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We study the interpolation and Beth definability problems in propositional extensions of
minimal logic J. Previously, all J-logics with the weak interpolation property (WIP)
were described, and it was proved that WIP is decidable over J. In this paper, we
deal with so-called well-composed J-logics, i.e., J-logics satisfying an axiom (⊥ →
A) ∨ (A → ⊥). Representation theorems are proved for well-composed logics possessing
Craig’s interpolation property (CIP) and the restricted interpolation property (IPR).
As a consequence, we show that only finitely many well-composed logics share these
properties and that IPR is equivalent to the projective Beth property (PBP) on the
class of well-composed J-logics.

INTRODUCTION

We deal with the interpolation and definability problems in propositional extensions of minimal
logic J. The minimal logic introduced by Johansson [1] has the same positive fragment as
the intuitionistic logic but has no special axioms for negation. As distinct from classical and
intuitionistic logics, minimal logic admits nontrivial theories containing some proposition together
with its negation.

The interpolation theorem proved by Craig [2] for classical first-order logic initiated a
comprehensive study on the interpolation problem in classical and nonclassical theories [3, 4].
At present, interpolation, along with consistency, completeness, and so on, is recognized as a
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standard property of logics. For intuitionistic predicate logic and for Johansson’s minimal logic, an
interpolation theorem was proved by Shutte [5]. A semantic proof for the interpolation theorem
in intuitionistic predicate logic was obtained by Gabbay [6]. The interpolation property is closely
connected with the Beth definability property [7], which is also widely used in the literature.

A family of extensions of Johansson’s minimal logic J contains all superintuitionistic logics, for
which the interpolation problem was resolved in [8]. It was proved that there are finitely many
superintuitionistic logics with Craig’s interpolation property (CIP) and that there is an algorithm
for recognizing CIP in superintuitionistic calculi. All superintuitionistic logics with the projective
Beth property (PBP) were described in [9]. It was stated that such logics are finite in number and
that PBP is decidable over the intuitionistic logic Int [10]. Similar results were derived for positive
logics containing a positive fragment of the intuitionistic logic Int+ [11] and for negative J-logics.

The interpolation property admits of different versions, which are equivalent in classical logic
but are not equivalent in other logics. It turned out that PBP, which follows from CIP, implies a
restricted interpolation property (IPR) on the class of all J-logics. Moreover, IPR and PBP are
equivalent on the classes of superintuitionistic, positive, and negative logics [12, 13].

In [14], we looked into the weak interpolation property (WIP) introduced in [15]. In [16], it was
proved that in all extensions of minimal logic, WIP is equivalent to a weak version of Robinson’s
joint consistency. In [15], it was shown that all propositional superintuitionistic logics possess WIP.
Since only finitely many propositional superintuitionistic logics have IPR, WIP and IPR are not
equivalent over the intuitionistic logic. Moreover, WIP and IPR are not equivalent over the minimal
logic J. Note that WIP is nontrivial in propositional extensions of minimal logic: a set of J-logics
with WIP and a set of J-logics without WIP have the cardinality of the continuum [16].

In [16], an algebraic counterpart of WIP was found—namely, the weak amalgamation property.
It was proved that the problem whether WIP is valid in J-logics reduces to treating extensions of
a logic Gl, which is obtained by adding the law of excluded middle to the logic J. In [14], all logics
with the weak interpolation property over Gl were described, logics with WIP over J were classified,
and WIP was proved decidable over J. This means that there exists an algorithm which, given any
finite set of axiom schemes, decides whether WIP is valid in a calculus obtained by adding these
axiom schemes to Johansson’s.

In [17], a complete description was found for logics over Gl possessing CIP, PBP, or IPR, and
these properties were proved decidable over the logic Gl. Also it was stated that PBP and IPR are
equivalent over Gl.

In this paper we are concerned with so-called well-composed J-logics, i.e., J-logics satisfying an
additional axiom (⊥ → A) ∨ (A → ⊥). The study of such logics was initiated in [18]. Our present
objective is to obtain representation theorems for well-composed logics possessing CIP, PBP, or
IPR. As a consequence, we will prove that only finitely many well-composed logics share these
properties and that PBP and IPR are equivalent on the class of well-composed J-logics.
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1. INTERPOLATION AND DEFINABILITY

The language of the logic J contains &, ∨, →, ⊥, and � as primitive connectives; a negation
is defined as an abbreviation ¬A = A → ⊥; (A ↔ B) = (A → B)&(B → A). A formula is said
to be positive if it contains no occurrences of the constant ⊥. The logic J can be axiomatized by a
calculus which has the same axiom schemes as the positive intuitionistic calculus Int+, and modus
ponens (A,A → B /B) as the only rule of inference. More specifically, J is defined by the following
axiom schemes:

(1) A → (B → A);
(2) (A → (B → C)) → ((A → B) → (A → C));
(3) A&B → A;
(4) A&B → B;
(5) A → (B → A&B);
(6) A → A ∨ B;
(7) B → A ∨ B;
(8) (A → C) → ((B → C) → (A ∨ B → C)).
By a J-logic we mean any set of formulas that contains all axioms of the calculus J and is closed

under modus ponens and substitution. Put

Int = J + (⊥ → p), Cl = Int + (p ∨ ¬p), Neg = J + ⊥, Gl = J + (p ∨ ¬p),

JX = J + ((⊥ → p) ∨ (p → ⊥)), For = J + p.

A logic is said to be nontrivial if it does not coincide with the set For of all formulas. A
superintuitionistic logic is a J-logic that contains the intuitionistic logic Int. A negative logic is
a J-logic that contains the logic Neg. A logic L is paraconsistent if it includes neither Int nor Neg.
We can prove that a J-logic is negative iff it is not contained in Cl. For any J-logic L, E(L) denotes
a family of all J-logics containing L.

We write Γ �L A if a formula A is deducible from L ∪ {A} via modus ponens. If p is a list of
variables, then we denote by A(p) a formula whose variables are all in p, and by F(p) the set of
all such formulas. Let L be a logic and �L a deducibility relation in L. Suppose that p, q, and q′

are pairwise disjoint lists of variables not containing x and y, q and q′ are equal in length, and
A(p,q, x) is a formula.

We say that L has the projective Beth property (PBP) if A(p,q, x), A(p,q′ , y) �L (x ↔ y)
implies A(p,q, x) �L (x ↔ B(p)) for some formula B(p). L has the Beth property (BP) if
A(p, x), A(p, y) �L (x ↔ y) implies A(p, x) �L (x ↔ B(p)) for a suitable formula B(p).

A formula B(p) is called an explicit definition for x.
PBP and BP were taken up, for instance, in [19] where they were denoted PB2 and B2.

Obviously, B2 is a partial case of PB2. In [19], also, PB1 and B1, versions of respectively the
projective Beth property and the Beth property, were defined. For the logics under consideration
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here, PB1 and B1 are equivalent to PB2 and B2, respectively. In addition, it was stated in [20]
that all superintuitionistic logics possess BP. In a similar manner, we can prove the Beth property
for all logics in this paper.

