Σ -UNIFORM STRUCTURES AND Σ -FUNCTIONS. II

A. N. Khisamiev^{*}

UDC 512.540+510.5

<u>Keywords:</u> hereditarily finite admissible set, Σ -definability, universal Σ -function, Σ -uniform structure, Abelian group, ring.

We construct a family of Σ -uniform Abelian groups and a family of Σ -uniform rings. Conditions are specified that are necessary and sufficient for a universal Σ -function to exist in a hereditarily finite admissible set over structures in these families. It is proved that there is a set S of primes such that no universal Σ -function exists in hereditarily finite admissible sets $\mathbb{HF}(G)$ and $\mathbb{HF}(K)$, where $G = \bigoplus \{Z_p \mid p \in S\}$ is a group, Z_p is a cyclic group of order $p, K = \bigoplus \{F_p \mid p \in S\}$ is a ring, and F_p is a prime field of characteristic p.

The present paper is a continuation of [1], in which we introduced the concept of a Σ -uniform structure and derived a condition that is necessary and sufficient for a universal Σ -function to exist in a hereditarily finite admissible set over a Σ -uniform structure. Here we show how these results apply to Abelian groups and rings. We construct a family of Σ -uniform Abelian groups and a family of Σ -uniform rings. Conditions are specified that are necessary and sufficient for a universal Σ -function to exist in a hereditarily finite admissible set over structures in these families. It is proved that there is a set S of primes such that no universal Σ -function exists in hereditarily finite admissible sets $\mathbb{HF}(G)$ and $\mathbb{HF}(K)$, where $G = \bigoplus \{Z_p \mid p \in S\}$ is a group, Z_p is a cyclic group of order $p, K = \bigoplus \{F_p \mid p \in S\}$ is a ring, and F_p is a prime field of characteristic p.

We will adhere to the notation and terminology created for admissible sets in [2], for groups in [3], and for rings in [4] (see also [1]).

We start to cite the definition of a Σ -uniform structure from [1].

Definition 1. Suppose that a locally finite structure \mathfrak{M} in a signature σ_0 satisfies the following conditions:

0002-5232/12/5101-0089 © 2012 Springer Science+Business Media, Inc.

^{*}Supported by RFBR (project No. 08-01-00336) and by the Grants Council (under RF President) for State Aid of Leading Scientific Schools (grant NSh-3606.2010.1).

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia; hisamiev@math.nsc.ru. Translated from *Algebra i Logika*, Vol. 51, No. 1, pp. 129-147, January-February, 2012. Original article submitted November 24, 2010; revised June 5, 2011.

(1) Let a Σ -subset Ξ_0 of natural numbers be defined without parameters. We call every element $\chi \in \Xi_0, 0 \in \Xi_0$, an elementary characteristic. In addition, let a unary Σ -function $\mathfrak{b}(\chi)$, $\delta \mathfrak{b} = \Xi_0$, be defined without parameters so that for any $\chi \in \Xi_0$, the value of $\mathfrak{b}(\chi)$ is a nonempty finite set of sequences of elements of equal length in $M \setminus \Omega$, with $\mathfrak{b}(0) = \{\emptyset\}$. Every element $\bar{y} \in \mathfrak{b}(\chi)$ is called an *elementary basis* of characteristic χ and is written $\chi(\bar{y}) = \chi$. All bases $\bar{y}_i, \bar{y}_j \in \mathfrak{b}(\chi)$ generate the same subsystem, i.e., $(\bar{y}_i) = (\bar{y}_j)$. If $\bar{y} = \langle y_0, \ldots, y_{p-1} \rangle$ is an elementary basis, then $(y_i) \cap (y_0, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{p-1}) = \Omega$ for any i < p. If elementary bases $\bar{y}_0, \ldots, \bar{y}_{q-1}$ have pairwise distinct characteristics, then $(\bar{y}_i) \cap (\langle \bar{y}_0, \ldots, \bar{y}_{i-1}, \bar{y}_{i+1}, \ldots, \bar{y}_{q-1} \rangle) = \Omega$ for any i < q.

For an arbitrary sequence $\chi = \langle \chi_0, \dots, \chi_{q-1} \rangle$ and for all bases \bar{y}_i of characteristic χ_i , a sequence of the form $Y = \langle \bar{y}_0, \dots, \bar{y}_{q-1} \rangle$ is called a *basis of characteristic* χ , where $\chi_0 \ge 0$, if q = 1, and $0 < \chi_i < \chi_j$ if q > 1 and i < j < q.

(2) If $\bar{y} = \langle y_0, \ldots, y_{p-1} \rangle$ is an elementary basis of characteristic $\chi \neq 0$, and $x \in (\bar{y}) \setminus \Omega$, then \bar{y} is called an *elementary basis of the element* x. The elementary basis for any element $x \in \Omega$ is \emptyset . A sequence $f_0(x, \bar{y}) = \langle x_0, \ldots, x_{p-1} \rangle$, $x_i \in (y_i) \cup \{\emptyset\}$, such that $(x) \subseteq (x_0, \ldots, x_{p-1})$ is uniquely defined for any $x \in (\bar{y}) \setminus \Omega$. We call x_i and x, respectively, *atomwise* and *atomic* elements of characteristic χ .

For any nonatomic element $z \in M$, a sequence $f_1(z) = \langle z_0, \ldots, z_{q-1} \rangle$, q > 1, of atomic elements $z_i \notin \Omega$ of characteristic χ_i is uniquely defined so that $(z) = (z_0, \ldots, z_{q-1})$, $\chi_i < \chi_j$, and i < j < q. A basis $Y = \langle \bar{y}_0, \ldots, \bar{y}_{q-1} \rangle$, $\chi(\bar{y}_i) = \chi_i$, is called a *basis of an element z* and is denoted by $\mathfrak{B}_0(z, Y)$. If z is an atomic element, then $f_1(z) = z$. Functions f_0 and f_1 are 1-1 Σ -functions without parameters.

Let an elementary basis $\bar{y} = \langle y_0, \ldots, y_{p-1} \rangle$ of characteristic χ and i < p be given. A Σ -function Cor₀ without parameters, where $\delta \text{Cor}_0 = \{\langle x, y_i \rangle \mid x \in (y_i)\}, \rho \text{Cor}_0 \subseteq \omega^+$, and $\omega^+ = \{n \in \omega \mid n > 0\}$, is defined in $\mathbb{HF}(\mathfrak{M})$ so that $\text{Cor}_0(x^0, y_i) \neq \text{Cor}_0(x^1, y_i)$ if $x^{\varepsilon} \in (y_i), \varepsilon < 2$, and $x^0 \neq x^1$.

(3) Let bases Y^0 and Y^1 of the same characteristic χ and a finite substructure $\mathfrak{M}^0 \supseteq (Y^0)$ be given. Then there exists an isomorphic embedding $\varphi : \mathfrak{M}^0 \to \mathfrak{M}$ for which $\varphi Y^0 = Y^1$.

In this case we call $\mathfrak M$ a $\Sigma\text{-uniform structure}.$

Below are a number of valid results.

THEOREM 1 [1]. Let \mathfrak{M} be a Σ -uniform structure and M_0 some basis. Then the family \mathfrak{F}^{M_0} of all unary functions definable in $\mathbb{HF}(\mathfrak{M})$ by Σ -formulas with parameter M_0 is computable if and only if the family \mathcal{N}^{M_0} of all numerical Σ -functions with parameter M_0 is computable in $\mathbb{HF}(\mathfrak{M})$.

THEOREM 2 [1]. Let \mathfrak{M} be a Σ -uniform structure. The family \mathfrak{F} of all unary Σ -functions in $\mathbb{HF}(\mathfrak{M})$ is computable if and only if the family \mathbb{N} of all numerical Σ -functions in $\mathbb{HF}(\mathfrak{M})$ is computable.

COROLLARY 1 [1]. If \mathfrak{M} is a Σ -uniform structure, then an ideal $\mathfrak{I}_e(\mathfrak{M})$ of *e*-degrees of Σ subsets of natural numbers in $\mathbb{HF}(\mathfrak{M})$ is principal and is generated by the *e*-degree of a set $\mathrm{Th}_{\exists}(\mathfrak{M})$ of Gödel numbers of \exists -sentences true in \mathfrak{M} .

