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We construct a family of X-uniform Abelian groups and a family of S-uniform rings.
Conditions are specified that are necessary and sufficient for a universal X-function to
exist in a hereditarily finite admissible set over structures in these families. It is proved
that there is a set S of primes such that no universal X-function exists in hereditarily
finite admissible sets HF(G) and HF(K'), where G = ®{Z, | p € S} is a group, Z, is
a cyclic group of order p, K = ®{F, | p € S} is a ring, and F, is a prime field of

characteristic p.

The present paper is a continuation of 1], in which we introduced the concept of a ¥-uniform
structure and derived a condition that is necessary and sufficient for a universal X-function to
exist in a hereditarily finite admissible set over a -uniform structure. Here we show how these
results apply to Abelian groups and rings. We construct a family of 3-uniform Abelian groups
and a family of Y-uniform rings. Conditions are specified that are necessary and sufficient for a
universal Y-function to exist in a hereditarily finite admissible set over structures in these families.
It is proved that there is a set S of primes such that no universal X-function exists in hereditarily
finite admissible sets HIF(G) and HF(K'), where G = &{Z, | p € S} is a group, Z), is a cyclic group
of order p, K = @{F, | p € S} is a ring, and F, is a prime field of characteristic p.

We will adhere to the notation and terminology created for admissible sets in |2], for groups in
[3], and for rings in [4] (see also [1]).

We start to cite the definition of a Y-uniform structure from [1].

Definition 1. Suppose that a locally finite structure 9 in a signature o satisfies the following
conditions:

*Supported by RFBR (project No. 08-01-00336) and by the Grants Council (under RF President) for State Aid
of Leading Scientific Schools (grant NSh-3606.2010.1).

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Koptyuga

4, Novosibirsk, 630090 Russia; hisamiev@math.nsc.ru. Translated from Algebra i Logika, Vol. 51, No. 1,
pp- 129-147, January-February, 2012. Original article submitted November 24, 2010; revised June 5, 2011.

0002-5232/12/5101-0089 (© 2012 Springer Science+Business Media, Inc. 89



(1) Let a X-subset = of natural numbers be defined without parameters. We call every element
X € Zo, 0 € Zg, an elementary characteristic. In addition, let a unary X-function b(y), 6b = o,
be defined without parameters so that for any y € Z, the value of b() is a nonempty finite set
of sequences of elements of equal length in M \ Q, with b(0) = {@}. Every element § € b(x)
is called an elementary basts of characteristic x and is written x(y) = x. All bases 7;,9; € b(x)
generate the same subsystem, i.e., (7;) = (g;). If § = (vo,...,yp—1) is an elementary basis, then
(Yi) N (Y0, -+, Yie1, Yit1s - - -, Yp—1) = S for any ¢ < p. If elementary bases 3o, . .., Jq—1 have pairwise
distinct characteristics, then (g;) N ((go, e Gie 1, Yid 1y - - - ,gq,l)) = Q for any i < q.

For an arbitrary sequence x = (xo,- .-, Xq—1) and for all bases g; of characteristic x;, a sequence
of the form Y = (go,...,¥q—1) is called a basis of characteristic x, where xo > 0, if ¢ = 1, and
O0<xi<yxjifg>landi<j<gq.

(2) If y = (yo, ..., Yp—1) is an elementary basis of characteristic xy # 0, and z € (y) \ 2, then g
is called an elementary basis of the element x. The elementary basis for any element x € ) is @.
A sequence fo(z,y) = (xo,...,2p—1), ;i € (y;) U{D}, such that (z) C (zo,...,2p—1) is uniquely
defined for any =z € (g) \ . We call z; and z, respectively, atomwise and atomic elements of
characteristic .

For any nonatomic element z € M, a sequence fi(z) = (20,...,2¢-1), ¢ > 1, of atomic elements
z; & Q of characteristic x; is uniquely defined so that (2) = (20,...,24-1), Xi < xj,andi < j < ¢q. A
basis Y = (%o, ..., ¥g—1), X(Ui) = Xi, is called a basis of an element z and is denoted by By (z,Y"). If
z is an atomic element, then f;(z) = z. Functions fy and f; are 1-1 ¥-functions without parameters.

Let an elementary basis § = (yo, ..., yp—1) of characteristic x and ¢ < p be given. A ¥-function
Corg without parameters, where 6Corg = {(z,y;) | z € (y;)}, pCorg Cw™, and wt ={new|n >
0}, is defined in HIF(9M) so that Corg(z?,y;) # Corg(x!,y;) if 2° € (y;), € < 2, and 2° # !

(3) Let bases Y and Y of the same characteristic ¥ and a finite substructure 9% D (Y?) be
given. Then there exists an isomorphic embedding ¢ : M® — M for which Y ? = Y1

In this case we call 9T a X-uniform structure.

Below are a number of valid results.

