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We construct a family of Σ-uniform Abelian groups and a family of Σ-uniform rings.
Conditions are specified that are necessary and sufficient for a universal Σ-function to
exist in a hereditarily finite admissible set over structures in these families. It is proved
that there is a set S of primes such that no universal Σ-function exists in hereditarily
finite admissible sets HF(G) and HF(K), where G = ⊕{Zp | p ∈ S} is a group, Zp is
a cyclic group of order p, K = ⊕{Fp | p ∈ S} is a ring, and Fp is a prime field of
characteristic p.

The present paper is a continuation of [1], in which we introduced the concept of a Σ-uniform
structure and derived a condition that is necessary and sufficient for a universal Σ-function to
exist in a hereditarily finite admissible set over a Σ-uniform structure. Here we show how these
results apply to Abelian groups and rings. We construct a family of Σ-uniform Abelian groups
and a family of Σ-uniform rings. Conditions are specified that are necessary and sufficient for a
universal Σ-function to exist in a hereditarily finite admissible set over structures in these families.
It is proved that there is a set S of primes such that no universal Σ-function exists in hereditarily
finite admissible sets HF(G) and HF(K), where G = ⊕{Zp | p ∈ S} is a group, Zp is a cyclic group
of order p, K = ⊕{Fp | p ∈ S} is a ring, and Fp is a prime field of characteristic p.

We will adhere to the notation and terminology created for admissible sets in [2], for groups in
[3], and for rings in [4] (see also [1]).

We start to cite the definition of a Σ-uniform structure from [1].
Definition 1. Suppose that a locally finite structure M in a signature σ0 satisfies the following
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(1) Let a Σ-subset Ξ0 of natural numbers be defined without parameters. We call every element
χ ∈ Ξ0, 0 ∈ Ξ0, an elementary characteristic. In addition, let a unary Σ-function b(χ), δb = Ξ0,
be defined without parameters so that for any χ ∈ Ξ0, the value of b(χ) is a nonempty finite set
of sequences of elements of equal length in M \ Ω, with b(0) = {∅}. Every element ȳ ∈ b(χ)
is called an elementary basis of characteristic χ and is written χ(ȳ) = χ. All bases ȳi, ȳj ∈ b(χ)
generate the same subsystem, i.e., (ȳi) = (ȳj). If ȳ = 〈y0, . . . , yp−1〉 is an elementary basis, then
(yi)∩(y0, . . . , yi−1, yi+1, . . . , yp−1) = Ω for any i < p. If elementary bases ȳ0, . . . , ȳq−1 have pairwise
distinct characteristics, then (ȳi) ∩

(
〈ȳ0, . . . , ȳi−1, ȳi+1, . . . , ȳq−1〉

)
= Ω for any i < q.

For an arbitrary sequence χ = 〈χ0, . . . , χq−1〉 and for all bases ȳi of characteristic χi, a sequence
of the form Y = 〈ȳ0, . . . , ȳq−1〉 is called a basis of characteristic χ, where χ0 ≥ 0, if q = 1, and
0 < χi < χj if q > 1 and i < j < q.

(2) If ȳ = 〈y0, . . . , yp−1〉 is an elementary basis of characteristic χ 	= 0, and x ∈ (ȳ) \Ω, then ȳ

is called an elementary basis of the element x. The elementary basis for any element x ∈ Ω is ∅.
A sequence f0(x, ȳ) = 〈x0, . . . , xp−1〉, xi ∈ (yi) ∪ {∅}, such that (x) ⊆ (x0, . . . , xp−1) is uniquely
defined for any x ∈ (ȳ) \ Ω. We call xi and x, respectively, atomwise and atomic elements of
characteristic χ.

For any nonatomic element z ∈ M , a sequence f1(z) = 〈z0, . . . , zq−1〉, q > 1, of atomic elements
zi 	∈ Ω of characteristic χi is uniquely defined so that (z) = (z0, . . . , zq−1), χi < χj , and i < j < q. A
basis Y = 〈ȳ0, . . . , ȳq−1〉, χ(ȳi) = χi, is called a basis of an element z and is denoted by B0(z, Y ). If
z is an atomic element, then f1(z) = z. Functions f0 and f1 are 1-1 Σ-functions without parameters.

Let an elementary basis ȳ = 〈y0, . . . , yp−1〉 of characteristic χ and i < p be given. A Σ-function
Cor0 without parameters, where δCor0 = {〈x, yi〉 | x ∈ (yi)}, ρCor0 ⊆ ω+, and ω+ = {n ∈ ω | n >

0}, is defined in HF(M) so that Cor0(x0, yi) 	= Cor0(x1, yi) if xε ∈ (yi), ε < 2, and x0 	= x1.
(3) Let bases Y 0 and Y 1 of the same characteristic χ and a finite substructure M0 ⊇ (Y 0) be

given. Then there exists an isomorphic embedding ϕ : M0 →M for which ϕY 0 = Y 1.
In this case we call M a Σ-uniform structure.
Below are a number of valid results.

THEOREM 1 [1]. Let M be a Σ-uniform structure and M0 some basis. Then the family FM0

of all unary functions definable in HF(M) by Σ-formulas with parameter M0 is computable if and
only if the family NM0 of all numerical Σ-functions with parameter M0 is computable in HF(M).

THEOREM 2 [1]. Let M be a Σ-uniform structure. The family F of all unary Σ-functions
in HF(M) is computable if and only if the family N of all numerical Σ-functions in HF(M) is
computable.

COROLLARY 1 [1]. If M is a Σ-uniform structure, then an ideal Ie(M) of e-degrees of Σ-
subsets of natural numbers in HF(M) is principal and is generated by the e-degree of a set Th∃(M)
of Gödel numbers of ∃-sentences true in M.

COROLLARY 2 [1]. Let M be a Σ-uniform structure. Then HF(M) contains a universal
Σ-function if and only if a principal e-ideal Ie(M) contains a universal function for the family of
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all unary functions in Ie(M).