As in [2], the projective Beth property may be deduced from the Craig interpolation property
(CIP) if �L A(p,q) → B(p, r), then there exists a formula C(p) such that �L A(p,q) → C(p)

and �L C(p) → B(p, r) (p, q, and r are pairwise disjoint).
A formula C(p) is called an interpolant.
In view of the deduction theorem, CIP in J-logics is equivalent to the deductive interpolation

property
(IPD) if A(p,q) �L B(p, r), then there exists a formula C(p) such that A(p,q) �L C(p) and

C(p) �L B(p, r).
In [21], we introduced the restricted interpolation property
(IPR) if A(p,q), B(p, r) �L C(p), then there exists a formula A′(p) such that A(p,q) �L A′(p)

and A′(p), B(p, r) �L C(p).
In [8], we brought up for consideration the weak interpolation property
(WIP) if A(p,q), B(p, r) �L ⊥, then there exists a formula A′(p) such that A(p,q) �L A′(p)

and A′(p), B(p, r) �L ⊥.
For all J-logics, the following holds:

CIP ⇐⇒ IPD ⇒ PBP ⇒ IPR ⇒ WIP.

Furthermore, PBP does not imply IPD, while WIP does not imply IPR even on the class of
superintuitionistic logics. For superintuitionistic, positive, and negative logics, IPR and PBP were
proved equivalent. The question whether these properties are equivalent in J-logics is still not
settled.

In [8], we obtained a description of all propositional superintuitionistic logics with the Craig
interpolation property. There exist only finitely many superintuitionistic logics possessing CIP. All
positive logics with CIP were described in [11] where, too, we initiated a study of this property in
extensions of Johansson’s minimal logic.

Below are several well-known facts on interpolation properties in extensions of minimal logic.

PROPOSITION 1.1 [9]. There exist exactly 16 superintuitionistic logics with the projective
Beth property PBP, of which precisely 8 have CIP. These logics are all finitely axiomatixable and
residually finite.

A list of superintuitionistic logics with CIP includes Int, LS, Cl, and a trivial logic For. The
logic Cl is greatest among consistent superintuitionistic logics, while LS is greatest among consistent
superintuitionistic logics distinct from Cl. The logic Cl is characterized by a two-element Boolean
algebra B0, and LS by a three-element linearly ordered Heyting algebra C1.

PROPOSITION 1.2 [11]. There exist exactly 7 negative logics with the projective Beth
property PBP, of which precisely 4 have CIP. These logics are all finitely axiomatizable and
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residually finite.
A list of negative logics with CIP includes the following:

Neg, NC = Neg + (p → q) ∨ (q → p), NE = Neg + p ∨ (p → q), For = Neg + p.

The logic NC is characterized by linearly ordered negative algebras, and NE by a two-element
negative algebra.

PROPOSITION 1.3. For all superintuitionistic and negative logics, IPR and PBP are
equivalent.

Proof. For superintuitionistic logics, this was stated in [12]. For negative logics, the result
follows immediately from the equivalence of these properties in positive logics, proved in [13]. �

All superintuitionistic and negative logics possess WIP. This, however, does not extend to all
J-logics [14]. The problem whether WIP is valid in J-logics reduces to treating extensions of a logic
Gl = J + (p ∨ (p → ⊥)).

PROPOSITION 1.4 [16]. A J-logic L has WIP if and only if L + Gl has WIP.
All extensions of Gl and J with WIP were described in [14]. A set of logics with WIP over Gl

and a set of logics without WIP have the cardinality of the continuum. A complete description of
extensions of the logic Gl possessing CIP, IPR, or PBP is given in [17]. In particular, it was proved
that there exist only finitely many such logics. Furthermore, IPR and PBP are equivalent over the
logic Gl.

We say that a property P is decidable over a logic L if there exists an algorithm which, given
any finite set of axiom schemes Ax, decides if the logic L + Ax possesses the property P.

PROPOSITION 1.5 [14, 17]. WIP is decidable over J. CIP, PBP, and IPR are decidable
over Gl.

2. ALGEBRAIC SEMANTICS

Algebraic semantics for extensions of minimal logic is constructed by using so-called J-algebras,
i.e., algebras A = 〈A; &,∨,→,⊥,�〉 satisfying the following conditions:

〈A; &,∨,→,�〉 is an implicative lattice, i.e., a lattice with respect to & and ∨, with the greatest
element �;

z ≤ x → y ⇐⇒ z&x ≤ y;
⊥ is an arbitrary element of A.
A J-algebra is called a Heyting (or pseudo-Boolean) algebra if ⊥ is the least element of A. A

J-algebra is called a negative algebra if ⊥ is the greatest element of A. A one-element J-algebra E
is said to be unique or degenerate; it is the only algebra that is simultaneously a negative algebra
and a Heyting algebra.
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A J-algebra A is nondegenerate if it contains at least two elements. A J-algebra A is well
connected or strongly compact if

x ∨ y = � ⇔ (x = � or y = �)

for all x, y ∈ A. An element Ω of an algebra A is called an opremum of the algebra A if it is
greatest among elements of A other than �. We denote a two-element Boolean algebra by B0, and
a three-element Heyting algebra by C1.

Recall that a nondegenerate algebra is subdirectly irreducible if it cannot be represented as a
subdirect product of factors distinct from the algebra. An algebra is finitely indecomposable if it
cannot be represented as a subdirect product of finitely many factors distinct from the algebra.

By a well-known theorem of Birkhoff (see, e.g., [22]), every variety is generated by a class of its
subdirectly irreducible algebras and, hence, by a class of finitely indecomposable algebras.

The lemma below, which is known for Heyting algebras (see, e.g., [8]), extends readily to J-
algebras.

LEMMA 2.1. For every J-algebra A, the following conditions hold:
(a) A is finitely indecomposable if and only if a one-element filter ∇ = {�} is prime, i.e., A is

well connected;
(b) A is subdirectly irreducible if and only if A has an opremum.
The next lemma is well known and easily proved.
LEMMA 2.2 (a) Every nondegenerate Heyting algebra contains B0 as a subalgebra.
(b) If A is a subdirectly irreducible Heyting algebra and its opremum Ω is distinct from ⊥,

then the set {⊥,Ω,�} forms a subalgebra of A isomorphic to C1.
If A and B are partially ordered sets such that A has a greatest element and B has a least

element, then we define a new set C = A + B as follows:
take a set C = A∪B′, where B′ is isomorphic to B and its least element is glued to the greatest

element of A, while other elements do not enter A, and moreover, C is partially ordered by the
relation

x ≤C y ⇔ [(x ∈ A and y ∈ B′) or (x, y ∈ A and x ≤A y)
or (x, y ∈ B′ and x ≤B′ y)].

