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A ring is said to be normal if all of its idempotents are central. It is proved that a mixed
group A with a normal endomorphism ring contains a pure fully invariant subgroup G⊕B, the
endomorphism ring of a group G is commutative, and a subgroup B is not always distinguished
by a direct summand in A. We describe separable, coperiodic, and other groups with normal
endomorphism rings. Also we consider Abelian groups in which the square of the Lie bracket
of any two endomorphisms is the zero endomorphism. It is proved that every central invariant
subgroup of a group is fully invariant iff the endomorphism ring of the group is commutative.

Let A be an Abelian group. Denote by R the endomorphism ring E(A) of A, by C = Z(R) the center

of R, with pωA =
∞⋂

n=1
pnA and A1 =

∞⋂
n=1

nA, and by r(A) the rank of A; Z is a ring or group of integers,

Q is a field or group of all rational numbers, Ẑp is a ring or group of p-adic integers, and P is the set of all
primes. By writing H ≤ A we mean that H is a subgroup of A; H ≤ fiA signifies that H is a fully invariant
subgroup of A i.e., ϕH ⊆ H for every ϕ ∈ R; H ≤ ciA means that H is a central invariant subgroup of A,
i.e., αH ⊆ H for every α ∈ C; unless otherwise stated, Ap is a p-component and t(A) is the periodic part
of A. If H ⊆ A and ϕ ∈ R, then ϕ|H is a restriction of ϕ to H . A subgroup G ≤ A is said to be pure in A

if G ∩ nA = nG for every natural number n. If G ∩ pnA = pnG for a given prime p and for every natural
n, then G is called a p-pure subgroup. If G ∩ pA = pG for every prime p, then G is called a weakly pure
subgroup. An Abelian p-group is cocyclic if it is cyclic or isomorphic to a group Zp∞ . Note that the center
C of the endomorphism ring R of a group A can be identified with its biendomorphism ring EndRA.

Recall that a ring whose idempotents are all central is said to be normal [1, item 0.6]. The endomorphism
ring of an Abelian group is normal if and only if all of its direct summands are fully invariant (see, e.g., [1,
Assert. 3.28]).

If ϕ ∈ R and H ≤ ciA, then ϕH ≤ ciA and ϕ−1H = {a ∈ A | ϕa ∈ H} ≤ ciA. In particular, all
endomorphic images of A as well as kernels of all of its endomorphisms are ci-subgroups of A. It is not
hard to verify that if H ≤ fiB and B ≤ ciA, then H ≤ ciA, and if B ≤ A, H ≤ B, H ≤ ciA, and
B/H ≤ fiA/H , then B ≤ ciA.

The following example says of a possible situation where H ≤ ciB and B ≤ fiA, but H 
≤ ciA.

Example 1. Let S = Z[
√
−5] and A be a reduced torsion-free group with E(A) ∼= S. (That such a group

exists follows from Corner’s known result on countable torsion-free rings [2, Thm. 29.2].) Furthermore, let
0 
= a ∈ A and B = E(A)a. Then B ≤ fiA. Elements of the ring S are algebraic integers and A is a
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torsion-free group; so all nonzero endomorphisms of A are monomorphisms, and B ∼= S+. The fact that
S+ ∼= Z⊕ Z implies that C(E(B)) ∼= Z. Hence 〈a〉 ≤ ciB. However, 〈a〉 is not a ci-subgroup of A.

We also point out the following properties.
(1) Let A =

⊕
j∈J

Aj (A =
∏

j∈J

Aj) and ej : A → Aj be respective projections. If α ∈ C, then α′ = ejαej ∈

Z(E(Aj)).
Indeed, ej = e2

j implies αej = αe2
j = ejαej . If now ϕ ∈ E(Aj), then we extend ϕ to an endomorphism

ϕ of A (assuming that ϕ = 0 on a direct summand complementary to Aj). Then ϕ = (ejϕej)|Aj . By
assumption, ϕα = αϕ, whence (ejϕej)(ejαej) = (ejαej)(ejϕej). Treating this equality on Aj , we see that
ϕα′ = α′ϕ, i.e., α′ ∈ Z(E(Aj)).

Recall that if A = B⊕G then we may conceive of E(A) as a ring of matrices of the form r =
(

α γ

δ β

)
,

where α ∈ E(B) and β ∈ E(G) while γ ∈ Hom(G, B) and δ ∈ Hom(B, G). Obviously, if r ∈ C then γ = 0
and δ = 0.

(2) Let A = B ⊕ G. The inclusion r =
(

α 0
0 β

)
∈ C holds iff α ∈ Z(E(B)), β ∈ Z(E(G)), and

ϕα = βϕ, ψβ = αψ for any ϕ ∈ Hom(B, G) and any ψ ∈ Hom(G, B).
Verification is straightforward.
(3) If B = ϕA for some ϕ ∈ R, and H ≤ ciB, then H ≤ ciA.
Let b = ϕa ∈ B, α ∈ C, and f ∈ E(B). Then αf(b) = α(fϕ)a = (fϕ)αa = f(ϕαa) = fα(ϕa) = fαb,

i.e., (α|B)f = f(α|B). Hence αH ⊆ H .
(4) Let A =

⊕
j∈J

Aj and Hj ≤ ciAj for every j ∈ J . Then H =
⊕
j∈J

Hj ≤ ciA.

This follows from property (2).
(5) Let A =

⊕
j∈J

Aj , ej : A → Aj be respective projections, and H ≤ ciA. Then
⊕
j∈J

ejH ≤ ciA.

(6) Let A =
⊕
j∈J

Aj and Aj ≤ fiA for every j ∈ J . A subgroup H is a ci-subgroup of A iff H =
⊕
j∈J

Hj ,

where Hj ≤ ciAj for every j ∈ J .
We verify the necessity. If ej : A → Aj are respective projections, then ej ∈ C for every j ∈ J . This

implies Hj = ejH = H ∩Aj . The condition Hj ≤ ciAj follows from property (2). Property (1) entails the
sufficiency.

