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A subgroup H of G is said to be S-embedded in G if G has a normal subgroup N

such that HN is s-permutable in G and H ∩ N � HsG, where HsG is the largest s-
permutable subgroup of G contained in H. S-embedded subgroups are used to give novel
characterizations for some classes of groups. New results are obtained and a number
of previously known ones are generalized.

INTRODUCTION

Throughout the paper, all groups considered are finite and G denotes a group. Terminology
and notation are standard, as in [1, 2].

Recall that a subgroup H of G is said to be permutable with a subgroup T of G if HT = TH.
A subgroup H of G is said to be s-permutable [3] or s-quasinormal [4] in G if H is permutable
with every Sylow subgroup P of G. A subgroup H of G is said to be c-normal in G if there exists
a normal subgroup K of G such that HK = G and H ∩ K ≤ HG, where HG is the maximal
normal subgroup of G contained in H [5]. A subgroup H of G is said to be nearly s-normal in G if
there exists N � G such that HN � G and H ∩N ≤ HsG, where HsG is the largest s-permutable
subgroup of G contained in H [6]. By using s-permutability, c-normality, and nearly s-normality
of some subgroups, many interesting results have been derived (see, e.g., Sec. 4 below and [7]). As
a development, the following new concept was introduced in [8].

Definition 1.1. Let H be a subgroup of G. We say that H is S-embedded in G if there exists
a normal subgroup N such that HN is s-permutable in G and H ∩ N ≤ HsG, where HsG is the
largest s-permutable subgroup of G contained in H.

It is easy to see that all subgroups, independently of whether they are normal, permutable,
s-permutable, c-normal, or nearly s-normal, are S-embedded subgroups. However, the converse is
not true (see, e.g., [8, Ex. 1.4]).
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In this paper, we continue to study the influence of S-embedded subgroups on the structure
of groups. New results are obtained and a number of previously known ones are generalized.

1. PRELIMINARIES

We cite some basic results which are useful in the sequel.

LEMMA 1.1 [8, Lemma 2.1]. Let G be a group and H ≤ G. Then:
(1) If H is S-embedded in G and H ≤ K ≤ G, then H is S-embedded in K.
(2) Suppose N � G and N ≤ H. Then H is S-embedded in G if and only if H/N is S-embedded

in G/N .
(3) Let N be a normal π′-subgroup of G and H a π-subgroup of G. If H is S-embedded in G,

then HN/N is S-embedded in G/N .
It is easy to verify the following:

LEMMA 1.2. Let N � G and H ≤ G. If H is s-permutable in G, then H∩N is s-permutable
in G.

LEMMA 1.3 [9, Lemmas 2.6, 2.7]. Let H ≤ G.
(1) If H is s-permutable in G, then H is subnormal in G.
(2) If H is s-permutable in G, and H is a p-group for some prime p, then Op(G) ≤ NG(H).

LEMMA 1.4 [10; 9, Lemma 2.5(6)]. If H is a subnormal π-subgroup of G, then H ≤ Oπ(G).
Let F be a class of groups. We say that F is S-closed if every subgroup of G belongs to F

whenever G ∈ F. A subgroup H of G is F-supplemented in G if G has a subgroup T ∈ F such
that G = HT . In this case we call T an F-supplement of H in G. In particular, if F is the class
of all supersoluble groups (of all p-nilpotent groups), then an F-supplement is referred to as a
supersoluble supplement (a p-nilpotent supplement).

The following lemma is obvious.

LEMMA 1.5. Let F be a formation of groups. Suppose that a subgroup H of G has an
F-supplement in G.

(1) If N � G, then HN/N has an F-supplement in G/N .
(2) If H ≤ K ≤ G and F is S-closed, then H has an F-supplement in K.

LEMMA 1.6 [6, Lemma 2.8]. Let G be a group and P a Sylow p-subgroup of G, where p

is the smallest prime divisor of |G|. If either P is cyclic or P is not cyclic but every maximal
subgroup of P has a supersoluble supplement in G, then G is soluble.

LEMMA 1.7 [11, Lemma 3.10]. Take two distinct prime divisors p and q of |G| and a
noncyclic Sylow p-subgroup P of G. If every maximal subgroup of P has a q-closed supplement
in G, then G is q-closed.