Thus A and B can be treated as intervals of the partially ordered set C. By definition, A and
B are sublattices of C. If A and B are implicative lattices, then C likewise is an implicative lattice,
and the operation → satisfies the following conditions:

x →C y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

� if x ≤C y,

x →A y if x, y ∈ A, x�≤Ay,

x →B′ y if x, y ∈ B′,

y if x ∈ B′, y ∈ A− {�A}.
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We recall a construction from [18]. If A = 〈A; &,∨,→,⊥,�〉 is a negative algebra and B =
〈B; &,∨,→,⊥,�〉 is a Heyting algebra, then we define a new J-algebra C = A↑B to be a J-algebra
with universe A + B, where ⊥C = ⊥A = �A = ⊥B′ . Clearly, �C = �B′ . In particular, every
negative algebra A and every Heyting algebra B are representable as A↑E and E↑B, respectively.
We say that a J-algebra is well composed if it is of the form A↑B for a suitable negative algebra
A and for a suitable Heyting algebra B.

Of special importance in the paper are well-composed algebras like A↑B0, where B0 is a two-
element Boolean algebra. For a negative algebra A, we define

AΛ = A↑B0.

Obviously, all J-algebras AΛ are subdirectly irreducible and have ⊥ as an opremum.
The definition readily entails

LEMMA 2.3. (1) An algebra B is isomorphic to a subalgebra of C = A↑B.
(2) An algebra A is a homomorphic image of the algebra A↑B under the homomorphism

f(z) = z&⊥.

(3) A is a subalgebra of A↑B if and only if B is a degenerate algebra.
For any well-composed algebra A, the following algebras are defined uniquely:

Al = {x ∈ A | x ≤ ⊥} and Au = {x ∈ A | x ≥ ⊥},

with Al a negative algebra, Au a Heyting algebra, and A = (Al↑Au).

LEMMA 2.4 [18]. Let A and B be well-composed algebras.
(1) A mapping α : A → B is a monomorphism if and only if its restrictions αl and αu to Al

and Au, respectively, are monomorphisms of Al into Bl and of Au into Bu.
(2) For any homomorphism h : A → B, exactly one of the following conditions holds:
(a) h(⊥) = �B and the restriction hl of a mapping h to Al is a homomorphism of Al into B;
(b) h(⊥) �= �B, the restriction hu of h to Au is a homomorphism of Au into Bu, and the

restriction hl of h to Al is a monomorphism of Al into Bl.
(3) Let h1 : Al → B be a homomorphism. Then B is a negative algebra, and a mapping defined

by setting

h(x) =

⎧⎨
⎩� if x ∈ Au,

hl(x) if x ∈ Al

is a homomorphism of A into B.
(4) Let α1 : Al → Bl be a monomorphism and h2 : Au → Bu a homomorphism. Then a

mapping defined by setting

h(x) =

⎧⎨
⎩h2(x) if x ∈ Au,

α1(x) if x ∈ Al
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is a homomorphism of A into B.
It is well known that a family of J-algebras form a variety, and there is a one-to-one

correspondence between logics containing J and varieties of J-algebras. If A is a formula and
A is an algebra, then we say that the formula A is valid in the algebra A, and write A |= A, if A

satisfies an identity A = �. Instead of (∀A ∈ L)(A |= A), we write A |= L.
In correspondence with every logic L ∈ E(J) is a variety of J-algebras such as

V (L) = {A | A |= L}.

Every logic is characterized by a variety V (L). We say that a logic L is generated by some class of
algebras if a variety V (L) is generated by that class. If V (L) is generated by an algebra A, then
sometimes we write L = LA.

If L ∈ E(Int), then V (L) is a variety of Heyting algebras, and if L ∈ E(Neg), then V (L)
is a variety of negative algebras. Clearly, the intersection of two J-logics is again a J-logic. An
axiomatization of intersection can be easily found given an axiomatization for initial logics. For
formulas A and B, A ∨′ B denotes a disjunction A ∨ B′, where B′ is obtained by replacing all
variables in B with new variables not in A.

LEMMA 2.5. Let L be an intersection of two J-logics L1 and L2. Then:
(1) L is axiomatizable by formulas A ∨′ B, where A is an axiom for L1 and B is one for L2;
(2) a finitely indecomposable algebra A belongs to V (L) if and only if A ∈ (V (L1) ∪ V (L2)).
Proof. (1) An argument is similar to the proof of a theorem of Miura [23].
(2) The result follows from item (1) and Lemma 2.1. �

For L1 ∈ E(Neg) and L2 ∈ E(Int), we denote by L1↑L2 a logic characterized by all algebras
of the form A↑B, where A |= L1 and B |= L2, and by L1⇑L2 a logic characterized by a class of
algebras of the form A↑B, where A is a finitely indecomposable algebra in V (L1) and B ∈ V (L2).
In particular, if L1 is the trivial logic For, then L1↑L2 and L1⇑L2 coincide with L2. If L2 is trivial,
then L1↑L2 and L1⇑L2 coincide with L1.

As an example we consider a logic Gl = J + (p ∨ ¬p).

PROPOSITION 2.6. A logic Gl = J + (p ∨ ¬p) coincides with Neg↑Cl and is generated by
a class {AΛ | A is a negative algebra}.

An axiomatization for logics like L1↑L2 and L1⇑L2, where L1 is a negative logic and L2 is a
superintuitionistic logic, was found in [18]. Following [24], we put

I(A(p1, . . . , pn)) = A(p1 ∨ ⊥, . . . , pn ∨ ⊥),

L2 ∗ L1 = J + {(⊥ → A) | A ∈ L1} + {I(A) | A ∈ L2}.

In [24], it was shown that if L1 = Neg + Ax1 and L2 = Int + Ax2, then

L2 ∗ L1 = J + {(⊥ → A) | A ∈ Ax1} + {I(A) | A ∈ Ax2}.
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In addition, we set
JX = J + ((⊥ → p) ∨ (p → ⊥)).

PROPOSITION 2.7 [14]. For any negative logic L1 and any superintuitionistic logic L2, the
following equalities hold:

L1↑L2 = JX + (L2 ∗ L1),

L⇑L2 = (L2↑L1) + ((⊥ → p ∨ q) → (⊥ → p) ∨ (⊥ → q)).

In particular, JX = Neg↑Int.
Analogously to Proposition 2.6, we have

PROPOSITION 2.8 [14]. For any negative logic L, the logic L↑Cl is generated by a class of
algebras AΛ, where A ∈ V (L), and the logic L⇑Cl is generated by a class of algebras AΛ, where
A is a finitely indecomposable algebra in V (L).

3. INTERPOLATION, THE PROJECTIVE BETH PROPERTY,
AND AMALGAMABILITY

Recall that a J-logic possesses the Craig interpolation property iff a variety V (L) has the
amalgamation property (AP) [11]. With J-algebras, AP is equivalent to the superamalgamation
property (SAP). We recall relevant definitions.