1. GROUPS

In this section, we construct a family of Σ-uniform Abelian groups.
Let G be a periodic Abelian group, e the zero element of G, and g ∈ G. The order of an element

g is denoted by |g|; Zn
pm stands for a direct sum of n copies of a cyclic group of order pm, where p

is a prime; pk is the kth prime. A p-component of G is denoted by Gp; i.e., G = ⊕{Gp | p ∈ P},
where P is the set of all primes.

LEMMA 1.1. Suppose G is a periodic Abelian p-group, every p-component Gp of which is
finite, and Φ(ā, x) is a Σ-formula with parameter ā = 〈a0, . . . , am−1〉, ai ∈ G, in a signature σ =
〈U,∈, ∅,+, 0〉. Then there exists a Σ-formula Φ∗(x) without parameters such that Φ(ā, x) ≡ Φ∗(x)
is a true formula in HF(G) for any x ∈ HF(ω).

Proof. First let (ā) ⊆ Gp for some p. There is no loss of generality in assuming that Gp =
(a0)⊕ . . .⊕ (am−1) and |ai| = pni , with ni > 0. Put

Φ∗ = ∃y0 . . . ∃ym−1

(

(ȳ) = (y0)⊕ . . .⊕ (ym−1)&
∧

i<m

|yi| = pni & Φ(ȳ, x)

)

,

where Φ(ȳ, x) is obtained from Φ(ā, x) by replacing ā by ȳ.
Let HF(G) |= Φ(ā, x), with x ∈ HF(ω). If ai are taken to be values for yi in Φ(ȳ, x), then

HF(G) |= Φ∗(x). Suppose HF(G) |= Φ∗(x). Then there exists an automorphism ϕ : HF(G) →
HF(G) for which ϕyi = ai. Hence HF(G) |= Φ(ā, x).

The general case where (ā) ⊆ Gp0 ⊕ . . . ⊕Gps−1 can be easily reduced to the case above. �

Let partial unary functions α, ϕ, and ψ be defined so that for any k ∈ δα, the following
relations hold: ϕ(k) = [mk

0, . . . ,m
k
αk−1] and ψ(k) = [nk

0, . . . , n
k
αk−1], where αk = α(k), mk

i , n
k
i > 0,

and mk
i < mk

j if 0 ≤ i < j < αk. Given these functions, we define a group of the form

G � G(α,ϕ, ψ) = ⊕
{

Z
nk

0

p
mk

0
k

⊕ . . .⊕ Z
nk

αk−1

p
mk

αk−1

k

∣
∣∣
∣∣
k ∈ δα

}

.

In what follows, mi and ni will be used in place of mk
i and nk

i unless ambiguity would result.

THEOREM 1.1. A group G = G(α,ϕ, ψ) is Σ-uniform if and only if functions α, ϕ, and ψ

are Σ-definable in HF(G).
Proof. Sufficiency. We verify whether conditions (1)-(3) in the definition of a Σ-uniform

structure are valid for G. In view of Lemma 1.1, we may assume that α, ϕ, and ψ are Σ-definable
in HF(G) without parameters.

(1) Define a set Ξ0 of elementary characteristic by setting

Ξ0 = {p | ∃k(k ∈ δα & p = pk)} ∪ {0}.
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To show that a function b is Σ-definable in HF(G), we introduce the following formulas. For any
k ∈ δα, put nk = nk

0m
k
0 + . . .+nk

αk−1m
k
αk−1. Then the graph Γn of a function n(k) = nk is definable

by a Σ-formula without parameters. Let Gk be the primary pk-component of G. For a function
h(k) = Gk, we have

h(k) = Gk ⇔ HF(G) |= k ∈ δα & |Gk| = pnk

k & ∀x ∈ Gk∃s(ps
kx = 0).

Consequently, h is a Σ-function without parameters in HF(G).
A predicate C(k, ȳ) � ‘ȳ is an elementary basis of characteristic pk’ is defined via the equivalence

C(k, ȳ) ⇔HF(G) |= k ∈ δα & ∃ȳ0 ∈ Gk . . . ∃ȳαk−1 ∈ Gk
[
∧

i<αk

(

∃yi
0 . . . ∃yi

ni−1

(

ȳi = 〈yi
0, . . . , y

i
ni−1〉&

∧

j<ni

|yi
j| = pmi

k

))

& (ȳ0, . . . , ȳαk−1) = ⊕{(yi
j) | i < αk, j < ni}

& ȳ = 〈ȳ0, . . . , ȳαk−1〉
]

,

where mi and ni stand for mk
i and nk

i . Hence C is a Σ-predicate without parameters in HF(G).
Below we need the following:

LEMMA 1.2. There exists a computable function β(k, α,m, n) such that if α > 0,
m = [m0, . . . ,mα−1], n = [n0, . . . , nα−1], mi, ni > 0, mi < mj, 0 ≤ i < j < α, and
Gk

∼= ⊕
{

Zni

p
mi
k

∣∣
∣ i < α

}
, then the value of β(k, α,m, n) is equal to the number of sequences

ȳ = 〈y0
0, . . . , y

0
n0−1, . . . , y

α−1
0 , . . . , yα−1

nα−1−1〉, |yi
j| = pmi , j < ni, i < α, such that Gk = ⊕{(yi

j) |
j < ni, i < α}.

This lemma implies that a function b satisfies the equivalence

b(pk) = Bpk
⇔HF(G) |= k ∈ δα & ∃m∃m0 . . . ∃mαk−1∃n∃n0 . . . ∃nαk−1∃γ

∃ȳ0 . . . ∃ȳγ−1

(

ϕ(k) = m & m = [m0, . . . ,mαk−1] & ψ(k) = n

& n = [n0, . . . , nαk−1] & γ = β(k, α,m, n)&
∧

i<γ

C(k, ȳi)

&
∧

s<j<γ

ȳs 	= ȳj & ∀i < γ (ȳi ∈ Bpk
)

& ∀ȳ ∈ Bpk
∃i < γ(ȳ = ȳi)

)

.