LEMMA 1.8 [1, Lemma II.7.9]. Let P be a nilpotent normal subgroup of G. If P ∩Φ(G) = 1,
then P is a direct product of some minimal normal subgroups of G.
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LEMMA 1.9 [12, Lemma 2.3]. Let F be a saturated formation containing all supersoluble
groups and E a normal subgroup of G such that G/E ∈ F. If E is cyclic, then G ∈ F.

2. MAIN RESULTS

THEOREM 2.1. A group G is supersoluble if and only if there exists a normal subgroup H

of G such that G/H is supersoluble and all maximal subgroups of every noncyclic Sylow subgroup
of H not having a supersoluble supplement in G are S-embedded in G.

Proof. The necessity being obvious, we need only prove the sufficiency. Suppose the contrary,
letting G be a counterexample with |G||H| minimal.

(1) G/E is supersoluble for every nontrivial normal p-subgroup E of G contained in H, where
p is a prime. Obviously, (G/E)/(H/E) ∼= G/H is supersoluble. Assume that T/E is a noncyclic
Sylow q-subgroup of H/E and T1/E is a maximal subgroup of T/E, where q is a prime divisor
of |H/E|.

If q = p, then T is a noncyclic Sylow p-subgroup of H and T1 is a maximal subgroup of
T . By hypothesis, either T1 has a supersoluble supplement in G or T1 is S-embedded in G.
By Lemmas 1.5(1) and 1.1(2), either T1/E has a supersoluble supplement in G/E or T1/E is
S-embedded in G/E.

Now suppose that q �= p. In this case there exists a Sylow q-subgroup Q of H such that
T = QE. Let Q1 = Q ∩ T1. It is easy to see that Q1 is a maximal subgroup of Q and T1 = Q1E.
By hypothesis, either Q1 has a supersoluble supplement in G or Q1 is S-embedded in G. By
Lemmas 1.5(1) and 1.1(3), either T1/E has a supersoluble supplement in G/E or T1/E is S-
embedded in G/E. This shows that (G/E,H/E) satisfies the hypothesis. Since G is chosen
minimal, G/E is supersoluble.

(2) G is soluble.
Lemmas 1.1(1) and 1.5(2) imply that the hypothesis is still true for (H,H). If H < G, then

H is supersoluble by the choice of G. It follows that G is soluble.
Now assume that H = G. Let p be the smallest prime divisor of |G|. Then p = 2 by the

Feit–Thompson theorem. If O2(G) �= 1, then G/O2(G) is supersoluble by (1), and so G is soluble.
Let O2(G) = 1 and P be a Sylow 2-subgroup of G. If P is cyclic, then G is 2-nilpotent by [13,
(10.1.9)]. It follows that G is soluble. Suppose that P is noncyclic. By Lemma 1.6, there exists
a maximal subgroup P1 of P such that P1 has no supersoluble supplement in G. By hypothesis,
therefore, P1 is S-embedded in G. Hence there exists K � G such that P1K is s-permutable in
G and P1 ∩ K ≤ (P1)sG. By Lemmas 1.3(1) and 1.4, (P1)sG ≤ O2(G) = 1, and consequently
P1 ∩K = 1.

Let C = [K]P1 and K2 be a Sylow 2-subgroup of K. Then |K2| � 2. Hence K is soluble by [13,
(10.1.9)], which implies that C is soluble. Since C = P1K is s-permutable in G, C is subnormal
in G by Lemma 1.3(1), and so C is contained in some soluble normal subgroup D of G (see [10]).
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Let Q/D be a Sylow 2-subgroup of G/D. Since P1 ≤ C ≤ D, |Q/D| � 2, and so G/D is soluble.
This means that G is soluble.

(3) G has a unique minimal normal subgroup N contained in H, G = [N ]M , where M is a
maximal subgroup of G, and N = Op(H) = F (H) = CH(N), for some prime p ∈ π(G).