In a p-group, the center of its endomorphism ring is isomorphic either to a ring Zpk (if the group is
bounded and pk serves as the least upper bound of the order of its elements), or to Ẑp (otherwise) [2,
Thm. 19.7]. Therefore, every subgroup of a periodic group is a ci-subgroup.

Let A be a separable torsion-free group and denote by Ω(A) the set of types of all direct summands of
rank 1 in A. Types s, t ∈ Ω(A) are assumed to be equivalent if there are r1, . . . , rn ∈ Ω(A) such that types
ri, ri+1 are comparable for all i = 0, . . . , n, where r0 = s, rn+1 = t. If Ω(A) =

⋃
k∈K

Ωk is a partition of the

set Ω(A) into disjoint equivalence classes, then A =
⊕

k∈K

Ak, where Ak are separable groups, Ω(Ak) = Ωk,

the summands Ak are fully invariant in A, and the center Z(E(Ak)) is isomorphic to a subring of the field
Q [2, Sec. 19, Exercise 7]. It is easy to see that pZ(E(Ak)) = Z(E(Ak)) iff pAk = Ak.

PROPOSITION 1. Let A =
⊕

k∈K

Ak be a separable torsion-free group, where Ω(A) =
⋃

k∈K

Ωk is a

partition of the set Ω(A) into disjoint equivalence classes. A subgroup H of A is a ci-subgroup of A if and
only if H =

⊕
k∈K

Hk, where Hk = Ak ∩H and pHk = Hk for every prime p with pAk = Ak.

The proof follows from property (6).
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Proposition 1, in particular, implies that every ci-subgroup of a divisible torsion-free group is a direct
summand.

PROPOSITION 2. If all ci-subgroups of A are fi-subgroups of A, then R is a commutative ring.
Proof. Let 0 
= a ∈ A and ϕ ∈ R. Since Ca ≤ fiA, ϕa = αa for some α ∈ C. We have (ϕ − α)a = 0.

Therefore, Ca ⊆ ker(ϕ − α). Hence ϕ|Ca = α|Ca. If now ψ ∈ R, and β ∈ C is such that ψ|Ca = β|Ca,
then (ϕψ − ψϕ)|Ca = (αβ − βα)|Ca = 0. This implies ϕψ = ψϕ since a is arbitrary.

Note that Abelian groups with commutative endomorphism rings were studied in a series of papers.
In particular, periodic and splitting groups with commutative endomorphism rings were described in [3].
(These results are reflected in [2, Sec. 19] and [4, Sec. 111, Exercise 12].) Groups all endomorphic images
of which are fully invariant were dealt with in [5, 6]. Denote the class of Abelian groups with normal
endomorphism rings by N. Now, if G ⊕ B is a direct summand of a group in N then Hom(B, G) =
Hom(G, B) = 0. In the same way as for groups with commutative endomorphism rings such as in [3,
Lemma 5], therefore, it is not hard to show that every p-component of a mixed group in N is cocyclic,
and moreover, the complementary direct summand is p-divisible. Specifically, the endomorphism ring of
every periodic group in N is commutative. In treating groups in the class N, we can confine ourselves to
the reduced case. In fact, if A ∈ N is a nonreduced mixed group, then A = T ⊕ Q, where T is a reduced
periodic group and Q is isomorphic to the additive group of rational numbers. A nonzero torsion-free group
in N should be either reduced or divisible of rank 1. The endomorphism ring of every nonreduced group in
N is commutative. Clearly, direct summands of a group in N also belong to N.

Recall that a ring S is right invariant [2, Sec. 19] if there is c ∈ S with ab = bc for any a, b ∈ S. If
ab = ca for any a, b ∈ S and for some c ∈ S, then S is left invariant.

A ring without nonzero nilpotent elements is said to be reduced [1, item 0.6]. If e is an idempotent of a
right or left invariant ring S, or, if S is reduced, then the equalities eS(1− e) = 0 and (1− e)Se = 0 imply
that e is central. In other words, left or right invariant rings as well as reduced rings are normal.

It is easy to construct indecomposable groups with nonreduced endomorphism rings. Indeed, if such a
group is properly embedded as a fully invariant direct summand, we arrive at decomposable groups having
a normal but nonreduced endomorphism ring.

If a ring E(A) is right (left) invariant, then all endomorphic images (kernels of endomorphisms) of A are
fully invariant. Groups with right invariant (subcommutative) endomorphism rings were taken up in [7, 8].
For a separable torsion-free group, the property of an endomorphism ring being right invariant implies its
being commutative [2, Sec. 19, Exercise 6]. Analogously, we can prove that a separable torsion-free group
with left invariant endomorphism ring enjoys a similar property. It is not hard to see that the endomorphism
ring of a separable torsion-free group in the class N is also commutative, and so is the endomorphism ring
of a vector torsion-free group in N.

LEMMA 1. If A =
⊕
j∈J

Aj , where Aj ≤ fiA and Aj ∈ N, then A ∈ N.

Proof. Let B be a direct summand in A, with A = B ⊕G. Since Aj ≤ fiA, we have Aj = (Aj ∩B)⊕
(Aj ∩ G). The required result now follows from the decomposition A =

⊕
j∈J

((Aj ∩ B) ⊕ (Aj ∩ G)), where(⊕
j∈J

(Aj ∩B)

)
= B.

Let A be a nonzero reduced group satisfying the descending chain condition for direct summands (in

particular, A is a group of finite rank). A ring E(A) is normal iff A =
n⊕

j=1

Aj , where Aj ≤ fiA and Aj ∈ N.