COROLLARY 2 [1]. Let \mathfrak{M} be a Σ -uniform structure. Then $\mathbb{HF}(\mathfrak{M})$ contains a universal Σ -function if and only if a principal *e*-ideal $\mathfrak{I}_e(\mathfrak{M})$ contains a universal function for the family of

all unary functions in $\mathfrak{I}_e(\mathfrak{M})$.

1. GROUPS

In this section, we construct a family of Σ -uniform Abelian groups.

Let G be a periodic Abelian group, e the zero element of G, and $g \in G$. The order of an element g is denoted by |g|; $Z_{p^m}^n$ stands for a direct sum of n copies of a cyclic group of order p^m , where p is a prime; p_k is the kth prime. A p-component of G is denoted by G_p ; i.e., $G = \bigoplus \{G_p \mid p \in P\}$, where P is the set of all primes.

LEMMA 1.1. Suppose G is a periodic Abelian p-group, every p-component G_p of which is finite, and $\Phi(\bar{a}, x)$ is a Σ -formula with parameter $\bar{a} = \langle a_0, \ldots, a_{m-1} \rangle$, $a_i \in G$, in a signature $\sigma = \langle U, \in, \emptyset, +, 0 \rangle$. Then there exists a Σ -formula $\Phi^*(x)$ without parameters such that $\Phi(\bar{a}, x) \equiv \Phi^*(x)$ is a true formula in $\mathbb{HF}(G)$ for any $x \in \mathbb{HF}(\omega)$.

Proof. First let $(\bar{a}) \subseteq G_p$ for some p. There is no loss of generality in assuming that $G_p = (a_0) \oplus \ldots \oplus (a_{m-1})$ and $|a_i| = p^{n_i}$, with $n_i > 0$. Put

$$\Phi^* = \exists y_0 \dots \exists y_{m-1} \left((\bar{y}) = (y_0) \oplus \dots \oplus (y_{m-1}) \& \bigwedge_{i < m} |y_i| = p^{n_i} \& \Phi(\bar{y}, x) \right),$$

where $\Phi(\bar{y}, x)$ is obtained from $\Phi(\bar{a}, x)$ by replacing \bar{a} by \bar{y} .

Let $\mathbb{HF}(G) \models \Phi(\bar{a}, x)$, with $x \in \mathbb{HF}(\omega)$. If a_i are taken to be values for y_i in $\Phi(\bar{y}, x)$, then $\mathbb{HF}(G) \models \Phi^*(x)$. Suppose $\mathbb{HF}(G) \models \Phi^*(x)$. Then there exists an automorphism $\varphi : \mathbb{HF}(G) \to$ $\mathbb{HF}(G)$ for which $\varphi y_i = a_i$. Hence $\mathbb{HF}(G) \models \Phi(\bar{a}, x)$.

The general case where $(\bar{a}) \subseteq G_{p_0} \oplus \ldots \oplus G_{p_{s-1}}$ can be easily reduced to the case above. \Box

Let partial unary functions α , φ , and ψ be defined so that for any $k \in \delta \alpha$, the following relations hold: $\varphi(k) = [m_0^k, \ldots, m_{\alpha_k-1}^k]$ and $\psi(k) = [n_0^k, \ldots, n_{\alpha_k-1}^k]$, where $\alpha_k = \alpha(k), m_i^k, n_i^k > 0$, and $m_i^k < m_j^k$ if $0 \le i < j < \alpha_k$. Given these functions, we define a group of the form

$$G \rightleftharpoons G(\alpha, \varphi, \psi) = \oplus \left\{ Z_{p_k^{m_0^k}}^{n_0^k} \oplus \ldots \oplus Z_{p_k^{m_{\alpha_k-1}^k}}^{n_{\alpha_k-1}^k} \middle| k \in \delta \alpha \right\}.$$

In what follows, m_i and n_i will be used in place of m_i^k and n_i^k unless ambiguity would result.

THEOREM 1.1. A group $G = G(\alpha, \varphi, \psi)$ is Σ -uniform if and only if functions α , φ , and ψ are Σ -definable in $\mathbb{HF}(G)$.

Proof. Sufficiency. We verify whether conditions (1)-(3) in the definition of a Σ -uniform structure are valid for G. In view of Lemma 1.1, we may assume that α , φ , and ψ are Σ -definable in $\mathbb{HF}(G)$ without parameters.

(1) Define a set Ξ_0 of elementary characteristic by setting

$$\Xi_0 = \{ p \mid \exists k (k \in \delta \alpha \& p = p_k) \} \cup \{0\}.$$

\mathbf{O}	1
У	т
~	-

To show that a function \mathfrak{b} is Σ -definable in $\mathbb{HF}(G)$, we introduce the following formulas. For any $k \in \delta \alpha$, put $n^k = n_0^k m_0^k + \ldots + n_{\alpha_k-1}^k m_{\alpha_k-1}^k$. Then the graph Γ_n of a function $n(k) = n^k$ is definable by a Σ -formula without parameters. Let G_k be the primary p_k -component of G. For a function $h(k) = G_k$, we have

$$h(k) = G_k \Leftrightarrow \mathbb{HF}(G) \models k \in \delta \alpha \& |G_k| = p_k^{n^k} \& \forall x \in G_k \exists s(p_k^s x = 0).$$

Consequently, h is a Σ -function without parameters in $\mathbb{HF}(G)$.

A predicate $\mathfrak{C}(k, \bar{y}) \rightleftharpoons \dot{y}$ is an elementary basis of characteristic p_k ' is defined via the equivalence

$$\begin{aligned} \mathfrak{C}(k,\bar{y}) \Leftrightarrow \mathbb{HF}(G) &\models k \in \delta \alpha \& \exists \bar{y}^0 \in G_k \dots \exists \bar{y}^{\alpha_k - 1} \in G_k \\ \left[\bigwedge_{i < \alpha_k} \left(\exists y_0^i \dots \exists y_{n_i - 1}^i \left(\bar{y}^i = \langle y_0^i, \dots, y_{n_i - 1}^i \rangle \& \bigwedge_{j < n_i} |y_j^i| = p_k^{m_i} \right) \right) \right] \\ \& (\bar{y}^0, \dots, \bar{y}^{\alpha_k - 1}) = \oplus \{ (y_j^i) \mid i < \alpha_k, \ j < n_i \} \\ \& \bar{y} = \langle \bar{y}^0, \dots, \bar{y}^{\alpha_k - 1} \rangle \end{aligned}$$

where m_i and n_i stand for m_i^k and n_i^k . Hence \mathfrak{C} is a Σ -predicate without parameters in $\mathbb{HF}(G)$.

Below we need the following:

LEMMA 1.2. There exists a computable function $\beta(k, \alpha, m, n)$ such that if $\alpha > 0$, $m = [m_0, \ldots, m_{\alpha-1}], n = [n_0, \ldots, n_{\alpha-1}], m_i, n_i > 0, m_i < m_j, 0 \le i < j < \alpha$, and $G_k \cong \bigoplus \left\{ Z_{p_k^{m_i}}^{n_i} | i < \alpha \right\}$, then the value of $\beta(k, \alpha, m, n)$ is equal to the number of sequences $\bar{y} = \langle y_0^0, \ldots, y_{n_0-1}^0, \ldots, y_{n_{\alpha-1}-1}^{\alpha-1} \rangle, |y_j^i| = p^{m_i}, j < n_i, i < \alpha$, such that $G_k = \bigoplus \{(y_j^i) | j < n_i, i < \alpha\}$.

This lemma implies that a function $\mathfrak b$ satisfies the equivalence

$$\begin{split} \mathfrak{b}(p_k) &= B_{p_k} \Leftrightarrow \mathbb{HF}(G) \models k \in \delta \alpha \,\& \,\exists m \exists m_0 \dots \exists m_{\alpha_k - 1} \exists n \exists n_0 \dots \exists n_{\alpha_k - 1} \exists \gamma \\ &\exists \bar{y}^0 \dots \exists \bar{y}^{\gamma - 1} \left(\varphi(k) = m \,\& \, m = [m_0, \dots, m_{\alpha_k - 1}] \,\& \, \psi(k) = n \\ &\& \, n = [n_0, \dots, n_{\alpha_k - 1}] \,\& \, \gamma = \beta(k, \alpha, m, n) \,\& \, \bigwedge_{i < \gamma} \mathfrak{C}(k, \bar{y}^i) \\ &\& \, \bigwedge_{s < j < \gamma} \bar{y}^s \neq \bar{y}^j \,\& \,\forall i < \gamma \, (\bar{y}^i \in B_{p_k}) \\ &\& \,\forall \bar{y} \in B_{p_k} \exists i < \gamma(\bar{y} = \bar{y}^i) \right). \end{split}$$

Consequently, the graph $\Gamma_{\mathfrak{b}}$ of the function \mathfrak{b} is a Σ -predicate without parameters in $\mathbb{HF}(G)$.