Let N be a minimal normal subgroup of G contained in H. In view of (2), N is an elementary
Abelian p-group, for some prime p dividing |G|. The class of all supersoluble groups is a saturated
formation. By (1), N is the unique minimal normal subgroup of G contained in H, and N � Φ(G).
Hence there exists a maximal subgroup M of G such that G = [N ]M . Since C = CH(N) =
CG(N) ∩H � G, (C ∩M)G = (C ∩M)NM = (C ∩M)M = C ∩M . Hence C ∩M is normal in G.
It follows that C ∩ M = 1. Thus C = C ∩ NM = N(C ∩ M) = N . Since N ≤ Op(H) ≤ F (H) ≤
F (G) ≤ CG(N), F (H) ≤ CG(N) ∩ H = C = N .

(4) N is a Sylow p-subgroup of H and N is not cyclic.
In view of (1), G/N is supersoluble. If N is cyclic, then G is supersoluble by Lemma 1.9, a

contradiction. Hence N is not cyclic. Let q be the largest prime divisor of |H| and Q a Sylow
q-subgroup of H. Then QN/N is a Sylow q-subgroup of H/N . Since G/N is supersoluble, H/N

is supersoluble, and hence QN/N � H/N . Therefore, QN � H.
Let P be a Sylow p-subgroup of H. If q = p, then P = Q = QN � H. In view of (3),

N = Op(H) = P is a Sylow p-subgroup of H. Assume that q > p. Then QP = QNP is obviously
a subgroup of H. If QP < G, then it follows from Lemmas 1.1(1) and 1.5(2) that (QP,QP )
satisfies the hypothesis. By the minimal choice of (G,H), QP is supersoluble. It follows that
Q � QP , and so QN = Q× N . Hence Q ≤ CH(N) = N by (3), a contradiction.

Now we assume that G = PQ = H. Obviously, q �= p and Q is not a normal subgroup
of G by (3). Suppose that N < P . Since N is not cyclic, P is not cyclic. By Lemma 1.7,
P has a maximal subgroup P1 which has no q-closed supplement in G. Consequently, P1 has no
supersoluble supplement in G. By hypothesis, P1 is S-embedded in G, that is, there exists a normal
subgroup K of G such that P1K is s-permutable in G and P1 ∩ K ≤ (P1)sG. By Lemmas 1.3(1)
and 1.4, (P1)sG ≤ Op(G) = Op(H) = N .

Let P1 ∩ K = 1. Then p2 does not divide |K|. If K �= 1, then N ≤ K, and so p2 divides |K|
since N is not cyclic, a contradiction.

If K = 1, then P1 is s-permutable in G. Consequently, P1 is subnormal in G by Lemma 1.3(1).
It follows that P1 � P1Q and Q ≤ NG(P1). Thus P1 � G, whence P1 ≤ Op(G) = N . In view of
QN � H = G and the Frattini argument, G = QNNG(Q) = NNG(Q) = P1NG(Q). This means
that P1 has a q-closed supplement in G, a contradiction. Hence P1 ∩ K �= 1.

By Lemmas 1.3 and 1.4, (P1)sG ≤ P1 ∩Op(G) = P1 ∩N . On the other hand, Q ≤ NG((P1)sG)
by Lemma 1.3(2). Hence 1 �= (P1)sG ≤ ((P1)sG)G = ((P1)sG)PQ = ((P1)sG)P ≤ (P1 ∩ N)P =
P1 ∩ N ≤ N . It follows that ((P1)sG)G = N = P1 ∩ N . Thus N ≤ P1. By using the Frattini
argument again, we obtain G = QNNG(Q) = NNG(Q) = P1NG(Q). This implies that P1 has a
q-closed supplement in G, a contradiction. Therefore, N = P is a Sylow p-subgroup of H.
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(5) The final contradiction.
Let Mp be a Sylow p-subgroup of M and P = NMp. Since G = [N ]M , P is a Sylow p-

subgroup of G. Let P1 be a maximal subgroup of P containing Mp and N1 = N ∩ P1. Since
|N : N1| = |N : N ∩ P1| = |NP1 : P1| = |P : P1| = p, N1 is a maximal subgroup of N ,
and so N1 � N . Let T be an arbitrary supplement of N1 in G. Then G = N1T = NT and
N = N ∩ N1T = N1(N ∩ T ). This implies that N ∩ T �= 1. Since N ∩ T � NT = G and N is a
unique minimal normal subgroup of G, we have N ∩ T = N . Hence G = T is not supersoluble.
This shows that N1 does not have a supersoluble supplement in G. By hypothesis, therefore, there
exists K � G such that N1K is s-permutable in G and N1 ∩ K ≤ (N1)sG. In view of (3), we see
that N ∩ K = 1 or N ≤ K.