The endomorphism ring of a torsion-free group of rank 1 is commutative. For a decomposable torsion-free
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group of rank 2, the property of being normal for its endomorphism ring implies being commutative for that
ring. We know that every indecomposable torsion-free group of rank 2 has a commutative endomorphism
ring [9, Thms. 3.2, 3.3]. An indecomposable torsion-free group of rank 3 may have a noncommutative
endomorphism ring.

Example 2. We construct a group A using a vector space V over a field Q. If Π is some set of
primes, then Q(Π) denotes a subgroup of Q generated by all rational numbers whose denominators are
powers of the primes in Π. Let p1, p2, p3, q, p be distinct primes and e1, e2, e3 be elements of V independent
over Q. Further, let E1 = Q(p1,p3,q)e1, E2 = Q(p2)e2, E3 = Q(p3)e3, G = 〈E2, E3, Q(q)(e2 + e3)〉, and
A = 〈E1, G, p−1(e1 +e2)〉 ⊂ V . Since there exists a nonzero homomorphism G/E2 → E1, and pA ⊆ E1⊕G,
the ring E(A) is not commutative. We claim that A is indecomposable. Assume A = C ⊕ D. Note that
E1, E2 ≤ fiA. Therefore, Ei = (Ei ∩C)⊕ (Ei ∩D) (i = 1, 2). Since E1 and E2 are indecomposable groups,
either Ei ⊆ C or Ei ⊆ D. There are two cases to consider.

(1) Let E1 ⊆ C and E2 ⊆ D. Then p−1(e1 + e2) = c + d for some c ∈ C and some d ∈ D. This yields
e1 + e2 = pc + pd; hence e1 = pc and e2 = pd, which is impossible since no one of the elements e1 and e2 is
divisible by p in the group A.

(2) Let E1, E2 ⊆ D. Since qωA = qωC ⊕ qωD, we have e2 + e3 ∈ D, provided that qωC = 0; hence
C = 0. In view of the equality qωA = E1 ⊕Q(q)(e2 + e3) and the inclusion E1 ⊆ D, we obtain qωD = E1.

We have e3 = c + d for some c ∈ C and some d ∈ D. Consequently, e2 + e3 = c + (d + e2) ∈ qωA. The
fact that d + e2 ∈ qωD = E1 implies that d + e2 = e′1 for some e′1 ∈ E1. Now let π : A → D be a projection.
Then e2 = e′1 − πe3. Here e′1 ∈ pω

3 A and πe3 ∈ pω
3 A, yielding e2 ∈ pω

3 A, a contradiction.
We pass to mixed groups in the class N.

THEOREM 1. Let A be a reduced mixed group with a normal endomorphism ring R = E(A),
Π = {p ∈ P | Ap 
= 0}, B =

⋂
p∈Π

pωA, and G = t(A)− be the closure in the Z-adic topology of A of its

subgroup t(A). Then G ∩ B = 0 and G ⊕ B is a pure fully invariant subgroup of A, the ring E(G) is
commutative, and the group G is, up to isomorphism, representable as⊕

p∈Π

Gp ⊆ G ⊆
∏
p∈Π

Gp = S, (∗)

where Gp = Ap are cyclic p-groups, and the subgroup G is pure in S.
Proof. A subgroup G/t(A) coincides with the divisible part of a group A/t(A), and since t(A) is a pure

subgroup of A, the subgroup G is pure in A.
Since Ap is a cyclic p-group (p ∈ Π), it follows that A = Ap⊕E(p) for some E(p) ≤ A, with pE(p) = E(p)

(cf. paragraph after Prop. 2). For every natural n, we have A = Ap1 ⊕ . . . ⊕ Apn ⊕ Bn = Ap1 ⊕ . . . ⊕
Apn+1 ⊕ Bn+1, where Bn+1 ⊆ Bn. If B =

⋂
n

Bn, then t(A) ∩ B = 0. Specifically, B is a torsion-free

group. And since (p1 . . . pn)Bn = Bn, pB = B for every p ∈ Π (which follows from the divisibility of Bn

in respective cases and the fact that Apn ∩ Bm = 0 for m � n). Notice that these properties of B were
also proved in [6, Lemma 2.3] for groups whose homomorphic images are all fully invariant, and in [10],
for groups with commutative endomorphism rings. Now let E =

⋂
p∈Π

E(p). We have E(pn) ⊆ Bn, whence

B ⊆ E. On the other hand, E (being an intersection of fi-subgroups E(p)) is an fi-subgroup, and so
E = (Ap1 ∩ E) ⊕ . . . ⊕ (Apn ∩ E) ⊕ (Bn ∩ E). Consequently, E ⊆ Bn ∩ E, and hence E ⊆ B. Thus
B = E. The subgroup B is pure in A. Indeed, pB = B for p ∈ Π, and if p ∈ P \Π, then B is p-pure as an
intersection of p-pure subgroups (since Ap = 0 for p ∈ P \Π).
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We claim that G∩B = 0. Let x ∈ B and x+t(A) ∈ (A/t(A))1 = G/t(A). Then x = ap1 +. . .+apn +pnan

for every prime p and natural n, where an ∈ Bn, api ∈ Api (i = 1, . . . , n). Since x ∈ B, we have
ap1 + . . . + apn = 0 and x ∈ pnBn, i.e., x ∈ A1 ∩ B = B1 (the last equality follows from the fact that
B is pure in A). Since B is a torsion-free group, B1 is its divisible subgroup. By virtue of A being
reduced, B1 = 0, and hence G ∩ B = 0. Clearly, B ⊆

⋂
p∈Π

pωA, and since pωA ⊆ Bn for every n, we have

B =
⋂

p∈Π

pωA. The condition pG 
= G entails pB = B, and so the subgroup G ⊕ B is pure in A. The fact

that t(A) = t(G) ≤ fiA implies G = t(A)− ≤ fiA. Consequently, G⊕B ≤ fiA (as a sum of fi-subgroups
G and B).

