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SYMMETRY OF CUTS IN FIELDS
OF FORMAL POWER SERIES
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The theory of cuts is an effective tool for studying ordered fields. We continue research into
the relationship between the structure of cuts in a field of formal power series and algebraic
properties of the field.

INTRODUCTION

The theory of cuts is an effective tool for studying ordered fields. Specifically, order characteristics
of cuts [1] go back to Hausdorff [2]; concepts of algebraic and transcendent cuts in an ordered field were
introduced in [3, 4]; definitions of symmetric and asymmetric cuts were couched in [3]. Properties of such
cuts were taken up in [5-8], and symmetric cuts in fields of restricted formal power series were treated in
[5, 8-10]. The present paper continues research into the relationship between the structure of cuts in a field
of formal power series and algebraic properties of the field. Our main results are Theorems 2.1 and 3.2.

1. FIELDS OF FORMAL POWER SERIES

Let G be a linearly ordered multiplicative Abelian group. Following [11], by R[[G]] we denote a set of
formal power series of the form

x =
∑

g∈G

rgg, (1)

where rg are real numbers, and supp x = {g ∈ G | rg �= 0} is a well-antiordered subset of G; in other words,
every subset A ⊂ supp x contains a maximal element. For x specified by a series such as in (1), we put
x(g) = rg, g ∈ G. On R[[G]], addition and multiplication are defined thus: if

y, z ∈ R[[G]], y =
∑

g∈G

rg
′g, z =

∑

g∈G

rg
′′g,

then
y + z =

∑

g∈G

(rg
′ + rg

′′)g, yz =
∑

g∈G

rgg,

where
rg =

∑

g1g2=g|g1, g2∈G

rg1
′rg2

′′. (2)
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The sum in (2) turns out to be finite, and hence the coefficients rg are well defined. Furthermore, the
supports supp (y + z) and supp (yz) are well antiordered. The set R[[G]], on which the above-mentioned
operations are defined, is a field, which we call a field of formal power series w.r.t. a group G (details and
proof can be found in [11]; in some other notation, in [1]).

Let x ∈ R[[G]]. Denote by x̂ an Archimedean equivalence class in R[[G]] containing x (see [11]). We
have

LEMMA 1.1. Let x, y ∈ R[[G]], g1, g2 ∈ G, and g1 < g2. Then x(g2) = y(g2) if |x− y| ∈ g1.

2. CUTS IN A FIELD OF FORMAL POWER SERIES

Let K be an ordered field and K+ its positive cone. We call the set

D(A, B) = {y − x | x ∈ A, y ∈ B}

the difference of a cut (A, B). Denote by V (A, B) a set of Archimedean classes of all elements in D(A, B).
The bank A in (A, B) in a linearly ordered field is said to be short if there is a ∈ A such that (a1+(a1−a)) ∈ A

for every a1 ∈ A. Such an element a1 is referred to as being close to the bank B. A bank of the cut that is
not short is said to be long. At least one bank of each cut is long. If both of the banks in (A, B) are long
then we call (A, B) a symmetric cut. If, however, one of these is short then we call (A, B) an asymmetric
cut (see [5, 6]).

THEOREM 2.1. Let G be a multiplicative linearly ordered Abelian group. Then all cuts in the field
R[[G]] of formal power series are asymmetric.

Proof. 1. For brevity, let K = R[[G]]. Assume that (A, B) is a cut in K. We need to find a point that
belongs to one of the banks in this cut and is close to the other. In view of [6], this will imply that the
given cut is asymmetric. We seek for the desired point in a series of the form

x∗ =
∑

g∈G

r∗gg.

(a) For all g ∈ G, g < V (A, B), put r∗g = 0.
(b) Let h1 ∈ V (A, B). Define r∗g on the set Gh1 = {g ∈ G | g > h1} as follows. By the definition of

V (A, B), there are a1 ∈ A and b1 ∈ B such that h1 = ̂b1 − a1. Set

[a1, b1] = {x ∈ K | a ≤ x ≤ b}.