THEOREM 1 [1]. Let 9 be a ¥-uniform structure and My some basis. Then the family g0
of all unary functions definable in HIF(90t) by ¥-formulas with parameter My is computable if and
only if the family N™o of all numerical ¥-functions with parameter My is computable in HIF(%).

THEOREM 2 [1]|. Let M be a Y-uniform structure. The family § of all unary ¥-functions
in HF () is computable if and only if the family N of all numerical 3-functions in HIF(90) is
computable.

COROLLARY 1 [1]. If 9 is a Y-uniform structure, then an ideal J.(90) of e-degrees of -
subsets of natural numbers in HIF(91) is principal and is generated by the e-degree of a set Thg(91)
of Godel numbers of 3-sentences true in 9.

COROLLARY 2 [1]. Let 9t be a X-uniform structure. Then HIF(9t) contains a universal

Y-function if and only if a principal e-ideal J.(90t) contains a universal function for the family of
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all unary functions in J.(901).

1. GROUPS

In this section, we construct a family of Y-uniform Abelian groups.

Let GG be a periodic Abelian group, e the zero element of G, and g € G. The order of an element
g is denoted by |g]; Zym stands for a direct sum of n copies of a cyclic group of order p™, where p
is a prime; py is the kth prime. A p-component of G is denoted by Gy; i.e., G = &{G, | p € P},
where P is the set of all primes.

LEMMA 1.1. Suppose G is a periodic Abelian p-group, every p-component G, of which is
finite, and ®(a,z) is a X-formula with parameter a = (ag,...,am-1), a; € G, in a signature o =
(U,€,2,+,0). Then there exists a X-formula ®*(z) without parameters such that ®(a,z) = ®*(z)
is a true formula in HF(G) for any = € HF (w).

Proof. First let (a) C G, for some p. There is no loss of generality in assuming that G, =
(ap) @ ... ® (am—1) and |a;| = p™, with n; > 0. Put

" =Tyo ... Iym—1 <(@7) =) @ ® (ym-1)& N |yl =p" &‘P(ﬂ,x)> ,
i<m
where @ (g, x) is obtained from ®(a,z) by replacing a by g.

Let HF(G) | ®(a,z), with x € HF(w). If a; are taken to be values for y; in ®(g,z), then
HF(G) = ®*(z). Suppose HF(G) | ®*(x). Then there exists an automorphism ¢ : HF(G) —
HIF(G) for which ¢y; = a;. Hence HF(G) = ®(a, x).

The general case where (@) C Gp, @ ... ® G, , can be easily reduced to the case above. O

Let partial unary functions «, ¢, and @ be defined so that for any k € da, the following
relations hold: p(k) = [mk&,...,mE ] and ¢(k) = [n§,...,nk

— k k
ak—l Oék—l]7 Where Oék - Oé(k), m’i’ni > 0’

and mf < m;‘: if 0 <17 < j < ag. Given these functions, we define a group of the form

kE&a}.

In what follows, m; and n; will be used in place of mf and nf unless ambiguity would result.

THEOREM 1.1. A group G = G(a, ¢,v) is E-uniform if and only if functions «, ¢, and ¥
are Y-definable in HF(G).

Proof. Sufficiency. We verify whether conditions (1)-(3) in the definition of a X-uniform

X k
G=Ga,p,0) =@ {Znig B...0 Zn:’,fl

X —1
Py Dy, Yk

structure are valid for G. In view of Lemma 1.1, we may assume that «, ¢, and ¢ are X-definable
in HF(G) without parameters.

(1) Define a set =gy of elementary characteristic by setting

Zo=A{p | 3k(k € dba&ep = py)} U{0}.
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To show that a function b is X-definable in HF(G), we introduce the following formulas. For any
k € b, put n* = nfmg+...4+nf, _ymk ;. Then the graph I, of a function n(k) = n* is definable
by a X-formula without parameters. Let G} be the primary pp-component of G. For a function
h(k) = G, we have

h(k) = Gy & HF(G) = k € 6a & |Gy| = p}" &Va € GpIs(pja = 0).

Consequently, h is a X-function without parameters in HF(G).

A predicate €(k, y) = ‘g is an elementary basis of characteristic py’ is defined via the equivalence

C(k,§) SHF(G) =k € 6a& I’ € Gy,... g™ € Gy,

[/\ <3y3 BE (y = o tho & A\ b ZPZ"i))

<oy j<n;

&G, 7 =) | i < a, j <n}

&g= (7. ..,5% 1)

I

where m; and n; stand for m¥ and n¥. Hence € is a ¥-predicate without parameters in HF(G).

Below we need the following:

LEMMA 1.2. There exists a computable function (B(k,a,m,n) such that if a > 0,

m = [mg,...,Ma-1], n = [No,...,Na-1], min; > 0, m; < mj, 0 < i < j < «, and

G = @{Z;}rini i < ay, then the value of §(k,a,m,n) is equal to the number of sequences
k

_ -1 -1 ; o . ;

G = (Y0 Ung—ts- s Yo s Uno 1)y W5 = P™, J < mi, i < a, such that Gy = ®{(y}) |

J < mni,i<al.