For all p ∈ Π, we have projections πp : G → Gp, which generate a homomorphism f : G →
∏

Gp = S

with kernel ∩E(p) = E = B. Since G ∩ B = 0, f is a monomorphism, and so G can be identified with a
subgroup of S containing ⊕Gp = t(G). The subgroup t(G) is pure in S and the quotient group G/t(G) is
divisible. Therefore, G is a pure subgroup of S. Let E(G) → E(t(G)) be a ring homomorphism assigning
every ϕ ∈ E(G) its restriction to t(G). If ϕ 
= 0, but ϕ(t(G)) = 0, then ϕ(G) is a divisible subgroup,
which contradicts the property of being reduced. Consequently, E(G) is embedded in the commutative ring∏

E(Gp).
Below is an example showing that a subgroup B of a mixed group A with commutative endomorphism

ring is not necessarily distinguished by a direct summand.

Example 3. Let G be a group of the form (∗) in Theorem 1, G 
=
∏

Gp, |Π| = ℵ0, p1, p2 ∈ P \ Π,
A = G⊕ Ẑp1 ⊕ Ẑp2 , where G is an algebraically compact closure of G (G coincides with

∏
Gp), and 0 
= B

be a proper pure subgroup of Ẑp1 . Furthermore, let a = g+ b+v, where g ∈ G, 〈g〉∩G = 0 (g is an element
of infinite order), b ∈ Ẑp1 \G, 0 
= v ∈ Ẑp2 , and A/(G⊕ B) be a pure hull of the subgroup 〈a + (G ⊕ B)〉
in A/(G ⊕ B). Then A is a pure subgroup of A. Notice that

⋂
p∈Π

pωA = B. In fact, for any x ∈ A, there

are n, m ∈ Z such that nx = (mg + g0) + (mb + b0) + mv for some g0 ∈ G and some b0 ∈ B. Here, if
m 
= 0 then mg + g0, mb + b0 
= 0. Since Ẑpi are p-divisible for p ∈ Π, the condition that x ∈

⋂
p∈Π

pωA

implies that mg + g0 ∈
⋂

p∈Π

pωA. This is the case only if mg + g0 = 0, which clashes with the choice of g.

Assume now that A = B ⊕ C for some C ≤ A. We have A = B ⊕ C. Since G, Ẑp2 ≤ fiA, it follows that
C = G⊕ Ẑp2 , whence a = b0 + c = b + (g + v) (b0 ∈ B, c ∈ C). Here b = b0, a contradiction. Since A is an
algebraically compact closure of the group A and the group A has a commutative endomorphism ring, the
endomorphism ring of A, too, is commutative.

In the same way as for groups with commutative endomorphism rings, we can show [2, Prop. 19.6; 3,
Thm. 4] that the quotient group A/B of A having a normal ring E(A) is, up to isomorphism, representable
as

⊕
p∈Π

Gp ⊆ A/B ⊆
∏

p∈Π

Gp = S, where Gp are cyclic p-groups, Gp
∼= Ap, Π = {p ∈ P | Ap 
= 0}, and the

subgroup A/B is p-pure in S for every p ∈ Π and has a commutative endomorphism ring. Moreover, if
Π = P , then B = 0 (since B is a divisible subgroup in this case), and the ring E(A) is commutative.

In view of B ≤ fiA, the map Ψ: E(A) → E(B), Ψ(f) = f |B is a ring homomorphism.
In Corollaries 1-6 below, we assume that A is a reduced mixed group, and if R = E(A) is a normal ring,

then B and G are the subgroups of A as defined in Theorem 1, and Π = {p ∈ P | Ap 
= 0}.
COROLLARY 1. If R is a normal ring and |A| > 2ℵ0 , then B 
= 0 and |A| � |B|ℵ0 .
Proof. Let A be an algebraically compact closure of the group A and G and B be algebraically compact

closures (in A) of the subgroups G and B. Then G ⊕ B is direct summand in A, with A = G ⊕ B ⊕ C,
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where C is isomorphic to the algebraically compact closure of A/(G⊕ B). Therefore, A ∩ C ⊆ B ∩ C = 0.
Hence, if π is a projection of the group A onto G⊕B, then π|A is a monomorphism. Since G =

∏
Gp, we

have |G| = 2ℵ0 for |Π| = ℵ0; if, however, |Π| < ℵ0, then G = G = ⊕Gp is a finite group. Therefore, if θ is a
projection of A onto B, then |θA| = |A/G| = |A| � |B|. Notice that |B| � |B|ℵ0 [4, Sec. 34, Exercise 9].

COROLLARY 2. Let a group A be splitting and A = t(A) ⊕ B. A ring R = E(A) is normal if and
only if a ring E(t(A)) is commutative, pB = B for every p with Ap 
= 0, and E(B) is a normal ring.

COROLLARY 3. Let R be a normal ring and all endomorphisms of a group A be defined on its
subgroup B ⊕G. A ring R is commutative if and only if Ψ(R) is a commutative subring of E(B).

Proof. The necessity is obvious.
Sufficiency. Let ϕ, ψ ∈ R and α = ϕψ − ψϕ. Then α(B ⊕ G) = 0 by assumption, hence αA ⊆ B (in

view of the fact that p(A/G) = A/G for p ∈ P \Π), and so α2 = 0. If, however, endomorphisms are defined
on the subgroup B ⊕G, then α(B ⊕G) = 0 immediately implies α = 0.

COROLLARY 4. If R is a normal ring and E is a pure torsion-free subgroup of A, then E ⊆ B.
Proof. For p ∈ Π, we have A = Ap ⊕ E(p). If x ∈ E, then x = a + e, where a ∈ Ap and e ∈ E(p). If

now pna = 0, then pnx = pne ∈ pωE. This implies that the p-height of an element x is infinite, for E is a
torsion-free group. Hence, pE = E for every p ∈ Π.