Let g > h1, g ∈ G. By Lemma 1.1,

∀x(x ∈ [a1, b1] ⇒ a1(g) = b1(g) = x(g)). (3)

Set r∗g = a1(g). The value r∗g does not depend on the choice of a1, b1, h1. Indeed, let

h2 ∈ V (A, B), h2 < g, a2 ∈ A, b2 ∈ B, ̂b2 − a2 = h2.

By Lemma 1.1,
∀x(x ∈ [a2, b2] ⇒ a2(g) = b2(g) = x(g)). (4)

Set a = max{a1, a2} and b = min{b1, b2}. Clearly, [a, b] = [a1, b1]∩ [a2, b2]. Let x ∈ [a, b]. Then (3) and (4)
imply

x(g) = a(g) = b(g) = a1(g) = a2(g) = r∗g .
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Thus r∗g is defined for all g �= min V (A, B).
2. (a) First, consider the case where min V (A, B) does not exist. Then r∗g is defined for all g ∈ G. Put

x∗ =
∑

g∈G

r∗gg.

We verify that the set suppx∗ is inversely well ordered. Indeed, let g0 ∈ V (A, B), a0 ∈ A, b0 ∈ B, and
̂b0 − a0 = g0. Then x∗(g) = a0(g) with g > g0. Therefore,

(supp x∗) ∩ {g > g0 | g ∈ G} = (supp a0) ∩ {g > g0 | g ∈ G}. (5)

Thus (5) holds for all g0 ∈ V (A, B), and hence every interval of the set (supp x∗) ∩ V (A, B) is well
antiordered. Hence (supp x∗) ∩ V (A, B) is inversely well ordered. Since r∗g = 0 whenever g < V (A, B),
supp x∗ is well antiordered. Thus x∗ ∈ R[[G]].

(b) To be specific, assume that x∗ ∈ A. Let x1 ∈ A, x∗ < x1. We claim that x̂1 − x∗ < V (A, B).
Suppose the contrary, letting

x̂1 − x∗ = g1, g1 ∈ V (A, B). (6)

Making use of the fact that V (A, B) has no least element, we choose a ∈ A and b ∈ B so that b̂− a < g1.
By the construction of x∗, x∗(g) = b(g) = a(g) hold for all g ≥ g1. Since x∗ < x1 < b(g), it follows that
x∗(g) = x1(g) for any g ≥ g1. Hence x̂1 − x∗ < g1, which is a contradiction with (6). Thus, for all x1 ∈ A,
x1 > x∗, we have

x̂1 − x∗ < V (A, B). (7)

(c) We verify that x1+(x1−x∗) ∈ A. Assume to the contrary that x1 +(x1−x∗) ∈ B. Since x∗ ∈ A, the
definition of V (A, B) implies ̂(x1 + (x1 − x∗))− x∗ ∈ V (A, B), i.e., ̂2(x1 − x∗) ∈ V (A, B). Consequently,

̂(x1 − x∗) ∈ V (A, B), which is a contradiction with (7). In this instance

∀x((x ∈ A, x > x∗)⇒ x + (x− x∗) ∈ A).

Hence x∗ is close to B and (A, B) is asymmetric (see [6]).
3. Consider the case where g0 = min V (A, B) exists. Now r∗g is defined for all g ∈ G, g > g0. By the

definition of V (A, B), there are a ∈ A and b ∈ B such that b̂ − a = g0. Let

a =
∑

g∈G

r′gg, (8)

b =
∑

g∈G

r′′g g. (9)

At the moment, we represent the sum in (8) and in (9) as three summands, setting

a =
∑

g>g0

r′gg + r′g0
g0 +

∑

g<g0

r′gg,

b =
∑

g>g0

r′′g g + r′′g0
g0 +

∑

g<g0

r′′g g.

