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We study into a semilattice of numberings generated by a given fixed numbering via operations
of completion and taking least upper bounds. It is proved that, except for the trivial cases, this
semilattice is an infinite distributive lattice every principal ideal in which is finite. The least
upper and the greatest lower bounds in the semilattice are invariant under extensions in the
semilattice of all numberings. Isomorphism types for the semilattices in question are in one-to-
one correspondence with pairs of cardinals the first component of which is equal to the cardinality
of a set of non-special elements, and the second — to the cardinality of a set of special elements,
of the initial numbering.

INTRODUCTION

A semilattice of numberings generated by a set of complete numberings of a family under completion
and taking least upper bounds was dealt with in [1-3], and completions of Σ0

n-computable numberings —
in [4]. In this paper we describe a semilattice generated by a single numbering under the above-mentioned
operations.

1. SOME DEFINITIONS AND PRELIMINARY RESULTS

Basic definitions and the notation pertaining to the theory of numberings are contained in [5]. Let
z �→ 〈〈z〉1, 〈z〉2〉 be a computable bijection from N to N2. Values of the inverse function at arguments x
and y are denoted by 〈x, y〉. Let Kn+1(x0, x1, . . . , xn) be the universal Kleene function for a class of all
n-ary partial computable functions, where n � 1, and K(x) � K2(〈x〉1, 〈x〉2) be a universal unary partial
computable function.

A completion of a numbering α of a family S relative to an element a ∈ S is defined as follows:

αa(x) �






α(K(x)) if K(x)↓,
a if K(x)↑ .

In [1, 4, 5] are the following properties of completion of numberings for the family S (here, a, b ∈ S):
(1) if α � β then αa � βa;
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(2) if α is complete relative to a, i.e., a is a special element of the numbering α, then αa ≡ α;
(3) if α is not complete relative to a then α < αa;
(4) if αa � β ⊕ γ then either α � β or α � γ;
(5) if a �= b and αa � βb then αa � β.

2. THE LATTICE OF TREES

2.1. Finite models. Let M = 〈M ;σ〉 be an infinite model of a signature σ = 〈�, P0, P1, . . .〉, where
the relation � is a partial order, and P0, P1, . . . are unary predicates, on M . To denote finite submodels of
M we use the letter F, possibly with indices. A universe of model F (with indices) is denoted by F (with
the same indices), and the number of elements in F — by |F |. If F1 is a submodel of F2 then we write
F1 � F2.

Letting a, b ∈ F , we call a a successor of b if a � b and there is no c ∈ F such that a � c � b. If a is
the successor of b then the elements a and b are referred to as neighboring. By max(F) we denote the set of
maximal elements, and by min(F) the set of minimal elements, in F. For x ∈ F , put x̂+ � {y ∈ F | y � x}
and x̂− � {y ∈ F | y � x}. Submodels with universes x̂+ and x̂− are called, respectively, a principal
downcone and a strict principal downcone in F.

2.2. p-Homomorphisms. Elements a, b ∈ M are said to be p-indiscernible if Pi(a) ↔ Pi(b) for any
i � 0; otherwise, a and b are conceived of as p-discernible. If ϕ : M → M is a partial mapping such that
a and ϕ(a) are p-indiscernibles for any a ∈ dom(ϕ) then we say that ϕ possesses the property of being
p-indiscernible.

Definition 1. A mapping ϕ : F1 → F2 is called a p-homomorphism of F1 into F2 if ϕ is monotone
under � and possesses the property of being p-indiscernible.

Let Φ(F1,F2) � {ϕ | ϕ is a p-homomorphism of F1 into F2}. We write F1 � F2 to express the fact that
there exists a p-homomorphism of F1 into F2. If F1 � F2 and F2 � F1 then we write F1 ∼ F2, and the
models F1 and F2 are said to be equivalent. The relation � is a preorder, and ∼ is an equivalence, on the
set of finite submodels of M. Note that if F1 � F2 then the identity mapping of the set F1 into itself is a
p-homomorphism of F1 into F2.

Definition 2. A model F is said to be p-dense if there is no p-homomorphism of F into a proper
submodel of F.

For any model F, there exists a p-dense model F′, equivalent to F. As F′, among the models equivalent
to F, we can take one that has a least number of elements.

LEMMA 1. p-Dense finite models F1 and F2 are equivalent if and only if they are isomorphic.
Proof. Clearly, isomorphic models are equivalent. Let F1 ∼ F2 and ϕi ∈ Φ(Fi,F3−i) for i = 1, 2. Then

ϕ3−i ◦ϕi is a p-homomorphism of Fi onto some submodel of Fi which coincides with Fi since Fi is p-dense.
Hence the mappings ϕ1 and ϕ2 are surjective, and these are bijective because F1 and F2 are finite sets. For
i = 1, 2, assume that the mapping ϕ̄i acts from Fi × Fi to F3−i × F3−i in such a way that the pair 〈x, y〉 is
translated into a pair 〈ϕi(x), ϕi(y)〉, for all x, y ∈ Fi. Also, let F̄i � {〈x, y〉 ∈ F 2

i | x � y}.
Since ϕi is bijective, ϕ̄i is likewise, and the property of ϕi being monotone implies ϕ̄i(F̄i) ⊆ F̄3−i.