Recall that a mixed group A is separable if its elements each is contained in a direct summand of A,
which is a direct sum of rank 1 groups, i.e., torsion-free groups of rank 1 and cocyclic primary groups.

COROLLARY 5. If A is a separable group with a normal endomorphism ring R, then R is com-
mutative, A is splitting, A = t(A) ⊕ B, where B is a completely decomposable torsion-free group with
commutative endomorphism ring, and pB = B for every p ∈ Π.

Proof. According to Corollary 4, a torsion-free direct summand of A is contained in B. This, in view
of the property of being separable, immediately implies that A is splitting.

It is easy to see that every nonzero p-component of a reduced group A having a reduced endomorphism
ring is a cyclic group of prime order [11, Thm. 2]. An example with

∏
p∈Π

Zp, where Zp is a cyclic group of

prime order p and |Π| = ℵ0, shows that groups with reduced endomorphism rings are generally not splitting.

COROLLARY 6. If A is a group without nonzero nilpotent endomorphisms, then a subgroup G has
a commutative endomorphism ring, Gp are cyclic groups of prime order, and the quotient A/B is, up to
isomorphism, representable as

⊕
p∈Π

Gp ⊆ A/B ⊆
∏

p∈Π

Gp = S, where Gp
∼= Ap, and moreover, the subgroup

A/B is p-pure in S for every p ∈ Π.
Note that if A is a reduced algebraically compact group, then Ap, as a rule, denotes its p-adic component,

in which case the p-primary component of A is contained in the p-adic component. Which p-component is
spoken of is usually clear from the context.

COROLLARY 7. Let A be a reduced coperiodic group and R = E(A). Then the following conditions
are equivalent:

(1) R is a normal ring;
(2) R is a commutative ring;
(3) A is an algebraically compact group representable as A = G⊕B, where G ∼=

∏
p∈Π

Ap and B ∼=
∏

p∈Π1

Bp;

here Ap are p-primary components of the group A, all Ap are cyclic groups, and Bp are p-adic components
of the group B; also Bp

∼= Ẑp for every p ∈ Π1, and Π ∩Π1 = ∅.
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Proof. (1) ⇒ (3). We have A1 ⊆ B. This implies that A1 = A1 ∩B = B1 = 0 (since B1 is a divisible
subgroup of a torsion-free group B), and so A is algebraically compact according to [4, Prop. 54.2]. The
other statements follow from the fact that an algebraically compact closure of a subgroup G coincides with∏

Gp, and this subgroup is distinguished by a direct summand in A. Implications (3) ⇒ (2) and (2) ⇒ (1)
are obvious.

Let [ϕ, ψ] = ϕψ − ψϕ (the Lie bracket or commutator). P. A. Krylov posed the problem of studying
Abelian groups A in which [ϕ, ψ]2 = 0 for any ϕ, ψ ∈ R = E(A) (cf. Cor. 3 above). Denote the class of
such groups by BL2. Clearly, a direct summand of a group in BL2 also belongs to BL2. If multiplication
in R is replaced by commutation, i.e, ϕ ◦ ψ = ϕψ − ψϕ, we face the Lie endomorphism ring R(−) of A [12,
Chap. 5, Sec. 10]. A ring R is commutative iff R(−) is a nilpotent ring of index 2. The problem of studying
properties of R(−) is also due to Krylov.

The class BL2 is close to the class N. It might be interesting to compare structures of groups in the
two classes. Therefore, we lay out some facts on the groups in BL2.

If B and G are Abelian groups, then by Hom(B, G)B we denote the trace of B in G, i.e., a subgroup
generated by all homomorphic images of B in G. We write 1A for the identity automorphism of A.

LEMMA 2. (1) If A =
⊕
j∈J

Aj , where Aj ≤ fiA, then A ∈ BL2 if and only if Aj ∈ BL2 for every j ∈ J .

(2) If A ∈ BL2 and A = B ⊕ G, then α(Hom(B, G)B) = 0 and β(Hom(G, B)G) = 0 for any α ∈
Hom(G, B) and any β ∈ Hom(B, G).

Proof. (1) Is obvious.
(2) Let θ be the projection A → G and g = γb for some γ ∈ Hom(B, G) and some b ∈ B. Now let

f ∈ E(A) be such that f |B = γ and f |G = α. We have [θ, f ]g = −αg and [θ, f ]b = γb. Consequently,
[θ, f ]2b = −αγb = 0. This entails α(Hom(B, G)B) = 0, for γ and b are arbitrary.

Denote by A′ a subgroup of A generated by all of its subgroups of the form [ξ, η]A, i.e., A′ = 〈[ξ, η]A |
ξ, η ∈ E(A)〉 (the E-derived subgroup of A). Clearly, the ring E(A) is commutative iff A′ = 0. If A = B⊕G,
then it may so happen that B′, G′ = 0, but A′ 
= 0, as follows from the next lemma.

LEMMA 3. If A = B ⊕G, then A′ = 〈Hom(B, G)B, Hom(G, B)G, B′, G′〉.
Proof. Let π : A → B and θ : A → G be projections, γ ∈ Hom(B, G), and 0 
= b ∈ B. If f ∈ E(A) is

such that f |B = γ and f |G = 1G, then [θ, f ]b = γb. This proves that Hom(B, G)B ⊆ A′. If now ξ, η ∈ E(A),
then [ξ, η]b = [(π + θ)ξ, (π + θ)η]b = [πξ, πη]b + (πξθηb− πηθξb) + (θξπηb + θξθηb− θηπξb − θηθξb). Here
[πξ, πη]b ∈ B′, the second summand belongs to Hom(G, B)G, and the third to Hom(B, G)B. A similar
argument being true for elements of G implies that A′ coincides with the subgroup considered.

