods outlined in [1, 5] and by applying a theorem in [6], which states that the
Diophantine problem is undecidable over Z. Possibly, a similar scheme can also be realized for a
free solvable group of derived length 3.

1. AUXILIARY STATEMENTS

As usual, if G is a group, and x, y ∈ G, then xy = y−1xy and [x, y] = x−1y−1xy. An ith member
in a series of commutator subgroups of G is denoted by G(i).

LEMMA 1. If two elements f1 and f2 of a free solvable group F2 of derived length 2 are linearly
independent modulo a commutator subgroup F ′

2, then an eigenvalue of a commutator [f1, f2] is
not extracted.

Proof. We may assume that our group has finite rank. Note that the commutator [f1, f2] under
consideration is left invariant under elementary transformations of a system {f1, f2} of the form

fi → fm
j fi, fj → fj, i 
= j, m ∈ Z.

Recall that elements of a free Abelian group of finite rank (such is F2/F
′
2 for instance) can be

identified with integer-valued rows of respective lengths. A matrix with two rows, via elementary
transformations of rows and columns over Z (column transformations correspond to elementary
transformations of a basis for a free Abelian group), can be reduced to a generalized diagonal
form, i.e., one where nonzero elements may only capture the positions (1, 1) and (2, 2). Using this
argument, we can reduce the problem to the case where f1 ≡ xm

1 , f2 ≡ xn
2 mod F ′

2, m,n > 0, and
{x1, x2, . . .} is a basis for a free solvable group F2 of derived length 2. We may also assume that
the rank of F2 equals exactly 2, i.e., F2 = 〈x1, x2〉.

Let A be a free Abelian group with basis {a1, a2} and T a right free ZA-module with basis
{t1, t2}. In view of [7], if we put

x1 =

(
a1 0

t1(a1 − 1) 1

)
, x2 =

(
a2 0

t2(a2 − 1) 1

)
,

then we obtain an embedding of F2 in a matrix group

(
A 0
T 1

)
. In this case

(
a 0

t1u1 + t2u2 1

)
∈ F2 ⇐⇒ ui ∈ (ai − 1) · ZA, u1 + u2 = a− 1. (1)

In particular, (
a 0

t1u1 + t2u2 1

)
∈ F ′

2 ⇐⇒a = 1, u1 = −u2 = (a1 − 1)(a2 − 1)u,

u ∈ ZA.

(2)
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Let f1 = xm
1 g1 and f2 = xn

2g2, g1, g2 ∈ F ′
2. We have

[f1, f2] = [xm
1 , xn

2 ][xm
1 , g2][g1, x

n
2 ], [xm

1 , xn
2 ] =

(
1 0

(t1 − t2)(am
1 − 1)(an

2 − 1) 1

)
.

Let

[f1, f2] =

(
1 0
w 1

)
, g1 =

(
1 0
w1 1

)
, g2 =

(
1 0
w2 1

)
.

By virtue of (2),

w1 = (t1 − t2)(a1 − 1)(a2 − 1)u1, w2 = (t1 − t2)(a1 − 1)(a2 − 1)u2,

where u1, u2 ∈ ZA. Consequently,

w = (t1 − t2)((am
1 − 1)(an

2 − 1) + (a1 − 1)(a2 − 1)(u1(an
2 − 1)− u2(am

1 − 1))).

Assume on the contrary that a pth root, where p is a prime, of [f1, f2] is extracted. This means
that modulo p, i.e., in the group ring of A over a field Z/pZ consisting of p elements, the following
equality holds:

(am
1 − 1)(an

2 − 1) = (a1 − 1)(a2 − 1)(−u1(an
2 − 1) + u2(am

1 − 1)). (3)

Let m = pkr and n = pls, where r and s are relatively prime to p. Then (3) is equivalent to

(ar
1 − 1)p

k
(as

2 − 1)p
l
= (a1 − 1)(a2 − 1)(−u1(as

2 − 1)p
l
+ u2(ar

1 − 1)p
k
). (4)

If we expand the left-hand side of (4) in powers of a1−1 and a2−1, then a monomial of minimal
degree in this expansion will be equal to (a1−1)p

k
(a2−1)p

l . Therefore, we may assert that the left-
hand side does not belong to the ideal of the group ring generated by elements (a1− 1)(a2− 1)p

l+1

and (a2 − 1)(a1 − 1)p
k+1. This fact becomes obvious if we embed the ring Z/pZ[A] in a ring of

formal power series in b1 = a1 − 1 and b2 = a2 − 1 over Z/pZ. However, the right-hand side of (4)
belongs to the ideal mentioned. The lemma is proved.

COROLLARY. Let Fm be a free solvable group of derived length m ≥ 3 and f1 and f2 be
elements which lie in F

(i)
m \F

(i+1)
m and are linearly independent modulo F

(i+1)
m . Then for i ≤ m− 2

the centralizer of an element [f1, f2] coincides with a cyclic subgroup generated by this element.
Proof. We know from [1] that the centralizer of any element of a free solvable group, which

does not sit in the last nontrivial commutator subgroup, is cyclic. Therefore, it suffices to observe
that a root of [f1, f2] in Fm is not extracted. This follows from the fact that the subgroup F

(i)
m is

isolated in Fm and F
(i)
m /F

(i+2)
m is a free solvable group of derived length 2, and from the statement

of Lemma 1. The corollary is proved.