This lemma implies that a function b satisfies the equivalence

b(pr) = By, ©HF(G) =k € da& ImImg ... Img,—13n3ng ... Ing, 13y
3g°... 31 <g0(k) =m&m=[mg,...,mq,—1]&Y(k) =n
&n=ng,...,nq-1)&y =0k, o,mn)& /\ ¢k, 7"
1<y
& N\ v #7&Vi<y (Y €By)
s<j<y

&Yy € By, 3i < y(§ = gi)>.

Consequently, the graph I'y of the function b is a ¥-predicate without parameters in HF(G).
Given any sequence X = (Pky, - - -, Pk,,_1 ), for m =1, pg, is equal to 0 or to a prime numbered
ko, and for m > 1, we have 0 < pg, < pg;, with ¢ < j < m. For all elementary bases T Bpki of

characteristic pg,, a sequence of the form ¥ = @°,..., 4™ 1) is called a basis of characteristic x.
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We have thus proved the validity of condition (1).

(2) Let an arbitrary element z € G\ {e} be given and its order |z| be equal to pﬁfo ... pﬁjq’_ll, qg>1,
ko < ... <kgo1,0<l; <mg, —1=8i,i<gq Put z; = p?ﬂ .. .pz:lpz:l .. .pifl:lz. Then z; € Gy,
and z = 20+ ...+ z4—1, with z; # e and (2) = (20) ® ... ® (24—1). Define fi1(2) = (20,...,2¢-1). If
z € Gy then fi(z) = 2. It is easy to verify that the graph I'y, is a 3-predicate without parameters
in HF(G).

Let = € (), © # e, be given; here § = (7°,...,7 1) is an elementary basis of characteristic
Pk =00 = Yo U1y (1) = @)@ .. @G = G, (7) = (W) ©. .- @ (Y, —1)» Y5 = P},
and j < ng. Then 2 = 2%+ ... +2* ! and o = zf 4+ ... + 2}, _,, where 2’ € (') and l’; € (y;)
For any 7 < oy and any j < n;, put
(x;)' _ :L'; if l’; # e;

& otherwise.

Therefore, in a one-to-one correspondence with every element z € (Y), z # e, is a sequence
fo(z,Y) = ((l’;)/ | i < ag, j < ny). For any element x € (y;'-), there exists a unique number « for
which z = (a — 1)y;. Put Corg(z,y;) = o and Cor(e, @) = 1. This immediately implies that Corg
is a Y-function without parameters, and if 2° # ! then Corg(z?, y;) # Corg(x?, y;)

(3) Is obvious. The sufficiency is proved.

Necessity. First we argue for two lemmas.

LEMMA 1.3. If G = ®{G, | p € P}, |Gp| < w, is a X-uniform group, then new elementary
bases can be defined so as to be contained in primary components relative to which G is again
Y-uniform.

Proof. Every element e # x € G is uniquely represented as x = x4, + ... + 24,, ,, Where
e # x4 € Gg; and qo < ... < g1 are primes. Denote the set {qo,...,gm-1} by Q. Let an
(old) elementary basis § = (y°,...,y" 1) of characteristic x be given and Q; = WH{Qyi [ <n} =
{90, -+, q—1}. For every ¢ € Qg, put I, = {i <n|q € Q,}. Suppose I, = {ip,...,ix_1}. Then a
sequence of the form g, = <yé“, .. ,yék_1> is called a (new) elementary basis of characteristic (x, q)
and is denoted ¢*. An empty sequence likewise is called an elementary basis of characteristic 0.

Since () = (¥°) @ ... @ (y™ 1) for the basis g, we have

@)g= (g = W) @ ... @ (y&), (1)
@) = {(7q) | ¢ € Qy}. (2)

At the moment, we prove that conditions (1)-(3) in the definition of a X-uniform structure are
satisfied for the new bases.

(1) Introduce the formula

O(x,7,4,7) =X €&y € By &Iy’ ... Iy (g= 0. ...y"")
&(7)q # {e}
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& 3ImFig . .. Jim_1Vk < mVj <m((k < j — i, < ij)
& (yg) # {e} e @)y = ) & ... & (™)
&g* — <y;0”y;t]m—1>))

Put

=5 ={00 @) | HF(G) E 335" (X, ¥, 4, 7")}

0*(x.0) = Bl < HE(G) = V" € Bl )37 € B(®(05,0.5)&V5 € By(()y # e} —
372X, 7,4.5)) &y* € B )

On the set Zf, define a lexicographic ordering.