LEMMA 4. Let A = B⊕G, where G ≤ fiA. Then the condition that A ∈ BL2 is equivalent to the fact
that B, G ∈ BL2, [ϕ, ψ](Hom(B, G)B) = 0, for any ϕ, ψ ∈ E(G), and β(B′) = 0 for any β ∈ Hom(B, G).
In particular, if E(B) and E(G) are commutative rings, then A ∈ BL2.

Proof. Necessity. We extend ϕ, ψ ∈ E(G) to endomorphisms of the group A, setting ϕ|B = β ∈
Hom(B, G) and ψ|B = 0. For b ∈ B, we have [ϕ, ψ]b = −ψβb, whence [ϕ, ψ]2b = −[ϕ, ψ]ψβb. Hence,
[ϕ, ψ]ψ(Hom(B, G)B) = 0. Symmetrically, [ϕ, ψ]ϕ(Hom(B, G)B) = 0.

If we extend ϕ and ψ by setting ϕ|B = 1B +β and ψ|B = 1B −β, then [ϕ, ψ]b = 2βb−ϕβb−ψβb. This
yields 2[ϕ, ψ]βb = 0. If, however, we put ϕ|B = 1B + 2β and ψ|B = 1B − β, then 3[ϕ, ψ]βb = 0 similarly
to the above; hence [ϕ, ψ]βb = 0. Thus, [ϕ, ψ](Hom(B, G)B) = 0.

The second null equality can be proved in a similar manner. Fix some β ∈ Hom(B, G). Extend
ξ, η ∈ E(B) to ξ, η ∈ E(A), setting ξ|G = 1G, η|G = 0, ξ|B = ξ + β, and η|B = η. For b ∈ B, we have
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[ξ, η]b = [ξ, η]b + βηb. Since [ξ, η]2b = 0 and [ξ, η]βηb = 0, it follows that [ξ, η]2b = βη[ξ, η]b = 0. In view of
b being arbitrary, we obtain β(η[ξ, η]B) = 0, and symmetrically, β(ξ[ξ, η]B) = 0.

If we extend ξ and η by setting ξ|G = 1G, η|G = 1G, ξ|B = ξ + β, and η|B = η − β, then [ξ, η]b =
[ξ, η]b + βηb + βξb − 2βb. Hence [ξ, η]2b = −2β[ξ, η]b = 0. If, however, we put ξ|G = 1G, η|G = 1G,
ξ|B = ξ + 2β, and η|B = η − β, then [ξ, η]b = [ξ, η]b + 2βηb + βξb− 3βb, yielding [ξ, η]2b = −3β[ξ, η]b = 0.
Hence, β([ξ, η]B) = 0, and β(B′) = 0 since ξ and η are arbitrary.

Sufficiency. Let π : A → B and θ : A → G be projections and γ, δ ∈ E(A). We have [γ, δ] = (π +
θ)[γ, δ](π + θ) = π[γ, δ]π + θ[γ, δ]π + θ[γ, δ]θ (it should be taken into account that π[γ, δ]θ = 0). Here we
may assume that θ[γ, δ]θ ∈ E(G). It remains to verify how [γ, δ] acts on B. If b ∈ B then [γ, δ]b = [πγ, πδ]b+
θγ(πδb)−θδ(πγb)+[θγ, θδ]b. The last three summands belong to the trace of B in G, and so they are annulled
under the action of [γ, δ]. Consequently, [γ, δ]2b = θγ(πδ[πγ, πδ]b)− θδ(πγ[πγ, πδ]b) + [θγ, θδ][πγ, πδ]b = 0.
Since πγ, πδ ∈ E(B), these summands each belongs to a corresponding homomorphic image in G of the
subgroup [πγ, πδ]B.

LEMMA 5. If A =
⊕
i∈I

Ai, |I| > 1, then A ∈ BL2 if and only if Ai ∈ BL2, αi(Hom(Aj , Ai)Aj) = 0,

[ϕi, ψi](Hom(Aj , Ai)Aj) = 0, and αi(A′
i) = 0 for any αi ∈ Hom(Ai, Ak) and any ϕi, ψi ∈ E(Ai), where

j, k ∈ I \ {i}.
Proof. The necessity follows from Lemmas 2 and 4.
Sufficiency. Let Bj =

⊕
i∈I\{j}

Ai, π : A → Aj and θ : A → Bj be projections, and γ, δ ∈ E(A). If

a ∈ Aj then [γ, δ]a = [(π + θ)γ, (π + θ)δ]a = [πγ, πδ]a + [πγ, θδ]a + [θγ, πδ]a + [θγ, θδ]a = [πγ, πδ]a +
πγθδa−θδπγa+θγθδa−θδθγa+θγπδa−πδθγa. Here θδa ∈ Hom(Aj , Bj)Aj and (πγ)|Bj ∈ Hom(Bj , Aj),
and so πγθδa = 0. Analogously, πδθγa = 0. Furthermore, θδπγa, θγθδa, θδθγa, θγπδa ∈ Hom(Aj , Bj)Aj ,
and since homomorphisms from Hom(Bj , Aj) occur as factors in the brackets [πγ, θδ] and [θγ, πδ], the
elements given are annulled under the action of these brackets. Keeping in mind that [πγ, πδ]2a = 0 and
[θγ, θδ](Hom(Aj , Bj)Aj) = 0, eventually we arrive at [γ, δ]2a = 0.

THEOREM 2. If A ∈ BL2, then every nonzero p-component of A either is a cyclic group or is a direct
sum of a cyclic group Bp and a group Zp∞ ; moreover, if Bp 
= 0 in the latter case, then the complementary
direct summand is p-divisible.