Given any sequence $\chi = \langle p_{k_0}, \ldots, p_{k_{m-1}} \rangle$, for m = 1, p_{k_0} is equal to 0 or to a prime numbered k_0 , and for m > 1, we have $0 < p_{k_i} < p_{k_j}$, with i < j < m. For all elementary bases $\bar{y}^i \in B_{p_{k_i}}$ of characteristic p_{k_i} , a sequence of the form $Y = \langle \bar{y}^0, \ldots, \bar{y}^{m-1} \rangle$ is called a *basis of characteristic* χ .

We have thus proved the validity of condition (1).

(2) Let an arbitrary element $z \in G \setminus \{e\}$ be given and its order |z| be equal to $p_{k_0}^{l_0} \dots p_{k_{q-1}}^{l_{q-1}}, q > 1$, $k_0 < \dots < k_{q-1}, 0 < l_i < m_{\alpha_{k_i}-1} \rightleftharpoons s_i, i < q$. Put $z_i = p_{k_0}^{l_0} \dots p_{k_{i-1}}^{l_{i-1}} p_{k_{i+1}}^{l_{i+1}} \dots p_{k_{q-1}}^{l_{q-1}} z$. Then $z_i \in G_{k_i}$ and $z = z_0 + \dots + z_{q-1}$, with $z_i \neq e$ and $(z) = (z_0) \oplus \dots \oplus (z_{q-1})$. Define $f_1(z) = \langle z_0, \dots, z_{q-1} \rangle$. If $z \in G_k$ then $f_1(z) = z$. It is easy to verify that the graph Γ_{f_1} is a Σ -predicate without parameters in $\mathbb{HF}(G)$.

Let $x \in (\bar{y}), x \neq e$, be given; here $\bar{y} = \langle \bar{y}^0, \dots, \bar{y}^{\alpha_k - 1} \rangle$ is an elementary basis of characteristic $p_k \rightleftharpoons p, \bar{y}^i = \langle y_0^i, \dots, y_{n_i-1}^i \rangle, (\bar{y}) = (\bar{y}^0) \oplus \dots \oplus (\bar{y}^{\alpha_k - 1}) = G_k, (\bar{y}^i) = (y_0^i) \oplus \dots \oplus (y_{n_i-1}^i), |y_j^i| = p_k^{m_i},$ and $j < n_i$. Then $x = x^0 + \dots + x^{\alpha_k - 1}$ and $x^i = x_0^i + \dots + x_{n_i-1}^i$, where $x^i \in (\bar{y}^i)$ and $x_j^i \in (y_j^i)$. For any $i < \alpha_k$ and any $j < n_i$, put

$$(x_j^i)' = \begin{cases} x_j^i & \text{if } x_j^i \neq e; \\ \varnothing & \text{otherwise.} \end{cases}$$

Therefore, in a one-to-one correspondence with every element $x \in (Y)$, $x \neq e$, is a sequence $f_0(x,Y) = \langle (x_j^i)' \mid i < \alpha_k, j < n_i \rangle$. For any element $x \in (y_j^i)$, there exists a unique number α for which $x = (\alpha - 1)y_j^i$. Put $\operatorname{Cor}_0(x, y_j^i) = \alpha$ and $\operatorname{Cor}(e, \emptyset) = 1$. This immediately implies that Cor_0 is a Σ -function without parameters, and if $x^0 \neq x^1$ then $\operatorname{Cor}_0(x^0, y_j^i) \neq \operatorname{Cor}_0(x^1, y_j^i)$.

(3) Is obvious. The sufficiency is proved.

Necessity. First we argue for two lemmas.

LEMMA 1.3. If $G = \bigoplus \{G_p \mid p \in P\}$, $|G_p| < \omega$, is a Σ -uniform group, then new elementary bases can be defined so as to be contained in primary components relative to which G is again Σ -uniform.

Proof. Every element $e \neq x \in G$ is uniquely represented as $x = x_{q_0} + \ldots + x_{q_{m-1}}$, where $e \neq x_{q_j} \in G_{q_j}$ and $q_0 < \ldots < q_{m-1}$ are primes. Denote the set $\{q_0, \ldots, q_{m-1}\}$ by Q_x . Let an (old) elementary basis $\bar{y} = \langle y^0, \ldots, y^{n-1} \rangle$ of characteristic χ be given and $Q_{\bar{y}} \rightleftharpoons \cup \{Q_{y^i} \mid i < n\} = \{q_0, \ldots, q_{t-1}\}$. For every $q \in Q_{\bar{y}}$, put $I_q = \{i < n \mid q \in Q_{y^i}\}$. Suppose $I_q = \{i_0, \ldots, i_{k-1}\}$. Then a sequence of the form $\bar{y}_q = \langle y_q^{i_0}, \ldots, y_q^{i_k-1} \rangle$ is called a *(new) elementary basis of characteristic* $\langle \chi, q \rangle$ and is denoted \bar{y}^* . An empty sequence likewise is called an elementary basis of characteristic 0. Since $(\bar{y}) = (y^0) \oplus \ldots \oplus (y^{n-1})$ for the basis \bar{y} , we have

$$(\bar{y})_q \rightleftharpoons (\bar{y}_q) = (y_q^{i_0}) \oplus \ldots \oplus (y_q^{i_{k-1}}), \tag{1}$$

$$(\bar{y}) = \bigoplus \{ (\bar{y}_q) \mid q \in Q_{\bar{y}} \}.$$

$$\tag{2}$$

At the moment, we prove that conditions (1)-(3) in the definition of a Σ -uniform structure are satisfied for the new bases.

(1) Introduce the formula

$$\Phi(\chi, \bar{y}, q, \bar{y}^*) \rightleftharpoons \chi \in \Xi_0 \& \bar{y} \in B_\chi \& \exists n \exists y^0 \dots \exists y^{n-1} (\bar{y} = \langle y^0, \dots, y^{n-1} \rangle \& (\bar{y})_q \neq \{e\}$$

93

$$\& \exists m \exists i_0 \dots \exists i_{m-1} \forall k < m \forall j < m ((k < j \rightarrow i_k < i_j) \\ \& (y_q^{i_k}) \neq \{e\} \& (\bar{y})_q = (y_q^{i_0}) \oplus \dots \oplus (y_q^{i_{m-1}}) \\ \& \bar{y}^* = \langle y_q^{i_0}, \dots, y_q^{i_{m-1}} \rangle).$$

Put

$$\begin{split} &\Xi_0^* = \{ \langle \chi, q \rangle \mid \mathbb{HF}(G) \models \exists \bar{y} \exists \bar{y}^* \Phi(\chi, \bar{y}, q, \bar{y}^*) \}, \\ &\mathfrak{b}^*(\chi, q) = B^*_{\langle \chi, q \rangle} \Leftrightarrow \mathbb{HF}(G) \models \forall \bar{y}^* \in B^*_{\langle \chi, q \rangle} \exists \bar{y} \in B_{\chi} \big(\Phi(\chi, \bar{y}, q, \bar{y}^*) \,\&\, \forall \bar{y} \in B_{\chi} \big((\bar{y})_q \neq \{e\} \rightarrow \exists \bar{y}^* \Phi(\chi, \bar{y}, q, \bar{y}^*) \big) \,\&\, \bar{y}^* \in B^*_{\langle \chi, q \rangle} \big). \end{split}$$

On the set Ξ_0^* , define a lexicographic ordering.

Let \bar{y}_0^* and \bar{y}_1^* be elementary bases of characteristic $\langle \chi, q \rangle$, which are obtained from old bases \bar{y}_0 and \bar{y}_1 of characteristic χ . Since $(\bar{y}_0) = (\bar{y}_1)$, we have $(\bar{y}_0^*) = (\bar{y}_1^*)$ in view of (1).