Let g5 and g7 be elementary bases of characteristic (x,¢), which are obtained from old bases
go and g of characteristic x. Since (o) = (91), we have (y3) = (y]) in view of (1).

Now let bases 97,...,y. of pairwise distinct characteristics (x1,41), -, (Xa,qa) be given. We
claim that (g7) N (¥5,...,%)) = {e}. Indeed, suppose z € (y7) N (¥3,...,7,). Then =z € G, .
Assume g2, ..., qm 7 q1 but gmy1,.. .90 = q1- Then x € (75, 1,...,5)- Since (x1,q1) # (Xk> qk)>
m < k < o, we have x1 # xx. Let 7, ..., ¢} be obtained from old bases ¥, . .., 4 of characteristics
X1, -3 Xa- This implies (§1) N (Gm+1,---,¥a) = {e}. Since ¥ C (¥;), 1 < i < «, we have (g7) N
(Upi1s- -+ Un) = e} e, z=e.

(2) Let g* be an elementary basis of characteristic (x, q), which is obtained from a basis § =
(% ....y" 1), and z € (§)*\{e}. Then (7*) = (§)q = (y0) .. ® (") for some i; < n. With this
in mind, we can uniquely define a sequence (zo, ..., Zm,—1) so that z; € (yflj), T=To+...+Tm_1,

and x € (xg,...,Tm—_1). For every j < m, put

xj if xj #e;

@ otherwise.

Set fg(,§") = (@0, -+, T 1)-

Define a function f;. Let an element z € G\ {e} be given and f1(z) = (2°,...,27!) be a
function for which zF € (gx) \ {e}, (2) = (2% ..., 2" 1), Gk = W0y Ykimp—1), k < 1. In view
of (2), we have (yr) = ®{(Ur)q | ¢ € Qg,}. This implies that for any k < [, there exist a subset
Qr = {d,... ,qulkfl} C @y, and elements e # zf € (gjk)q;, j < my, such that

k k k k k k
2=zt g m1 (27) = (205 Zmp—1)- (3)
In this event we put fi(z) = (20,..., 20 _15-- - e ,zﬁ;fl_ﬁ. It follows from (3) that
(2) = (28, ... ,zfnzl_lfl). If g* is an elementary basis and z € (g*), then f{(z) = z.

The functions fj and fi are defined so that I'gx and I'ys are Y-predicates without parameters
in HF(G).
We define a function Cory. Let an elementary basis §* = (yo, ..., yn—1) be given. For any element

x € (yi), i < n, there exists a unique number « such that x = (o — 1)y;. In this instance we set
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Corg(z,y;) = « and Cor(e, @) = 1. This implies that Corg is a X-function without parameters,
and if 20 # 2! then Corg(2?,y;) # Corg(z, y;).

(3) Let g5 and g7 be two elementary bases of the same characteristic (x, ¢), which are obtained
from old bases yp and ; of characteristic x. In addition, suppose Gy 2 (75) is a finite subgroup. We
may also assume that Go O (9p). Since G is X-uniform relative to the old bases, and x(70) = x(71),
there exists an isomorphism ¢ : G — G such that ¢y = ¢1. In view of the equalities (7) = (%0)q
and (77) = (71)q, we have iy = ¥;. Now let bases Y° = (§5,...,95_,) of characteristic y =
((x0,90)>--->{Xn—1,qn—1)) be given. Since (x;,q) # (Xj,q;) for any i < j < n, it follows that
(Y€)= (5) @ ... (¥5_4). From this point on, the proof that the required isomorphic embedding ¢

exists proceeds similarly to the previous. O

*

Below by a basis is meant a new basis and asterisks in symbols y*, =5, x*, By,

omitted. With this in mind, we have

and b*(x) are

LEMMA 1.4. Let G be a Y-uniform group. If ¥ = (yo,...,yn—1) is an elementary basis, a
subgroup (y;) is pure in G for some i < n, and |y;| = p™, then every element g € G, of order p*,
k < m, belongs to (7).

Proof. To be specific, let i = 0. First we show that any element of order p™ belongs to (7).
Assume to the contrary that there exists some element by € G), \ (7) with |bg| = p™. There are two
cases to consider.

(a) Let (bg) be pure in G,. Then G has the following decompositions: G, = (yo) ® (a1)... @
(a—1) and G, = (bg) ® (1) @ ... ® (bj—1), where |a;| = |b;], with 1 < ¢ < [. Given the basis
iy, we define a sequence v as follows. Let y; = a;0y0 + 101 + ... + aj—1a4;-1, 0 < ¢ < [. Put
v; = o 0bo + aj1b1 + ...+ a;—10—1. Take an isomorphism ¢ : G), — G), where pyg = by and
wa; = b;, such that py; = v;. Every Y-formula ®(xo,...,z,_1) without parameters true in HF(G)
for (yo, ..., yn—1) will also be true for (vg,...,v,—1). Let § € B,. Then v € B,.. At the same time,
bp € (0) \ (y), a contradiction. Hence by € (7).