Proof. Every cyclic direct summand Bp of a p-component Ap of A is a direct summand in A, and
A = Bp ⊕ G. If a p-component of G contained E as a cyclic direct summand, then there would exist
nonzero homomorphisms Bp → E and E → Bp, and moreover, the trace of one of the groups, say, of Bp

in E, would coincide with E, which is a contradiction with Lemma 2(2). Therefore, if Ap is a reduced
group, then Ap = Bp; otherwise Ap = Bp ⊕ Dp. A decomposable divisible p-group is isomorphic to a
direct sum of groups Zp∞ , and Lemma 5 implies that Dp is indecomposable, i.e., Dp

∼= Zp∞ . We have
A = (Bp ⊕Dp)⊕ C. Lastly, the condition that pC 
= C implies that there exists a nonzero composition of
homomorphisms C → Bp → Dp, which clashes with Lemma 5.

COROLLARY 8. Let A be a periodic group. The inclusion A ∈ BL2 holds if and only if each one of
its nonzero p-components either is a cyclic group or is a direct sum of a cyclic group and a group Zp∞ . In
particular, if A is a reduced group, then its endomorphism ring is commutative.

Lemmas 2 and 4 imply that a divisible group belongs to BL2 iff its nonzero p-components are all of rank
1, and so is the torsion-free part (if it is nonzero).

THEOREM 3. Let 0 
= D be the divisible part of a group A, with A = B⊕D. The inclusion A ∈ BL2

holds if and only if B, D ∈ BL2, the E-derived subgroup B′ of B is periodic, and if Dp, Bp 
= 0, then
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B/Bp = p(B/Bp); moreover, the condition that 0 
= t(D) 
= D implies that B is periodic, in which case

A =

(⊕
p∈Π

Ap

)
⊕Q, where Π is a set of primes, every Ap either is a cyclic p-group or is a direct sum of a

cyclic p-group and a group Zp∞ , and Q ∼= Q.
Proof. Necessity. If 0 
= b ∈ B is an element of infinite order, then there exists a homomorphism

α : B → D with αb 
= 0, since D is injective; moreover, if the torsion-free part D0 of D is other than zero,
then α can be chosen so that αb ∈ D0 and γαb 
= 0 for some γ ∈ Hom(D0, Zp∞). By virtue of Lemma 5,
the condition that 0 
= t(D) 
= D implies that B is periodic. Lastly, if Bp 
= 0, then Bp is a cyclic group
by Theorem 2, and so B = Bp ⊕ E(p) for some subgroup E(p) ⊆ A. If now pE(p) 
= E(p), then (provided
that Dp 
= 0) there exists a nonzero composition of homomorphisms E(p) → Bp → Dp, which contradicts
Lemma 5.

Sufficiency. Let 0 
= t(D) 
= D. We have A = B ⊕ t(D) ⊕ D0, where B ⊕ t(D) ≤ fiA, and E(t(D)) is
a commutative ring. According to Corollary 8, B ⊕ t(D) ∈ BL2. The trace of the group D0 in B ⊕ t(D)
is contained in the subgroup t(D), E(t(D)) and E(D0) are commutative rings, and Lemma 4 implies that
A ∈ BL2. If D0 = 0, then E(D) is a commutative ring and D ≤ fiA. Furthermore, if B = Bp ⊕ E(p) then
pE(p) = E(p) for Bp, Dp 
= 0 by assumption. In this case B′ = (E(p))′ by Lemma 3, and hence (B′)p = 0.
This yields β(B′) = 0 for every β ∈ Hom(B, D). By Lemma 4, A ∈ BL2. Finally, let D be a torsion-free
group. Then r(D) = 1, D ≤ fiA, E(D) is a commutative ring, and since B′ is a periodic group, β(B′) = 0
for every β ∈ Hom(B, D); hence again A ∈ BL2 by Lemma 4.

COROLLARY 9. If 0 
= D is the divisible part of a group A, A = B ⊕D, and 0 
= B is a torsion-free
group, then A ∈ BL2 if and only if E(B) and E(D) are commutative rings.

Proof. The necessity follows from Theorem 3, and the sufficiency from Lemma 4.

COROLLARY 10. Let A = t(A) ⊕ R be a splitting group (t(A), R 
= 0). We represent A as
A = T ⊕B⊕ t(D)⊕Q, where T ⊕B and D = t(D)⊕Q are, respectively, the reduced and divisible parts of
A. The group A belongs to BL2 if and only if t(D) ∼=

⊕
p∈Π

Zp∞ , r(Q) � 1, T =
⊕

p∈Π1

Tp, every Tp is a cyclic

p-group, pB = B for p ∈ Π′ = Π ∩Π1, E(B) is a commutative ring, and if Q 
= 0, then t(D) = 0.
Proof. The necessity follows from Theorem 3.
Sufficiency. If Q = 0 then t(A) = T ⊕ t(D) ≤ fiA. Denote by G the trace of B in t(A). We may write

G in the form G = G1 ⊕ G2, where G1 =
⊕

p∈Π1\Π
Gp ⊆ T and G2 =

⊕
p∈Π

Gp ⊆ t(D) (pG = G for p ∈ Π′,

and so G ∩ Tp = 0 for such p). Since the subgroup
⊕

p∈Π1\Π
Tp is fully invariant in t(A) and the rings E(T )

and E(t(D)) are commutative, it follows that [ϕ, ψ]G = 0 for any ϕ, ψ ∈ E(t(A)). Therefore, A ∈ BL2 by
Lemma 4. If Q ∼= Q, then A = B ⊕ T ⊕Q, where T ⊕Q ≤ fiA and E(B) and E(T ⊕Q) are commutative
rings. By Lemma 4, A ∈ BL2 again.