Consequently ϕ̄1 ◦ ϕ̄2 is bijective, and ϕ̄1(ϕ̄2(F̄2)) ⊆ F̄2; hence ϕ̄1(ϕ̄2(F̄2)) = F̄2. We have ϕ̄−1
1 (F̄2) =

ϕ̄−1
1 (ϕ̄1(ϕ̄2(F̄2))) = ϕ̄2(F̄2) ⊆ F̄1, the mapping ϕ−1

1 is monotone, and ϕ1 is an isomorphism from F1 onto
F2. �
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2.3. Finite trees. By a finite tree, or merely tree, we mean a finite submodel of M in which every two
elements, larger than some third one, are mutually comparable. A finite tree is denoted by the letter D,
possibly with indices. A universe of the tree D (with indices) is denoted by the letter D (with the same
indices). Consider the following two operations over trees.

Let D be a tree and a be an element of M such that x � a for any x ∈ D. Put a ·D � 〈a ·D;σ〉, where
a ·D � D ∪ {a}. Then a ·D is a finite tree, which we call a w-descent of D.

A tree D is called a direct sum of the trees D1, . . . ,Dm if there are trees D′
1, . . . ,D

′
m such that D =

m⋃

i=1

D′
i

and Di
∼= D′

i for all i ∈ [1,m], and for all i, j ∈ [1,m], if i �= j, a ∈ D′
i, and b ∈ D′

j , then a and b are

incomparable in M. To denote the direct sum we write D = D1 � · · · � Dm =
m⊎

i=1

Di. Any tree D′ such

that D′ ∼= Di for some i ∈ [1,m] is called a direct summand of the direct sum D.

If a tree D is representable as D =
m⊎

i=1

Di, where m > 1, then D is called a decomposable tree; otherwise,

we say that D is indecomposable. Clearly, the indecomposability of a tree is equivalent to its having a
greatest element. Any indecomposable tree either is one-element or is a descent of some tree with a smaller
number of elements. The decomposable tree, in turn, is representable as a direct sum of indecomposable
trees, each of which has a smaller number of elements. We can thus treat trees as inductive structures
using, in definitions and proofs, induction on the number of elements in a tree and its representation via
the above-mentioned operations.

LEMMA 2. Let D, D′, and D′′ be trees and D =
m⊎

i=1

Di. The following statements hold:

(1) Di � D for all i ∈ [1,m];
(2) D � D′ iff Di � D′ for all i ∈ [1,m];

(3) if D′ =
n⊎

i=1

D′
i, and the trees D1, . . . ,Dm are indecomposable, then D � D′ iff there is j ∈ [1, n] such

that Di � D′
j for every i ∈ [1,m];

(4) if a ·D′ � D′′ for a ∈M then D′ � D′′.
The proof is obvious. �

2.4. p-Dense trees. Using induction on the number of elements of a tree, we couch the following:

Definition 3. A tree D is said to be p-dense relative to the neighborhood of the subtrees if it is one-
element or satisfies the following:

(1) either D is indecomposable, or all of its indecomposable direct summands are pairwise incomparable
under �;

(2) all non-empty principal strict downcones in D are p-dense relative to the neighborhood of the
subtrees.

LEMMA 3. A tree D is p-dense if and only if the following hold:
(1) every two neighboring elements of D are p-discernible.
(2) D is p-dense relative to the neighborhood of the subtrees.
Proof. For one-element trees, the statement of the lemma is obvious. Assume that the lemma is valid

for |D| > 1 and for all trees the number of elements in which is smaller than |D|.
Let D be p-dense. If a � b are the neighboring p-indiscernible elements in D, then we define a mapping

ϕ from D to D as follows: ϕ(a) � b and ϕ(x) � x for x �= a. It is clear that ϕ ∈ Φ(D,D) and ϕ(D) ⊂ D;
the latter clashes with D being p-dense. Now, let D not be p-dense relative to the neighborhood of the

subtrees. If D =
m⊎

i=1

Di for m > 1, the trees D1, . . . ,Dm are indecomposable, and Di � Dj for i �= j,
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then D �
⊎

k �=i

Dk by Lemma 2(3), which is again a contradiction with D being p-dense. Thus item (1) in

Definition 3 holds true for D. Hence, for some a ∈ D, the strict principal cone â− is not empty and is not
p-dense relative to the neighborhood of the subtrees.

By the inductive assumption, there is ϕ′ ∈ Φ(â−, â−) such that ϕ′(â−) ⊂ â−. We define a mapping ϕ
from D to D as follows: ϕ(x) � ϕ′(x), for x ∈ â−, and ϕ(x) � x for x �∈ â−. It is not hard to verify that
ϕ ∈ Φ(D,D) and ϕ(D) ⊂ D; the latter is again a contradiction with the fact that D is p-dense.

Inversely, assume that any two neighboring elements of D are p-discernible and D is p-dense relative to
the neighborhood of the subtrees. Let ϕ ∈ Φ(D,D) and ϕ(D) ⊂ D. Suppose D has the greatest element a.
If ϕ(x) = a for some x ∈ â−, then ϕ(b) = a for b ∈ D such that x � b � a, and b is the successor of a, which
is impossible. Hence ϕ(â−) ⊆ â−. By the inductive assumption, the tree â− is p-dense and, consequently,
ϕ(â−) = â−. Hence ϕ(a) � a. The element ϕ(a) cannot be a successor of a; so ϕ(a) � b � a for some
b ∈ D. It follows that ϕ(c) = b �� ϕ(a) for some c � a, a contradiction.

Thus D =
m⊎

i=1

Di for some m > 1, where the trees D1, . . . ,Dm are indecomposable and are subtrees of

D. Since the tree D is p-dense relative to the neighborhood of the subtrees, ϕ(Di) ⊆ Di for all i ∈ [1,m].
By the inductive assumption, Di is p-dense for every i ∈ [1,m]. Hence, for all i ∈ [1,m], ϕ(Di) = Di and
ϕ(D) = D, a contradiction. �

LEMMA 4. Let F be a finite model. Then the number of p-dense trees which can be p-homomorphically
mapped to F (in other words, the number of p-dense trees-preimages of F) is finite.