Consequently, the graph Γb of the function b is a Σ-predicate without parameters in HF(G).
Given any sequence χ = 〈pk0, . . . , pkm−1〉, for m = 1, pk0 is equal to 0 or to a prime numbered

k0, and for m > 1, we have 0 < pki
< pkj

, with i < j < m. For all elementary bases ȳi ∈ Bpki
of

characteristic pki
, a sequence of the form Y = 〈ȳ0, . . . , ȳm−1〉 is called a basis of characteristic χ.
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We have thus proved the validity of condition (1).
(2) Let an arbitrary element z ∈ G\{e} be given and its order |z| be equal to pl0

k0
. . . p

lq−1

kq−1
, q > 1,

k0 < . . . < kq−1, 0 < li < mαki
−1 � si, i < q. Put zi = pl0

k0
. . . p

li−1

ki−1
p

li+1

ki+1
. . . p

lq−1

kq−1
z. Then zi ∈ Gki

and z = z0 + . . . + zq−1, with zi 	= e and (z) = (z0)⊕ . . .⊕ (zq−1). Define f1(z) = 〈z0, . . . , zq−1〉. If
z ∈ Gk then f1(z) = z. It is easy to verify that the graph Γf1 is a Σ-predicate without parameters
in HF(G).

Let x ∈ (ȳ), x 	= e, be given; here ȳ = 〈ȳ0, . . . , ȳαk−1〉 is an elementary basis of characteristic
pk � p, ȳi = 〈yi

0, . . . , y
i
ni−1〉, (ȳ) = (ȳ0)⊕ . . .⊕(ȳαk−1) = Gk, (ȳi) = (yi

0)⊕ . . .⊕(yi
ni−1), |yi

j| = pmi
k ,

and j < ni. Then x = x0 + . . . + xαk−1 and xi = xi
0 + . . . + xi

ni−1, where xi ∈ (ȳi) and xi
j ∈ (yi

j).
For any i < αk and any j < ni, put

(xi
j)

′ =

⎧
⎨

⎩
xi

j if xi
j 	= e;

∅ otherwise.

Therefore, in a one-to-one correspondence with every element x ∈ (Y ), x 	= e, is a sequence
f0(x, Y ) = 〈(xi

j)
′ | i < αk, j < ni〉. For any element x ∈ (yi

j), there exists a unique number α for
which x = (α− 1)yi

j . Put Cor0(x, yi
j) = α and Cor(e, ∅) = 1. This immediately implies that Cor0

is a Σ-function without parameters, and if x0 	= x1 then Cor0(x0, yi
j) 	= Cor0(x1, yi

j).
(3) Is obvious. The sufficiency is proved.
Necessity. First we argue for two lemmas.

LEMMA 1.3. If G = ⊕{Gp | p ∈ P}, |Gp| < ω, is a Σ-uniform group, then new elementary
bases can be defined so as to be contained in primary components relative to which G is again
Σ-uniform.

Proof. Every element e 	= x ∈ G is uniquely represented as x = xq0 + . . . + xqm−1 , where
e 	= xqj ∈ Gqj and q0 < . . . < qm−1 are primes. Denote the set {q0, . . . , qm−1} by Qx. Let an
(old) elementary basis ȳ = 〈y0, . . . , yn−1〉 of characteristic χ be given and Qȳ � ∪{Qyi | i < n} =
{q0, . . . , qt−1}. For every q ∈ Qȳ, put Iq = {i < n | q ∈ Qyi}. Suppose Iq = {i0, . . . , ik−1}. Then a
sequence of the form ȳq = 〈yi0

q , . . . , yik−1
q 〉 is called a (new) elementary basis of characteristic 〈χ, q〉

and is denoted ȳ∗. An empty sequence likewise is called an elementary basis of characteristic 0.
Since (ȳ) = (y0)⊕ . . .⊕ (yn−1) for the basis ȳ, we have

(ȳ)q � (ȳq) = (yi0
q )⊕ . . .⊕ (yik−1

q ), (1)

(ȳ) = ⊕{(ȳq) | q ∈ Qȳ}. (2)

At the moment, we prove that conditions (1)-(3) in the definition of a Σ-uniform structure are
satisfied for the new bases.

(1) Introduce the formula

Φ(χ, ȳ, q, ȳ∗) �χ ∈ Ξ0 & ȳ ∈ Bχ & ∃n∃y0 . . . ∃yn−1
(
ȳ = 〈y0, . . . , yn−1〉

& (ȳ)q 	= {e}
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& ∃m∃i0 . . . ∃im−1∀k < m∀j < m
(
(k < j → ik < ij)

& (yik
q ) 	= {e}& (ȳ)q = (yi0

q )⊕ . . .⊕ (yim−1
q )

& ȳ∗ = 〈yi0
q , . . . , yim−1

q 〉
))

.

Put
Ξ∗

0 = {〈χ, q〉 | HF(G) |= ∃ȳ∃ȳ∗Φ(χ, ȳ, q, ȳ∗)},
b∗(χ, q) = B∗

〈χ,q〉 ⇔ HF(G) |= ∀ȳ∗ ∈ B∗
〈χ,q〉∃ȳ ∈ Bχ

(
Φ(χ, ȳ, q, ȳ∗)& ∀ȳ ∈ Bχ

(
(ȳ)q 	= {e} →

∃ȳ∗Φ(χ, ȳ, q, ȳ∗)
)
& ȳ∗ ∈ B∗

〈χ,q〉
)
.

On the set Ξ∗
0, define a lexicographic ordering.

Let ȳ∗0 and ȳ∗1 be elementary bases of characteristic 〈χ, q〉, which are obtained from old bases
ȳ0 and ȳ1 of characteristic χ. Since (ȳ0) = (ȳ1), we have (ȳ∗0) = (ȳ∗1) in view of (1).

Now let bases ȳ∗1 , . . . , ȳ
∗
α of pairwise distinct characteristics 〈χ1, q1〉, . . . , 〈χα, qα〉 be given. We

claim that (ȳ∗1) ∩ (ȳ∗2 , . . . , ȳ
∗
α) = {e}. Indeed, suppose x ∈ (ȳ∗1) ∩ (ȳ∗2, . . . , ȳ

∗
α). Then x ∈ Gq1 .