If N ∩ K = 1, then N1 = N1(N ∩ K) = N ∩ N1K. Since N � G and N1K is s-permutable in
G, N1 = N ∩N1K is s-permutable in G by Lemma 1.2. Thus, for any Sylow q-subgroup Q of G,
where q �= p, N1Q is a subgroup of G. By Lemma 1.3, N1 is subnormal in N1Q. It follows that
N1 � N1Q. Therefore, Q ≤ NG(N1). On the other hand, N1 = N ∩ P1 � P . This implies that
N1 � G. Thus N1 = 1 and |N | = p, which contradicts (4).

Now assume that N ≤ K. Then N1 = N1 ∩ N ≤ N1 ∩ K ≤ (N1)sG ≤ N1. This means that
N1 = (N1)sG is s-permutable in G. Consequently, Op(G) ≤ NG(N1) by Lemma 1.3(2). It follows
that N1 = N ∩ P1 � POp(G) = G. Hence N1 = 1 and |N | = p. The final contradiction completes
the proof.

COROLLARY 2.1.1. A group G is supersoluble if and only if all maximal subgroups of
every noncyclic Sylow subgroup of G having no supersoluble supplement in G are S-embedded
in G.

COROLLARY 2.1.2. Let F be a saturated formation containing all supersoluble groups and
G a group. Then G ∈ F if and only if there exists a normal subgroup H of G such that G/H ∈ F and
all maximal subgroups of every noncyclic Sylow subgroup of H having no supersoluble supplement
in G are S-embedded in G.

Proof. The necessity being obvious, we need only prove the sufficiency. Assume the contrary,
letting G be a counterexample with |G||H| minimal. Since H/H = 1 is supersoluble, H is super-
soluble by Lemmas 1.1(1) and 1.5(2) and Theorem 2.1. Let p be the largest prime divisor of |H|
and P a Sylow p-subgroup of H. Then P is the characteristic subgroup of H � G, and hence
P � G.

Let N be a minimal normal subgroup of G contained in P . Obviously, (G/N)/(H/N) ∼=
G/H ∈ F. In view of Lemmas 1.5(1) and 1.1, the hypothesis is still true for G/N (with respect
to H/N). The minimal choice of G implies that G/N ∈ F. Since F is a saturated formation, N

is a unique minimal normal subgroup of G contained in P and N � Φ(G). It is easy to see that
N = Op(H) = P (see proofs of Thm. 2.1(3), (4)). If N is cyclic, then G ∈ F by Lemma 1.9, which
contradicts the choice of G. Thus we may assume that N is not cyclic.

Let N1 be a maximal subgroup of N . Following the same line of argument as was used in
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proving Theorem 2.1(5), we see that N is cyclic, and consequently G ∈ F. The corollary is proved.

THEOREM 2.2. A group G is nilpotent if and only if, for every p ∈ π(G) and every Sylow
p-subgroup P of G, the following conditions hold:

(i) NG(P )/CG(P ) is a p-group;
(ii) all maximal subgroups of P are S-embedded in G.
Proof. The necessity is obvious. We argue for the sufficiency. First, in view of Theorem 2.1,

G is supersoluble. Let q be the largest prime divisor of |G| and Q a Sylow q-subgroup of G. Then
Q � G.

Let N be a minimal normal subgroup of G contained in Q. Consider a factor group G = G/N .
Let P be a Sylow p-subgroup of G. Then there exists a Sylow p-subgroup P of G such that
P = PN/N . Obviously, NG(P ) = NG(P )N/N and CG(P ) � CG(P )N/N . Hence NG(P )/CG(P )
is a p-subgroup. Suppose P1/N is a maximal subgroup of PN/N . If p = q, then N ≤ P . Hence P1

is a maximal subgroup of P . By (ii), P1 is S-embedded in G. It follows from Lemma 1.1(2) that
P1/N is S-embedded in G/N . If p �= q, then P1 = P1 ∩ PN = (P1 ∩ P )N . It is easy to see that
P1 ∩P is a maximal subgroup of P . By hypothesis, P1 ∩P is S-embedded in G, and consequently
P1/N = (P1 ∩ P )N/N is S-embedded in G/N by Lemma 1.1(3). This shows that G/N satisfies
the hypothesis. By induction, G/N is nilpotent.

