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It is shown that there exists an Abelian group that is not (P, a)-stable.

INTRODUCTION

Stable theories were introduced in [1] for constructing classification theory and are a general-
ization of the concept of a totally transcendental theory as defined in [2]. In [3], it was proved
that the property of being stable for a theory is equivalent to being definable for every complete
type of the theory. This property plays a fundamental part in research on stable theories.

In [4], the notion of E∗-stability (generalized stability) was introduced, and it was proved that
types for E∗-stable theories are definable. A consequence of that result was stating, along with
definability of types for stable theories (see [3]), that types over any P -sets in P -stable theories
likewise are definable (which had been established in [5] for types over P -models). The notion of
E∗-stability is a new stability scale, whose basic parameter is a mapping of types of a complete
theory into types of another theory.

An interesting example of E∗-stability is (P, a)-stability, defined by adding to a language a
unary predicate symbol and adding to types the condition of being algebraically closed for that
predicate. In this paper, we work to prove a (P, a)-stability theorem for theories of torsion-free
Abelian groups. In so doing, use is made of quantifier elimination down to positive primitive
formulas in Abelian groups with a predicate distinguishing a subgroup. By virtue of this fact, the
question of being (P, a)-stable for a theory reduces to asking if a system of linear equations with
integer coefficients has a solution in the algebraic closure of constants involved in the system. To
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find such a solution, we have developed a technique which is based on the Gauss–Jordan method
and takes into account the specific character of the situation in question.

In the light of the (P, a)-stability theorem, it is natural to ask if there exists an Abelian group
that is not (P, a)-stable. This question will be answered in the affirmative at the end of the paper.

1. DEFINITIONS AND THE NOTATION

A good many definitions and the bulk of the notation are borrowed from [4]. We lay them out
to make our discussion self-contained.

Finite sequences are called tuples. Denote the set of all tuples in A by A<ω, and the length of
a tuple s by l(s). Tuples of length n are called n-tuples. For simplicity, instead of a ∈ A<ω and
D ⊆ A<ω, we will often write a ∈ A and D ⊆ A, respectively. If a is a tuple, then

⋃

a denotes a
set consisting of elements of the tuple a. If D is a set of tuples, then

⋃

D denotes a set consisting
of all elements of the tuples in D. For D a set and a a tuple, instead of D ∪

⋃

a, we write merely
D ∪ a.

Variables are denoted by lowercase letters, e.g., x, y, z, and sets of variables by the correspond-
ing uppercase letters X, Y , Z. Tuples of variables are denoted by lowercase boldface letters, e.g.,
x, y, z, and sets of tuples of variables by the corresponding uppercase boldface letters X, Y, Z.
Unless specified otherwise, we will assume that variables that occur in different places of a same
tuple are distinct.

Let L be a language and T a theory in L. A set of all L-formulas with free variables in a tuple
x (in a set X) is denoted Fx(L) (FX(L)). A set of all types in T over x (over X), i.e., subsets
of Fx(L) (FX(L)) consistent with T with respect to deducibility in T , is denoted S⊆

x (T ) (S⊆
X(T )).

The subsets S⊆
x (T ) and S⊆

X(T ), consisting of maximal T -consistent sets of L-formulas (complete
types of T ) whose free variables are in x and in X, are denoted Sx(T ) and SX(T ), respectively.

If a theory T is trivial, i.e., consists of identically true sentences, then we write S⊆
x (L), S⊆

X(L),
Sx(L), and SX(L) in place of S⊆

x (T ), S⊆
X(T ), Sx(T ), and SX(T ), respectively. In what follows,

t(X) (t(X)) denotes a type t ∈ SX(T ) (t ∈ S⋃

X(T )). For a formula Φ, by writing Φ(X) (Φ(X))
we mean that free variables in Φ belong to a set X (tuples in X). For X and Y sets of tuples
of variables, t a type, and Φ a formula, we use the expressions t(X;Y) and Φ(X;Y) instead of
t(X∪Y) and Φ(X∪Y). If t ∈ S⊆

X(T ) and Y is a set of variables (of tuples of variables) in X, then
t � Y denotes a type consisting of formulas in t, whose free variables are in Y (in tuples of Y ).