Assume q2, . . . , qm 	= q1 but qm+1, . . . , qα = q1. Then x ∈ (ȳ∗m+1, . . . , ȳ
∗
α). Since 〈χ1, q1〉 	= 〈χk, qk〉,

m < k ≤ α, we have χ1 	= χk. Let ȳ∗1, . . . , ȳ
∗
α be obtained from old bases ȳ1, . . . , ȳα of characteristics

χ1, . . . , χα. This implies (ȳ1) ∩ (ȳm+1, . . . , ȳα) = {e}. Since ȳ∗i ⊆ (ȳi), 1 ≤ i ≤ α, we have (ȳ∗1) ∩
(ȳ∗m+1, . . . , ȳ

∗
α) = {e}; i.e., x = e.

(2) Let ȳ∗ be an elementary basis of characteristic 〈χ, q〉, which is obtained from a basis ȳ =
〈y0, . . . , yn−1〉, and x ∈ (ȳ)∗\{e}. Then (ȳ∗) = (ȳ)q = (yi0

q )⊕. . .⊕(yim−1
q ) for some ij < n. With this

in mind, we can uniquely define a sequence 〈x0, . . . , xm−1〉 so that xj ∈ (yij
q ), x = x0 + . . . + xm−1,

and x ∈ (x0, . . . , xm−1). For every j < m, put

x′
j =

⎧
⎨

⎩
xj if xj 	= e;

∅ otherwise.

Set f∗
0 (x, ȳ∗) = 〈x′

0, . . . , x
′
m−1〉.

Define a function f∗
1 . Let an element z ∈ G \ {e} be given and f1(z) = 〈z0, . . . , ze−1〉 be a

function for which zk ∈ (ȳk) \ {e}, (z) = (z0, . . . , zl−1), ȳk = 〈yk,0, . . . , yk,nk−1〉, k < l. In view
of (2), we have (ȳk) = ⊕{(ȳk)q | q ∈ Qȳk

}. This implies that for any k < l, there exist a subset
Qk = {qk

0 , . . . , qk
mk−1} ⊆ Qȳk

and elements e 	= zk
j ∈ (ȳk)qk

j
, j < mk, such that

zk = zk
0 + . . . + zk

mk−1, (zk) = (zk
0 , . . . , zk

mk−1). (3)

In this event we put f∗
1 (z) = 〈z0

0 , . . . , z0
m0−1, . . . , z

e−1
0 , . . . , ze−1

me−1−1〉. It follows from (3) that
(z) = (z0

0 , . . . , ze−1
me−1−1). If ȳ∗ is an elementary basis and z ∈ (ȳ∗), then f∗

1 (z) = z.
The functions f∗

0 and f∗
1 are defined so that Γf∗

0
and Γf∗

1
are Σ-predicates without parameters

in HF(G).
We define a function Cor0. Let an elementary basis ȳ∗ = 〈y0, . . . , yn−1〉 be given. For any element

x ∈ (yi), i < n, there exists a unique number α such that x = (α − 1)yi. In this instance we set
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Cor0(x, yi) = α and Cor(e, ∅) = 1. This implies that Cor0 is a Σ-function without parameters,
and if x0 	= x1 then Cor0(x0, yi) 	= Cor0(x1, yi).

(3) Let ȳ∗0 and ȳ∗1 be two elementary bases of the same characteristic 〈χ, q〉, which are obtained
from old bases ȳ0 and ȳ1 of characteristic χ. In addition, suppose G0 ⊇ (ȳ∗0) is a finite subgroup. We
may also assume that G0 ⊇ (ȳ0). Since G is Σ-uniform relative to the old bases, and χ(ȳ0) = χ(ȳ1),
there exists an isomorphism ϕ : G0 → G such that ϕȳ0 = ȳ1. In view of the equalities (ȳ∗0) = (ȳ0)q
and (ȳ∗1) = (ȳ1)q, we have ϕȳ∗0 = ȳ∗1. Now let bases Ȳ ε = 〈ȳε

0, . . . , ȳ
ε
n−1〉 of characteristic χ =

〈〈χ0, q0〉, . . . , 〈χn−1, qn−1〉〉 be given. Since 〈χi, qi〉 	= 〈χj, qj〉 for any i < j < n, it follows that
(Ȳ ε) = (ȳε

0)⊕ . . . (ȳε
n−1). From this point on, the proof that the required isomorphic embedding ϕ

exists proceeds similarly to the previous. �

Below by a basis is meant a new basis and asterisks in symbols ȳ∗, Ξ∗
0, χ∗, B∗

χ, and b∗(χ) are
omitted. With this in mind, we have

LEMMA 1.4. Let G be a Σ-uniform group. If ȳ = 〈y0, . . . , yn−1〉 is an elementary basis, a
subgroup (yi) is pure in G for some i < n, and |yi| = pm, then every element g ∈ Gp of order pk,
k ≤ m, belongs to (ȳ).

Proof. To be specific, let i = 0. First we show that any element of order pm belongs to (ȳ).
Assume to the contrary that there exists some element b0 ∈ Gp \ (ȳ) with |b0| = pm. There are two
cases to consider.

(a) Let (b0) be pure in Gp. Then G has the following decompositions: Gp = (y0) ⊕ (a1) . . . ⊕
(al−1) and Gp = (b0) ⊕ (b1) ⊕ . . . ⊕ (bl−1), where |ai| = |bi|, with 1 ≤ i ≤ l. Given the basis
ȳ, we define a sequence v̄ as follows. Let yi = αi,0y0 + αi,1a1 + . . . + αi,l−1al−1, 0 < i < l. Put
vi = αi,0b0 + αi,1b1 + . . . + αi,l−1bl−1. Take an isomorphism ϕ : Gp → Gp, where ϕy0 = b0 and
ϕai = bi, such that ϕyi = vi. Every Σ-formula Φ(x0, . . . , xn−1) without parameters true in HF(G)
for 〈y0, . . . , yn−1〉 will also be true for 〈v0, . . . , vn−1〉. Let ȳ ∈ Bχ. Then v̄ ∈ Bχ. At the same time,
b0 ∈ (v̄) \ (ȳ), a contradiction. Hence b0 ∈ (ȳ).