LEMMA 2. Let F be a free solvable group. Then the conditions

x ∈ F (i), x ≡ y mod F (i),
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as well as their negations, are written in a group signature by using ∃-formulas in free variables x

or x, y, respectively.
Proof. The required statement follows from [1] (where it is proved that the condition x ∈ F (i)

is expressed via a ∀-formula) and from [5] (where it is stated that this condition is expressed via
an ∃-formula as well). A more general statement, in which an arbitrary rigid solvable group with
a respective rigid series is taken in place of F , was proved in [8, Prop. 5].

2. PROOF OF THE THEOREM

Thus we are proving that a free solvable group F of derived length m ≥ 4 has an undecidable
∃-theory. By Lemma 2, the conditions x ∈ F (4) and x /∈ F (4) are expressed via ∃-formulas. Under
the passage to a factor group F/F (4), therefore, the problem reduces to the case where F is a free
solvable group of derived length 4.

We make some more comments. If a ∈ F ′ \F ′′ and b ∈ F \F ′, then a and ab lie in F ′ \ F ′′ and
are linearly independent modulo F ′′. By the corollary to Lemma 1, the centralizer of an element
c = [a, ab] coincides with a cyclic subgroup generated by this element. Note also that elements c

and d = cb lie in F ′′ \ F (3) and are linearly independent modulo F (3).
Since the Diophantine problem is undecidable over Z [6], to prove the theorem, it suffices to

use an ∃-formula to interpret in the group under consideration an arbitrary formula

∃z1, . . . , zn (P (z1, . . . , zn) = 0),

where P (z1, . . . , zn) is an integer polynomial and values for variables zi are sought for in Z. The
formula ∃z1, . . . , zn (P (z1, . . . , zn) = 0) is equivalent to some formula

∃y1, . . . , ym Φ(y1, . . . , ym), (5)

where Φ(y1, . . . , ym) is a conjunction of equalities like yi + yj = yk, yiyj = yk, yi = 1, and yi = 0.
We will interpret yi as exponents of the above element c. More specifically, with formula (4) in a
ring signature we associate a formula in a group signature, namely,

∃a, b, c, d, x1, . . . , xm (a ∈ F ′ \ F ′′ ∧ b ∈ F \ F ′ ∧ c = [a, ab]

∧ d = cb ∧ [x1, c] = 1 ∧ . . .

∧ [xm, c] = 1 ∧ Ψ(x1, . . . , xm)),

(6)

where Ψ(x1, . . . , xm) is obtained from Φ(y1, . . . , ym) by making the following replacements:
yi + yj = yk → xixj = xk;
yi = 1 → xi = c;
yi = 0 → xi = 1;
yiyj = yk → ∃u, v,w ([u, xid] = 1 ∧ [v, d] = 1 ∧ [w, cd] = 1 ∧ w ≡ xjv mod F (3) ∧ u ≡ xkv

mod F (3)).
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Thus we assume that (5) is satisfied on F . Then appropriate values for xi will be of the form
cyi , where yi ∈ Z. We claim that for a given tuple (y1, . . . , ym), Φ(y1, . . . , ym) will be satisfied. This
follows from the fact that for (x1, . . . , xm) = (cy1 , . . . , cym), the relations below hold:

(1) yi + yj = yk ⇔ xixj = xk;
(2) yi = 1 ⇔ xi = c;
(3) yi = 0 ⇔ xi = 1;
(4) yiyj = yk ⇔ ∃u, v,w ([u, xid] = 1∧ [v, d] = 1∧ [w, cd] = 1 ∧ w ≡ xjv mod F (3)∧u ≡ xkv

mod F (3)).
Relations (1)-(3) are obvious; (4) was proved in [5]. We give a short proof for (4). Since u, v, and

w commute with xid, d, and cd, respectively, it follows that u = (xid)r1 , v = dr2 , and w = (cd)r3 ,
where r1, r2, and r3 are, broadly speaking, rational numbers (here use is made of the fact that F

satisfies the condition of being unique for extraction of roots). Further, we consider congruences
modulo F (3). We have u ≡ cyir1dr1 and w ≡ cr3dr3 . From w ≡ xjv, we derive cr3dr3 ≡ cyjdr2 , and
hence r3 = yj = r2. From u ≡ xkv, we obtain cyir1dr1 ≡ cykdr2 , whence r1 = r2 = yj and yk = yiyj.

Thus the fact that formula (5) is valid on F implies being valid for (4) on Z. It is easy to see
that the converse is also true. The theorem is proved.

REFERENCES

1. A. I. Mal’tsev, “Free solvable groups,” Dokl. Akad. Nauk SSSR, 130, No. 3, 495-498 (1960).

2. O. Chapuis, “Universal theory of certain solvable groups and bounded Ore group rings,” J.
Alg., 176, No. 2, 368-391 (1995).

3. O. Chapuis, “∀-free metabelian groups,” J. Symb. Log., 62, No. 1, 159-174 (1997).

4. V. Remeslennikov and R. Stohr, “On the quasivariety generated by a non-cyclic free
metabelian group,” Alg. Colloq., 11, No. 2, 191-214 (2004).

5. O. Chapuis, “On the theories of free solvable groups,” J. Pure Appl. Alg., 131, No. 1, 13-24
(1998).

6. Yu. V. Matiyasevich, “Being Diophantine for enumerable sets,” Dokl. Akad. Nauk SSSR, 191,
No. 2, 279-282 (1970).

7. N. S. Romanovskii, “Shmel’kin embeddings for abstract and profinite groups,” Algebra Logika,
38, No. 5, 598-612 (1999).

8. A. G. Myasnikov and N. S. Romanovskii, “Universal theories for rigid soluble groups,” Algebra
Logika, 50, No. 6, 802-821 (2011).

263


	INTRODUCTION
	1. AUXILIARY STATEMENTS
	2. PROOF OF THE THEOREM
	REFERENCES