For our purposes, it will be more convenient if the cardinality of a set of (object) variables is
not bounded in advance. We assume that all bound variables in formulas are taken from a fixed
countable set U = {ui | i ∈ ω}, free variables are not in that set, and unless otherwise stated,
variables have no occurrences in U . Deducibility is treated in predicate calculus, with the above
conditions of separation on bound and free variables.

Fix a countable set of variables V = {vi | i ∈ ω}. Denote by Sn(T ) a set Sv(T ), where
v = 〈v0, . . . , vn−1〉. Let Sω(T ) =

⋃

{Sv(T ) | v ∈ V }. A set of L-formulas with variables in the
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tuple v = 〈v0, . . . , vn−1〉 is denoted by Fn(L). If w is a mapping from a set X to a set Y then, for
a formula Φ ∈ FX(L), w(Φ) denotes a formula obtained by replacing every free variable x in Φ by
a variable w(x). For a set of formulas F , put w(F ) = {w(Φ) | Φ ∈ F}. Along with w(F ), we will
also write (F )Xw(X). If Δ is a formula or set of formulas, x is a tuple of variables, and s is a tuple
of terms of the same length, then (Δ)xs denotes the result of replacing in each formula Φ ∈ Δ all
free occurrences of variables in x by respective terms in s. For a formula Φ(x), we write Φ(s) in
place of (Φ)xs .

Definition. Let languages L and L∗ and a complete theory T in L be given. A mapping
E : Sω(T ) → S⊆

ω (L∗) is a representation of types for T in L∗ if the following conditions hold:
(1) abstractness, i.e., if w is a permutation on a set V of variables, then E(w(t)) = w(E(t)) for

any t ∈ Sω(T );
(2) preservation of equality, i.e., if t ∈ Sω(T ), x, y ∈ V , and x = y ∈ t, then x = y ∈ E(t);
(3) conservatism, i.e., if t ∈ Sn(T ) and t ⊆ t′ ∈ Sω(T ), then E(t) = (E(t′) ∩ Fn(L∗)).
(4) continuity, i.e., if t ∈ Sω(T ) and ϕ ∈ E(t), then there exists a formula Φ ∈ t such that

ϕ ∈ E(t′) for any t′ ∈ Sω(T ) with Φ ∈ t′.
Below a representation of types for T in L∗ is denoted by E∗.

Definition. The mapping E∗ is extended to types in any set of variables as follows.
(a) If x is an arbitrary n-tuple of variables, and t ∈ Sx(T ), then we put E∗(t) = (E∗((t)xv)vx,

where v = 〈v0, . . . , vn−1〉.
(b) If X is an arbitrary set of variables, and t ∈ SX(T ), then we put E∗(t) =

⋃

{E∗(t � x) |
x ∈ X}.

That the last definition is sound (i.e., the mapping in question satisfies the conditions of being
abstract, conservative, continuous, and equality preserving and the image of a type t ∈ SX(T )
under such a mapping is a type in S⊆

X(L∗)) was shown in [4].

Definition. Let E∗ be a representation of types for a complete theory T . We say that T is
E∗-stable in cardinality λ if, for any set X with |X| � λ and for every t ∈ SX(T ), a type E∗(t)
has at most λ completions of a set SX(L∗). A theory T is said to be E∗-stable if it is E∗-stable in
some infinite cardinality λ.

Definition. Let L be some language, X a set of variables, and t ∈ S⊆
X(L). Suppose that X

and Y are some sets of tuples of variables of length n in X. We say that a pair 〈X,Y〉 is separable
in a type t over X if there exists an L-formula Φ(z;x0) such that l(z) = n, x0 ∈ X, and a set of
formulas like

{Φ(x;x0) | x ∈ X} ∪ {¬Φ(x;x0) | x ∈ Y}

is consistent with the type t. In this event the formula Φ(z;x0) separates X from Y in t(X).
Below we need the following theorem, which generalizes the definability theorem for types to

the case of E∗-stable theories.
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THEOREM 1.1 [4]. Let T be a complete theory in a language L and E∗ a representation of
types for T in L∗. Then the following conditions hold:

(1) T is E∗-stable;
(2) for any set X and for an arbitrary complete type t ∈ SX(T ), every pair 〈X,Y〉 of sets of

tuples of variables of equal length in X which is separable in a type E∗(t) over X is separable in
t over X.