Now let bases $\bar{y}_1^*, \ldots, \bar{y}_{\alpha}^*$ of pairwise distinct characteristics $\langle \chi_1, q_1 \rangle, \ldots, \langle \chi_{\alpha}, q_{\alpha} \rangle$ be given. We claim that $(\bar{y}_1^*) \cap (\bar{y}_2^*, \ldots, \bar{y}_{\alpha}^*) = \{e\}$. Indeed, suppose $x \in (\bar{y}_1^*) \cap (\bar{y}_2^*, \ldots, \bar{y}_{\alpha}^*)$. Then $x \in G_{q_1}$. Assume $q_2, \ldots, q_m \neq q_1$ but $q_{m+1}, \ldots, q_{\alpha} = q_1$. Then $x \in (\bar{y}_{m+1}^*, \ldots, \bar{y}_{\alpha}^*)$. Since $\langle \chi_1, q_1 \rangle \neq \langle \chi_k, q_k \rangle$, $m < k \le \alpha$, we have $\chi_1 \neq \chi_k$. Let $\bar{y}_1^*, \ldots, \bar{y}_{\alpha}^*$ be obtained from old bases $\bar{y}_1, \ldots, \bar{y}_{\alpha}$ of characteristics $\chi_1, \ldots, \chi_{\alpha}$. This implies $(\bar{y}_1) \cap (\bar{y}_{m+1}, \ldots, \bar{y}_{\alpha}) = \{e\}$. Since $\bar{y}_i^* \subseteq (\bar{y}_i), 1 \le i \le \alpha$, we have $(\bar{y}_1^*) \cap (\bar{y}_{m+1}^*, \ldots, \bar{y}_{\alpha}) = \{e\}$; i.e., x = e.

(2) Let \bar{y}^* be an elementary basis of characteristic $\langle \chi, q \rangle$, which is obtained from a basis $\bar{y} = \langle y^0, \ldots, y^{n-1} \rangle$, and $x \in (\bar{y})^* \setminus \{e\}$. Then $(\bar{y}^*) = (\bar{y})_q = (y_q^{i_0}) \oplus \ldots \oplus (y_q^{i_{m-1}})$ for some $i_j < n$. With this in mind, we can uniquely define a sequence $\langle x_0, \ldots, x_{m-1} \rangle$ so that $x_j \in (y_q^{i_j}), x = x_0 + \ldots + x_{m-1}$, and $x \in (x_0, \ldots, x_{m-1})$. For every j < m, put

$$x'_{j} = \begin{cases} x_{j} & \text{if } x_{j} \neq e; \\ \varnothing & \text{otherwise.} \end{cases}$$

Set $f_0^*(x, \bar{y}^*) = \langle x'_0, \dots, x'_{m-1} \rangle$.

Define a function f_1^* . Let an element $z \in G \setminus \{e\}$ be given and $f_1(z) = \langle z^0, \ldots, z^{e-1} \rangle$ be a function for which $z^k \in (\bar{y}_k) \setminus \{e\}$, $(z) = (z^0, \ldots, z^{l-1})$, $\bar{y}_k = \langle y_{k,0}, \ldots, y_{k,n_k-1} \rangle$, k < l. In view of (2), we have $(\bar{y}_k) = \oplus\{(\bar{y}_k)_q \mid q \in Q_{\bar{y}_k}\}$. This implies that for any k < l, there exist a subset $Q_k = \{q_0^k, \ldots, q_{m_k-1}^k\} \subseteq Q_{\bar{y}_k}$ and elements $e \neq z_j^k \in (\bar{y}_k)_{q_k^k}$, $j < m_k$, such that

$$z^{k} = z_{0}^{k} + \ldots + z_{m_{k}-1}^{k}, \ (z^{k}) = (z_{0}^{k}, \ldots, z_{m_{k}-1}^{k}).$$
(3)

In this event we put $f_1^*(z) = \langle z_0^0, \dots, z_{m_0-1}^0, \dots, z_0^{e-1}, \dots, z_{m_{e-1}-1}^{e-1} \rangle$. It follows from (3) that $(z) = (z_0^0, \dots, z_{m_{e-1}-1}^{e-1})$. If \bar{y}^* is an elementary basis and $z \in (\bar{y}^*)$, then $f_1^*(z) = z$.

The functions f_0^* and f_1^* are defined so that $\Gamma_{f_0^*}$ and $\Gamma_{f_1^*}$ are Σ -predicates without parameters in $\mathbb{HF}(G)$.

We define a function Cor₀. Let an elementary basis $\bar{y}^* = \langle y_0, \ldots, y_{n-1} \rangle$ be given. For any element $x \in (y_i), i < n$, there exists a unique number α such that $x = (\alpha - 1)y_i$. In this instance we set

 $\operatorname{Cor}_0(x, y_i) = \alpha$ and $\operatorname{Cor}(e, \emptyset) = 1$. This implies that Cor_0 is a Σ -function without parameters, and if $x^0 \neq x^1$ then $\operatorname{Cor}_0(x^0, y_i) \neq \operatorname{Cor}_0(x^1, y_i)$.

(3) Let \bar{y}_0^* and \bar{y}_1^* be two elementary bases of the same characteristic $\langle \chi, q \rangle$, which are obtained from old bases \bar{y}_0 and \bar{y}_1 of characteristic χ . In addition, suppose $G_0 \supseteq (\bar{y}_0^*)$ is a finite subgroup. We may also assume that $G_0 \supseteq (\bar{y}_0)$. Since G is Σ -uniform relative to the old bases, and $\chi(\bar{y}_0) = \chi(\bar{y}_1)$, there exists an isomorphism $\varphi : G^0 \to G$ such that $\varphi \bar{y}_0 = \bar{y}_1$. In view of the equalities $(\bar{y}_0^*) = (\bar{y}_0)_q$ and $(\bar{y}_1^*) = (\bar{y}_1)_q$, we have $\varphi \bar{y}_0^* = \bar{y}_1^*$. Now let bases $\bar{Y}^{\varepsilon} = \langle \bar{y}_0^{\varepsilon}, \ldots, \bar{y}_{n-1}^{\varepsilon} \rangle$ of characteristic $\chi =$ $\langle \langle \chi_0, q_0 \rangle, \ldots, \langle \chi_{n-1}, q_{n-1} \rangle \rangle$ be given. Since $\langle \chi_i, q_i \rangle \neq \langle \chi_j, q_j \rangle$ for any i < j < n, it follows that $(\bar{Y}^{\varepsilon}) = (\bar{y}_0^{\varepsilon}) \oplus \ldots (\bar{y}_{n-1}^{\varepsilon})$. From this point on, the proof that the required isomorphic embedding φ exists proceeds similarly to the previous. \Box

Below by a basis is meant a new basis and asterisks in symbols \bar{y}^* , Ξ_0^* , χ^* , B_{χ}^* , and $\mathfrak{b}^*(\chi)$ are omitted. With this in mind, we have

LEMMA 1.4. Let G be a Σ -uniform group. If $\bar{y} = \langle y_0, \ldots, y_{n-1} \rangle$ is an elementary basis, a subgroup (y_i) is pure in G for some i < n, and $|y_i| = p^m$, then every element $g \in G_p$ of order p^k , $k \leq m$, belongs to (\bar{y}) .

Proof. To be specific, let i = 0. First we show that any element of order p^m belongs to (\bar{y}) . Assume to the contrary that there exists some element $b_0 \in G_p \setminus (\bar{y})$ with $|b_0| = p^m$. There are two cases to consider.

(a) Let (b_0) be pure in G_p . Then G has the following decompositions: $G_p = (y_0) \oplus (a_1) \dots \oplus (a_{l-1})$ and $G_p = (b_0) \oplus (b_1) \oplus \dots \oplus (b_{l-1})$, where $|a_i| = |b_i|$, with $1 \leq i \leq l$. Given the basis \bar{y} , we define a sequence \bar{v} as follows. Let $y_i = \alpha_{i,0}y_0 + \alpha_{i,1}a_1 + \dots + \alpha_{i,l-1}a_{l-1}, 0 < i < l$. Put $v_i = \alpha_{i,0}b_0 + \alpha_{i,1}b_1 + \dots + \alpha_{i,l-1}b_{l-1}$. Take an isomorphism $\varphi : G_p \to G_p$, where $\varphi y_0 = b_0$ and $\varphi a_i = b_i$, such that $\varphi y_i = v_i$. Every Σ -formula $\Phi(x_0, \dots, x_{n-1})$ without parameters true in $\mathbb{HF}(G)$ for $\langle y_0, \dots, y_{n-1} \rangle$ will also be true for $\langle v_0, \dots, v_{n-1} \rangle$. Let $\bar{y} \in B_{\chi}$. Then $\bar{v} \in B_{\chi}$. At the same time, $b_0 \in (\bar{v}) \setminus (\bar{y})$, a contradiction. Hence $b_0 \in (\bar{y})$.