(b) Let (b0) not be pure in Gp. Then an element z0 = y0 + b0 has order pm. We prove that (z0)
is pure in Gp. Suppose on the contrary that there exists an element u0 for which pm−1z0 = pmu0.
This yields pm−1y0 + pm−1b0 = pmu0. Since (b0) is not pure, there exists an element u1 such that
pm−1b0 = pmu1. This implies pm−1y0 = pm(u0−u1), which is a contradiction with (y0) being pure.
Therefore, (z0) is pure. In view of (a), z0 ∈ (ȳ). Hence b0 ∈ (ȳ).

Now let an element x ∈ Gp have order pk, k ≤ m. Then y0 + x has order pm; so y0 + x and,
hence, x ∈ (ȳ). �

Lemma 1.4 entails the following:

COROLLARY 1.1. Every elementary basis ȳ 	= ∅ contained in Gp generates Gp. In other
words, (ȳ) = Gp.

Proof. Let pm be the greatest order of elements in the group Gp. We claim that there exists
an elementary basis ȳ containing some element x of order pm. Indeed, suppose that the order of
an element g ∈ G is equal to pm. Then f1(g) = 〈g0, . . . , ge−1〉, where gi ∈ (ȳi), ȳi is an elementary
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basis, and (g) = (g0, . . . , ge−1). Since |g| = pm, there exists an element gi of order pm. Hence
the subgroup (gi) is pure in Gp. By Lemma 1.4, therefore, every element of order less than pm

is contained in (ȳi); i.e., (ȳi) = Gp. Assume Gp has another elementary basis ∅ 	= v̄ ⊆ Gp such
that (ȳi) 	= (v̄). Then χ(ȳi) 	= χ(v̄). This yields (ȳi) ∩ (v̄) = {e}. On the other hand, (v̄) ⊆ (ȳi), a
contradiction. Thus (v̄) = Gp. �

We finish to argue for the necessity. Corollary 1.1 entails the equivalence

α(p) = α & ϕ(p) = 〈m0, . . . ,mα−1〉& ψ(p) = 〈n0, . . . , nα−1〉

⇔HF(G) |= ∃χ∃Bχ∃ȳ∃y0
0 . . . ∃y0

n0−1 . . . ∃yα−1
0 . . . ∃yα−1

nα−1−1

(

χ ∈ Ξ0 \ {0}

& b(χ) = Bχ & ȳ ∈ Bχ & (ȳ) ⊆ Gp

& ȳ = 〈y0
0, . . . , y

0
n0−1 . . . , yα−1

0 . . . , yα−1
nα−1−1〉&

(
∧

i<α

(
∧

j<nj

|yi
j | = pmi

)))

.

Hence graphs Γα, Γϕ, and Γψ are Σ-predicates without parameters in HF(G). The necessity is
proved, completing the proof of Theorem 1.1. �

Theorems 1 and 1.1 can be combined to yield

COROLLARY 1.2. Let G � G(α,ϕ, ψ) be a group and functions α, ϕ, and ψ be Σ-definable
in HF(G). Then a universal Σ-function exists in HF(G) if and only if the family NG of all numerical
Σ-functions in HF(G) is computable.

COROLLARY 1.3. Let functions α, ϕ, and ψ have partial computable extensions. Then a
universal Σ-function exists in HF(G), where G � G(α,ϕ, ψ), if and only if the family NG of all
numerical Σ-functions in HF(G) is computable.

Proof. Indeed, suppose α′, ϕ′, and ψ′ are extensions of α, ϕ, and ψ, respectively, and P0 =
{p ∈ P | HF(G) |= ∃x(|x| = p)}. Since the functions α′, ϕ′, and ψ′ are Σ-definable in HF(G),
functions α = α′ � P0, ϕ = ϕ′ � P0, and ψ = ψ′ � P0 likewise are Σ-definable, and the result now
follows from Corollary 1.2. �

LEMMA 1.5. Let functions α, ϕ, and ψ be Σ-definable in HF(G), where G � G(α,ϕ, ψ). An
arbitrary subset A of natural numbers is Σ-definable in HF(G) if and only if it is e-reducible to a
set of the form

S = {[k,mk
0 , nk

0], . . . , [k,mk
αk−1, n

k
αk−1] | k ∈ δα},

where α(k) = αk, ϕ(k) = [mk
0 , . . . ,m

k
αk−1], ψ(k) = [nk

0, . . . , n
k
αk−1], and mk

i < mk
j if i < j < αk.

Proof. The sufficiency follows from [5, Thm. 1.1] and the property of being Σ-definable for S.
Necessity. Let a set A ⊆ ω be Σ-definable in HF(G). By virtue of Theorem 1.1, the group G is

Σ-uniform. In view of Corollary 1, the set A is e-reducible to a set Th∃(G). We argue to show that
Th∃(G) is e-reducible to S.

Let a set B = {[k,mk
i , nk

i ] | k, i,mk
i , nk

i ∈ ω, mk
i , n

k
i > 0} be given and B ⊆ B be

a finite subset such that B = Bk0 ∪ . . . ∪ Bkt−1, ki 	= kj , and i < j < t, where Bki
=
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{[ki,m
ki
0 , nki

0 ], . . . , [ki,m
ki
li−1, n

ki
li−1]}, mki

s 	= mki
r , and s < r < li. Given these, we define a group

G(B) = G(B0)⊕. . .⊕G(Bkt−1), where G(Bk) = Z
nk

0

p
mk

0
k

⊕. . .⊕Z
nk

l−1

p
mk

l−1
k

, k = k0, . . . , kt−1, and if k = ki

then l = li. Let B∗ = {B | B ⊆ B, B = Bk0 ∪ . . . ∪ Bkt−1}, write H ↪→ G(B) for the fact that a
finite group H is embeddable in G(B), and assume that Φ is a set of all ∃-sentences in a signature
σ = 〈+, 0〉. Given these, we define a set W = {〈H,B,ϕ〉 | H ↪→ G(B), B ∈ B∗, ϕ ∈ Φ, H |= ϕ}.
It is easy to verify that the set W is c.e. We prove the equality