Let a language L be given. Then we denote an extension of L by a unary predicate by
LP = L ∪ {P (x)}, an extension of L by a set C = {cα | α ∈ λ} of constants in some cardinality λ

by Lc = L∪C, and an extension of L by a unary predicate and a set of constants by LP
c = Lc∪LP .

For a complete theory T in a language L, we define a representation of types in a language LP .
Let E(P,a)(t(X)) be the closure with respect to deducibility of a set of formulas which includes
all formulas of t, formulas of the form P (x) for x ∈ X, and a set of formulas saying that a set of
solutions for a predicate P is algebraically closed relative to L. Clearly, E(P,a) is a representation
of types.

Definition. A theory T is (P, a)-stable if it is E(P,a)-stable.
In what follows, as a language L we take a group language containing one binary function

symbol +, a unary function symbol −, and a constant 0. In dealing with Abelian groups (in L),
we will not parenthesize terms in representations, which is possible due to the associative property
of addition. Terms of the form t + . . . + t

︸ ︷︷ ︸

n times

are denoted n · t, where n is a natural number and t is a

term in L. Terms like (−t) + . . . + (−t)
︸ ︷︷ ︸

n times

are denoted −n · t, where n is a natural number and t is

a term in L. Combining the two designations, we will employ coefficients from a set of integers in
term representations. It is worth observing that every formula encountered in the paper in which
the designations mentioned are involved can also be written conventionally, by using only symbols
of the language L. We use these designations merely for simplicity.

2. (P, a)-STABILITY OF TORSION-FREE ABELIAN GROUPS

LEMMA 2.1. Let H0, . . . ,Hn be subgroups of some Abelian group A, a0, . . . , an ∈ A,
H0 + a0 ⊆

⋃

1�i�n
(Hi + ai), and [H0 : Hn] > n!. Then H0 + a0 ⊆

⋃

1�i�n−1
(Hi + ai).

Proof. See [6, Chap. 7, Sec. 39, Lemma 2]. �

LEMMA 2.2. Let A0, . . . , An be finite sets. Then

A0 ⊆
⋃

1�i�n

Ai ⇐⇒
∑

r⊆{1,...,n}
(−1)|r|

∣

∣

∣

∣

∣

A0 ∩
⋂

i∈r

Ai

∣

∣

∣

∣

∣

= 0.

Proof. See [6, Chap. 7, Sec. 39, Lemma 3]. �
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Since a predicate P distinguishes a subgroup, proofs for Proposition 2.1 and Lemma 2.3 (see
below) repeat word for word the proofs of Proposition 4 and Lemma 4 in [6, Chap. 7, Sec. 39].
Here we cite them to make our discussion self-contained.

PROPOSITION 2.1. Let Φ(x1, . . . , xn) be a positive primitive formula in a language LP

and G a structure in LP such that G � L is an Abelian group and a predicate P distinguishes a
subgroup. Then:

(a) Φ(x1, . . . , xn) defines a subgroup in the Cartesian degree Gn of a group G;
(b) for any al, . . . , an ∈ G and for l � 1, a formula Φ(x1, . . . , xl−1, al, . . . , an) either fails in

G or specifies in Al−1 a coset with respect to a subgroup defined in Gl−1 by a positive primitive
formula Φ(x1, . . . , xl−1, 0, . . . , 0).

Proof. Note that G |= t(0, . . . , 0) = 0 and

t(a1 + b1, . . . , an + bn) = t(a1, . . . , an) + t(b1, . . . , bn)

for any term t(x1, . . . , xn) in L and any a1, . . . , an, b1, . . . , bn ∈ G. This, together with the fact
that an intersection of two groups is again a group, yields the result required. �

LEMMA 2.3. Let G be a structure in a language LP such that G � L is an Abelian group and
a predicate P distinguishes an algebraically closed subset. Then every formula Φ(x1, . . . , xn) in
LP is equivalent in Th(G) to a Boolean combination Φ∗(x1, . . . , xn) of positive primitive formulas.