By the definition of r∗g , r′g = r′′g = r∗g for all g > g0. Therefore,

b− a = (r′′g0
− r′g0

)g0 +
∑

g<g0

(r′′g − r′g)g.
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Since b − a > 0, we have (r′′g0
− r′g0

) ≥ 0.
Let x ∈ A, x ≥ a, y ∈ B, and y ≤ b. It is easy to see that

r′g0
≤ x(g0) ≤ y(g0) ≤ r′′g0

.

Therefore, there exist r′ = sup
x∈A, x>a

x(g0) and r′′ = inf
y∈B, y<b

y(g0). We verify that r′ = r′′. Set a0 = a, b0 = b,

and b0(g0) − a0(g0) = d0. The definition of g0 implies d0 > 0. Consider an element c0 = a0+b0
2 . If c0 ∈ A

then we put a1 = c0 and b1 = b0. If c0 ∈ B then we put a1 = a0 and b1 = c0. Obviously, b1(g0)−a1(g0) = d0
2

in either case. If we continue this process we obtain an (nonstrictly) ascending sequence (an), an ∈ A, and
a descending sequence (bn), bn ∈ B, for which bn(g0)− an(g0) = d0

2n . Consequently,

sup
n∈N

an(g0) = inf
n∈N

bn(g0).

This in turn implies that sup
x∈A, x>a

x(g0) = inf
y∈B, y<b

y(g0), i.e., r′ = r′′.

4. Let r∗g0
= r′. Set

x0 =
∑

g≥g0

r∗gg.

To be specific, assume that
x0 ∈ A. (10)

The sequence (an) is monotonically (nonstrictly) ascending; so the number sequence (an(g0)), too, is as-
cending. There are two cases to consider: (a) starting with some n0, (an(g0)) stabilizes; (b) such n0 does
not exist.

(a) Clearly, in this case

∀n ((n ∈ N, n � n0)⇒ ∀g ≤ g0(an(g) = an0(g)).

This implies
∀x ((x ∈ A, x ≥ an0) ⇒ ∀g ≤ g0(x(g) = an0(g)).

Set x∗ = an0 . We verify that x∗ is close to B. Let x1 ∈ A, x∗ < x1. Then ∀g ≤ g0(x1(g) = an0(g)). Hence,

x̂1 − x∗ < V (A, B). (11)

We verify that (x1 + (x1 − x∗)) ∈ A. For brevity, let (x1 + (x1 − x∗)) = q. Now q ∈ B would imply
q̂ − x∗ ∈ V (A, B). On the other hand,

q̂ − x∗ = ̂2(x1 − x∗) = ̂(x1 − x∗),

and q̂ − x∗ < V (A, B), as follows from (11). Thus, for every x1 ∈ A, x1 > x∗, we have (x1 +(x1−x∗)) ∈ A.
Consequently, x∗ is close to B.

(b) For each n0 ∈ N, there is n1 ∈ N, n1 > n0, such that an0(g0) < an1(g0). Note that ∀n (n ∈ N ⇒
an(g0) < r′). In this instance we set

x∗ = x0 =
∑

g≥g0

r∗gg. (12)

According to (10), x∗ ∈ A. For all natural n, an < x∗. In fact, if for some n we had x∗ ≤ an, then it would
be true that

x∗(g0) ≤ an(g0) < r′, x∗(g0) < r′.
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However, x∗(g0) = r′ in view of (12). Hence x∗ ∈ [an, bn] for all natural n.
We verify that x∗ is close to B. Let x1 ∈ A, x1 > x∗. Then an < x∗ < x1 < bn for all natural n. This

implies x̂1 − x∗ < g0, and so x̂1 − x∗ < V (A, B). Further reasoning is as in (a). The theorem is proved.
A linearly ordered field K is said to be Archimedean closed if every linearly ordered extension of K

contains at least one element which is not Archimedean equivalent to any element in the field K.

COROLLARY 2.2. Let G be a multiplicative linearly ordered Abelian group. Then the field R[[G]]
of formal power series is Archimedean closed.

Indeed, all cuts in R[[G]] are asymmetric, and R[[G]] is Archimedean closed in view of [5, Thm. 1].