(b) Let (bg) not be pure in G,,. Then an element zy = yo + by has order p™. We prove that (zp)

m—1

is pure in G,. Suppose on the contrary that there exists an element ug for which p™~ "2y = p™uy.

This yields p™~lyo + p™1by = p™ug. Since (bg) is not pure, there exists an element u; such that

M1y = p™(uo —u1), which is a contradiction with (yo) being pure.

p™ by = p™uy. This implies p
Therefore, (2¢) is pure. In view of (a), zg € (). Hence by € (7).

Now let an element x € G}, have order p*, k < m. Then yo + « has order p™; so yo + = and,
hence, z € (y). O

Lemma 1.4 entails the following;:

COROLLARY 1.1. Every elementary basis § # @ contained in G, generates Gy,. In other
words, (7) = G,.

Proof. Let p™ be the greatest order of elements in the group G),. We claim that there exists
an elementary basis § containing some element x of order p™. Indeed, suppose that the order of

an element g € G is equal to p™. Then f1(9) = (go,- - -, ge—1), Where g; € (¥;), ¥; is an elementary
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basis, and (g) = (go,-.-,9e—1). Since |g| = p™, there exists an element g; of order p™. Hence
the subgroup (g;) is pure in Gp,. By Lemma 1.4, therefore, every element of order less than p™
is contained in (7;); i.e., (7;) = Gp. Assume G, has another elementary basis @ # v C Gy, such
that (7;) # (v). Then x(7;) # x(v). This yields (y;) N (v) = {e}. On the other hand, (v) C (7;), a
contradiction. Thus (v) = G)p. O

We finish to argue for the necessity. Corollary 1.1 entails the equivalence

a(p) = a&p(p) = (mo,...,ma—1) &Y(p) = (o, - ., Na—1)
S HF(G) = 3x3By 33y - Iy, 1 - Fyg ™ e 1<x € 5o\ {0}

&b(x)=By&ye B &(y) CGp

&g:<y8""’y2071"'7y(()1_1"'7ygall 1 </\(/\ y;|:pm'”>>>
i<a \j<n;

Hence graphs Iy, I'y,, and I'y, are X-predicates without parameters in HF(G). The necessity is
proved, completing the proof of Theorem 1.1. O

Theorems 1 and 1.1 can be combined to yield

COROLLARY 1.2. Let G = G(a, ¢,1) be a group and functions «, ¢, and 1) be 3-definable
in HIF(G). Then a universal ¥-function exists in HIF(G) if and only if the family N of all numerical
Y-functions in HF(G) is computable.

COROLLARY 1.3. Let functions «, ¢, and @ have partial computable extensions. Then a
universal Y-function exists in HF(G), where G = G(a, ¢,v), if and only if the family N of all
numerical X-functions in HF(G) is computable.

Proof. Indeed, suppose o, ¢, and 1)/ are extensions of «, ¢, and 1), respectively, and Py =
{p € P | HF(G) = 3z(|z| = p)}. Since the functions ', ¢’, and ¢’ are ¥-definable in HF(G),
functions a = o' | Py, p = ¢' | Py, and ¢ = ¢/ | Py likewise are Y-definable, and the result now
follows from Corollary 1.2. O

LEMMA 1.5. Let functions «, ¢, and 1) be X-definable in HF(G), where G = G(a, p, ). An
arbitrary subset A of natural numbers is X-definable in HF(G) if and only if it is e-reducible to a
set of the form

S = {lk,mg,ng), - .., [k, m}; | k€ da},

Qg — 1’ ak 1]

where a(k) = ay, (k) = [mk, ... ,mgkfﬂ, Y(k) = [nk, ... ,n’;kfl}, and m} < mé? ifi <j<oy.
Proof. The sufficiency follows from [5, Thm. 1.1] and the property of being ¥-definable for S.
Necessity. Let a set A C w be X-definable in HF(G). By virtue of Theorem 1.1, the group G is
Y-uniform. In view of Corollary 1, the set A is e-reducible to a set Th3(G). We argue to show that
Th3(G) is e-reducible to S.
Let a set B = {[k,mF,n¥] | k,i,mF nF € w, mf nF > 0} be given and B C B be

a finite subset such that B = By, U... U By,_1, k; # kj, and i < j < t, where By, =
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{[ki,mlgi,nlgﬂ, R [ki,mii_l,nii_l}}, mki £ mFi and s < r < I;. Given these, we define a group

r o

k nk
G(B) = G(Bo)@ . .@G(Bktfl), where G(Bk) = Zn:lk b...07 Tln_kl Jk=koy..., ki1, andif k = k;
po0 -1

then [ =1;. Let B* = {B | BC B, B= By, U... EJ Bi,—1}, v];};ite H — G(B) for the fact that a
finite group H is embeddable in G(B), and assume that ® is a set of all 3-sentences in a signature
o = (+,0). Given these, we define a set W = {(H,B,y) | H — G(B), B € B*, ¢ € ®, H = ¢}.
It is easy to verify that the set W is c.e. We prove the equality