The proof is by induction on |F |. If |F | = 1 then every p-dense tree-preimage of F is one-element.
Let |F | > 1 and b ∈ max(F). By the inductive assumption, the number of p-dense trees-preimages of
F′ � 〈F \ {b};σ〉 is finite. Let D be an indecomposable p-dense tree-preimage of F, but not of F′. Then
D contains a as the greatest element, and for some ϕ ∈ Φ(D,F), ϕ(a) = b. We have D = a · D′ for some
tree D′ such that a �∈ D′. By Lemma 3, the maximal elements of D′, which are successors of a in D, are
p-discernible with a, and so ϕ(D′) ⊆ F ′ = F \ {b}. By the same lemma, the tree D′ is p-dense. In this way
there exist not more than finitely many isomorphism types for D′ and, hence, for D.

Thus the number of indecomposable p-dense trees-preimages of F is finite. Let it be equal to a natural
number n. Then the number of all p-dense trees-preimages of F is at most 2n. �

The statement proved above may turn out to be untrue if we consider all p-dense finite model-preimages
rather than p-dense tree-preimages. We look at the family of models depicted in Fig. 1. All elements
finished in a dark color are called a-elements, and bi and ci, i � 1, are referred to as, respectively, b- and
c-elements. Assume that the a-elements are all pairwise p-indiscernible, and that the b- and c-elements are
likewise. Also, suppose that elements belonging to different groups are mutually p-discernible. Then any
model Di, i � 2, can be p-homomorphically mapped to D1, and moreover, these models are all p-dense
(but are not trees).
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2.5. A distributive lattice of trees. Let Ω be some subset of the set of all finite trees in M,
which is closed under taking direct sums of finitely many trees, and let ⊥ �∈ Ω. Clearly, 〈Ω/∼; �〉 is a
partially ordered set. Put Ω⊥ � Ω ∪ {⊥}. We will assume that ⊥ is an indecomposable element of Ω⊥,
which is smaller than all elements of the set Ω. Let m � 1, a ∈ M , and Di ∈ Ω⊥ for i ∈ [1,m]. We set

a · ⊥ = 〈{a};σ〉, and set
m⊎

i=1

Di =
⊎{Di | i ∈ [1,m],Di �= ⊥} if Di �= ⊥ for some i ∈ [1,m], and

m⊎

i=1

Di = ⊥
otherwise.

PROPOSITION 1. Let Ω be a set of all finite trees in M. Then the partially ordered set 〈Ω⊥/∼; �〉
is a distributive lattice with a least element in which every principal downcone is finite.

Proof. In view of Lemma 4, any principal downcone is finite. This implies that if 〈Ω⊥/∼; �〉 is an
upper semilattice then it is also a lattice.

We claim that (D1 � D2)/∼ = sup{D1/∼, D2/∼} for D1,D2 ∈ Ω⊥. If D1 = ⊥ or D2 = ⊥ then the
result follows from the definition of a direct sum on Ω⊥. But if D1,D2 �= ⊥ then we appeal to Lemma 2(2).

Thus 〈Ω⊥/∼; �〉 is a lattice. To prove distributivity, it suffices to state that D1 � (D2  D3) � (D1 �
D2)  (D1 � D3). We may assume that the left part is not equal to ⊥. Let

m⊎

i=1

D′
i be the decomposition

of D1 � (D2  D3) into a direct sum of indecomposable trees, for some m � 1. Then D′
i � D1 and

D′
i � D2 � D3, for every i ∈ [1,m]. This, together with Lemma 2(3), implies that D′

i � D2 or D′
i � D3,

for any i ∈ [1,m]. Let D∗ =
⊎{D′

i | i ∈ [1,m],D′
i � D2} and D∗∗ =

⊎{D′
i | i ∈ [1,m],D′

i � D3}. By
Lemma 2(2), D1 � (D2  D3) � D∗ � D∗∗ � (D1 �D2)  (D1 �D3). �

2.6. Z-trees. Let Z = 〈Z;σ0〉 be a model of a signature σ0 = 〈P0, P1, . . .〉 and P0(Z) �= ∅. Put

WZ � {(z, i, s) | z ∈ Z, s � 1, 1 � i � s},

KZ � {w1 . . . wn | n � 1, wi ∈ WZ , i ∈ [1, n]}.
In defining KZ we have used concatenation of the elements of the set WZ ; in other words, KZ is a set of all
non-empty words in the alphabet WZ . We define a model KZ = 〈KZ ;σ〉 of signature σ. For k1, k2 ∈ KZ ,
put k2 � k1 if k1 is a prefix of k2. For k ∈ KZ terminating at (z, i, s), we set k∗ � z and Pj(k) � Pj(k∗),
where j � 0.

It is clear that 〈KZ ;�〉 is a partially ordered set; moreover, it is a tree. We call Z the urmodel model of
model KZ.