The proof is by induction on the number of quantifiers. It suffices to consider the case
Φ = ∀x(Θ0 ∨ . . . ∨ Θm), where Θi, i � m, are positive primitive formulas or their negations. A
disjunction of negations of positive primitive formulas is equivalent to a negation of one positive
primitive formula. Therefore, adding a formula ¬∃x = x if necessary, we may assume that Φ =
∀x(¬Φ0 ∨ Φ1 . . . ∨ Φm), where Φi, i � m, are positive primitive formulas. A formula ∀x¬Φ0 is
equivalent to a negation of a positive primitive formula. Hence we may assume that m > 0. Thus
we need only handle the case where

Φ(x0, . . . , xn−1) = ∀y

⎛

⎝Φ0(x0, . . . , xn−1, y) →
∨

0<i�m

Φi(x0, . . . , xn−1, y)

⎞

⎠ .

Let Bi, i � m, be subgroups of G defined by respective formulas Φi(0, . . . , 0, y), i � m. In view
of Lemma 2.1, we may assume that [B0 : Bi] � m!, 0 < i � m. Consequently, for b0, . . . , bn−1 ∈ G

and α ⊆ {1, . . . ,m − 1}, the positive primitive formula

Φ0(b0, . . . , bn−1, y) ∧
∧

i∈α

Φi(b1, . . . , bn−1, y)

defines in G either the empty set or a set containing a finite number n(α) =
[

B0 ∩
⋂

i∈α
Bi : (B0 ∩

. . . ∩ Bm)
]

of cosets with respect to a subgroup B0 ∩ . . . ∩ Bm. Consider a set of the form

V =

{

S

∣

∣

∣

∣

∣

S ⊆ P({1, . . . ,m}),
∑

α∈S

(−1)|α| · n(α) = 0

}

,
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where P(Z) denotes the power set of Z. For any S ⊆ P({1, . . . ,m}), we define a formula like

ΦS(x1, . . . , xn) =

⎛

⎝

∧

α∈S

∃y
∧

i∈S∪{0}
Φi(x1, . . . , xn, y)

⎞

⎠

∧

⎛

⎝

∧

α∈P({1,...,m})\S

¬∃y
∧

i∈S∪{0}
Φi(x1, . . . , xn, y)

⎞

⎠ .

By virtue of Lemma 2.2, Φ(x0, . . . , xn−1) is equivalent in Th(G) to a formula
∨

S∈V
ΦS(x0, . . . , xn−1).

If in the formula
∨

S∈V
ΦS(x0, . . . , xn−1) we replace formulas ∃x

∧

i∈α∪{0}
Φi by their positive primitive

counterparts (by changing bound variables in Φi so that existential quantifiers are beyond the scope
of conjunction) we obtain the desired formula Φ∗. �

PROPOSITION 2.2. Let G be a structure in a language LP
c such that G � L is a torsion-

free Abelian group, a predicate P distinguishes an algebraically closed subset, and an algebraically
closed set C of constants is realized by elements of P . Assume that Φ(x0, . . . , xn−1) is a conjunction

of atomic Lc-formulas, i.e., Φ is of the form
∧

i<m

(

∑

j<n
αi,j · xj = ai

)

, where αi,j are integer

coefficients and ai are constants in C, with i < m and j < n.
(a) An element b is a solution in G for a formula Φ(x) if and only if b is a solution in G for a

formula Φ1(x) obtained by permutations of conjunctive terms in Φ.
(b) If d is the greatest common divisor of coefficients αi,0, . . . , αi,n−1, then d divides ai, and

moreover, b is a solution in G for a formula Φ(x) if and only if b is a solution in G for a formula
Φ2(x) obtained by replacing the ith conjunctive term in Φ by