Let V be a class of algebras closed under isomorphisms. A class V is amalgamable if, for any
algebras A, B, and C in V , the class V satisfies the condition

(AP) if A is a common subalgebra of B and C, then there exist an algebra D in V and
monomorphisms δ : B → D and ε : C → D such that δ(x) = ε(x) for all x ∈ A.

A triple (D, δ, ε) is called an amalgam for A, B, and C. We say that a class V possesses SAP
if any algebras A, B, and C in V satisfy AP, and moreover, the following relations hold in D:

δ(x) ≤ ε(y) ⇐⇒ (∃z ∈ A)(x ≤ z and z ≤ y),

δ(x) ≥ ε(y) ⇐⇒ (∃z ∈ A)(x ≥ z and z ≥ y).

A class V possesses a restricted amalgamation property [21] if V satisfies the condition
(RAP) For any A,B,C ∈ V such that A is a common subalgebra of B and C, there exist an

algebra D in V and homomorphisms δ : B → D and ε : C → D such that δ(x) = ε(x) for all
x ∈ A and the restriction δ′ of δ to A is a monomorphism.

The concept of restricted amalgamability in [9, 11] is defined in a different way: namely, a
class V has RAP∗ if AP is satisfied for any subdirectly irreducible algebras A, B, and C having a
common opremum.

A class V of algebras possesses strong epimorphisms surjectivity if V satisfies the condition
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(SES) For any A and B in V such that A is a subalgebra of B and for an arbitrary b ∈ B−A,
there exist an algebra C ∈ V and homomorphisms g : B → C and h : B → C such that g(x) = h(x)
for all x ∈ A and g(b) �= h(b).

We cite two theorems.

THEOREM 3.1 [11]. For any logic L in E(J), the following conditions are equivalent:
(1) L has Craig’s interpolation property;
(2) V (L) is amalgamable;
(3) V (L) has SAP;
(4) AP is satisfied for any well-connected algebras A, B, and C in V (L).

THEOREM 3.2 [11]. For any logic L in E(J), the following conditions are equivalent:
(1) L has the projective Beth property;
(2) V (L) has SES;
(3) V (L) has RAP∗ and the class FI(V (L)) of finitely indecomposable algebras in V (L)

has SES.
In addition, it is worth mentioning that the descriptions of all superintuitionistic and negative

logics with interpolation obtained in [8, 11] give rise to

THEOREM 3.3 [11]. For any logic L in E(Int) or E(Neg), the following conditions are
equivalent:

(1) a variety V (L) is amalgamable;
(2) a class of finitely indecomposable algebras in V (L) is amalgamable.
We are unaware whether this statement is true for all extensions of minimal logic.
As regards the restricted interpolation property, we have

THEOREM 3.4 [18]. For any logic L in E(J), the following conditions are equivalent:
(1) L has IPR;
(2) V (L) has RAP;
(3) V (L) has RAP∗;
(4) for any subdirectly irreducible J-algebras A, B, and C in V (L) having a common opremum

Ω, the fact that A is a common subalgebra of B and C implies that there exist a subdirectly
irreducible algebra D in V (L) and monomorphisms δ : B → D and ε : C → D such that
δ(x) = ε(x) for all x ∈ A and δ(Ω) is an opremum in D.

We see that for all varieties of J-algebras, RAP∗ follows from PBP. Therefore, we have

PROPOSITION 3.5. For all extensions of minimal logic, CIP implies PBP and PBP
implies IPR.

An algebraic equivalent of the weak interpolation property in J-logics was found in [16].
For a class V of J-algebras, we define the weak amalgamation property
(WAPJ) for any A,B,C ∈ V and for monomorphisms β : A → B and γ : A → C, there exist

an algebra D in V and homomorphisms δ : B → D and ε : C → D such that δβ(x) = εγ(x) for
all x ∈ A, with ⊥ �= � in D if ⊥ �= � in A.
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A variety of J-algebras is said to be weakly amalgamable if it has WAPJ.
Note that the definition above differs from the weak amalgamation property WAP as defined

in [25]. WAP is a partial case of WAPJ.
Note that if a class V is closed under isomorphisms, then WAPJ is equivalent to the following

condition:
for any B,C ∈ V having a common subalgebra A, there exist an algebra D in V and

homomorphisms δ : B → D and ε : C → D such that δ(x) = ε(x) for all x ∈ A, with ⊥ �= � in D
if ⊥ �= � in A.

THEOREM 3.6 [16]. Let L be a J-logic. Then the following conditions are equivalent:
(1) L has WIP;
(2) V (L) has WAPJ;
(3) FG(V (L)) has WAPJ.
For modal logics, an algebraic equivalent of WIP was obtained in [15].
In [16], it was proved that treating WIP in J-logics reduces to studying extensions of a logic

Gl = J + (p ∨ ¬p).
For our further reasoning, we need two lemmas.

LEMMA 3.7. Let L be a J-logic, V (L) an amalgamable variety, A a negative algebra, B a
Heyting algebra, and AΛ,B ∈ V (L). Then (A↑B) ∈ V (L).

Proof. Note that a two-element Boolean algebra B0 is a common subalgebra of AΛ and B.
Since V (L) is amalgamable, there exist an algebra D ∈ V (L) and monomorphisms δ : B → D and
ε : C → D such that δ(x) = ε(x) for x ∈ {⊥,�}. We build a mapping α from (A↑B) to D by
setting

α(x) =

⎧⎨
⎩δ(x) if x ∈ AΛ,

ε(x) if x ∈ B.

It is not hard to verify that α is a monomorphism. Obviously, α is one-to-one and respects lattice
operations. In addition, α(x → y) = α(x) → α(y) in those cases where x, y ∈ B, x ≤ y, or
x, y ∈ AΛ, x �≤ y.

We are left to handle the case with x ∈ B and y ∈ (A − {⊥}). In this event

α(x → y) = α(y) = δ(y),

α(x) → α(y) = ε(x) → δ(y) ≤ ε(⊥) → δ(y) = ⊥ → δ(y) = δ(y).

Thus (A↑B) embeds in D and, hence, belongs to V (L). �

Denote by C1 a three-element linearly ordered Heyting algebra with elements ⊥ < a < �.

LEMMA 3.8. Let L be a J-logic, V (L) a variety with RAP, A a negative algebra, B a
subdirectly irreducible Heyting algebra, and (A↑C1),B ∈ V (L). Then (A↑B) ∈ V (L).

Proof. If B is a two-element Boolean algebra, then (A↑B) is a subalgebra of (A↑C1) and,
hence, belongs to V (L).
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Suppose B contains at least three elements and Ω is its opremum. Then a mapping β : C1 →
B, where β(a) = Ω, β(⊥) = ⊥, and β(�) = �, is a monomorphism preserving the opremum.
Furthermore, C1 is a subalgebra of (A↑C1). In view of RAP, there exist an algebra D ∈ V (L) and
monomorphisms δ : B → D and ε : (A↑C1) → D such that δ(Ω) = ε(a). We build a mapping α

from (A↑B) to D by setting

α(x) =

⎧⎨
⎩δ(x) if x ∈ B,

ε(x) if x ∈ (A↑C1).