Definition 4. A finite submodel D of KZ is called a Z-tree if the following hold:
(1) D is closed w.r.t. prefixes;
(2) for k ∈ KZ ∪ {Λ} (Λ is the empty word), if k(z, i, s) ∈ D, then exactly s elements of the form

k(z′, j, s) belong to D, all with distinct j ∈ [1, s];
(3) for k ∈ min(D), we have P0(k).
A set of all Z-trees is denoted by Ω(Z). Suppose ⊥ �∈ Ω(Z). As above, we denote by Ω(Z)⊥ the set

Ω(Z) ∪ {⊥}.
2.7. Operations over Z-trees. For the Z-trees, we can refine the operations of descent and taking

direct sums.
Descent of a tree. Let w = (z, 1, 1) ∈WZ , P0(z), and D ∈ Ω(Z)⊥. Put w⊥ � 〈{w};σ〉, and for D �= ⊥,

wD � 〈{w} ∪ {wk | k ∈ D};σ〉. Clearly, wD ∼= w · D̃, where D̃ � {wk | k ∈ D} and D ∼= D̃.
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Direct sum. Let m � 1 and Di ∈ Ω(Z) for i ∈ [1,m]. Assume max(Di) = {wi,j | 1 � j � si}. For every

i ∈ [1,m] and every j ∈ [1, si], put w̃i,j �
(

w∗
i,j ,

∑

l<i

sl + j,
m∑

i=1

si

)

. Define D �
m⋃

i=1

si⋃

j=1

{w̃i,jk | wi,jk ∈ Di}

and D = 〈D;σ〉. Obviously, D =
m⊎

i=1

Di.

Now, let D1, . . . ,Dm ∈ Ω(Z)⊥. If there exists i ∈ [1,m] such that Di �= ⊥ then we put
m⊎

i=1

Di �
⊎{Di |

Di �= ⊥, i ∈ [1,m]}. Otherwise, we define
m⊎

i=1

Di � ⊥.

It is clear that the operations applied as above to our Z-trees yield Z-trees again. Thus the set Ω(Z) is
closed under taking direct sums of finitely many Z-trees.

Every D in Ω(Z)⊥ satisfies one of the following four conditions:
(1) D = ⊥;
(2) D = 〈{w};σ〉, where w = (w∗, 1, 1), and P0(w) holds true;
(3) D = wD′, where D′ ∈ Ω(Z);

(4) for some m > 1, there exist indecomposable D1, . . . ,Dm ∈ Ω(Z) such that D =
m⊎

i=1

Di.

2.8. p-Dense Z-trees. We point out an algorithm for constructing, given a Z-tree, a p-dense Z-tree
that will be equivalent to that Z-tree.

Glueing elements. For each D ∈ Ω(Z)⊥, we define a tree D# ∈ Ω(Z)⊥ using induction on the number
of elements in D. This new operation will enjoy the following properties: if D is indecomposable then D#

is also indecomposable, and if D �= ⊥, then D# �= ⊥.

If D = ⊥ or D is one-element then we put D# � D. If, for some m > 1, D =
m⊎

i=1

Di, where D1, . . . ,Dm

are indecomposable Z-trees then we assume that D# �
m⊎

i=1

D
#
i . Let D = wD′ for some D′ ∈ Ω(Z). There

is m � 1 for which D′ =
m⊎

i=1

Di with indecomposable D1, . . . ,Dm ∈ Ω(Z). For all i ∈ [1,m], D
#
i = wiD̄i,

where D̄i ∈ Ω(Z)⊥. For i ∈ [1,m], we put D′
i � D̄i if w and wi are p-indiscernible, and D′

i � D
#
i

otherwise. Define D# � w
m⊎

i=1

D′
i. Using induction on |D| it is easy to show that every two neighboring

elements in D# are p-discernible.
Removing subtrees. For D ∈ Ω(Z)⊥, the Z-tree D◦ is defined by induction on the number of elements

in D. If D = ⊥ then we put D◦ = ⊥. If D = wD′ for D′ ∈ Ω(Z)⊥ then we define D◦ � w(D′)◦.

Let D =
m⊎

i=1

Di for some m > 1 and D1, . . . ,Dm be indecomposable. Choose numbers s ∈ [1,m] and

i1, . . . , is ∈ [1,m] so that for any two distinct p, q ∈ [1, s], D◦
ip
�� D◦

iq
, and for every j ∈ [1,m], there is

p ∈ [1, s] such that D◦
j � D◦

ip
. Put D◦ �

s⊎

p=1
D◦

ip
.

Using induction on |D| it is easy to state the following properties of removing: if D has no p-indiscernible
neighbors then D◦, too, has none, and if D ∈ Ω(Z), then D◦ is not equal to ⊥ and is p-dense relative to
the neighborhood of the subtrees.

LEMMA 5. A tree D#◦ is a p-dense Z-tree, equivalent to a Z-tree D.
Proof. That D#◦ is p-dense follows from Lemma 3 in view of the above-indicated properties behind

the new operations. We show that D ∼ D#◦.
By induction on |D|, we prove that D ∼ D# for any tree D ∈ Ω(Z)⊥. If D = ⊥ or |D| = 1 then

D# = D. If D =
m⊎

i=1

Di for some m > 1 and for indecomposable D1, . . . ,Dm ∈ Ω(Z), then D# ∼ D by
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the inductive assumption and Lemma 2(2). Assume that D = wD′ for some D′ ∈ Ω(Z) and that there

is m � 1 for which D′ =
m⊎

i=1

Di with indecomposable D1, . . . ,Dm ∈ Ω(Z). For i ∈ [1,m], the objects wi,

D̄i, and D′
i are defined in the same way as in the description of glueing. By our definitions, in view of the

inductive assumption, D′
i � D

#
i � Di for all i ∈ [1,m]. This, together with Lemma 2(2), yields

m⊎

i=1

D′
i � D′

and D# � D.
For every i ∈ [1,m], by ϕi we denote a p-homomorphism from Di to D

#
i , which exists by the inductive

assumption. Define a mapping ϕ′
i : Di → D# for each i ∈ [1,m]. Let ψi be an isomorphism of D′

i onto
a submodel of the Z-tree D# translating maximal elements of D′

i into maximal elements of D# \ {w}. If
wi and w are p-discernible then D′

i = D
#
i , in which case we put ϕ′

i � ψi ◦ ϕi. Otherwise, D
#
i = wiD

′
i

and there exists an isomorphism ψ′
i of the model 〈D#

i \ {wi};σ〉 onto a Z-tree D′
i. In this case for k ∈ Di

we put ϕ′
i(k) � w, if ϕi(k) = wi, and ϕ′

i(k) � ψi(ψ′
i(ϕi(k))) if ϕi(k) �= wi. It is not hard to verify that

ϕ′
i ∈ Φ(Di,D

#) in all of the cases. By Lemma 2(2), D′ � D#. Keeping in mind that D = wD′ and the
fact that w is the greatest element of D#, we obtain D � D#.