Ths(G) = {¢ | 3HIB((H, B, p) € W & B C 8)}. (4)

Indeed, let ¢ € Th3(G). Then there exists B C S, B € B* such that G(B) = ¢. If we put
H = G(B) we conclude that the formula in the right part of (4) is valid for ¢. Assume now that ¢
belongs to the right part of (4). Then H is embeddable in G(B) and H = ¢, whence G(B) = ¢.
Since B C S, G(B) is embeddable in G. Hence ¢ € Th3(G), proving (4). Thus Th3(G) <. S. O

Lemma 1.5 and Corollary 2 give rise to the following:

COROLLARY 1.4. Let functions a, ¢, and 1) be X-definable in HF(G), with G = G(«, ¢, ).
Then HF(G) contains a universal X-function if and only if a principal e-ideal J.(S) generated by

a set S contains a function that is universal for the family of all unary functions in J.(S5).

COROLLARY 1.5. Let «, ¢, and 9 be partial computable functions. Then a universal 3-
function exists in HF(G), with G = G(a, , ).

Proof. In fact, the existence of a universal function is underpinned by the fact that the set S
is c.e. in the e-ideal J.(S) generated by S. O

COROLLARY 1.6. There exists a set S of primes such that an admissible set HF(Gg),
Gs = ®{Z, | p € S}, contains no universal ¥-function.

Proof. In fact, a set S of natural numbers such that an e-ideal J.(S) generated by S does not
contain a universal function was constructed in [6]. This, combined with Corollary 1.4, yields the

result. O

2. RINGS

In this section, we construct a family of ¥-uniform rings.

Let Fji be a direct sum of m copies of a field of degree n over a prime field of characteristic p,
treated in a ring signature o = (+,-,0). Assume partial unary functions «, ¢, and ¢ are defined
so that for any k € da, the following hold: ¢(k) = [mk, ... ,m’;k_l} and (k) = [nk, ... ,n];k_l},

k

where o = a(k), mi,nf > 0, and mf < m;‘: if 0 <i < j < ap. Below, unless ambiguity would

result, m; and n; are written in place of mf and nf We introduce a ring of the form

keéa}7

X —1
Py Dy, Yk

nk ”](i -1
K= K(a,0,0) =@ F%@...@Fmg

97



where py, is the kth prime.

LEMMA 2.1. For every Y-formula ®(a,x) with parameter a = (ao,...,an-1), aj € K, K =
K(a,¢,1), in a signature o = (U, €, 9, +, -, 0), there exists a ¥-formula ®*(z) without parameters
such that ®(a,z) = ®*(x) is a true formula in HF(K) for any x € HF (w).

Proof. Assume that for some k, it is true that (a) C Hy = {x € K | pyx = 0}, where (a)
is a subring generated by a set {ag,...,a,—1}. There is no loss of generality in assuming that
Hy = (ap) X ... X (an—1), (a;) is a field of degree l; over a prime field P; C (a;), and a; is a root of
an irreducible polynomial f; of degree [; over P;.

We define Y-predicates without parameters as follows.

Let Field(F,p") < ‘F is a field of cardinality p"” in K’ <& HF(K) | |F| = p"&Vz €
F(U(z) & (field axioms whose quantifiers are bounded by a set F))).

Denote by e the unit of a subfield F' C K. If the predicate Field(P, p) is true in HF(K), then
P is a prime field of characteristic p and P = {0,ep,2ep,...,(p — 1)ep}.

Suppose Pol(f,n, P,p) < ‘f is a polynomial of degree n over a prime field P of characteristic
p < HF(K) = Field(P,p) & 3s1 < p...3s, < p(f = (ep,siep,...,snep)).

Thus f(x) = 2" + (s1ep)z™ L + ...+ spep.

Assume Ind(f,n, P,p) < ‘a polynomial f of degree n over a prime field P of characteristic p is
irreducible’ < HF(K) = Pol(f,n, P,p) & 3a; € P...3a, € P(f = (ep,a1,...,a,) &VsVt(s +t =
n&l<s&1<t—Vb€P..Vbs€ PVYey € P...Vey € Plag b1 +c1 V...V a, #bscyr))).

Put

®* =3yo...Iyp—13F ... 3P ((y) = (Y0) X ... X (Yn-1)

& N (Field((y;),p") & Field(P;, p) & P; C (y;) & Ind(fi, 1i, P, p)

& fi(yi) = 0) & (7, x)) ,

where ® (g, x) is obtained from ®(a,z) by replacing a by .