Analogously to the proof of Lemma 3.7, it is not hard to verify that α is a monomorphism. �

4. DESCRIBING LOGICS WITH WIP

We recall the notation from Sec. 2. For any negative algebra A, put

AΛ = (A↑B0),

where B0 is a two-element Boolean algebra. For a given J-logic L, define a class such as

Λ(L) = {AΛ | A is a negative algebra and AΛ ∈ V (L)}.

It is a simple matter to verify the following:

LEMMA 4.1. Λ(L) is an empty class if and only if L is a negative logic.
Proposition 1.4 allows us to reduce treating WIP in J-logics to studying extensions of the logic

Gl. Classes Λ(L) play a large role in this study. The next proposition shows that these classes
divide a family of Gl-logics into intervals and gives a useful regimentation of logics over Gl, which
supplements the classification of J-logics in [24].

PROPOSITION 4.2 [16]. Let a J-logic L0 be generated by a class Λ(L0). Then L0 contains
Gl, and for any L ∈ E(Gl), the following equivalence holds:

Λ(L) = Λ(L0) ⇐⇒ Neg ∩ L0 ⊆ L ⊆ L0.

Now we handle extensions of the logic Gl of a special kind. An axiomatization for such logics
L↑Cl and L⇑Cl, where L is a negative logic, was pointed out in Prop. 2.7. A logic Gl = Neg↑Cl is
characterized by all algebras of the form AΛ, where A is a negative algebra (see Prop. 2.6).

Of special importance in describing J-logics with WIP [14] is the following list, SL, consisting
of eight logics containing Gl:

For, Cl, (NE↑Cl), (NC↑Cl), (Neg↑Cl), (NE⇑Cl), (NC⇑Cl), (Neg⇑Cl).

Proposition 2.8 implies that each of these logics L is generated by a class Λ(L). We have

PROPOSITION 4.3 [14]. Let L be any Gl-logic in the list SL. Then L has CIP and classes
V (L) and Λ(L) are amalgamable.
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In [14], all logics over Gl possessing the weak interpolation property were described and an
effective criterion was found to verify WIP in all J-logics.

THEOREM 4.4 [14]. A logic L over Gl has WIP if and only if it is representable as L =
Lneg ∩ L0, where Lneg = L + ⊥ and L0 ∈ SL.

THEOREM 4.5 [14]. For any logic L in E(J), the following conditions are equivalent:
(1) L has WIP;
(2) Λ(L) is an amalgamable class;
(3) Λ(L) = Λ(L0) for some logic L0 in the list SL.
Proof. That (1) is equivalent to (2) and (1) is equivalent to (3) was proved in [16, Thm. 6.2]

and [14], respectively. �

Thus WIP is nontrivial in propositional extensions of minimal logic. A set of J-logics with WIP
and a set of J-logics without WIP have the cardinality of the continuum. The former set contains
all superintuitionistic logics, i.e., a family of cardinality continuum. The latter has as a minimum
the same cardinality as a set of negative logics other than Neg, NC, NE, and For, and the set of
negative logics is also of the cardinality of the continuum. As already noted in Proposition 1.5,
WIP is decidable over J; i.e, there is an algorithm which, given any finite set of axiom schemes Ax,
decides if the logic J + Ax has WIP.

Theorem 4.4 yields a convenient representation for Gl-logics with WIP. A similar representation
was found for Gl-logics with CIP, IPR, and PBP.

THEOREM 4.6 [14]. Let L be an extension of the logic Gl, with SL = {For,Cl} ∪
{(L1↑Cl), (L1⇑Cl) | L1 ∈ {Neg,NC,NE}}.

(1) L has CIP if and only if L = Lneg ∩ L0, where Lneg = L + ⊥ has CIP and L0 ∈ SL.
(2) L has IPR if and only if L = Lneg ∩ L0, where Lneg is a logic with IPR and L0 ∈ SL.
(3) L has PBP if and only if L = Lneg ∩ L0, where Lneg is a logic with PBP and L0 ∈ SL.
Theorem 4.6 entails

COROLLARY 4.7 [14]. (1) IPR and PBP are equivalent over Gl.
(2) There exist only finitely many logics with IPR over Gl.

5. CLASSIFYING WELL-COMPOSED J-LOGICS WITH CIP

In this section we consider extensions of a logic of the form

JX = J + (p → ⊥) ∨ (⊥ → p).

J-logics that contain JX and their corresponding varieties are referred to as well composed. In [18],
we dealt with logics of a special kind, containing JX. The definition of such logics L1↑L2 and L1⇑L2

is given in Sec. 2. We lay out a number of results.

PROPOSITION 5.1 [18]. Let L be any of the logics L1↑L2 and L1⇑L2, where L1 is a negative
logic and L2 is a consistent superintuitionistic one. Then:
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(1) L has CIP ⇐⇒ L1 and L2 have CIP;
(2) L has IPR ⇐⇒ L1 has CIP and L2 has IPR;
(3) L has PBP ⇐⇒ L1 has CIP and L2 has PBP.
Proof. The required result follows immediately from [18, Thms. 5.1, 5.2]. �

With Proposition 1.3 in mind, we derive

COROLLARY 5.2 [13]. IPR and PBP are equivalent for any logic of a special kind such as
in Prop. 5.1.

In correspondence with every J-logic L are its negative and superintuitionistic fragments [24]:
namely,

Lneg = L + ⊥, Lint = L + (⊥ → p).

It follows from Proposition 2.7 that for any negative logic L1 and any superintuitionistic logic L2,
(L1↑L2)neg = (L1⇑L2)neg = L1 and (L1↑L2)int = (L1⇑L2)int = L2.

LEMMA 5.3 [13]. If a J-logic L has CIP, IPR, or PBP, then Lneg and Lint possess a same
property.

LEMMA 5.4. Let L contain JX and A be a finitely indecomposable algebra in V (L). Then
A = Al↑Au, where Al ∈ V (Lneg) and Au ∈ V (Lint). If a formula (⊥ → p∨q) → (⊥ → p)∨(⊥ → q)
is valid in A, then Al is finitely indecomposable.

Proof. Let a be any element of A. By finite indecomposability, we have ⊥ → a = � or a →
⊥ = �, i.e., ⊥ ≤ a or a ≤ ⊥. In this event Al = {x ∈ A | x ≤ ⊥} is a negative algebra, and since
Al is a homomorphic image of A, we obtain Al ∈ V (Lneg). Furthermore, Au = {x ∈ A | ⊥ ≤ x}
is a Heyting algebra and is a subalgebra of A, so Au ∈ V (Lint).

If (⊥ → p ∨ q) → (⊥ → p) ∨ (⊥ → q) is valid in A, then Al is finitely indecomposable in view
of [18, Lemma 3.1(4)]. �

Denote by G1 a three-element J-algebra with an opremum ⊥.