THEOREM 4. (1) Let A be a completely decomposable torsion-free group and A = B ⊕D, where D

is the divisible part of A. The inclusion A ∈ BL2 holds if and only if the following are satisfied:
(a) if D 
= 0, then r(D) = 1, and B is a direct sum of rank 1 groups of mutually incomparable types;
(b) if D = 0, then A =

⊕
i∈I

Ai, where either r(Ai) = 1 or Ai = Bi ⊕ Ci, r(Bi) = 1, Ci is a direct sum of

rank 1 groups of mutually incomparable types greater than t(Bi), and moreover, types of direct summands
of rank 1 in groups Ai and Aj are incomparable, for i 
= j.

(2) Let A be a separable (vector) torsion-free group and A = B⊕D, where D is the divisible part of A.
The inclusion A ∈ BL2 holds if and only if the following are satisfied:

306



(a) if D 
= 0, then r(D) = 1 and B is a direct sum (direct product) of rank 1 groups of mutually
incomparable types;

(b) if D = 0, then A =
⊕
i∈I

Ai (A =
∏
i∈I

Ai), where either r(Ai) = 1 or Ai = Bi⊕Ci, r(Bi) = 1, and Ci is

a separable (vector) group in which types of direct summands of rank 1 are incomparable and are greater
than t(Bi); moreover, types of direct summands of rank 1 in Ai and in Aj are incomparable, for i 
= j.

Proof. (1) The necessity follows from Lemma 5. Indeed, for a direct summand N1⊕N2⊕N3 in A, where
r(Ni) = 1, the following relations for types are impossible: t(N1) = t(N2) and t(N1) � t(N2) � t(N3).

The sufficiency in item (a) follows from Lemma 4 since D ≤ fiA and E(B) and E(D) are commutative
rings, and in (b) from the fact that Ai ≤ fiA, where Ai ∈ BL2 in accordance with Lemma 4.

(2) Direct summands of separable groups are themselves separable groups. Furthermore, the paragraph
before Proposition 1 implies that A =

⊕
i∈I

Ai, where Ω(Ai) = Ωi and Ai ≤ fiA, i.e., types in Ωi and in

Ωj are incomparable, for i 
= j (see [2, Sec. 19, Exercise 7]). With these facts in mind, we can prove the
remaining statements similarly to how we did in item (1).

THEOREM 5. Let A be a coperiodic group, D its divisible part, A = B ⊕ D, and D = t(D) ⊕ D0.
Then A ∈ BL2 if and only if A is algebraically compact, t(D) ∼=

⊕
p∈Π

Zp∞ , where Π is a set of primes,

r(D0) � 1, and moreover, the following statements hold:
(a) if 0 
= t(D) 
= D, then B =

⊕
p∈Π1

Bp, where each Bp is a cyclic p-group, and Π1 is a finite set of

primes;
(b) if D0 = 0, then B = G⊕ C, G =

∏
p∈Π1

Bp, where each Bp is a cyclic p-group, C ∼=
∏

p∈Π2

Ẑp, Π1 and

Π2 are sets of primes such that Π ∩Π1 ∩Π2 = ∅, and if D 
= 0, then the set Π1 ∩Π2 is finite.
Proof. Necessity. We have A1 = D ⊕B1. If Bp 
= 0 and B = Bp ⊕ E(p), then B1 = E1

(p). This implies
that B1 is a divisible torsion-free subgroup of B; hence B1 = 0 and A1 = D. Therefore, the group A is
algebraically compact [4, Prop. 54.2]. If 0 
= t(D) 
= D then B is a periodic group by Theorem 3. Every
periodic algebraically compact group is bounded [4, Cor. 40.3], which proves item (a). If D0 = 0, then
the closure G = (t(B))− in the Z-adic topology of the periodic part t(B) is distinguished in B by a direct
summand, and B = G⊕C (Π1 = {p ∈ P | Bp 
= 0}). If Dp, Bp 
= 0, then pC = C, and so Π∩Π1 ∩Π2 = ∅.
If the set Π1 ∩ Π2 is infinite, then the trace of the group C in G is a mixed group. This, on a condition
that D 
= 0, clashes with Theorem 3 in view of Lemma 3.

Sufficiency. In (a), A ∈ BL2 by Theorem 3. If (b) holds, then D ≤ fiA, G ≤ fi(G⊕C), and E(G) and
E(C) are commutative rings. By Lemma 4, therefore, G⊕C ∈ BL2. By Lemma 3, (G⊕C)′ = Hom(C, G)C.
The set Π1 ∩Π2 is finite; so (G⊕C)′ is a periodic group, and β(G⊕C)′ = 0 for every β ∈ Hom(G⊕C, D)
by virtue of Π ∩Π1 ∩Π2 = ∅. Hence, A ∈ BL2 by Lemma 4.

LEMMA 6. Let S be an associative ring and a, b ∈ S. In S, the commutation operation a◦ b = ab− ba

is associative if and only if every commutator [a, b] = ab− ba of S lies in its center Z(S).
Proof. Necessity. We have [[b, c], a] = bca− cba− abc + acb, [b, [c, a]] = bca− bac− cab + acb. Equating

the right parts, we obtain 0 = abc− bac− cab+ cba = [[a, b], c]. This yields [a, b] ∈ Z(S) since c is arbitrary.
The sufficiency is obvious.
Let A be an Abelian group, R = E(A), and R(−) be the Lie endomorphism ring of A (cf. paragraph

after Cor. 7). Of interest is the problem of studying Abelian groups A whose endomorphism rings R satisfy
the identity [x1, . . . , xn] = 0, i.e., Abelian groups with Lie endomorphism rings R(−) nilpotent of index n.
According to Lemma 6, being nilpotent of index 3 for a ring S(−) is equivalent to its being associative.
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Since every central endomorphism of A acts invariantly on its direct summands, it follows from the proof
of Lemma 2 that the property of being associative for the ring R(−) implies being normal for the ring
R = E(A).
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