∑

j<n
α′

i,j ·xj = a′i, where αi,j = d ·α′
i,j ,

j < n, and ai = d · a′i.
(c) An element b is a solution in G for a formula Φ(x) if and only if b is a solution in G for a

formula Φ3(x) obtained by replacing the i1th conjunctive term in Φ by
∑

j<n
(αi1,j + c · αi2,j) · xj =

ai1 + c · ai2 for i1, i2 < m, where c is an integer.
Proof. (a) Is obvious.
(b) If we put a′i =

∑

j<n
α′

i,j · bj and substitute this expression into the ith conjunctive term of Φ

we obtain G |= d · a′i = ai; i.e., d divides ai. Since G is a torsion-free group, the result of dividing
a′i is unique and does not depend on the choice of b. Hence a′ ∈ {cα | α ∈ 2ω}, and for any b′,
which is a solution for Φ, it is true that a′i =

∑

j<n
α′

i,j · b′j ; i.e., b′ is a solution for Φ2. That any

solution of Φ2 is a solution for Φ is obvious.
(c) Let b be a solution of Φ; then

∑

j<n
(αi1,j) · bj = ai1 and

∑

j<n
(αi2,j) · bj = ai2 . Substituting

these values into the i1th conjunctive term of Φ3 yields an identity.
Let b be a solution for Φ3; then

∑

j<n
(αi2,j) · bj = ai2 and

∑

j<n
(αi1,j + c · αi2,j) · bj = ai1 + c · ai2 .

Therefore,
∑

j<n
(αi1,j) · bj + c · ai2 = ai1 + c · ai2 , and hence b is a solution of Φ. �
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PROPOSITION 2.3. Suppose that the conditions of Proposition 2.2 hold.
(a) If Φ4(x0, . . . , xn−1) = Φ(x0, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , xn−1), then b is a so-

lution for Φ if and only if 〈b0, . . . , bi−1, bj, bi+1, . . . , bj−1, bi, bj+1, . . . , bn−1〉 is one for Φ4.
(b) If

Φ5(x) =
∧

i<m

⎛

⎜

⎜

⎝

∑

j<n
j �=j0

(αi,j − αi,j0 · γj) · yj + αi,j0 · yj0 = ai

⎞

⎟

⎟

⎠

,

where j0 < n and γ0, . . . , γn−1 are integers, then 〈b0, . . . , bn−1〉 is a solution for a formula Φ if and
only if

〈

b0, . . . , bj0−1, bj0 +
∑

j<n
j �=j0

γj · bj , bj0+1, . . . , bn−1

〉

is one for Φ5, and 〈b′0, . . . , b′n−1〉 is a solution for Φ5 if and only if
〈

b′0, . . . , b
′
j0−1, b

′
j0 −

∑

j<n
j �=j0

γj · b′j , b′j0+1, . . . , b
′
n−1

〉

is one for Φ.
Proof. (a) Is obvious.
(b) Substituting, we verify that the formulas Φ(x0, . . . , xn−1) and

Φ5

⎛

⎜

⎜

⎝

x0, . . . , xj0−1, xj0 +
∑

j<n
j �=j0

γj · xj, xj0+1, . . . , xn−1

⎞

⎟

⎟

⎠

coincide up to grouping terms. Similarly, we argue for Φ5(y0, . . . , yn−1) and

Φ

⎛

⎜

⎜

⎝

y0, . . . , yj0−1, yj0 −
∑

j<n
j �=j0

γj · yj , yj0+1, . . . , yn−1

⎞

⎟

⎟

⎠

. �

LEMMA 2.4. Assume that the conditions of Proposition 2.2 hold. Then the formula
(

Φ(x0, . . . , xn−1) ∧
∧

i<n
P (xn)

)

has a solution in G.

Proof. Appealing to axioms for Abelian groups and using the notation above, we reduce Φ
to the form

∧

i<m

⎛

⎝

∑

j<n

αi,j · xj = ai

⎞

⎠ , (1)

where αi,j are coefficients in a set of integers and ai are constants in the set C, with i < m and
j < n.
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Stage 1. Using Proposition 2.2(b), we cancel the first equality by the greatest common divisor
of coefficients α0,0, . . . , α0,n−1. In this case the first equality assumes the form

∑

j<n
α′

0,j · xj = a′0.