(b) Let (b_0) not be pure in G_p . Then an element $z_0 = y_0 + b_0$ has order p^m . We prove that (z_0) is pure in G_p . Suppose on the contrary that there exists an element u_0 for which $p^{m-1}z_0 = p^m u_0$. This yields $p^{m-1}y_0 + p^{m-1}b_0 = p^m u_0$. Since (b_0) is not pure, there exists an element u_1 such that $p^{m-1}b_0 = p^m u_1$. This implies $p^{m-1}y_0 = p^m (u_0 - u_1)$, which is a contradiction with (y_0) being pure. Therefore, (z_0) is pure. In view of (a), $z_0 \in (\bar{y})$. Hence $b_0 \in (\bar{y})$.

Now let an element $x \in G_p$ have order p^k , $k \leq m$. Then $y_0 + x$ has order p^m ; so $y_0 + x$ and, hence, $x \in (\bar{y})$. \Box

Lemma 1.4 entails the following:

COROLLARY 1.1. Every elementary basis $\bar{y} \neq \emptyset$ contained in G_p generates G_p . In other words, $(\bar{y}) = G_p$.

Proof. Let p^m be the greatest order of elements in the group G_p . We claim that there exists an elementary basis \bar{y} containing some element x of order p^m . Indeed, suppose that the order of an element $g \in G$ is equal to p^m . Then $f_1(g) = \langle g_0, \ldots, g_{e-1} \rangle$, where $g_i \in (\bar{y}_i), \bar{y}_i$ is an elementary basis, and $(g) = (g_0, \ldots, g_{e-1})$. Since $|g| = p^m$, there exists an element g_i of order p^m . Hence the subgroup (g_i) is pure in G_p . By Lemma 1.4, therefore, every element of order less than p^m is contained in (\bar{y}_i) ; i.e., $(\bar{y}_i) = G_p$. Assume G_p has another elementary basis $\emptyset \neq \bar{v} \subseteq G_p$ such that $(\bar{y}_i) \neq (\bar{v})$. Then $\chi(\bar{y}_i) \neq \chi(\bar{v})$. This yields $(\bar{y}_i) \cap (\bar{v}) = \{e\}$. On the other hand, $(\bar{v}) \subseteq (\bar{y}_i)$, a contradiction. Thus $(\bar{v}) = G_p$. \Box

We finish to argue for the necessity. Corollary 1.1 entails the equivalence

$$\begin{aligned} \alpha(p) &= \alpha \,\&\, \varphi(p) = \langle m_0, \dots, m_{\alpha-1} \rangle \,\&\, \psi(p) = \langle n_0, \dots, n_{\alpha-1} \rangle \\ \Leftrightarrow \mathbb{HF}(G) &\models \exists \chi \exists B_{\chi} \exists \bar{y} \exists y_0^0 \dots \exists y_{n_0-1}^0 \dots \exists y_0^{\alpha-1} \dots \exists y_{n_{\alpha-1}-1}^{\alpha-1} \left(\chi \in \Xi_0 \setminus \{0\} \\ \&\, \mathfrak{b}(\chi) &= B_{\chi} \,\&\, \bar{y} \in B_{\chi} \,\&\, (\bar{y}) \subseteq G_p \\ \&\, \bar{y} &= \langle y_0^0, \dots, y_{n_0-1}^0 \dots, y_0^{\alpha-1} \dots, y_{n_{\alpha-1}-1}^{\alpha-1} \rangle \,\&\, \left(\bigwedge_{i < \alpha} \left(\bigwedge_{j < n_j} |y_j^i| = p^{m_i} \right) \right) \right) \end{aligned}$$

Hence graphs Γ_{α} , Γ_{φ} , and Γ_{ψ} are Σ -predicates without parameters in $\mathbb{HF}(G)$. The necessity is proved, completing the proof of Theorem 1.1. \Box

Theorems 1 and 1.1 can be combined to yield

COROLLARY 1.2. Let $G \rightleftharpoons G(\alpha, \varphi, \psi)$ be a group and functions α, φ , and ψ be Σ -definable in $\mathbb{HF}(G)$. Then a universal Σ -function exists in $\mathbb{HF}(G)$ if and only if the family \mathbb{N}^G of all numerical Σ -functions in $\mathbb{HF}(G)$ is computable.

COROLLARY 1.3. Let functions α , φ , and ψ have partial computable extensions. Then a universal Σ -function exists in $\mathbb{HF}(G)$, where $G \rightleftharpoons G(\alpha, \varphi, \psi)$, if and only if the family \mathbb{N}^G of all numerical Σ -functions in $\mathbb{HF}(G)$ is computable.

Proof. Indeed, suppose α' , φ' , and ψ' are extensions of α , φ , and ψ , respectively, and $P_0 = \{p \in P \mid \mathbb{HF}(G) \models \exists x(|x| = p)\}$. Since the functions α' , φ' , and ψ' are Σ -definable in $\mathbb{HF}(G)$, functions $\alpha = \alpha' \upharpoonright P_0$, $\varphi = \varphi' \upharpoonright P_0$, and $\psi = \psi' \upharpoonright P_0$ likewise are Σ -definable, and the result now follows from Corollary 1.2. \Box

LEMMA 1.5. Let functions α , φ , and ψ be Σ -definable in $\mathbb{HF}(G)$, where $G \rightleftharpoons G(\alpha, \varphi, \psi)$. An arbitrary subset A of natural numbers is Σ -definable in $\mathbb{HF}(G)$ if and only if it is *e*-reducible to a set of the form

$$S = \{ [k, m_0^k, n_0^k], \dots, [k, m_{\alpha_k-1}^k, n_{\alpha_k-1}^k] \mid k \in \delta \alpha \},\$$

where $\alpha(k) = \alpha_k, \ \varphi(k) = [m_0^k, \dots, m_{\alpha_k-1}^k], \ \psi(k) = [n_0^k, \dots, n_{\alpha_k-1}^k], \ \text{and} \ m_i^k < m_j^k \ \text{if} \ i < j < \alpha_k.$

Proof. The sufficiency follows from [5, Thm. 1.1] and the property of being Σ -definable for S. Necessity. Let a set $A \subseteq \omega$ be Σ -definable in $\mathbb{HF}(G)$. By virtue of Theorem 1.1, the group G is Σ -uniform. In view of Corollary 1, the set A is e-reducible to a set $\mathrm{Th}_{\exists}(G)$. We argue to show that $\mathrm{Th}_{\exists}(G)$ is e-reducible to S.

Let a set $\mathfrak{B} = \{[k, m_i^k, n_i^k] \mid k, i, m_i^k, n_i^k \in \omega, m_i^k, n_i^k > 0\}$ be given and $B \subseteq \mathfrak{B}$ be a finite subset such that $B = B_{k_0} \cup \ldots \cup B_{k_t-1}, k_i \neq k_j$, and i < j < t, where $B_{k_i} =$ $\{ [k_i, m_0^{k_i}, n_0^{k_i}], \dots, [k_i, m_{l_i-1}^{k_i}, n_{l_i-1}^{k_i}] \}, \ m_s^{k_i} \neq m_r^{k_i}, \text{ and } s < r < l_i. \text{ Given these, we define a group } G(B) = G(B_0) \oplus \ldots \oplus G(B_{k_t-1}), \text{ where } G(B_k) = Z_{p_k}^{n_0^k} \oplus \ldots \oplus Z_{p_k}^{n_{l-1}^k}, \ k = k_0, \dots, k_{t-1}, \text{ and if } k = k_i \text{ then } l = l_i. \text{ Let } \mathfrak{B}^* = \{B \mid B \subseteq \mathfrak{B}, B = B_{k_0} \cup \ldots \cup B_{k_t-1}\}, \text{ write } H \hookrightarrow G(B) \text{ for the fact that a finite group } H \text{ is embeddable in } G(B), \text{ and assume that } \Phi \text{ is a set of all } \exists \text{-sentences in a signature } \sigma = \langle +, 0 \rangle. \text{ Given these, we define a set } W = \{\langle H, B, \varphi \rangle \mid H \hookrightarrow G(B), B \in \mathfrak{B}^*, \varphi \in \Phi, H \models \varphi\}.$ It is easy to verify that the set W is c.e. We prove the equality

$$\operatorname{Th}_{\exists}(G) = \{ \varphi \mid \exists H \exists B(\langle H, B, \varphi \rangle \in W \& B \subseteq S) \}.$$

$$\tag{4}$$

Indeed, let $\varphi \in \operatorname{Th}_{\exists}(G)$. Then there exists $B \subseteq S$, $B \in \mathfrak{B}^*$, such that $G(B) \models \varphi$. If we put H = G(B) we conclude that the formula in the right part of (4) is valid for φ . Assume now that φ belongs to the right part of (4). Then H is embeddable in G(B) and $H \models \varphi$, whence $G(B) \models \varphi$. Since $B \subseteq S$, G(B) is embeddable in G. Hence $\varphi \in \operatorname{Th}_{\exists}(G)$, proving (4). Thus $\operatorname{Th}_{\exists}(G) \leq_e S$. \Box