The class of all nilpotent groups is a saturated formation; therefore, N is a unique minimal
normal subgroup of G contained in Q, and Φ(G) = 1. Hence there exists a maximal subgroup
M such that G = NM . Since G is soluble, N is an elementary Abelian group. Consequently,
N ∩M � G and N ∩M = 1. Now Q = Q∩NM = N(Q∩M) and Q∩M ⊆ Q ⊆ F (G) ⊆ CG(N).
Hence Q ∩ M � G. It follows that Q ∩ M = 1. Hence N = Q and Q ≤ CG(Q). In view of (i),
NG(Q)/CG(Q) is a q-group. This implies that NG(Q) = CG(Q) = G. Consequently, Q ≤ Z(G).
Since G/Q is nilpotent, G is as well. The theorem is proved.

THEOREM 2.3. Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G| with
(|G|, p − 1) = 1. If every maximal subgroup of P not having a p-nilpotent supplement in G is
S-embedded in G, then G is p-nilpotent.

Proof. Suppose the contrary, letting G be a counterexample of minimal order. Then:
(1) Every maximal subgroup of P is S-embedded in G.

If not, then P1 has a maximal subgroup P which has a p-nilpotent supplement T in G. Let H

be a non-p-nilpotent subgroup of G which contains P and is such that every proper subgroup of
H is p-nilpotent. Then H is a minimal nonnilpotent group by [14, Thm. IV.5.4]. In view of [2,
Thm. 3.4.11], H has the following properties:

(i) |H| = pαqβ, where p and q are different primes;
(ii) H = [Hp]Hq, where Hp is a normal Sylow p-subgroup of H and Hq is a cyclic Sylow

q-subgroup of H;
(iii) Hp/Φ(Hp) is a chief factor of H.
Since G = P1T , H = H ∩ P1T = P1(H ∩ T ) = P1L, where L = H ∩ T . We claim that L is a
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proper subgroup of H. Otherwise, H is contained in T , and so H is p-nilpotent, a contradiction.
Thus L < H, and hence L is nilpotent. Let L = Lq × Lp. Obviously, Lq is a Sylow q-subgroup of
H. Since P ⊆ H and H = P1L, Lp �= 1 and Lp is not contained in Φ = Φ(Hp). Now we consider
a factor group H/Φ. The fact that Lq ≤ NH(Lp) implies that LqΦ/Φ ≤ NH/Φ(LpΦ/Φ). On the
other hand, LpΦ/Φ � Hp/Φ since Hp/Φ is an elementary Abelian group. Hence LpΦ/Φ � H/Φ.
Since LpΦ/Φ �= 1 and Hp/Φ is a chief factor of H, we have LpΦ/Φ = Hp/Φ. It follows that
Lp = Hp. Consequently, L = H. This contradiction proves (1).

(2) Op′(G) = 1. If Op′(G) �= 1, then we may choose a minimal normal subgroup N of G such
that N ≤ Op′(G). It is clear that (|G/N |, p − 1) = 1 and PN/N is a Sylow p-subgroup of G/N .
Let P1/N be a maximal subgroup of PN/N . Then there exists a maximal subgroup P2 of P such
that P1 = P2N . By hypothesis and Lemma 1.1(3), P1/N = P2N/N is S-embedded in G/N . Since
G is chosen minimal, G/N is p-nilpotent. It follows that G is p-nilpotent, a contradiction. Thus
Op′(G) = 1.

(3) G is soluble. Suppose the contrary. By the Feit–Thompson theorem, p = 2. Assume
O2(G) �= 1. If O2(G) is a Sylow 2-subgroup of G, then G is obviously soluble, a contradiction.
Thus O2(G) is not a Sylow 2-subgroup of G. By (1) and Lemma 1.1(2), G/O2(G) satisfies the
hypothesis. Hence G/O2(G) is 2-nilpotent by the choice of G. It follows that G is soluble, a
contradiction. We have O2(G) = 1.