Stage 2. In a set {α′
0,j | j < n, α′

0,j �= 0}, we choose a coefficient α′
0,j0

that is least in modulus.
If α0,j0 = 1 or α0,j0 = −1, then we go Stage 3. Otherwise, for j < n, j �= j0, we divide α′

0,j by
α′

0,j0
, i.e., set

α′
0,j = γj · α′

0,j0 + β0,j,

where γ0, . . . , γn−1 are integers and β0,j are positive integers, which are strictly less than α′
0,j0

in
modulus, of which at least one is distinct from zero, since α′

0,0, . . . , α
′
0,n−1 are coprime, j < n, and

j �= j0.
Put β0,j0 = α′

0,j0
, b0 = a′0, βi,j = αi,j −αi,j0 · γj , βi,j0 = αi,j0, and bi = ai for 0 < i < m, j < n,

and j �= j0. In view of Proposition 2.3(b), substituting variables

yj = xj for j �= j0, j < n,

yj0 = xj0 +
∑

j<n
j �=j0

(γj · xj),

yields a formula like
∧

i<m

⎛

⎝

∑

j<n

βi,j · yj = bi

⎞

⎠ , (2)

in which all coefficients in the first equality are not greater than α′
0,j0

in modulus.
Further, we repeat for (2) all operations at Stage 2 until one of the coefficients β0,0, . . . , β0,n−1

becomes equal to one, and then go to the next stage.
Stage 3. By virtue of Proposition 2.3(a), we may assume that β0,0 = 1. In view of Proposi-

tion 2.2(c), we subtract the first equality from each (i+1)th equality βi,0 times, respectively, with
0 < i < m. The coefficients at y0 vanish in so doing, and eventually, we arrive at the following
system of equalitites:

⎛

⎝y0 +
∑

0<j<n

β0,j · yj = bi

⎞

⎠ ∧
∧

0<i<m

⎛

⎝

∑

0<j<n

(βi,j − β0,j · βi,0) · yj = bi − β0,j · b0

⎞

⎠ . (3)

If all coefficients in the second to mth equations are equal to zero, then we go to Stage 4. Other-
wise, with Proposition 2.2(a) in mind, we may assume that the second equation contains nonzero
coefficients.

Further, we proceed by repeating Stages 1-3 for a system like

∧

0<i<m

⎛

⎝

∑

0<j<n

(βi,j − β0,j · βi,0) · yj = bi − β0,j · b0

⎞

⎠ ,

with the stipulation that variable substitutions at Stage 2 are effected also in y0+
∑

0<j<n
β0,j ·yj = bi

while not altering the coefficient at y0 in so doing. Ultimately we obtain a system in which the
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coefficient at y1 is equal to one in the second equation, and to zero in subsequent ones. Thereafter,
we repeat Stages 1-3 for the third to mth equations while preserving coefficients at y0 and y1 in the
first two equations. Proceeding further with the process, we arrive at a system in upper triangular
form

∧

i<m0

⎛

⎝zi +
∑

i<j<n

δi,j · zj = ci

⎞

⎠ , (4)

where 0 < m0 � m.
Note that the resulting system has no rows like 0 = ci, where ci �= 0, i � m0, since the initial

system has a solution by hypothesis. In view of Propositions 2.2 and 2.3, therefore, system (4)
must necessarily have a solution in G.

Stage 4. By virtue of Proposition 2.2(c), we subtract the last equation from each of the previous
equations δi,m0−1 times, respectively, so that coefficients at zm0−1 vanish.

Now we repeat Stage 4 for the first m0 − 1 equations in the resulting system, removing in so
doing coefficients at zm0−2 and so on. Ultimately we obtain a formula of the form

∧

i<m0

⎛

⎝zi +
∑

m0�j<n

δ′i,j · zj = c′i

⎞

⎠ . (5)

It remains to observe that zi = c′i, for i < m0, and zj = 0 for m0 � j < n, will be a solution
for system (5), each element of which is a constant and, hence, lies in P . Formula (1) is derived
from (5) by using a sequence of transformations such as in Props. 2.2 and 2.3. By applying inverse
substitutions, therefore, we obtain a solution for Φ, lying in P . �

LEMMA 2.5. Let G be a structure in a language LP
c such that 〈G,+〉 is a torsion-free

Abelian group, a predicate P distinguishes an algebraically closed subset, and an algebraically
closed set C of constants is realized by elements of P . Suppose Φ(x0, . . . , xn−1, y0, . . . , ym−1) is a
conjunction of atomic Lc-formulas. Then a set of solutions for the formula

Φ1(x) � ∃y0 . . . ∃ym−1

(

Φ(x0, . . . , xn−1, y0, . . . , ym−1) ∧
∧

i<n

P (xi) ∧
∧

i<m

P (yi)
)

coincides in G with a set of solutions for the formula

Φ2(x) � ∃y0 . . . ∃ym−1

(

Φ(x0, . . . , xn−1, y0, . . . , ym−1) ∧
∧

i<n

P (xi)
)

.

Proof. Let G |= Φ1(a). Then G |= Φ2(a).
Suppose G |= Φ2(a), i.e., G |= P (ai), i < n, and the formula Φ(a0, . . . , an−1, y0, . . . , ym−1)

has a solution in G. By Lemma 2.4, Φ(a0, . . . , an−1, y0, . . . , ym−1)∧
∧

i<m
P (yi) has a solution in G,

which implies G |= Φ1(a). �

THEOREM 2.1. If T is a complete theory for a torsion-free Abelian group, then T is
(P, a)-stable.
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Proof. Let Φ(x,x0) separate X from Y in a type E(P,a)(t), i.e., the set of formulas {Φ(x;x0) |
x ∈ X} ∪ {¬Φ(x;x0) | x ∈ Y} is consistent with the type E(P,a)(t). Assume t1 is a completion
of E(P,a)(t) in which {Φ(x;x0) | x ∈ X} ∪ {¬Φ(x;x0) | x ∈ Y} is consistent. By virtue of
Lemma 2.3, Φ(x,x0) is equivalent in t′ to a Boolean combination Φ1(x,x0) of positive primitive
formulas. Suppose P (s) occurs in the subformula ∃z1 . . . ∃zkϕ of Φ1, where s is a term and ϕ is
a conjunction of atomic formulas. Replace the occurrence of ϕ in Φ1 by an equivalent formula
∃y∃z1 . . . ∃zk(y = s)∧ϕ′, where ϕ′ is obtained from ϕ by replacing all occurrences of the subformula
P (s) by a subformula P (y) and y does not occur in Φ1. This procedure applies with all occurrences
of the predicate P . Therefore, we will assume that P occurs only with variables in Φ1.

Let Ψ(x,x0) be a formula derived from Φ1(x,x0) by replacing all occurrences of subformulas
of the form P (y) by subformulas y = y, where y is an arbitrary variable. Lemma 2.5 implies that
sets of solutions for Ψ(x,x0) ∧

∧

i<n
P (xi) and Φ1(x,x0) ∧

∧

i<n
P (xi) are equal. Hence the formula

Ψ separates X from Y in a type t. By Theorem 1.1, T is a (P, a)-stable theory. �

That (P, a)-unstable Abelian groups exist is shown in the following:

Example. Let G =
⊕

i∈ω
Gi, where Gi " Z4 are cyclic groups of order four, for i ∈ ω. Then

T = Th(G) is not a (P, a)-stable theory.
Indeed, take a type realized by a set D of all elements of order two to be t(X). These elements

each has infinitely many divisors by two, and so elements of order four do not enter the algebraic
closure of D. We partition D into two disjoint subsets D1 and D2 so that acl(D1) ∩ acl(D2) = ∅.
For each d ∈ D2, choose any of its divisors ad by two. Clearly, d + ad is also a divisor of d.
Consequently, the set acl(D ∪ {ad | d ∈ D2}) contains no divisors of elements of D1, and we take
it to be a realization of the predicate P .

By the above, a formula like ∃yP (y) ∧ (y + y = x) separates subsets X1 and X2 of X, which
are realized by sets D1 and D2 over a type t. By Theorem 1.1, T is not (P, a)-stable.
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