Lemma 1.5 and Corollary 2 give rise to the following:

COROLLARY 1.4. Let functions α , φ , and ψ be Σ -definable in $\mathbb{HF}(G)$, with $G \rightleftharpoons G(\alpha, \varphi, \psi)$. Then $\mathbb{HF}(G)$ contains a universal Σ -function if and only if a principal *e*-ideal $\mathfrak{I}_e(S)$ generated by a set S contains a function that is universal for the family of all unary functions in $\mathfrak{I}_e(S)$.

COROLLARY 1.5. Let α , φ , and ψ be partial computable functions. Then a universal Σ -function exists in $\mathbb{HF}(G)$, with $G \rightleftharpoons G(\alpha, \varphi, \psi)$.

Proof. In fact, the existence of a universal function is underpinned by the fact that the set S is c.e. in the *e*-ideal $\mathfrak{I}_e(S)$ generated by S. \Box

COROLLARY 1.6. There exists a set S of primes such that an admissible set $\mathbb{HF}(G_S)$, $G_S = \bigoplus \{Z_p \mid p \in S\}$, contains no universal Σ -function.

Proof. In fact, a set S of natural numbers such that an e-ideal $\mathcal{I}_e(S)$ generated by S does not contain a universal function was constructed in [6]. This, combined with Corollary 1.4, yields the result. \Box

2. RINGS

In this section, we construct a family of Σ -uniform rings.

Let $F_{p^n}^m$ be a direct sum of m copies of a field of degree n over a prime field of characteristic p, treated in a ring signature $\sigma = \langle +, \cdot, 0 \rangle$. Assume partial unary functions α , φ , and ψ are defined so that for any $k \in \delta \alpha$, the following hold: $\varphi(k) = [m_0^k, \ldots, m_{\alpha_k-1}^k]$ and $\psi(k) = [n_0^k, \ldots, n_{\alpha_k-1}^k]$, where $\alpha_k = \alpha(k)$, $m_i^k, n_i^k > 0$, and $m_i^k < m_j^k$ if $0 \le i < j < \alpha_k$. Below, unless ambiguity would result, m_i and n_i are written in place of m_i^k and n_i^k . We introduce a ring of the form

$$K \rightleftharpoons K(\alpha, \varphi, \psi) = \oplus \left\{ F_{\substack{m_0^{m_0^k} \\ p_k^{m_0^k}}}^{n_0^k} \oplus \ldots \oplus F_{\substack{m_{\alpha_k-1}^k \\ p_k^{m_{\alpha_k-1}^k}}}^{n_{\alpha_k-1}^k} \, \middle| \, k \in \delta \alpha \right\},$$

97

where p_k is the kth prime.

LEMMA 2.1. For every Σ -formula $\Phi(\bar{a}, x)$ with parameter $\bar{a} = \langle a_0, \ldots, a_{n-1} \rangle, a_i \in K, K \rightleftharpoons$ $K(\alpha, \varphi, \psi)$, in a signature $\sigma = \langle U, \in, \emptyset, +, \cdot, 0 \rangle$, there exists a Σ -formula $\Phi^*(x)$ without parameters such that $\Phi(\bar{a}, x) \equiv \Phi^*(x)$ is a true formula in $\mathbb{HF}(K)$ for any $x \in \mathbb{HF}(\omega)$.

Proof. Assume that for some k, it is true that $(\bar{a}) \subseteq H_k = \{x \in K \mid p_k x = 0\}$, where (\bar{a}) is a subring generated by a set $\{a_0, \ldots, a_{n-1}\}$. There is no loss of generality in assuming that $H_k = (a_0) \times \ldots \times (a_{n-1}), (a_i)$ is a field of degree l_i over a prime field $P_i \subseteq (a_i)$, and a_i is a root of an irreducible polynomial f_i of degree l_i over P_i .

We define Σ -predicates without parameters as follows.

Let Field $(F, p^n) \Leftrightarrow F$ is a field of cardinality p^n in $K' \Leftrightarrow \mathbb{HF}(K) \models |F| = p^n \& \forall x \in \mathbb{HF}(K)$ F(U(x) & (field axioms whose quantifiers are bounded by a set F)).

Denote by e_F the unit of a subfield $F \subseteq K$. If the predicate Field (P, p) is true in $\mathbb{HF}(K)$, then P is a prime field of characteristic p and $P = \{0, e_P, 2e_P, \dots, (p-1)e_P\}$.

Suppose $Pol(f, n, P, p) \Leftrightarrow f$ is a polynomial of degree n over a prime field P of characteristic $p' \Leftrightarrow \mathbb{HF}(K) \models \mathrm{Field}(P,p) \& \exists s_1$

Thus $f(x) = x^n + (s_1 e_P) x^{n-1} + \ldots + s_n e_P$.

Assume $\operatorname{Ind}(f, n, P, p) \Leftrightarrow$ 'a polynomial f of degree n over a prime field P of characteristic p is irreducible' $\Leftrightarrow \mathbb{HF}(K) \models \mathrm{Pol}(f, n, P, p) \& \exists a_1 \in P \dots \exists a_n \in P(f = \langle e_P, a_1, \dots, a_n \rangle \& \forall s \forall t(s + t = s) \land b \in \mathbb{R}$ $n \& 1 \le s \& 1 \le t \to \forall b_1 \in P \dots \forall b_s \in P \forall c_1 \in P \dots \forall c_t \in P(a_1 \ne b_1 + c_1 \lor \dots \lor a_n \ne b_s c_t))).$

Put

$$\Phi^* = \exists y_0 \dots \exists y_{n-1} \exists P_0 \dots \exists P_{n-1} \left((\bar{y}) = (y_0) \times \dots \times (y_{n-1}) \\ \& \bigwedge_{i < n} \left(\operatorname{Field}((y_i), p^{l_i}) \& \operatorname{Field}(P_i, p) \& P_i \subseteq (y_i) \& \operatorname{Ind}(f_i, l_i, P_i, p) \\ \& f_i(y_i) = 0 \right) \& \Phi(\bar{y}, x) \right),$$

where $\Phi(\bar{y}, x)$ is obtained from $\Phi(\bar{a}, x)$ by replacing \bar{a} by \bar{y} .

Let $\mathbb{HF}(K) \models \Phi(\bar{a}, x)$, with $x \in \mathbb{HF}(\omega)$. If we take a_i to be values for y_i in $\Phi(\bar{y}, x)$, then it is obvious that $\mathbb{HF}(K) \models \Phi^*(x)$. Suppose $\mathbb{HF}(G) \models \Phi^*(x)$. Then there exists an automorphism $\varphi : \mathbb{HF}(K) \to \mathbb{HF}(K)$ for which $\varphi y_i = a_i$. Hence $\mathbb{HF}(K) \models \Phi(\bar{a}, x)$.

The general case where $(\bar{a}) \subseteq H_{k_0} \times \ldots \times K_{k_{s-1}}$ can be readily reduced to the case above. \Box **THEOREM 2.1.** If a ring $K \rightleftharpoons K(\alpha, \varphi, \psi)$ and functions α, φ , and ψ are Σ -definable in $\mathbb{HF}(K)$, then K is Σ -uniform.

The **proof** proceeds by verifying the validity of conditions (1)-(3) in the definition of a Σ uniform structure. In view of Lemma 2.1, we may assume that α , φ , and ψ are Σ -definable in $\mathbb{HF}(K)$ without parameters.

(1) Let $\Xi_0 = \{p \mid \exists k (k \in \delta \alpha \& p = p_k\} \cup \{0\}$ be a set of elementary characteristics. We argue to show that a function $\mathfrak{b}(p) = B_p$, where B_p is the set of all elementary bases of characteristic p, is definable in $\mathbb{HF}(K)$ by a Σ -formula without parameters.