Let P1 be a maximal subgroup of P . By (1), P1 is S-embedded in G. Hence there exists
K � G such that C = P1K is s-permutable in G, and P1 ∩ K ≤ (P1)sG. By Lemmas 1.3 and 1.4,
(P1)sG ≤ O2(G) = 1. Therefore, C = [K]P1.

Let K2 be a Sylow 2-subgroup of K. Then, clearly, |K2| � 2. Hence, in view of [13, (10.1.9)]
and the Feit–Thompson theorem, K is soluble, and so therefore is C. Since C is subnormal in G,
C is contained in some soluble normal subgroup M of G, as follows by Lemma 1.3(1) and [10].
Obviously, 22 does not divide |G/M |. Hence, by [13, (10.1.9)] and the Feit–Thompson theorem,
G/M is soluble. This implies that G is soluble, a contradiction.

(4) Op(G) �= 1. This follows directly from (2) and (3).
(5) Op(G) is a unique minimal normal subgroup of G, and Φ(G) = 1. Let N be an arbitrary

minimal normal subgroup of G. By virtue of (2) and (3), N is an elementary Abelian p-group and
N ≤ Op(G). By Lemma 1.1(2), the hypothesis holds for G/N . The minimal choice of G implies
that G/N is p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation, N is a
unique minimal normal subgroup of G and Φ(G) = 1. By Lemma 1.8, Op(G) = N .

(6) |Op(G)| ≥ p2. Assume that |Op(G)| = p. In view of (5), F (G) = Op(G) = CG(Op(G)),
and so G/Op(G) ∼= G/CG(Op(G)) is isomorphic to some subgroup of Aut(Op(G)). Since
|Aut(Op(G))| = p − 1 and (|G|, p − 1) = 1, G/Op(G) = 1. It follows that G = Op(G) is p-
nilpotent, a contradiction.

(7) The final contradiction. By virtue of (5), there exists a maximal subgroup M of G such
that G = [Op(G)]M . Let P = Op(G)Mp be a Sylow p-subgroup of G, where Mp is a Sylow p-
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subgroup of M , and P1 be a maximal subgroup of P such that Mp ≤ P1. Obviously, Op(G) � P1.
In view of (1), there exists a normal subgroup K of G such that P1K is s-permutable in G, and
P1 ∩K ≤ (P1)sG.

If K = 1, then P1 is s-permutable in G, and hence P1Q is a subgroup of G, for every Sylow
q-subgroup Q of G with q �= p. By Lemma 1.3(1), P1 is subnormal in G. This implies that
P1 � P1Q and Q ≤ NG(P1). It follows that P1 � G. Since Op(G) is the unique minimal normal
subgroup of G, Op(G) ≤ P1, a contradiction. We have K �= 1.

In view of Lemmas 1.3(1) and 1.4, P1 ∩ K ≤ (P1)sG ≤ Op(G) ≤ K. If P1 ∩ K �= 1, then
1 �= (P1)sG ≤ P1 ∩ Op(G). By Lemma 1.3(2), Op(G) ≤ NG((P1)sG). Thus (P1)sG ≤ ((P1)sG)G =
((P1)sG)POp(G) = ((P1)sG)P ≤ (P1 ∩ Op(G))P = P1 ∩ Op(G) ≤ Op(G). Hence, by (5), we have
((P1)sG)G = Op(G) = P1∩Op(G). It follows that Op(G) ≤ P1, a contradiction. Hence P1∩K = 1,
and therefore p2 does not divide |K|. Since K �= 1, Op(G) ≤ K and p2 divides |K| by (6). The
finial contradiction completes the proof.

COROLLARY 2.3.1. Let p be the smallest prime divisor of |G| and P a Sylow p-subgroup
of G. If every maximal subgroup of P is S-embedded in G, then G is p-nilpotent.

COROLLARY 2.3.2. If every maximal subgroup of every Sylow subgroup of a group G is
S-embedded in G, then G is a Sylow tower group of supersoluble type.

Proof. Let p be the smallest prime divisor of |G| and P a Sylow p-subgroup of G. By
Corollary 2.3.1, G is p-nilpotent. Let N be a normal p-supplement of G. Clearly, N satisfies the
hypothesis by Lemma 1.1(1). By induction, therefore, N is a Sylow tower group of supersoluble
type. This shows that G is a Sylow tower group of supersoluble type.