By induction on D we show that D ∼ D◦ for any D ∈ Ω(Z)⊥. If D = ⊥ then D◦ = D. If D = wD′ for
D′ ∈ Ω(Z)⊥ then D◦ = w(D′)◦, D′ ∼ (D′)◦ by the inductive assumption, and D ∼ D◦ again. Assume that

D =
m⊎

i=1

Di for m > 1 and for indecomposable Z-trees D1, . . . ,Dm, and that the numbers s and i1, . . . , is are

chosen in the same way as in the description of removing subtrees. By the inductive assumption, for every
p ∈ [1, s] we have D◦

ip
� Dip , and by Lemma 2(2), D◦ � D. Furthermore, by the inductive assumption, for

every j ∈ [1,m] there is p ∈ [1, s] such that Dj � D◦
j � D◦

ip
, and D � D◦ again by Lemma 2(2). �

2.9. A distributive lattice of Z-trees. The set Ω(Z) is a subset of the set of all finite trees in model
KZ which is closed under taking direct sums. This fact and Proposition 1 imply that the partially ordered
set 〈Ω(Z)⊥/∼,�〉 is a lattice with the least element ⊥/∼ in which every principal downcone is finite. For
D1,D2 ∈ Ω(Z)⊥, therefore, the expressions D1 D2 � D1 �D2 and D1�D2, which denote elements of the
respective classes sup{D1/∼,D2/∼} and inf{D1/∼,D2/∼}, are meaningful. Below we argue to state that
such a lattice is distributive.

Let D1,D2 ∈ Ω(Z)⊥. Put l(D1,D2) � {D ∈ Ω(Z) | D is indecomposable, D is p-dense, and D �
D1,D2}. We make the convention that the direct sum of the empty set of direct summands is equal to ⊥.
Lemma 5 gives rise to the following:

LEMMA 6. Let D1,D2 ∈ Ω(Z)⊥. Then D1 �D2 ∼
⊎{D | D ∈ l(D1,D2)}.

Proof. Assume D′ �
⊎{D | D ∈ l(D1,D2)}. Then D′ � D1 �D2. On the other hand, if D1 �D2 �= ⊥

then it follows by Lemma 5 that there exists a p-dense D′′ ∈ Ω(Z) such that D′′ ∼ D1�D2. If D′′ =
m⊎

i=1

D′′
i

for some m � 1 and for indecomposable D′′
1 , . . . ,D

′′
m ∈ Ω(Z) then D′′

i ∈ l(D1,D2) for all i ∈ [1,m], and
D′′ � D′. �

PROPOSITION 2. Let Z = 〈Z;σ0〉 be any model of the signature σ0 containing at least two p-
discernibles, and let P0(Z) �= ∅. Then the partially ordered set 〈Ω(Z)⊥/∼; �〉 is an infinite distributive
lattice with the least element ⊥/∼ in which every principal downcone is finite.

Proof. That the above partially ordered set is a lattice with the least element ⊥/∼ in which every
principal downcone is finite was pointed out above. We argue for the distributivity.

It suffices to show that D1 � (D2  D3) � (D1 � D2)  (D1 � D3). By Lemma 6, the left-hand side
is equal to

⊎{D | D ∈ l(D1,D2 � D3)}. By Lemma 2(3), l(D1,D2 � D3) = l(D1,D2) ∪ l(D1,D3). Let
D∗ �

⊎{D | D ∈ l(D1,D2)} and D∗∗ �
⊎{D | D ∈ l(D1,D3)}. We obtain D1 � (D2  D3) � D∗ � D∗∗ ∼
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(D1 �D2)  (D1 �D3).
We are left to state the infiniteness of the lattice. Let a and b be p-discernible in Z, Z |= P0(a), with

w1 = (a, 1, 1) and w2 = (b, 1, 1). Then the trees

D1 � 〈{w1};σ〉, D2 = w2D1, D3 = w1D2, D4 = w2D3, . . .

are pairwise non-equivalent. �

LEMMA 7. Let D1,D2 ∈ Ω(Z), D1 = w1D
′
1, and D2 = w2D

′
2. Then D1�D2 ∼ (D1�D′

2) (D′
1�D2)

if w1 and w2 are p-discernible, and D1 �D2 ∼ w1(D′
1 �D′

2) otherwise.
Proof. By Lemma 6, D1 �D2 ∼

⊎{D | D ∈ l(D1,D2)}.
First, suppose that w1 and w2 are p-discernible. In view of D′

1 � D1 and D′
2 � D2, (D1 �D′

2)  (D′
1 �

D2) � D1 � D2. Let D ∈ l(D1,D2). We have D = wD′ for some D′ ∈ Ω(Z)⊥. Let ϕ1 ∈ Φ(D,D1) and
ϕ2 ∈ Φ(D,D2). Then either ϕ1(w) �= w1 or ϕ2(w) �= w2. In the former case D � D′

1 and D � D′
1 �D2.