For any $k \in \delta \alpha$, put $n^k = n_0^k m_0^k + \ldots + n_{\alpha_k-1}^k m_{\alpha_k-1}^k$. Then the graph Γ_n of a function $n(k) = n^k$ is definable by a Σ -formula without parameters. For $h(k) = H_k$, the following equivalence holds:

$$h(k) = H_k \Leftrightarrow \mathbb{HF}(K) \models \forall x \in H_k(U(x) \& k \in \delta \alpha \& |H_k| = p_k^{n^k} \& p_k x = 0).$$

Hence the graph Γ_h is a Σ -predicate without parameters in $\mathbb{HF}(K)$.

On a set of all polynomials of degree n over a given prime field P, a lexicographic ordering is defined via a predicate of the form

$$\operatorname{Ord}(f_0, f_1, n, P, p) \Leftrightarrow \mathbb{HF}(K) \models \bigwedge_{\varepsilon < 2} \left(\operatorname{Pol}(f_\varepsilon, n, P, p) \\ \& \exists s_1^\varepsilon < p \dots \exists s_n^\varepsilon < p \left(f_\varepsilon = \langle e_P, s_1^\varepsilon e_P, \dots, s_n^\varepsilon e_P \rangle \\ \& \exists k < n \left(\bigwedge_{i < k} s_i^0 = s_i^1 \& s_k^0 < s_k^1 \right) \lor f_0 = f_1 \right) \right).$$

To define an elementary basis, Σ -predicates without parameters are introduced as follows.

Let $\operatorname{Ind}^*(f, n, P, p) \Leftrightarrow f$ is the least irreducible polynomial of degree n over a prime field P of characteristic $p' \Leftrightarrow \mathbb{HF}(K) \models \operatorname{Ind}(f, n, P, p) \& \forall g \in \operatorname{Ind}(g, n, P, p) (f \leq g).$

Suppose $\operatorname{Val}(f, F, y, z, p) \Leftrightarrow 'z$ is equal to the value of a polynomial f over the prime subfield of a field F for an element $y \in F' \Leftrightarrow \mathbb{HF}(K) \models \exists m \exists n \exists s_1$

Define an elementary basis via the predicate

$$\begin{split} \mathfrak{C}(k,Y) \Leftrightarrow & \langle \bar{y} \text{ is an elementary basis of characteristic } p_k' \\ \Leftrightarrow \mathbb{HF}(K) \models k \in \delta \alpha \& \exists \bar{y}^0 \in H_k \dots \exists \bar{y}^{\alpha_k - 1} \in H_k \bigg[\bigwedge_{i < \alpha_k} \exists y_0^i \dots \exists y_{n_i - 1}^i \\ & \left(\bar{y}^i = \langle y_0^i, \dots, y_{n_i - 1}^i \rangle \& \bigwedge_{j < n_i} \exists F_j^i \exists P_j^i \exists f_j^i (\text{Field}(F_j^i, p_k^{m_i}) \\ \& P_j^i \subseteq F_j^i \& \text{Field}(P_j^i, p_k) \& \text{Ind}^*(f_j^i, m_i, P_j^i, p_k) \\ \& \text{Val}(f_j^i, F_j^i, y_j^i, 0, p_k)) \bigg) \& (\bar{y}^0, \dots, \bar{y}^{\alpha_k - 1}) \\ &= \oplus \{ (y_j^i) \mid i < \alpha_k, \ j < n_i \} \& \bar{y} = \langle \bar{y}^0, \dots, \bar{y}^{\alpha_k - 1} \rangle \bigg], \end{split}$$

where α_k , m_i , and n_i are defined in the same way as at the beginning of Sec. 2 and $(\bar{y}^0, \ldots, \bar{y}^{\alpha_k-1})$ is a subring generated by a set $\{y_j^i \mid i < \alpha_k, j < n_i\}$ in K.

For our further reasoning, we need

LEMMA 2.2. There exists a computable numerical function $\beta(k, \alpha, m, n)$ satisfying the following: if $\alpha > 0$, $m = [m_0, \ldots, m_{\alpha-1}]$, $n = [n_0, \ldots, n_{\alpha-1}]$, $m_i, n_i > 0$, $m_i < m_j$, $0 \le i < j < \alpha$, $H_k \cong \bigoplus \{F_0^i \oplus \ldots \oplus F_{n_i-1}^i \mid i < \alpha\}$, and F_j^i is a field of degree m_i over a prime field of characteristic p_k , then the value of $\beta(k, \alpha, m, n)$ is equal to the number of sequences $\bar{y} = \langle y_0^0, \ldots, y_{n_0-1}^0, \ldots, y_0^{\alpha-1}, \ldots, y_{n_{\alpha-1}-1}^{\alpha-1} \rangle \rightleftharpoons \langle y_j^i \mid i < \alpha, j < n_i \rangle$ such that the element y_j^i is a root of the least irreducible polynomial f_j^i of degree m_i over a prime field $P_j^i \subseteq (y_j^i)$ and $H_k = \oplus \{(y_j^i) \mid i < \alpha, j < n_i\}$, where (y_j^i) is a subfield of characteristic p_k generated by y_j^i .

Proof. It suffices to appeal to the fact that there exists an algorithm which, given numbers k, α , m, and n, enumerates all sequences \bar{y} in the ring H_k having the properties mentioned in the lemma. \Box

Define a function \mathfrak{b} via the equivalence $\mathfrak{b}(p_k) = B_{p_k} \Leftrightarrow \mathbb{HF}(K) \models k \in \delta \alpha \& \exists m \exists m_0 \dots$ $\exists m_{\alpha_k-1} \exists n \exists n_0 \dots \exists n_{\alpha_k-1} \exists \gamma \exists \bar{y}^0 \dots \exists \bar{y}^{\gamma-1} \Big(\varphi(k) = m \& m = [m_0, \dots, m_{\alpha_k-1}] \& \psi(k) = n \& n = [n_0, \dots, n_{\alpha_k-1}] \& \gamma = \beta(k, \alpha, m, n) \& \bigwedge_{i < \gamma} \mathfrak{C}(k, \bar{y}^i) \& \bigwedge_{i < j < \gamma} \bar{y}^i \neq \bar{y}^j \& \forall i < \gamma \ (\bar{y}^i \in B_{p_k}) \& \forall \bar{y} \in B_{p_k} \exists i < \gamma(\bar{y} = \bar{y}^i) \Big).$ By Lemma 2.2, the graph $\Gamma_{\mathfrak{b}}$ of the function \mathfrak{b} is a Σ -predicate without

parameters in $\mathbb{HF}(K)$.

The concept of a basis is defined as follows. For any sequence $\chi = \langle p_{k_0}, \ldots, p_{k_{m-1}} \rangle$ (here p_{k_0} either is 0 or is a prime numbered k_0 for the case m = 1, and $0 < p_{k_i} < p_{k_j}$, i < j < m, for the case m > 1) and for all elementary bases $\bar{y}^i \in B_{p_{k_i}}$ of characteristic p_{k_i} , a sequence of the form $Y = \langle \bar{y}^0, \ldots, \bar{y}^{m-1} \rangle$ is called a *basis of characteristic* χ .

(2) Let an arbitrary element $z \in K \setminus \{0\}$ be given and its order $|z|^+$ in the additive group K^+ of a ring K be equal to $p_{k_0} \dots p_{k_{q-1}}$, k > 1. Put $z_i = p_{k_0} \dots p_{k_{i-1}} p_{k_{i+1}} \dots p_{k_{q-1}} z$. Then $p_{k_i} z_i = 0$, $z_i \neq 0, z_i \in H_{k_i}, z = z_0 + \dots + z_{q-1}$, and $(z) = (z_0, \dots, z_{q-1})$. Set $f_1(z) = (z_0, \dots, z_{q-1})$. If $z \in H_k$ then $f_1(z) = z$. It is easy to verify that the graph Γ_{f_1} is a Σ -predicate without parameters in $\mathbb{HF}(K)$.