THEOREM 2.4. Let p be a prime dividing |G| and P a Sylow p-subgroup of G. If NG(P )
is p-nilpotent, and every maximal subgroup of P not having a p-nilpotent supplement in G is
S-embedded in G, then G is p-nilpotent.

Proof. If p = 2, then the assertion follows from Theorem 2.3. Hence we need only prove the
theorem for the case where p is an odd prime. Assume the contrary, letting G be a counterexample
of minimal order. Then:

(1) Every maximal subgroup of P is S-embedded in G (see proof of Theorem 2.3(1)).
(2) Op′(G) = 1. Suppose Op′(G) �= 1. Consider a factor group G/Op′(G). By Lemma 1.1(3)

and [2, Lemma 3.6.10], G/Op′(G) satisfies the hypothesis. Thus G/Op′(G) is p-nilpotent by the
choice of G. It follows that G is p-nilpotent, a contradiction.

(3) If P ≤ H < G, then H is p-nilpotent. Since NH(P ) ≤ NG(P ), NH(P ) is p-nilpotent.
Hence H satisfies the hypothesis in view of Lemma 1.1(1). The minimal choice of G implies that
H is p-nilpotent.

(4) G is p-soluble. Since G is not p-nilpotent, by the Thompson theorem (see [13, (10.4.1)]),
there exists a characteristic subgroup T of P such that NG(T ) is not p-nilpotent. Since NG(P ) is
p-nilpotent, we may choose a characteristic subgroup L of P such that NG(L) is not p-nilpotent,
but NG(K) is p-nilpotent for every characteristic subgroup K of P with L < K ≤ P . Since
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L char P � NG(P ), L � NG(P ) and NG(P ) ≤ NG(L). Obviously, NG(P ) < NG(L). Hence, by
(3), we obtain NG(L) = G. This means that Op(G) �= 1 and NG(K) is p-nilpotent for every
characteristic subgroup K of P satisfying Op(G) < K ≤ P . Now, by applying the Thompson
theorem again, we see that G/Op(G) is p-nilpotent, and consequently G is p-soluble.

(5) The final contradiction. Let N be a minimal normal subgroup of G. Then N is an
elementary Abelian p-group by virtue of (2) and (4). It is easy to see that G/N satisfies the
hypothesis. Hence G/N is p-nilpotent by the choice of G. Since the class of all p-nilpotent groups
is a saturated formation, N is the unique minimal normal subgroup of G, and Φ(G) = 1. Thus
G = [N ]M for some maximal subgroup M of G, and N = CG(N) = F (G) = Op(G).

Let Mp be a Sylow p-subgroup of M such that P = NMp and M1 be a maximal subgroup
of P containing Mp. Since NG(P ) is p-nilpotent, P �= N and Mp �= 1. Clearly, N �⊆ M1. By
(1), M1 is S-embedded in G, and so there exists some normal subgroup K of G such that M1K

is s-permutable in G, and M1 ∩ K ≤ (M1)sG. If K = 1, then M1 is s-permutable in G. By
Lemma 1.3(2), Op(G) ≤ NG(M1). Thus M1 � POp(G) = G. This implies that N ≤ M1, a
contradiction. Thus K �= 1, and hence N ≤ K.

If M1∩K �= 1, then the same argument as was used at step (7) in the proof of Theorem 2.3 shows
that N ≤ M1, a contradiction. Therefore, M1∩K = 1. In view of N ≤ K, M1∩N ≤ M1∩K = 1.
Since P = NMp = NM1 and M1 is a maximal subgroup of P , we have |N | = p. Therefore,
M ∼= G/N = G/CG(N) is isomorphic to some subgroup of Aut(N) with order dividing p − 1. It
follows that N is a Sylow p-subgroup of G. Hence G = NG(N) = NG(P ) is p-nilpotent. The final
contradiction completes the proof.

Analogously, we can prove the following:

THEOREM 2.5. Let F be a saturated formation containing all p-nilpotent groups and H

a normal subgroup of G such that G/H ∈ F. Let p be a prime dividing the order of H and P a
Sylow p-subgroup of H. If NG(P ) is p-nilpotent, and every maximal subgroup of P not having a
p-nilpotent supplement in G is S-embedded in G, then G ∈ F.