In the latter case D � D′
2 and D � D1 � D′

2. In either case D � (D1 � D′
2)  (D′

1 � D2). Hence
D1 �D2 � (D1 �D′

2)  (D′
1 �D2).

Next, assume that w1 and w2 are p-indiscernible. In virtue of D′
1 � D1 and D′

2 � D2, D′
1�D′

2 � D1�D2.
For any Z-tree D, D � D1,D2 implies w1D � D1,D2, and so w1(D′

1�D′
2) � D1�D2. Consider an arbitrary

D ∈ l(D1,D2). For some D′ ∈ Ω(Z)⊥, D = wD′. If the triples w and w1 are p-discernible, then D � D′
1,D

′
2

and D � D′
1 �D′

2 � w1(D′
1 �D′

2). But if w and w1 are p-indiscernible, then D′ � D′
1,D

′
2, since D is dense,

and D′ � D′
1 �D′

2 entails D ∼ w1D
′ � w1(D′

1 �D′
2). In both of the cases D � w1(D′

1 �D′
2), and hence

D1 �D2 � w1(D′
1 �D′

2). �

3. THE LATTICE OF NUMBERINGS

3.1. The model S and the set Nα. Let S be an at most countable set containing at least two
elements. For a numbering α of the set S, Nα denotes the least subset of the set of all numberings of S
which contains α and is closed under completion, direct sum, and equivalence of the numberings. We fix a
numbering α of the family S with a non-empty set NS of non-special elements. Let S � 〈S;NS,P1, P2, . . .〉,
where the predicates P1, P2, . . . are such that for any a ∈ S, there is a unique i � 1 for which Pi(a) and
every one of the predicates Pi, i � 1, is not more than a singleton. In other words, each element of the set
S is distinguished by a unique predicate Pi, i � 1. Put Ω � Ω(S)⊥.

We point out the following property of model KS: for k1, k2 ∈ KS, the elements k1 and k2 are p-
indiscernible iff k∗1 = k∗2 .

Let D ∈ Ω(S), k ∈ D, and k = k′w, where k′ ∈ KS ∪ {Λ}. Put

k̂+ � {(w∗, 1, 1)k1 | kk1 ∈ D, k1 ∈ KS ∪ {Λ}},

k̂− � {k1 | kk1 ∈ D, k1 ∈ KS}.
Clearly, these cones are isomorphic to the previous.

3.2. Numberings generated by S-trees. For D ∈ Ω, we define a numbering αD ∈ Nα (up to
equivalence of the numberings) as follows:

(1) if D = ⊥ then αD � α;
(2) if D = wD′ then αD � (αD′)w∗ ;

(3) if for m > 1 there are indecomposable S-trees D1, . . . ,Dm such that D =
m⊎

i=1

Di then αD �
m⊕

i=1

αDi .
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It is not hard to show that this definition is sound. By induction on the complexity of D, we can easily
state that α � αD for all D ∈ Ω. By definition, αD1�D2 ≡ αD1 ⊕ αD2 . The definition of Nα implies that
for any numbering β ∈ Nα there is a tree D ∈ Ω with β ≡ αD.

3.3. An isomorphism between 〈Ω/∼; �〉 and 〈Nα/≡; �〉.
THEOREM 1. For D1,D2 ∈ Ω, D1 � D2 if and only if αD1 � αD2 .

The proof is by induction on D1. If D1 = ⊥ then D1 � D2 and αD1 ≡ α � αD2 . If D1 =
m⊎

i=1

D′
i

for some m > 1 and for indecomposable S-trees D′
1, . . . ,D

′
m then Lemma 2(2), in view of the inductive

assumption and the definition of αD1 , gives D1 � D2 ⇔ (∀i ∈ [1,m])(D′
i � D2) ⇔ (∀i ∈ [1,m])(αD′

i
�

αD2) ⇔ αD1 � αD2 . Lastly, let D1 = wD′.
Assume D1 � D2, ϕ ∈ Φ(D1,D2), and ϕ(w) = k. Then D1 � k̂+ = wk̂− and D′ � k̂+. By the inductive

assumption, αD′ � α
k̂+ . Hence αD1 ≡ (αD′)w∗ � (α

k̂+)w∗ ≡ ((α
k̂− )w∗)w∗ ≡ (α

k̂−)w∗ ≡ α
k̂+ � αD2 .

Suppose, now, that αD1 � αD2 . We have αD′ � (αD′)w∗ ≡ αD1 � αD2 , and by the inductive
assumption, D′ � D2. Using induction on D2 we prove that D1 � D2. There are three cases to consider:

(1) Let D2 = ⊥. Then D′ = ⊥, D1 = {w}, w∗ ∈ NS, and αD1 ≡ αw∗ �� α ≡ αD2 , which contradicts
the initial assumption. This case is, therefore, impossible.

(2) Let D2 = vD′′ for some v = (v∗, 1, 1) ∈ WS . If w∗ = v∗ then D1 � D2. Let w∗ �= v∗. By the
completion property, (αD′)w∗ ≡ αD1 � αD2 ≡ (αD′′)v∗ yields αD2 ≡ (αD′)w∗ � αD′′ . Hence D1 � D′′ �
D2 by the inductive assumption.

(3) For some m > 1 and for indecomposable S-trees D′′
1 , . . . ,D

′′
m, D2 =

m⊎

i=1

D′′
i . By the complete

numbering property, (αD′)w∗ ≡ αD1 � αD2 ≡
m⊕

i=1

αD′′
i

gives αD1 ≡ (αD′)w∗ � αD′′
i0

for some i0 ∈ [1,m].