3. FIELDS OF BOUNDED FORMAL POWER SERIES

Let G be an ordered commutative group and β a (infinite) cardinal. Put

R[[G, β]] = {x ∈ R[[G]] | card supp x < β}.

The set R[[G, β]] is a subfield of the field R[[G]] of formal power series (see [1]). We call it a field of bounded
power series.

For the regular cardinal β, in [8] it was proved that if (A, B) is a symmetric cut in R[[G, β]] then
cf(β) � cf(A, B) � card(G). Modifying that proof relative to an arbitrary cardinal β, we obtain the
following:

LEMMA 3.1. If (A, B) is a symmetric cut in R[[G, β]], then cf(β) � cf(A, B) � card(G).
Every element of R[[G]] induces a symmetric cut in R[[G, β]]. Inversely, every symmetric cut in R[[G, β]]

is induced by some element of R[[G]] (see [12]).
We say that a linearly ordered set X is inversely similar to an ordered set Y if there exists the bijection

f : X → Y

such that the fact that x1, x2 ∈ X , x1 ≤ x2, implies f(x1) ≥ f(x2). A cut (A, B) in a field F is said to be
fundamental if there are a ∈ A and b ∈ B such that b− a ≤ ε for every positive ε ∈ F .

A symmetric cut (A, B) in R[[G, β]] is fundamental iff there is x0 ∈ R[[G]] \ R[[G, β]] such that A <

x0 < B, and supp x0 is inversely similar to β and is coinitial in G (see [12]).

THEOREM 3.2. Let β be a cardinal, G a commutative group, and ℵ0 < β � cardG. Then the
cofinality of every symmetric cut in a field K = R[[G, β]] is equal to cf(β). In particular, if β is a regular
cardinal, then every symmetric cut in K has cofinality β.

Proof. Let (A, B) be a symmetric cut in K = R[[G, β]]. Suppose that there exists a ∈ R[[G]] such that
A < a < B (see [12]). Then

a =
∑

g∈G

rgg,

where rg are real numbers and supp a = {g ∈ G | rg �= 0} is a well-antiordered subset of G. Since
a �∈ R[[G, β]], card supp a � β.

We number all elements of the set supp a in increasing order so that

supp a = {gτ | τ < γ},
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where γ is an ordinal, and β < γ. Put rτ = rgτ . Now,

a =
∑

τ<γ

rτgτ . (13)

We proceed to construct the following two transfinite sequences of elements in the field K:

(xδ|δ < β), (yδ|δ < β),

where
xδ =

∑

τ≤δ

rτgτ − 1gτ ,

yδ =
∑

τ≤δ

rτgτ + 1gτ .
(14)

First, we mention that each xδ, xδ ∈ K, is smaller than a. Hence xδ ∈ A. Similarly, yδ ∈ B. It is easy to
see that the sequence (xδ) is strictly monotonically ascending. Analogously, (yδ) is strictly monotonically
descending.

We claim that (yδ) is coinitial in B. Let y0 ∈ B, y0 =
∑

g∈G

r′gg. Then

y0 − a =
∑

g∈G

(r′g − rg)g.

Since y0 − a > 0, the first coefficient other than zero is r′g∗ − rg∗ > 0. We have

(y0 − a) ∼ 1g∗. (15)

There is an ordinal τ0 < β such that g∗ > gτ0. Assume to the contrary that g∗ ≤ gτ for all τ < β. This
implies that r′τ − rτ = 0 for any τ < β. Hence supp y0 ⊃ suppa. Consequently,

card supp y0 � card supp a � β.

Therefore, card supp y0 � β, and hence y0 �∈ R[[G, β]], a contradiction with the choice of y0 ∈ R[[G, β]].
Thus, there is an ordinal τ0 < β for which g∗ > gτ0 .

By (14),
yτ0 =

∑

τ≤τ01

rτgτ − 1gτ . (16)

In view of (13) and (16),
(yτ0 − a) ∼ 1gτ0.