3. SOME APPLICATIONS

The results obtained in Sec. 2 have many corollaries. Here we state only those special cases
that can be found in the literature.

COROLLARY 3.1 [14, Thm. VI.10.3]. A group G is supersoluble if every Sylow subgroup
of G is cyclic.

COROLLARY 3.2 [15]. If every maximal subgroup of every Sylow subgroup of a group G

is normal in G, then G is supersoluble.

COROLLARY 3.3 [16]. If every maximal subgroup of every Sylow subgroup of a group G

not having a supersoluble supplement in G is normal in G, then G is supersoluble.
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COROLLARY 3.4 [15]. Let G be a group with a normal subgroup H such that G/H is
supersoluble. If every maximal subgroup of every Sylow subgroup of H is normal in G, then G is
supersoluble.

COROLLARY 3.5 [6]. A group G is supersoluble if and only if there exists a normal
subgroup H of G such that G/H is supersoluble and every maximal subgroup of every noncyclic
Sylow subgroup of H not having a supersoluble supplement in G is nearly s-normal in G.

COROLLARY 3.6 [16]. Let G be a group with a normal subgroup H such that G/H is
supersoluble. If every maximal subgroup of every Sylow subgroup of H not having a supersoluble
supplement in G is normal in G, then G is supersoluble.

COROLLARY 3.7 [5]. If every maximal subgroup of every Sylow subgroup of a group G is
c-normal in G, then G is supersoluble.

COROLLARY 3.8 [17]. If every maximal subgroup of every Sylow subgroup of G not having
a supersoluble supplement in G is c-normal in G, then G is supersoluble.

COROLLARY 3.9 [5]. Let H be a normal subgroup of G such that G/H is supersoluble. If
every maximal subgroup of every Sylow subgroup of H is c-normal in G, then G is supersoluble.

COROLLARY 3.10 [17]. Let H be a normal subgroup of G such that G/H is supersoluble.
If all maximal subgroups of every Sylow subgroup of H not having a supersoluble supplement in
G are c-normal in G, then G is supersoluble.

COROLLARY 3.11 [18]. Let F be a S-closed saturated formation containing all supersoluble
groups. Suppose that G has a normal subgroup H such that G/H ∈ F. If every maximal subgroup
of every Sylow subgroup of H is c-normal in G, then G ∈ F.

COROLLARY 3.12 [15]. If every maximal subgroup of every Sylow subgroup of a group G

is s-permutable in G, then G is supersoluble.

COROLLARY 3.13 [19]. Let H be a soluble normal subgroup of G such that G/H is
supersoluble. If all maximal subgroups of every Sylow subgroup of H are s-permutable in G, then
G is supersoluble.

COROLLARY 3.14 [20]. Let F be a saturated formation containing all supersoluble groups
and G a group with a normal subgroup H such that G/H ∈ F. If every maximal subgroup of
every Sylow subgroup of H is s-permutable in G, then G ∈ F.

COROLLARY 3.15 [21]. If every maximal subgroup of every Sylow subgroup of a group G

either is s-quasinormal in G or is c-normal in G, then G is supersoluble.

COROLLARY 3.16 [21]. Let E be a normal subgroup of G such that G/E is supersoluble. If
every maximal subgroup of every Sylow subgroup of E either is s-quasinormal in G or is c-normal
in G, then G is supersoluble.

COROLLARY 3.17 [22]. Let p be the smallest prime dividing |G| and P a Sylow p-subgroup
of G. If every maximal subgroup of P is c-normal in G, then G is p-nilpotent.
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COROLLARY 3.18 [22]. Let p be an odd prime dividing |G| and P a Sylow p-subgroup
of G. If NG(P ) is p-nilpotent, and every maximal subgroup of P is c-normal in G, then G is
p-nilpotent.

COROLLARY 3.19. [22]. Let N be a normal subgroup of G, p an odd prime dividing the
order of N , and P a Sylow p-subgroup of N . Also let F be a saturated formation containing the
class of all p-nilpotent groups and G/N ∈ F. If NG(P ) is p-nilpotent, and every maximal subgroup
of P is c-normal in G, then G ∈ F.
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