By the inductive assumption, D1 � D′′
i0 � D2. �

COROLLARY 1. The correspondence D �→ αD induces an isomorphism of the distributive lattice
〈Ω/∼; �〉 onto the semilattice 〈Nα/≡; �〉.∗

3.4. Invariance of greatest lower bounds.

THEOREM 2. Let D1,D2 ∈ Ω and γ be a numbering of some subset of S such that γ � αD1 , αD2 .
Then γ � αD1�D2 .

Proof. If D1 � D2 or D2 � D1 then the statement of the theorem is obvious. We may so assume that
D1 �� D2 and D2 �� D1. In particular, D1 �= ⊥ �= D2. We prove the theorem by induction on |D1|+ |D2|.

Assume that for some i ∈ {1, 2} there exists m > 1 such that Di =
m⊎

j=1

D′
j. In view of the lattice of

S-trees being distributive, we have D1 �D2 ∼
m⊎

j=1

(D′
j � D3−i). Since γ � αDi ≡

m⊕

j=1

αD′
j
, by virtue of a

known result in the theory of numberings, there are numberings γ1, . . . , γm of the subsets of S such that

γ ≡
m⊕

j=1

γj and γj � αD′
j

for all j ∈ [1,m]. By the inductive assumption, γj � αD′
j�D3−i

for every j ∈ [1,m].

Consequently γ ≡
m⊕

j=1

γj �
m⊕

j=1

αD′
j�D3−i

≡ α m⊎

j=1
(D′

j�D3−i)
≡ αD1�D2 .

It remains to consider the case where D1 = w1D
′
1 and D2 = w2D

′
2 for some D′

1,D
′
2 ∈ Ω. We partition

this case into two. Let β1 ≡ αD′
1

and β2 ≡ αD′
2
. Recall that

∗After the article had been prepared for publication, V. L. Selivanov draw my attention to the fact that, for the case

where α is a minimal numbering of a finite set, the above-indicated isomorphism had been established in [2].
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αD1 ≡ (β1)w∗
1

=






β1(K(x)) if K(x)↓,
w∗

1 if K(x)↑,

αD2 ≡ (β2)w∗
2

=






β2(K(x)) if K(x)↓,
w∗

2 if K(x)↑ .

Let f1 and f2 be computable functions such that γ(x) = (β1)w∗
1
(f1(x)) and γ(x) = (β2)w∗

2
(f2(x)) for all

x ∈ N. Put A1 � {x ∈ N | K(f1(x))↓} and A2 � {x ∈ N | K(f2(x))↓}.
Case 1. Let w∗

1 = w∗
2 . It is easy to see that γ(x) = w∗

1 for any x �∈ A1 ∩ A2. If A1 ∩ A2 = ∅ then
γ(x) = w∗

1 for any x ∈ N and any γ � αD1�D2 . Let A1∩A2 �= ∅ and f be a computable surjective mapping
of N onto A1 ∩ A2. Then K(f1(f(x))) and K(f2(f(x))) are defined for any x ∈ N, and the numbering
γ1 � γ ◦ f is reduced to β1 and to β2 by functions K ◦ f1 ◦ f and K ◦ f2 ◦ f , respectively. By the inductive
assumption, γ1 � αD′

1�D′
2
. Let β3 ≡ αD′

1�D′
2
. In view of Lemma 7, D1 �D2 ∼ w1(D′

1 �D′
2), and

αD1�D2 ≡ (β3)w∗
1

=






β3(K(x)) if K(x)↓,
w∗

1 if K(x)↑ .

We now need to show that γ � (β3)w∗
1
. Let g′ be a computable function such that γ1(x) = β3(g′(x))

for all x ∈ N, and g = g′ ◦ f−1. Then the domain of g is equal to A1 ∩ A2, and for all x ∈ dom(g), we
have γ(x) = β3(g(x)). Let c ∈ N be such that K(〈c, x〉) = g(x) with all x. We show that γ � (β3)w∗

1

(by a function 〈c, x〉). Indeed, if x ∈ A1 ∩ A2 then K(〈c, x〉) is defined and is equal to g(x). Therefore
(β3)w∗

1
(〈c, x〉) = β3(K(〈c, x〉)) = β3(g(x)) = γ(x). If, however, x �∈ A1 ∩A2 then K(〈c, x〉) is undefined and

γ(x) = w∗
1 = (β3)w∗

1
(〈c, x〉).

Case 2. Let w∗
1 �= w∗

2 . Then A1 ∪ A2 = N. If Ai = ∅ for some i ∈ {1, 2} then γ(x) = w∗
i for all

x ∈ N and γ � αD1�D2 . Let A1, A2 �= ∅ and g1 and g2 be computable surjective mappings of N onto
A1 and A2, respectively. Put γ1 � γ ◦ g1 and γ2 � γ ◦ g2. The numbering γ1 is reduced to β1 by the
function K ◦ f1 ◦ g1, and to (β2)w∗

2
by the function f2 ◦ g1, that is, γ1 � αD′

1
, αD2 . By the inductive

assumption, γ1 � αD′
1�D2 . Similarly, γ2 � αD1�D′

2
. By Lemma 7, D1 �D2 ∼ (D′

1 �D2)  (D1 �D′
2) and

γ1 ⊕ γ2 � αD′
1�D2 ⊕ αD1�D′

2
≡ α(D′

1�D2)(D1�D′
2)
≡ αD1�D2 .