At the same time, (y0−a) ∼ 1g∗ by (15). On the other hand, gτ0 � g∗. Hence (yτ0 −a) < (y0−a), whence
xτ0 < y0. Thus, there is yτ0 < y0 for every y0 ∈ B. Consequently, the transfinite sequence (yδ) is coinitial
in B.

The sequence (yδ) is strictly descending; so coi(yδ) = cf(β). Hence coi B = cf(β). Similarly, we can
show that cf(A) = cf(β). The theorem is proved.

We know from [7] that every fundamental cut in F , which is not produced by any element of F (a proper
fundamental cut) is symmetric. An ordered field is said to be Dedekind complete if every fundamental cut
of the field is produced by some of its elements: that is, the field is freed of fundamental symmetric cuts.

THEOREM 3.3. If (A, B) is a proper fundamental cut of a field F , then cf(A, B) = cf(F ).
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Proof. Put δ = cf(A). Let (aγ)γ<δ be a strictly monotonically ascending sequence, cofinal in A.
Analogously, (bγ)γ<δ is a strictly monotonically descending sequence, coinitial in B.

Put cγ = bγ − aγ . The sequence (cγ)γ<δ is coinitial in the set F+ \ {0}. Since this sequence is anti-
isotonically isomorphic to a regular cardinal δ, we have coi(F+ \ {0}) = δ = cf(A, B). Lastly, (cγ

−1)γ<δ

is cofinal in F and is isotonically isomorphic to the regular cardinal δ. Consequently, F has cofinality
δ = cf(A, B), as required.

COROLLARY 3.4. If cf(β) �= cf(R[[G, β]]), then R[[G, β]] has no proper fundamental cuts, that is,
this field is Dedekind complete.

By Theorem 3.2, all symmetric cuts in a field of bounded formal power series have the same cofinality.
The question remains open as to whether there exist linearly ordered fields having symmetric cuts of
nonequal cofinality. Furthermore, let A be some set of infinite cardinals. Does, then, there exist an ordered
field K such that the set of cofinalities of all symmetric cuts in K is equal to A?

REFERENCES

1. H. J. Dales and H. Woodin, Super Real Fields. Totally Ordered Fields with Additional Structure,
London Math. Soc. Monogr., New Ser., 14, Clarendon Press, Oxford (1996).

2. F. Hausdorff, Set Theory [Russian translation], Gostekhizdat, Moscow (1937).

3. G. G. Pestov, The Structure of Ordered Fields, Tomsk State Univ., Tomsk (1980).

4. F. Delon, “Plongement dense d’un corps ordonné dans sa clôture réelle,” J. Symb. Log., 56, No. 3,
974-980 (1991).

5. G. G. Pestov, “Symmetry of sections in ordered field,” All-Siberian Readings in Mathematics and
Mechanics, Vol. 1, Tomsk State Univ., Tomsk (1997), pp. 198-202.

6. G. G. Pestov, “Toward a theory of sections in ordered fields,” Sib. Mat. Zh., 42, No. 6, 1350-1360
(2001).

7. G. G. Pestov, “Toward a theory of ordered fields and groups,” Doctoral Dissertation, Tomsk (2003).

8. N. Yu. Galanova, “Symmetry of sections in fields of formal power series and a non-standard real line,”
Algebra Logika, 42, No. 1, 26-36 (2003).

9. N. Yu. Galanova, “Symmetric and asymmetric gaps in fields of power series,” Serdica Math. J., 30,
No. 4, 495-504 (2004).

10. N. Yu. Galanova, “An investigation of the fields of bounded formal power series by means of theory
of cuts,” Acta Appl. Math., 85, Nos. 1-3, 121-126 (2005).

11. L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, New York (1963).

12. N. Y. Galanova, “Structure of a nonstandard real line,” All-Siberian Readings in Mathematics and
Mechanics, Vol. 1, Tomsk State Univ., Tomsk (1997), pp. 63-78.

106