Th∃(G) = {ϕ | ∃H∃B(〈H,B,ϕ〉 ∈ W & B ⊆ S)}. (4)

Indeed, let ϕ ∈ Th∃(G). Then there exists B ⊆ S, B ∈ B∗, such that G(B) |= ϕ. If we put
H = G(B) we conclude that the formula in the right part of (4) is valid for ϕ. Assume now that ϕ

belongs to the right part of (4). Then H is embeddable in G(B) and H |= ϕ, whence G(B) |= ϕ.
Since B ⊆ S, G(B) is embeddable in G. Hence ϕ ∈ Th∃(G), proving (4). Thus Th∃(G) ≤e S. �

Lemma 1.5 and Corollary 2 give rise to the following:

COROLLARY 1.4. Let functions α, ϕ, and ψ be Σ-definable in HF(G), with G � G(α,ϕ, ψ).
Then HF(G) contains a universal Σ-function if and only if a principal e-ideal Ie(S) generated by
a set S contains a function that is universal for the family of all unary functions in Ie(S).

COROLLARY 1.5. Let α, ϕ, and ψ be partial computable functions. Then a universal Σ-
function exists in HF(G), with G � G(α,ϕ, ψ).

Proof. In fact, the existence of a universal function is underpinned by the fact that the set S

is c.e. in the e-ideal Ie(S) generated by S. �

COROLLARY 1.6. There exists a set S of primes such that an admissible set HF(GS),
GS = ⊕{Zp | p ∈ S}, contains no universal Σ-function.

Proof. In fact, a set S of natural numbers such that an e-ideal Ie(S) generated by S does not
contain a universal function was constructed in [6]. This, combined with Corollary 1.4, yields the
result. �

2. RINGS

In this section, we construct a family of Σ-uniform rings.
Let Fm

pn be a direct sum of m copies of a field of degree n over a prime field of characteristic p,
treated in a ring signature σ = 〈+, ·, 0〉. Assume partial unary functions α, ϕ, and ψ are defined
so that for any k ∈ δα, the following hold: ϕ(k) = [mk

0 , . . . ,m
k
αk−1] and ψ(k) = [nk

0, . . . , n
k
αk−1],

where αk = α(k), mk
i , n

k
i > 0, and mk

i < mk
j if 0 ≤ i < j < αk. Below, unless ambiguity would

result, mi and ni are written in place of mk
i and nk

i . We introduce a ring of the form

K � K(α,ϕ, ψ) = ⊕
{

F
nk

0

p
mk

0
k

⊕ . . .⊕ F
nk

αk−1

p
mk

αk−1

k

∣
∣∣
∣∣
k ∈ δα

}

,
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where pk is the kth prime.

LEMMA 2.1. For every Σ-formula Φ(ā, x) with parameter ā = 〈a0, . . . , an−1〉, aj ∈ K, K �
K(α,ϕ, ψ), in a signature σ = 〈U,∈, ∅,+, ·, 0〉, there exists a Σ-formula Φ∗(x) without parameters
such that Φ(ā, x) ≡ Φ∗(x) is a true formula in HF(K) for any x ∈ HF(ω).

Proof. Assume that for some k, it is true that (ā) ⊆ Hk = {x ∈ K | pkx = 0}, where (ā)
is a subring generated by a set {a0, . . . , an−1}. There is no loss of generality in assuming that
Hk = (a0)× . . .× (an−1), (ai) is a field of degree li over a prime field Pi ⊆ (ai), and ai is a root of
an irreducible polynomial fi of degree li over Pi.

We define Σ-predicates without parameters as follows.
Let Field(F, pn) ⇔ ‘F is a field of cardinality pn in K’ ⇔ HF(K) |= |F | = pn & ∀x ∈

F (U(x)& (field axioms whose quantifiers are bounded by a set F )).
Denote by eF the unit of a subfield F ⊆ K. If the predicate Field(P, p) is true in HF(K), then

P is a prime field of characteristic p and P = {0, eP , 2eP , . . . , (p − 1)eP }.
Suppose Pol(f, n, P, p) ⇔ ‘f is a polynomial of degree n over a prime field P of characteristic

p’ ⇔ HF(K) |= Field(P, p)& ∃s1 < p . . . ∃sn < p(f = 〈eP , s1eP , . . . , sneP 〉).
Thus f(x) = xn + (s1eP )xn−1 + . . . + sneP .
Assume Ind(f, n, P, p) ⇔ ‘a polynomial f of degree n over a prime field P of characteristic p is

irreducible’ ⇔ HF(K) |= Pol(f, n, P, p)& ∃a1 ∈ P . . . ∃an ∈ P (f = 〈eP , a1, . . . , an〉& ∀s∀t(s + t =
n & 1 ≤ s & 1 ≤ t→ ∀b1 ∈ P . . . ∀bs ∈ P∀c1 ∈ P . . . ∀ct ∈ P (a1 	= b1 + c1 ∨ . . . ∨ an 	= bsct))).

Put

Φ∗ = ∃y0 . . . ∃yn−1∃P0 . . . ∃Pn−1

(

(ȳ) = (y0)× . . .× (yn−1)

&
∧

i<n

(
Field((yi), pli)& Field(Pi, p)& Pi ⊆ (yi)& Ind(fi, li, Pi, p)

& fi(yi) = 0
)
& Φ(ȳ, x)

)

,

where Φ(ȳ, x) is obtained from Φ(ā, x) by replacing ā by ȳ.
Let HF(K) |= Φ(ā, x), with x ∈ HF(ω). If we take ai to be values for yi in Φ(ȳ, x), then it

is obvious that HF(K) |= Φ∗(x). Suppose HF(G) |= Φ∗(x). Then there exists an automorphism
ϕ : HF(K) → HF(K) for which ϕyi = ai. Hence HF(K) |= Φ(ā, x).