LEMMA 5.5. For every J-logic L,

Λ(L) ⊆ Λ(Cl) ⇐⇒ G1 �∈ V (L).

Proof. Let Λ(L) �⊆ Λ(Cl). The class Λ(Cl) contains only a two-element Boolean algebra B0.
Therefore, there exists a nondegenerate negative algebra A such that AΛ ∈ Λ(L). For any a ∈ A,
a �= ⊥, the set {a,⊥,�} forms a subalgebra of AΛ isomorphic to G1, and so G1 ∈ V (L). The
converse is obvious. �

Our next goal is to find a representation for J-logics with CIP similar to Theorem 4.6.

PROPOSITION 5.6 [17]. Let L1 be a negative logic and L2 any extension of the logic J. If
L1 and L2 have CIP, then L1 ∩ L2 has CIP.

The following simple lemma holds.

LEMMA 5.7. Every J-logic L is representable as L = Lneg ∩ L1 for a suitable J-logic L1. If
L = Lneg ∩ L1, then every negative algebra in V (L1) belongs to the variety V (Lneg).
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THEOREM 5.8. Let a logic L contain JX. Then L has CIP if and only if L coincides with
one of the following logics:

(1) L1 ∩ L2, where L1 = Lneg is a negative logic with CIP and L2 is a superintuitionistic logic
with CIP;

(2) L1 ∩ (L3⇑L2), where L1 = Lneg is a negative logic with CIP, L2 is a consistent
superintuitionistic logic with CIP, and L3 ∈ {Neg,NC,NE};

(3) L1 ∩ (L3↑L2), where L1, L2, and L3 are as in item (2).
Proof. (⇐) Let L1 be a negative logic with CIP. Then L1 ∩ L2 has CIP for any J-logic with

CIP, as follows by Prop. 5.6. In addition, if L2 is a consistent superintuitionistic logic with CIP, and
L3 ∈ {Neg,NC,NE}, then (L3⇑L2) and (L3↑L2) possess CIP in view of Prop. 5.1. Consequently,
logics L1 ∩ (L3⇑L2) and L1 ∩ (L3↑L2) also have CIP by virtue of Prop. 5.6.

(⇒) Let L have CIP. Then both logics L1 = Lneg and L2 = Lint have CIP by Lemma 5.3. In
addition, L has WIP. By Theorem 4.5, therefore, the class Λ(L) is empty, or Λ(L) = Λ(Cl), or
Λ(L) = Λ(L3↑Cl), or Λ(L) = Λ(L3⇑Cl), where L3 ∈ {Neg,NC,NE}.

If Λ(L) is an empty class, then L is a negative logic and, hence, is representable as L ∩ For,
i.e., item (1) holds.

Let Λ(L) = Λ(Cl). We claim that L = Lneg∩Lint. Obviously, L ⊆ Lneg∩Lint. We argue for the
inverse inclusion. Let A be a finitely indecomposable algebra in V (L). By Lemma 5.4, A has the
form (C↑B), where C ∈ V (Lneg) and B ∈ V (Lint). If both algebras C and B are nondegenerate,
then an algebra G1 embeds in A and, hence, belongs to Λ(L), contrary to Lemma 5.5. Therefore,
one of the algebras C or B is degenerate, i.e., A coincides with B or C and belongs to V (Lneg∩Lint),
as required.

Suppose Λ(L) = Λ(L0), where L0 = (L3⇑Cl) and L3 ∈ {Neg,NC,NE}. By Theorem 3.1, V (L)
is an amalgamable variety. In view of Lemma 3.7, if A is a negative algebra, B is a Heyting algebra,
and AΛ,B ∈ V (L), then (A↑B) ∈ V (L). This implies that the variety V (L) contains all algebras
(A↑B) such that A is a finitely indecomposable algebra in V (L3) and B is a Heyting algebra in
V (L). Furthermore, the condition B ∈ V (L) is equivalent to B ∈ V (Lint) = V (L2). Since the logic
L3⇑L2 is generated by a class of algebras (A↑B) such that A is a finitely indecomposable algebra
in V (L3) and B ∈ V (L2), we see that L ⊆ L3⇑L2 and L ⊆ L1 ∩ (L3⇑L2).

We argue for the equality. By virtue of Lemma 2.5, it suffices to prove that every finitely
indecomposable algebra of V (L) is contained in V (L1) ∪ V (L3⇑L2). Let C be a finitely
indecomposable algebra in V (L). In view of Lemma 5.4, C has the form (A↑B), where A is a
negative algebra in V (L1) and B ∈ V (L2). If B is a degenerate algebra, then C is a negative
algebra and coincides with A; hence C is contained in V (L1).

Let B be a nondegenerate algebra. Then C contains a subalgebra (A↑B0), which is contained
in Λ(L) = Λ(L0). Hence A is a finitely indecomposable algebra in V (L3). Since B ∈ V (L2), we
obtain C = (A↑B) ∈ V (L3⇑L2).

The case Λ(L) = Λ(L0), where L0 = (L3↑Cl) and L3 ∈ {Neg,NC,NE}, can be treated similarly.
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We need only drop the condition of A being finitely indecomposable. �

Since there exist only finitely many negative and superintuitionistic logics with CIP [4, 11],
Theorem 5.8 immediately implies

COROLLARY 5. There are only finitely many logics with CIP over JX.

6. WELL-COMPOSED J-LOGICS WITH IPR

In this section we work to obtain a description of logics with the restricted interpolation property
over JX.

THEOREM 6.1. Assume that a logic L contains a logic JX, the logic Lneg has IPR, and

L = Lneg ∩ L0 ∩ L1,

where L0 ∈ SL, Λ(L0) ⊇ Λ(L1), L1 ∈ {For, (L2↑L3), (L2⇑L3)}, L2 is a negative logic with CIP,
and L3 is a superintuitionistic logic with IPR. Then L has IPR. Moreover, L has PBP.

Proof. For the case where L1 = For, the logic L = Lneg ∩ L0 contains Gl and, hence, has IPR
(by Thm. 4.6) and PBP (by Cor. 4.7)

Now let L1 �= For. First we prove that L has IPR. In view of Theorem 3.4, it suffices to show
that V (L) possesses RAP∗. Let subdirectly irreducible algebras A,B,C ∈ V (L) be given, suppose
A is a subalgebra of B and C, and assume that the three algebras all have a common opremum.
There are three cases to consider.

(1) Let A be a negative algebra. Then B and C are also negative algebras, and so the three
algebras are all in V (Lneg). By Theorem 3.4, the variety V (Lneg) has RAP∗ and, hence, contains
an amalgam D for A, B, and C. Consequently, D ∈ V (L).