Let HF(K) = ®(a,z), with x € HF(w). If we take a; to be values for y; in ®(g,x), then it
is obvious that HF(K) = ®*(z). Suppose HF(G) = ®*(z). Then there exists an automorphism
¢ HF(K) — HF(K) for which ¢y; = a;. Hence HF(K) = ®(a, x).

The general case where (a) C Hy, X ... X Kj__, can be readily reduced to the case above. O

THEOREM 2.1. If a ring K = K(«a,¢,%) and functions «, ¢, and 1) are -definable in
HF(K), then K is Y-uniform.

The proof proceeds by verifying the validity of conditions (1)-(3) in the definition of a %-
uniform structure. In view of Lemma 2.1, we may assume that «, ¢, and ¢ are Y-definable in
HF(K) without parameters.

98



(1) Let 29 = {p | Fk(k € da&p = pr} U{0} be a set of elementary characteristics. We argue
to show that a function b(p) = B, where B, is the set of all elementary bases of characteristic p,
is definable in HF(K') by a ¥-formula without parameters.

For any k € da, put n® = nfmf+.. .+n§k71m§k71. Then the graph T',, of a function n(k) = n*

is definable by a -formula without parameters. For h(k) = Hy, the following equivalence holds:
h(k) = Hy & HF(K) Vo € Hy(U(z) & k € da & |Hy| = pi" & prz = 0).

Hence the graph I'y, is a Y-predicate without parameters in HF(K).
On a set of all polynomials of degree n over a given prime field P, a lexicographic ordering is

defined via a predicate of the form

Ord(fo, f1,n, P,p) ©HF(K) = /\ <Pol(f5,n, P,p)

e<2

&3s] <p...3s, <p<f5: (ep,siep,...,shep)

&Elk<n</\ s = sl & s) < s}ﬁ) v f0:f1>>.
i<k
To define an elementary basis, Y-predicates without parameters are introduced as follows.

Let Ind*(f,n, P,p) < ‘f is the least irreducible polynomial of degree n over a prime field P of
characteristic p’ < HF(K) = Ind(f,n, P,p) &Vg € Ind(g,n, P,p)(f < g).

Suppose Val(f, F,y, z,p) < ‘z is equal to the value of a polynomial f over the prime subfield
of a field F for an element y € F’ & HF(K) = Im3nds; < p...3s, < p(Field(F,p") & f =
(ep,s1€F, ..., snep) &y € F& 2z =y + s1epy” ' + ...+ spep).

Define an elementary basis via the predicate

¢(k,Y) < ‘g is an elementary basis of characteristic py’

SHF(K)Ekecda&IgP e Hy... Iyt e Hk[ A 3wy 3y

<oy

(yi (o ey ) & A\ SFBPBFFiC(E] )
J<1N,

&Val( ;,F;,y;70,pk))>& (go’ . 7gak—1)

=a{(y) i <on, j<n}&y= ... ’yak—1>:|7

where ay, m;, and n; are defined in the same way as at the beginning of Sec. 2 and (7°, ..., 7% 1)
is a subring generated by a set {y; |i<ag,j<n}in K.

For our further reasoning, we need
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LEMMA 2.2. There exists a computable numerical function B(k,«, m,n) satisfying the
following: if @« > 0, m = [mo,...,Ma-1], n = [n0,...,Na-1], Mi;n; > 0, m; < m;, 0 < i <
j <o H, = o{Ff®...0F, ;| i< o} and FJZ is a field of degree m; over a prime
field of characteristic pg, then the value of G(k,a,m,n) is equal to the number of sequences
y = (y8,...,ygofl,...,yg‘_l,...,yga__llfﬁ = (y; | i < a,j < n;) such that the element y;
is a root of the least irreducible polynomial f; of degree m; over a prime field P; C (y;) and
Hi = o{(y;) | i < a, j <n;}, where (y;) is a subfield of characteristic py, generated by y;.

Proof. It suffices to appeal to the fact that there exists an algorithm which, given numbers k,
a, m, and n, enumerates all sequences 3 in the ring Hj having the properties mentioned in the
lemma. O

Define a function b via the equivalence b(py) = Bp, < HF(K) = k € da&3Imamg...
IMa,—13In3ng . .. Ing,—13y3F° ... g1 <g0(k) = m&m = [mg,...,mMq,—1)&Y(k) = n&kn =
0o, s Na—1] &y = Bk, a,m,n)& /\ C(k, i) & ‘ /\ g A P&V < v (§ € Bp)&Vy €

i<y i<j<y
B, 3i < ~v(y = g’)) By Lemma 2.2, the graph I'y, of the function b is a ¥-predicate without

parameters in HF(K).

The concept of a basis is defined as follows. For any sequence x = (pkys--- Dk, ,) (here pg,
either is 0 or is a prime numbered ko for the case m = 1, and 0 < pg;, < pg;, ¢ < j < m, for the
case m > 1) and for all elementary bases y* € By, of characteristic py,, a sequence of the form
Y = (..., 5™ ) is called a basis of characteristic x.