The general case where (ā) ⊆ Hk0 × . . .×Kks−1 can be readily reduced to the case above. �

THEOREM 2.1. If a ring K � K(α,ϕ, ψ) and functions α, ϕ, and ψ are Σ-definable in
HF(K), then K is Σ-uniform.

The proof proceeds by verifying the validity of conditions (1)-(3) in the definition of a Σ-
uniform structure. In view of Lemma 2.1, we may assume that α, ϕ, and ψ are Σ-definable in
HF(K) without parameters.
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(1) Let Ξ0 = {p | ∃k(k ∈ δα & p = pk} ∪ {0} be a set of elementary characteristics. We argue
to show that a function b(p) = Bp, where Bp is the set of all elementary bases of characteristic p,
is definable in HF(K) by a Σ-formula without parameters.

For any k ∈ δα, put nk = nk
0m

k
0 + . . .+nk

αk−1m
k
αk−1. Then the graph Γn of a function n(k) = nk

is definable by a Σ-formula without parameters. For h(k) = Hk, the following equivalence holds:

h(k) = Hk ⇔ HF(K) |= ∀x ∈ Hk(U(x)& k ∈ δα & |Hk| = pnk

k & pkx = 0).

Hence the graph Γh is a Σ-predicate without parameters in HF(K).
On a set of all polynomials of degree n over a given prime field P , a lexicographic ordering is

defined via a predicate of the form

Ord(f0, f1, n, P, p) ⇔HF(K) |=
∧

ε<2

(

Pol(fε, n, P, p)

& ∃sε
1 < p . . . ∃sε

n < p

(

fε = 〈eP , sε
1eP , . . . , sε

neP 〉

& ∃k < n

(
∧

i<k

s0
i = s1

i & s0
k < s1

k

)

∨ f0 = f1

))

.

To define an elementary basis, Σ-predicates without parameters are introduced as follows.
Let Ind∗(f, n, P, p) ⇔ ‘f is the least irreducible polynomial of degree n over a prime field P of

characteristic p’ ⇔ HF(K) |= Ind(f, n, P, p)& ∀g ∈ Ind(g, n, P, p)(f ≤ g).
Suppose Val(f, F, y, z, p) ⇔ ‘z is equal to the value of a polynomial f over the prime subfield

of a field F for an element y ∈ F ’ ⇔ HF(K) |= ∃m∃n∃s1 < p . . . ∃sn < p(Field(F, pm)& f =
〈eF , s1eF , . . . , sneF 〉& y ∈ F & z = yn + s1eF yn−1 + . . . + sneF ).

Define an elementary basis via the predicate

C(k, Y ) ⇔ ‘ȳ is an elementary basis of characteristic pk’

⇔ HF(K) |= k ∈ δα & ∃ȳ0 ∈ Hk . . . ∃ȳαk−1 ∈ Hk

[
∧

i<αk

∃yi
0 . . . ∃yi

ni−1
(

ȳi = 〈yi
0, . . . , y

i
ni−1〉&

∧

j<ni

∃F i
j∃P i

j∃f i
j(Field(F i

j , p
mi
k )

& P i
j ⊆ F i

j & Field(P i
j , pk)& Ind∗(f i

j ,mi, P
i
j , pk)

& Val(f i
j , F

i
j , y

i
j, 0, pk))

)
& (ȳ0, . . . , ȳαk−1)

= ⊕{(yi
j) | i < αk, j < ni}& ȳ = 〈ȳ0, . . . , ȳαk−1〉

]
,

where αk, mi, and ni are defined in the same way as at the beginning of Sec. 2 and (ȳ0, . . . , ȳαk−1)
is a subring generated by a set {yi

j | i < αk, j < ni} in K.
For our further reasoning, we need
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LEMMA 2.2. There exists a computable numerical function β(k, α,m, n) satisfying the
following: if α > 0, m = [m0, . . . ,mα−1], n = [n0, . . . , nα−1], mi, ni > 0, mi < mj, 0 ≤ i <

j < α, Hk
∼= ⊕{F i

0 ⊕ . . . ⊕ F i
ni−1 | i < α}, and F i

j is a field of degree mi over a prime
field of characteristic pk, then the value of β(k, α,m, n) is equal to the number of sequences
ȳ = 〈y0

0 , . . . , y
0
n0−1, . . . , y

α−1
0 , . . . , yα−1

nα−1−1〉 � 〈yi
j | i < α, j < ni〉 such that the element yi

j

is a root of the least irreducible polynomial f i
j of degree mi over a prime field P i

j ⊆ (yi
j) and

Hk = ⊕{(yi
j) | i < α, j < ni}, where (yi

j) is a subfield of characteristic pk generated by yi
j .

Proof. It suffices to appeal to the fact that there exists an algorithm which, given numbers k,
α, m, and n, enumerates all sequences ȳ in the ring Hk having the properties mentioned in the
lemma. �

Define a function b via the equivalence b(pk) = Bpk
⇔ HF(K) |= k ∈ δα & ∃m∃m0 . . .

∃mαk−1∃n∃n0 . . . ∃nαk−1∃γ∃ȳ0 . . . ∃ȳγ−1

(
ϕ(k) = m & m = [m0, . . . ,mαk−1] & ψ(k) = n & n =

[n0, . . . , nαk−1] & γ = β(k, α,m, n)&
∧

i<γ
C(k, ȳi)&

∧

i<j<γ
ȳi 	= ȳj & ∀i < γ (ȳi ∈ Bpk

)& ∀ȳ ∈

Bpk
∃i < γ(ȳ = ȳi)

)
. By Lemma 2.2, the graph Γb of the function b is a Σ-predicate without

parameters in HF(K).
The concept of a basis is defined as follows. For any sequence χ = 〈pk0, . . . , pkm−1〉 (here pk0

either is 0 or is a prime numbered k0 for the case m = 1, and 0 < pki
< pkj

, i < j < m, for the
case m > 1) and for all elementary bases ȳi ∈ Bpki

of characteristic pki
, a sequence of the form

Y = 〈ȳ0, . . . , ȳm−1〉 is called a basis of characteristic χ.
(2) Let an arbitrary element z ∈ K \ {0} be given and its order |z|+ in the additive group K+

of a ring K be equal to pk0 . . . pkq−1 , k > 1. Put zi = pk0 . . . pki−1
pki+1

. . . pkq−1z. Then pki
zi = 0,

zi 	= 0, zi ∈ Hki
, z = z0 + . . . + zq−1, and (z) = (z0, . . . , zq−1). Set f1(z) = (z0, . . . , zq−1). If z ∈ Hk

then f1(z) = z. It is easy to verify that the graph Γf1 is a Σ-predicate without parameters in
HF(K).