(2) Let A not be a negative algebra and let it have ⊥ as an opremum. Then B and C satisfy
the same conditions. In this instance A = AΛ

1 , B = BΛ
1 , and C = CΛ

1 , and these algebras all
belong to the class Λ(L). By Lemma 2.5, Λ(L) = Λ(Lneg) ∪ Λ(L0) ∪ Λ(L1). Since Λ(Lneg) = ∅

and Λ(L0) ⊇ Λ(L1), we obtain Λ(L) = Λ(L0). In view of Proposition 4.3, the class Λ(L0) is
amalgamable, and hence Λ(L) and V (L) contain an amalgam for A, B, and C.

(3) Let A not be a negative algebra and ⊥ not be its opremum. Then B and C satisfy the
same conditions. All the three algebras do not belong to V (Lneg) ∪ V (L0) and, consequently, are
contained in V (L1) by Lemma 2.5. In view of Proposition 5.1, the logic L1 has IPR. By virtue of
Theorem 3.2, V (L1) has RAP∗. Therefore, there exists an amalgam for a triple A,B,C in V (L1)
and hence in V (L).

Thus in all cases (1)-(3), V (L) has RAP∗ and L has IPR.
Now we prove that L has PBP. With Theorem 3.2 in mind, it suffices to show that a class of

finitely indecomposable algebras in V (L) has SES. By Proposition 1.3, logics Lneg and L3 have
PBP. By virtue of Proposition 5.1, L1 likewise has PBP. Since L0 has CIP by Proposition 4.3, L0

has PBP. In view of Theorem 3.2, varieties V (Lneg), V (L1), and V (L0) possess SES.
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Let A and B be finitely indecomposable algebras in V (L), A a subalgebra of B, and a ∈ (B−A).
By Lemma 2.5, B is contained in V (Lneg) ∪ V (L0) ∪ V (L1). Consequently B, together with A,
enters one of the three varieties mentioned. In view of SES, a same variety will contain an algebra
D and two homomorphisms g, h : B → D such that g(x) = h(x) for all x ∈ A and g(b) �= h(b).
Clearly, D ∈ V (L). Thus V (L) has SES. �

Our present goal is to prove a representation theorem for well-composed J-logics with IPR.

THEOREM 6.2. Let a well-composed J-logic L have IPR. Then Lneg has IPR and L is
representable as

L = Lneg ∩ L0 ∩ L1,

where L0 ∈ SL, Λ(L0) ⊇ Λ(L1), L1 ∈ {For, (L2↑L3), (L2⇑L3)}, L2 is a negative logic with CIP,
and L3 is a superintuitionistic logic with IPR.

Proof. Assume that a well-composed J-logic L has IPR. Then Lneg and Lint have IPR by
Lemma 5.3.

Since L has WIP, it follows by Theorem 4.5 that the class Λ(L) coincides with Λ(L0) for one of
the logics L0 in the list SL. Consequently, Λ(L0) = Λ(L), and by Proposition 2.8, L0 is generated
by the class Λ(L0).

Denote by K a class of subdirectly irreducible algebras in V (L), which are not contained in
V (Lneg) ∪ Λ(L). Let L1 be a logic generated by K. We show that

L = Lneg ∩ L0 ∩ L1. (1)

Obviously, L ⊆ Lneg ∩ L0 ∩ L1. We argue for the inverse inclusion. Let A be any subdirectly
irreducible algebra in V (L). If A is a negative algebra, then A ∈ V (Lneg). If ⊥ is an opremum of
A, then A ∈ Λ(L) = Λ(L0) ⊆ V (L0). In all other cases A ∈ V (L1). Therefore, A ∈ V (Lneg) ∪
V (L0)∪V (L1) ⊆ V (Lneg ∩L0∩L1). This yields V (L) ⊆ V (Lneg ∩L0∩L1) and L ⊇ Lneg ∩L0∩L1.

We claim that L1 meets all requirements of the theorem.
Equality (1) and Lemma 2.5 imply that Λ(L0) = Λ(L) = Λ(Lneg) ∪ Λ(L0) ∪ Λ(L1), and so

Λ(L0) ⊇ Λ(L1).
Consider a class Λ(L1). First we show that the following relation holds:

Λ(L1) = {AΛ | (A↑C1) ∈ K}, (2)

where C1 is a three-element Heyting algebra. Since AΛ is a subalgebra of (A↑C1), we conclude
that if (A↑C1) ∈ K, then AΛ ∈ V (L1), and hence AΛ ∈ Λ(L1).

We argue for the inverse inclusion. Let AΛ ∈ Λ(L1). Then AΛ is a subdirectly irreducible algebra
in the variety V (L1) generated by the class K. By a well-known theorem of Jonsson [26], the algebra
AΛ is a homomorphic image of a subalgebra of some ultraproduct of algebras in K. By definition,
K is a class of algebras in V (L) having an opremum other than ⊥ and satisfying the inequality
⊥ �= �; i.e., K is definable by first-order formulas. Therefore, K is closed under ultraproducts.
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Consequently, there exist an algebra B1, which is a subalgebra of some algebra B ∈ K, and a
homomorphism h of B1 onto AΛ. Appealing to Lemma 2.4(2), we see that the restriction hl of
h to A is a monomorphism of A onto an algebra (B1)l, which is in turn a subalgebra of Bl.
Consequently, the mapping hl can be extended to a monomorphism of the algebra (A↑C1) into
B, which translates an opremum of the algebra (A↑C1) into an opremum of the algebra B. This
yields (A↑C1) ∈ V (L) and (A↑C1) ∈ K.

We prove that Λ(L1) is an amalgamable class. Let AΛ,BΛ,CΛ ∈ Λ(L1) and AΛ be a common
subalgebra of BΛ and CΛ. By relation (2), (A↑C1), (B↑C1), (C↑C1) ∈ K. Note that algebras
(A↑C1), (B↑C1), and (C↑C1) are obtained from AΛ, BΛ, and CΛ by adding a new opremum Ω; so
(A↑C1) is a common subalgebra of (B↑C1) and (C↑C1), and moreover, all the three algebras have
a common opremum. By Theorem 3.4, there exist a subdirectly irreducible algebra D ∈ V (L) and
monomorphisms δ : (B↑C1) → D and ε : (C↑C1) → D such that δ(x) = ε(x) for all x ∈ (A↑C1)
and δ(Ω) is an opremum in D. Since D is not a negative algebra and its opremum is not ⊥, we see
that D ∈ K ⊆ V (L1). An algebra (Dl)Λ is a subalgebra of D and, hence, is contained in V (L1)
and in Λ(L1). Furthermore, the restrictions of mappings δ and ε to BΛ and CΛ, respectively, are
monomorphisms in (Dl)Λ. Therefore, (Dl)Λ is an amalgam for AΛ, BΛ, and CΛ.

Since the class Λ(L1) is amalgamable, by Theorem 4.5,

Λ(L1) = Λ(L1,0) (3)

for a suitable logic L1,0 in the list SL. The logic L1,0 is generated by the class Λ(L1,0), so L1 ⊆ L1,0.
Letting L2 = (L1)neg, we show that

L2 = (L1)neg = (L1,0)neg. (4)

Obviously, (L1)neg ⊆ (L1,0)neg. We argue for the inverse inclusion.
Let A be a subdirectly irreducible algebra in V (L1)neg. Then A is a negative algebra in V (L1).