(2) Let an arbitrary element z € K \ {0} be given and its order |z|* in the additive group K+
of a ring K be equal to pgy...pk,_,, K > 1. Put z; = pry ... Dk, Phiyy - - - Py_1 2 Then pg,z; = 0,
2i# 0,2 € Hy,, z=20+ ...+ 24—1, and (2) = (20,...,2¢4-1). Set fi1(2) = (20,...,2¢-1). If z € Hy,
then fi(z) = z. It is easy to verify that the graph TI'y, is a ¥-predicate without parameters in

Assume z € (7) \ {0}, where § = (3°,...,7% 1) is an elementary basis of characteristic
Pk =00 = Yo Ynm1), @) = @) @@ () = Hy, (7)) = (00) @ - @ (yp,—1) = Fpi
and (y;) = F]Z = Fymi. Let © = 2% + ... 4 2% 1 and 2’ = 2 + ... + 2}, _,, where 2’ € (5') and
T € (y;) For any ¢ < ay and any j < n;, put
(xé)’ _ xé if xé #0;

& otherwise.

Thus in a one-to-one correspondence with every element = € (Y) is a sequence fo(z,Y) =
<(x;)’ |7 < ag, j <ng).

By the definition of an elementary basis, for any ¢ and any j, we can uniquely define a least
ste inze§> of degree m; over a prime field P]’ - F;, where

irreducible polynomial fJ’ = (e;'-, ;,

is the unit of the field P;, whose root is y; For every element = € (yﬁ), therefore, there exists

, S
7
€j
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a uniquely defined polynomial gé(z) = 5306§2k§ + ...+ sé.ki_eé, Sé‘o # 0, k; < my, and g;- (yé) = zx.
Put Coro(x,yé) = [53-0, e ,s;k;} + 1 and Cor(0,2) = 1. Tflis immediately implies that Corg is a
Y-function without parameters, and if 2% # 2! then Corg(2?, y;) # Corg(x!, y;)

(3) First let elementary bases g = (7, ...,y 1) and g’ = <y2’0, . ,yé’nFl), € < 2, of the same
characteristic p = p be given. By the definition of an elementary basis, yéy is a root of the least
irreducible polynomial f27(z) over a prime field P27 C (yé’j ) of degree m;. Hence the coefficients
of f;J depend only on ¢ and on the unit eé’j of the field Pg’j ; l.e., fgu = g™ + sé’leé’j ami—l 4
o+ sbMighd , with sl < p and I < m;. Therefore, the mapping cpé- : yé’j — yi] extends to an
isomorphism \Il; : (yé’j) — (yi]) Since Hy, = (5:) = ©{(y2’) | i < ay,j < n;}, the isomorphisms
; extend to an isomorphism ), : (Go) — (91)-

Next let bases Y© = (7£°,..., 7% ") of the same characteristic (pg,...,p,—1) be given. By
virtue of the fact that (Y¢) = @&{(y%") | i < ¢}, the isomorphisms ¥,, extend to an isomorphism
U (YY) — (Y1), The theorem is proved. O

Theorems 2 and 2.1 can be combined to yield

COROLLARY 2.1. Let a ring K = K (o, p,) and functions «, ¢, and ¢ be X-definable in
HF(K). Then a universal ¥-function exists in HIF(K) if and only if the family N of all numerical
Y-functions in HF(K) is computable.

COROLLARY 2.2. Let functions «, ¢, and @ have partial computable extensions. Then a
universal ¥-function exists in HF(K), K = K (a, @,v), if and only if the family N¥ of all numerical
Y-functions in HF(K) is computable.

LEMMA 2.3. Let functions «, ¢, and ¢ be 3-definable in HF(K), K = K(«,,1). Then an
arbitrary subset A of natural numbers is Y-definable in HF (K) if and only if A is e-reducible to a

set of the form

S = {[k,mk nf],..., [k,m,’zkfl,n’;kfl] | k € da},
where a(k) = ay, (k) = [mk, ... ,m];k_l}, Y(k) = [nk,... ,n’;k_l}, and mF < mf ifi <j<ay.

The proof is similar to the proof of Lemma 1.5. O

This, together with Corollary 2, entails

COROLLARY 2.3. Let functions «, ¢, and ¥ be 3-definable in HF(G), G = G(«, ¢, ).
Then HIF(G) contains a universal X-function if and only if a principal e-ideal J.(S) generated by
a set S contains a function that is universal for the family of all unary functions in J.(5).

As in the case of groups, we have

COROLLARY 2.4. Let «, ¢, and ¢ be partial computable functions. Then HF(K), G =

K(a, ¢,1), contains a universal 3-function.

COROLLARY 2.5. There exists a set S of primes such that (Kg), Kg = ®&{F, | p € S},

contains no universal YX-function.
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