Assume $x \in (\bar{y}) \setminus \{0\}$, where $\bar{y} = \langle \bar{y}^0, \ldots, \bar{y}^{\alpha_k - 1} \rangle$ is an elementary basis of characteristic $p_k \rightleftharpoons p, \ \bar{y}^i = \langle y_0^i, \ldots, y_{n_i-1}^i \rangle, \ (\bar{y}) = (\bar{y}^0) \oplus \ldots \oplus (\bar{y}^{\alpha_k - 1}) = H_k, \ (\bar{y}^i) = (y_0^i) \oplus \ldots \oplus (y_{n_i-1}^i) \cong F_{p^{m_i}}^{n_i},$ and $(y_j^i) = F_j^i \cong F_{p^{m_i}}$. Let $x = x^0 + \ldots + x^{\alpha_k - 1}$ and $x^i = x_0^i + \ldots + x_{n_i-1}^i$, where $x^i \in (\bar{y}^i)$ and $x_j^i \in (y_j^i)$. For any $i < \alpha_k$ and any $j < n_i$, put

$$(x_j^i)' = \begin{cases} x_j^i & \text{if } x_j^i \neq 0; \\ \varnothing & \text{otherwise.} \end{cases}$$

Thus in a one-to-one correspondence with every element $x \in (Y)$ is a sequence $f_0(x, Y) = \langle (x_i^i)' | i < \alpha_k, j < n_i \rangle$.

By the definition of an elementary basis, for any *i* and any *j*, we can uniquely define a least irreducible polynomial $f_j^i = \langle e_j^i, s_1^i e_j^i, \ldots, s_{m_i}^i e_j^i \rangle$ of degree m_i over a prime field $P_j^i \subseteq F_j^i$, where e_j^i is the unit of the field P_j^i , whose root is y_j^i . For every element $x \in (y_j^i)$, therefore, there exists a uniquely defined polynomial $g_j^i(z) = s_{j0}^i e_j^i z^{k_j^i} + \ldots + s_{jk_j^i}^i e_j^i$, $s_{j0}^i \neq 0$, $k_j^i < m_i$, and $g_j^i(y_j^i) = x$. Put $\operatorname{Cor}_0(x, y_j^i) = [s_{j0}^i, \ldots, s_{jk_j^i}^i] + 1$ and $\operatorname{Cor}(0, \emptyset) = 1$. This immediately implies that Cor_0 is a Σ -function without parameters, and if $x^0 \neq x^1$ then $\operatorname{Cor}_0(x^0, y_j^i) \neq \operatorname{Cor}_0(x^1, y_j^i)$.

(3) First let elementary bases $\bar{y}_{\varepsilon} = \langle \bar{y}_{\varepsilon}^{0}, \dots, \bar{y}_{\varepsilon}^{\alpha_{k}-1} \rangle$ and $\bar{y}_{\varepsilon}^{i} = \langle y_{\varepsilon}^{i,0}, \dots, y_{\varepsilon}^{i,n_{i}-1} \rangle$, $\varepsilon < 2$, of the same characteristic $p_{k} \rightleftharpoons p$ be given. By the definition of an elementary basis, $y_{\varepsilon}^{i,j}$ is a root of the least irreducible polynomial $f_{\varepsilon}^{i,j}(x)$ over a prime field $P_{\varepsilon}^{i,j} \subseteq (y_{\varepsilon}^{i,j})$ of degree m_{i} . Hence the coefficients of $f_{\varepsilon}^{i,j}$ depend only on i and on the unit $e_{\varepsilon}^{i,j}$ of the field $P_{\varepsilon}^{i,j}$; i.e., $f_{\varepsilon}^{i,j} = x^{m_{i}} + s_{\varepsilon}^{i,1} e_{\varepsilon}^{i,j} x^{m_{i}-1} + \dots + s_{\varepsilon}^{i,m_{i}} e_{\varepsilon}^{i,j}$, with $s_{\varepsilon}^{i,l} < p$ and $l \leq m_{i}$. Therefore, the mapping $\varphi_{j}^{i} : y_{0}^{i,j} \to y_{1}^{i,j}$ extends to an isomorphism $\Psi_{j}^{i} : (y_{0}^{i,j}) \to (y_{1}^{i,j})$. Since $H_{k} = (\bar{y}_{\varepsilon}) = \oplus\{(y_{\varepsilon}^{i,j}) \mid i < \alpha_{k}, j < n_{i}\}$, the isomorphisms ψ_{j}^{i} extend to an isomorphism $\psi_{p} : (\bar{y}_{0}) \to (\bar{y}_{1})$.

Next let bases $Y^{\varepsilon} = \langle \bar{y}_{\varepsilon}^{p_0}, \dots, \bar{y}_{\varepsilon}^{p_{q-1}} \rangle$ of the same characteristic $\langle p_0, \dots, p_{q-1} \rangle$ be given. By virtue of the fact that $(Y^{\varepsilon}) = \bigoplus \{ (\bar{y}_{\varepsilon}^{p_i}) \mid i < q \}$, the isomorphisms Ψ_{p_i} extend to an isomorphism $\Psi : (Y^0) \to (Y^1)$. The theorem is proved. \Box

Theorems 2 and 2.1 can be combined to yield

COROLLARY 2.1. Let a ring $K \rightleftharpoons K(\alpha, \varphi, \psi)$ and functions α, φ , and ψ be Σ -definable in $\mathbb{HF}(K)$. Then a universal Σ -function exists in $\mathbb{HF}(K)$ if and only if the family \mathbb{N}^K of all numerical Σ -functions in $\mathbb{HF}(K)$ is computable.

COROLLARY 2.2. Let functions α , φ , and ψ have partial computable extensions. Then a universal Σ -function exists in $\mathbb{HF}(K)$, $K \rightleftharpoons K(\alpha, \varphi, \psi)$, if and only if the family \mathcal{N}^K of all numerical Σ -functions in $\mathbb{HF}(K)$ is computable.

LEMMA 2.3. Let functions α , φ , and ψ be Σ -definable in $\mathbb{HF}(K)$, $K \rightleftharpoons K(\alpha, \varphi, \psi)$. Then an arbitrary subset A of natural numbers is Σ -definable in $\mathbb{HF}(K)$ if and only if A is *e*-reducible to a set of the form

$$S = \{ [k, m_0^k, n_0^k], \dots, [k, m_{\alpha_k-1}^k, n_{\alpha_k-1}^k] \mid k \in \delta \alpha \},\$$

where $\alpha(k) = \alpha_k, \ \varphi(k) = [m_0^k, \dots, m_{\alpha_k-1}^k], \ \psi(k) = [n_0^k, \dots, n_{\alpha_k-1}^k], \ \text{and} \ m_i^k < m_j^k \ \text{if} \ i < j < \alpha_k.$

The **proof** is similar to the proof of Lemma 1.5. \Box

This, together with Corollary 2, entails

COROLLARY 2.3. Let functions α , φ , and ψ be Σ -definable in $\mathbb{HF}(G)$, $G \rightleftharpoons G(\alpha, \varphi, \psi)$. Then $\mathbb{HF}(G)$ contains a universal Σ -function if and only if a principal *e*-ideal $\mathfrak{I}_e(S)$ generated by a set S contains a function that is universal for the family of all unary functions in $\mathfrak{I}_e(S)$.

As in the case of groups, we have

COROLLARY 2.4. Let α , φ , and ψ be partial computable functions. Then $\mathbb{HF}(K)$, $G \rightleftharpoons K(\alpha, \varphi, \psi)$, contains a universal Σ -function.

COROLLARY 2.5. There exists a set S of primes such that (K_S) , $K_S = \bigoplus \{F_p \mid p \in S\}$, contains no universal Σ -function.

Acknowledgments. I am grateful to Yu. L. Ershov and S. S. Goncharov whose publications, comments, and encouragement exerted a big impact on my work.

REFERENCES

- A. N. Khisamiev, "Σ-uniform structures and Σ-functions. I," Algebra Logika, 50, No. 5, 659-684 (2011).
- Yu. L. Ershov, *Definability and Computability, Sib. School Alg. Log.* [in Russian], 2nd ed., Ekonomika, Moscow (2000).
- 3. M. I. Kargapolov and Yu. I. Merzlyakov, *Fundamentals of Group Theory* [in Russian], 3d edn., Nauka, Moscow (1982).
- 4. B. L. Van der Waerden, Algebra. I, Springer, Berlin (1971).
- A. S. Morozov and V. G. Puzarenko, "Σ-subsets of natural numbers," Algebra Logika, 43, No. 3, 291-320 (2004).
- I. Sh. Kalimullin and V. G. Puzarenko, "Computability principles on admissible sets," *Mat. Trudy*, 7, No. 2, 35-71 (2004).