Assume x ∈ (ȳ) \ {0}, where ȳ = 〈ȳ0, . . . , ȳαk−1〉 is an elementary basis of characteristic
pk � p, ȳi = 〈yi

0, . . . , y
i
ni−1〉, (ȳ) = (ȳ0)⊕ . . . ⊕ (ȳαk−1) = Hk, (ȳi) = (yi

0)⊕ . . . ⊕ (yi
ni−1) ∼= Fni

pmi ,
and (yi

j) = F i
j
∼= Fpmi . Let x = x0 + . . . + xαk−1 and xi = xi

0 + . . . + xi
ni−1, where xi ∈ (ȳi) and

xi
j ∈ (yi

j). For any i < αk and any j < ni, put

(xi
j)

′ =

⎧
⎨

⎩
xi

j if xi
j 	= 0;

∅ otherwise.

Thus in a one-to-one correspondence with every element x ∈ (Y ) is a sequence f0(x, Y ) =
〈(xi

j)
′ | i < αk, j < ni〉.

By the definition of an elementary basis, for any i and any j, we can uniquely define a least
irreducible polynomial f i

j = 〈ei
j , s

i
1e

i
j , . . . , s

i
mi

ei
j〉 of degree mi over a prime field P i

j ⊆ F i
j , where

ei
j is the unit of the field P i

j , whose root is yi
j. For every element x ∈ (yi

j), therefore, there exists

100



a uniquely defined polynomial gi
j(z) = si

j0e
i
jz

ki
j + . . . + si

jki
j
ei
j , si

j0 	= 0, ki
j < mi, and gi

j(y
i
j) = x.

Put Cor0(x, yi
j) = [si

j0, . . . , s
i
jki

j
] + 1 and Cor(0, ∅) = 1. This immediately implies that Cor0 is a

Σ-function without parameters, and if x0 	= x1 then Cor0(x0, yi
j) 	= Cor0(x1, yi

j).
(3) First let elementary bases ȳε = 〈ȳ0

ε , . . . , ȳ
αk−1
ε 〉 and ȳi

ε = 〈yi,0
ε , . . . , yi,ni−1

ε 〉, ε < 2, of the same
characteristic pk � p be given. By the definition of an elementary basis, yi,j

ε is a root of the least
irreducible polynomial f i,j

ε (x) over a prime field P i,j
ε ⊆ (yi,j

ε ) of degree mi. Hence the coefficients
of f i,j

ε depend only on i and on the unit ei,j
ε of the field P i,j

ε ; i.e., f i,j
ε = xmi + si,1

ε ei,j
ε xmi−1 +

. . . + si,mi
ε ei,j

ε , with si,l
ε < p and l ≤ mi. Therefore, the mapping ϕi

j : yi,j
0 → yi,j

1 extends to an
isomorphism Ψi

j : (yi,j
0 ) → (yi,j

1 ). Since Hk = (ȳε) = ⊕{(yi,j
ε ) | i < αk, j < ni}, the isomorphisms

ψi
j extend to an isomorphism ψp : (ȳ0)→ (ȳ1).

Next let bases Y ε = 〈ȳp0
ε , . . . , ȳ

pq−1
ε 〉 of the same characteristic 〈p0, . . . , pq−1〉 be given. By

virtue of the fact that (Y ε) = ⊕{(ȳpi
ε ) | i < q}, the isomorphisms Ψpi extend to an isomorphism

Ψ : (Y 0) → (Y 1). The theorem is proved. �

Theorems 2 and 2.1 can be combined to yield

COROLLARY 2.1. Let a ring K � K(α,ϕ, ψ) and functions α, ϕ, and ψ be Σ-definable in
HF(K). Then a universal Σ-function exists in HF(K) if and only if the family NK of all numerical
Σ-functions in HF(K) is computable.

COROLLARY 2.2. Let functions α, ϕ, and ψ have partial computable extensions. Then a
universal Σ-function exists in HF(K), K � K(α,ϕ, ψ), if and only if the family NK of all numerical
Σ-functions in HF(K) is computable.

LEMMA 2.3. Let functions α, ϕ, and ψ be Σ-definable in HF(K), K � K(α,ϕ, ψ). Then an
arbitrary subset A of natural numbers is Σ-definable in HF(K) if and only if A is e-reducible to a
set of the form

S = {[k,mk
0 , nk

0], . . . , [k,mk
αk−1, n

k
αk−1] | k ∈ δα},

where α(k) = αk, ϕ(k) = [mk
0 , . . . ,m

k
αk−1], ψ(k) = [nk

0, . . . , n
k
αk−1], and mk

i < mk
j if i < j < αk.

The proof is similar to the proof of Lemma 1.5. �

This, together with Corollary 2, entails

COROLLARY 2.3. Let functions α, ϕ, and ψ be Σ-definable in HF(G), G � G(α,ϕ, ψ).
Then HF(G) contains a universal Σ-function if and only if a principal e-ideal Ie(S) generated by
a set S contains a function that is universal for the family of all unary functions in Ie(S).

As in the case of groups, we have

COROLLARY 2.4. Let α, ϕ, and ψ be partial computable functions. Then HF(K), G �
K(α,ϕ, ψ), contains a universal Σ-function.

COROLLARY 2.5. There exists a set S of primes such that (KS), KS = ⊕{Fp | p ∈ S},
contains no universal Σ-function.
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