We claim that γ ≡ γ1 ⊕ γ2. It is clear that γ1, γ2 � γ; hence γ1 ⊕ γ2 � γ. For all x ∈ N,

(γ1 ⊕ γ2)(x) =






γ1(y) if x = 2y,

γ2(y) otherwise.

Let R be a computable set such that R ⊆ A1 and N \R ⊆ A2. For any x ∈ N, put

g(x) �






2g−1
1 (x) if x ∈ R,

2g−1
2 (x) + 1 otherwise.

The function g is computable and reduces γ to γ1 ⊕ γ2. �

COROLLARY 2. For any D1,D2 ∈ Ω, the numberings αD1 and αD2 have a greatest lower bound in
the semilattice of all numberings of the set S equal to αD1�D2 .
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3.5. The lattice of numberings.

THEOREM 3. Let α be a numbering of a set S containing at least two elements for which there exists
at least one non-special element. Then the semilattice 〈Nα/≡; �〉 is an infinite constructivizable distributive
lattice with a least element in which every principal downcone is finite. Moreover, the least upper and the
greatest lower bounds in 〈Nα/≡; �〉 are invariant under extensions of the latter in the semilattice of all
numberings of the set S.

Proof. The theorem follows immediately from Proposition 2 and Corollaries 1, 2. �

We give a characterization of isomorphism types for distributive lattices of numberings generated by
some fixed numbering using the operations of completion and taking least upper bounds. For any numbering
α of any at most countable non-empty family S, NS(α, S) denotes the set of non-special elements of α,
with λ1(α, S) � |NS(α, S)| and λ2(α, S) � |S \ NS(α, S)|. If λ1(α, S) = 0 then the lattice 〈Nα/≡; �〉
is one-element for any value λ2(α, S) > 0, and so below we assume that the value of λ1 at any pair 〈a
numbering, a numbered set〉 is other than zero.

THEOREM 4. For arbitrary numberings α1 and α2 of arbitrary at most countable non-empty sets
S1 and S2, respectively, the distributive lattices 〈Nα1/≡; �〉 and 〈Nα2/≡; �〉 are isomorphic if and only if
the pairs 〈λ1(α1, S1), λ2(α1, S1)〉 and 〈λ1(α2, S2), λ2(α2, S2)〉 coincide.

Proof. Let Ω1 � Ω(S1)⊥ and Ω2 � Ω(S2)⊥.
Sufficiency. Let f be a bijection from S1 onto S2 such that f(NS(α1, S2)) = NS(α2, S2). We extend f to

WS1 , setting f((s, i,m)) � (f(s), i,m) for s ∈ S1, and then to KS setting f(w1 . . . wn) � f(w1) . . . f(wn).
On the model S2, we define values of the predicates so that the elements s and f(s) are p-indiscernible, for
any s ∈ S1. Consequently f is an isomorphism of model KS1 onto model KS2 . Hence f can be extended to
an isomorphism of 〈Ω1; �〉 onto 〈Ω2; �〉. Appealing to Corollary 1, we see that 〈Nα1/≡; �〉 is isomorphic
to 〈Nα2/≡; �〉.

Necessity. Let 〈Nα1/≡; �〉 be isomorphic to 〈Nα2/≡; �〉. Then 〈Ω1; �〉 ∼= 〈Ω2; �〉 by Corollary 1.
Obviously, the minimal elements of Ω1 \ {⊥} are the S1-trees p-equivalent to one-element S1-trees. The
number of the last-mentioned trees, in turn, is equal to the number of elements in NS(α1, S1); hence the
cardinal λ1(α1, S1) is defined by an isomorphism type of model 〈Ω1/∼; �〉. Thus λ1(α1, S1) = λ1(α2, S2).

Let D1 be a one-element S1-tree. It is easy to see that a p-dense S1-tree D2 satisfies the following: (1)
D1 � D2 and D2 �� D1; (2) D1 is a unique (up to p-equivalence) S1-tree meeting the first condition iff
D2 = {w1, w1w2}, where {w2} = D1 and w∗

1 �∈ NS(α1, S1). For any fixed D1, therefore, there exist exactly
λ2(α1, S1) possibilities for D2. In this way the cardinal λ2(α1, S1) is also defined by an isomorphism type
of model 〈Ω1/∼; �〉, and λ2(α1, S1) = λ2(α2, S2). �

Thus the pair 〈λ1(α, S), λ2(α, S)〉 is a characteristic of an isomorphism type for the lattice 〈Nα/≡; �〉.
Since the trivial cases NS(α, S) = ∅ and |S| = 1 are left out of consideration, we have λ1(α, S) > 0 and
λ1(α, S) + λ2(α, S) > 1. We claim that any pair with these restrictions may well be realized.

THEOREM 5. Let S be an at most countable set containing at least two elements, and let the cardinal
numbers λ1 and λ2 be such that λ1 + λ2 = |S| and λ1 > 0. Then there exists a numbering α of the family
S for which λ1(α, S) = λ1 and λ2(α, S) = λ2.

Proof. Let NS be a subset of S such that |NS| = λ1. By [6, Cor. 2], there is a numbering α of the set
S for which NS(α, S) = NS. Consequently λ1(α, S) = λ1 and λ2(α, S) = λ2. �

Remark 1. If we treat Σ0
n+2-computable numberings as in [4] then, using [6, Cor. 1], for every pair

〈λ1, λ2〉 of cardinal numbers such that λ1 > 0 and 1 < λ1 + λ2 � ω, we can construct a family S ⊆ Σ0
n+2
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and a Σ0
n+2-computable numbering α of S so that λ1(α, S) = λ1 and λ2(α, S) = λ2. Note that in the former

case all numberings in Nα will be Σ0
n+2-computable.
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