By Jonsson’s theorem, A is a homomorphic image of a subalgebra of some ultraproduct of algebras
in the class K. As we have seen above, K is closed under ultraproducts. Furthermore, every
subalgebra B of an algebra in K contains a subalgebra (Bl)Λ ∈ Λ(L1), and moreover, by Lemma 2.4,
the algebras B and (Bl)Λ have the same negative algebras as homomorphic images. Therefore,
A ∈ V (L1,0). Hence (L1)neg ⊇ (L1,0)neg.

From equality (4), in view of Proposition 4.3, we conclude that the fragment L2 = (L1)neg

has CIP.
Put L3 = Lint; then L3 has IPR by Lemma 5.3. We prove that L1 ∈ {For, (L2↑L3), (L2⇑L3)}.

The following two cases are possible: (1) L1,0 = For; (2) L1,0 �= For.
(1) In this event Λ(L1) = Λ(For) = ∅. The class K is also empty since any algebra in K should

contain a subalgebra B0, in which case B0 should be contained in V (L1) and hence in Λ(L1). Now
L1 = For.

(2) In this instance the class Λ(L1) contains a two-element Boolean algebra B0, while the class
K contains a Heyting algebra C1 (in view of relation (2)).
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Note that in this case
(L1)int = Lint. (5)

Indeed, relation (1) implies

Lint = (Lneg)int ∩ (L0)int ∩ (L1)int ⊇ For ∩ Cl ∩ (L1)int = (L1)int ⊇ Lint

since C1 ∈ V (L1), and hence (L1)int ⊂ Cl.
It remains to prove that

L1 ∈ {(L1)neg↑Lint, (L1)neg⇑Lint}. (6)

With equality (5) in mind, it suffices to verify that L1 = (L1)neg↑(L1)int or L1 = (L1)neg⇑(L1)int.
We handle three cases.

(2.1) Let L1,0 = Cl. Then (L1)neg = For by virtue of (4). In other words, L1 is a
superintuitionistic logic and L1 = (L1)int = (L1)neg↑(L1)int, as required.

(2.2) Let L1,0 = L4⇑Cl for some L4 ∈ {Neg,NC,NE}. Then L4 = (L1,0)neg = (L1)neg = L2 in
view of (4). We prove that

L1 = L2⇑(L1)int. (7)

Recall that L1 is generated by the class K. We claim that all algebras in K belong to the variety
V (L2⇑(L1)int). Let A be any algebra in K. By Lemma 5.4, A = Al↑Au, and moreover, by the
definition of K, the algebra A contains a subalgebra A = (Al)Λ, which belongs to the class
Λ(L1) = Λ(L1,0). In particular, Al is finitely indecomposable and is contained in V ((L1)neg). In
addition, Au ∈ V ((L1)int). Consequently A ∈ V (L2⇑(L1)int). This implies L2⇑(L1)int ⊆ L1.

We argue for the inverse inclusion. We show that all subdirectly irreducible algebras in
the variety V (L2⇑(L1)int) belong to V (L1). Let A be a subdirectly irreducible algebra in
V (L2⇑((L1)int). If A is a negative algebra, then A ∈ V (L2) ⊆ V (L1).

Let A not be a negative algebra. In view of Lemma 5.4, A = Al↑Au, where Au is a subdirectly
irreducible algebra in V ((L1)int) and Al is a finitely indecomposable negative algebra in V (L2).
Furthermore, (Al)Λ ∈ Λ(L1,0) = Λ(L1). By virtue of (2), we obtain (Al↑C1) ∈ K ⊆ V (L). Since
Au is a subdirectly irreducible Heyting algebra of V (L), it follows by Lemma 3.8 that A ∈ V (L).
If Au is a two-element algebra, then A coincides with (Al)Λ, and so A ∈ Λ(L1) ⊆ V (L1). If Au

contains at least three elements, then A ∈ K ⊆ V (L1). Thus A ∈ V (L1).
Every variety is generated by its subdirectly irreducible algebras; therefore, V (L2⇑(L1)int) ⊆

V (L1) and L1 ⊆ L2⇑(L1)int. This implies L1 = L2⇑(L1)int, and so (7) is proved.
(2.3) Let L1,0 = L4↑Cl for some L4 ∈ {Neg,NC,NE}. That L1 = L2↑(L1)int is proved

analogously to (2.2). We need only drop the condition of Al being finitely indecomposable. �

COROLLARY 6.3. (1) There exist only finitely many JX-logics with IPR.
(2) IPR and PBP are equivalent over JX.
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Proof. (1) The required statement follows from Theorem 6.2 in view of finiteness of the class
SL and of the number of negative and superintuitionistic logics with IPR (see Props. 1.1-1.3).

(2) Appealing to Theorems 6.1 and 6.2, we conclude that IPR implies PBP over JX. The
converse is true for all J-logics. �

The question whether IPR and PBP are equivalent on the class of all J-logics remains open.

COROLLARY 6.4. All well-composed J-logics possessing CIP, PBP, or IPR are finitely
axiomatizable.

Proof. By Theorem 6.2, every well-composed J-logic with IPR is representable as an
intersection of three logics of a special kind. All superintuitionistic and negative logics with IPR
are finitely axiomatizable in view of Props. 1.1-1.3. Consequently, logics L0, L2↑L3, and L2⇑L3

such as in Theorem 6.2 are also finitely axiomatizable by Prop. 2.7. By virtue of Proposition 2.5,
this implies that all well-composed J-logics with IPR are finitely axiomatizable. �

CONCLUSION

In the representation theorems for well-composed J-logics with CIP and IPR proved above,
essential use was made of the description of J-logics with WIP given in [14]. There, too, it was
stated that WIP is decidable over J. A class of well-composed logics contains all superintuitionistic
logics and all extensions of the logic Gl, for which CIP, IPR, and PBP were also proved decidable.
It is likely that all of these properties likewise are decidable on a class of well-composed J-logics.

For the family of all J-logics, the situation is essentially more complicated, and the following
problems remain open.

Problem 1. Describe all J-logics with CIP, IPR, and PBP. Are sets of such logics finite? As
we have seen above, there exist only finitely many well-composed J-logics with CIP, IPR, or PBP.

Problem 2. Is it true that all J-logics with CIP, IPR, or PBP are finitely axiomatizable, or
residually finite, or decidable?

Problem 3. As already noted, WIP is decidable over J. Are the other properties decidable
over J?

Problem 4. For every J-logic, IPR follows form PBP. We have proved above that the converse
is true for every well-composed J-logic. Are IPR and PBP equivalent on the class of all J-logics?

By comparison, on the class of all modal logic, IPR follows from PBP, but the converse is not
true [21].
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