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An involution i of a group G is said to be almost perfect in G if any two involutions of iG

the order of a product of which is infinite are conjugated via a suitable involution in iG. We
generalize a known result by Brauer, Suzuki, and Wall concerning the structure of finite groups
with elementary Abelian centralizers of involutions to groups with almost perfect involutions.

In the paper we prove a theorem that generalizes the known result in [1] concerning the structure of
finite groups with elementary Abelian centralizers of involutions to groups with almost perfect involutions.

An involution i is perfect in G if every two non-commuting involutions in iG are conjugated by an
involution in the same class. An involution i is almost perfect if the condition mentioned is satisfied for
pairs of involutions in iG the order of a product of which is infinite. A group is 2-complete if the equation
x2 = b is soluble in it, for every element b; a field with a 2-complete multiplicative group is quadratically
closed. A proper subgroup H of G is said to be isolated, and (G,H) is called a Frobenius pair if H ∩Hg = 1,
for every element g ∈ G \H ; if, in addition, G = FλH and G \ F =

⋃

x∈G

x−1H#x, then G is a Frobenius

group with kernel F and complement H .

THEOREM. Suppose G contains an almost perfect involution i and the centralizer of each involution
in G is an elementary Abelian group. Then one of the following statements holds:

(1) G is an extension of an elementary Abelian 2-group U = CG(i) by an involution-free group, and
every element of G \ U acts by conjugation on U regularly;

(2) G = Fλ〈i〉 is a Frobenius group with a 2-complete Abelian kernel F and complement 〈i〉;
(3) G is isomorphic to a group PGL2(Q), where Q is a suitable quadratically closed field of character-

istic 2.
Groups with finite involutions the centralizer of every involution in which is an Abelian 2-group were

explored by Mazurov in [2, Thm. 2] except for the case of a quasicyclic Sylow 2-subgroup. Clearly, every
involution of a periodic group is finite. For periodic groups with Abelian centralizers of involutions, Suchkov
in [3] came up with an analog of the known Suzuki theorem (see [4]). There naturally arises the problem of
generalizing the results obtained by Mazurov and Suchkov to groups with (almost) perfect involutions. The
condition of being almost perfect for an involution considerably weakens the requirement for an involution
to be periodic and finite, because G, in all of the three statements of our theorem, does not need to be
periodic. An example illustrating the necessity of this condition is G = A∗B, a free product of an arbitrary
group A with Abelian centralizers of involutions and an arbitrary involution-free group B. For such a group,
clearly, the theorem is no longer true.
1KrasGASA, Krasnoyarsk, Russia; Sozutov−AI@mail.ru. 2Andreeva 33-A, 42, Zheleznogorsk, 662971, Russia;

ask15426378@rambler.ru. Translated from Algebra i Logika, Vol. 46, No. 1, pp. 75-82, January-February, 2007.

Original article submitted March 24, 2006.

46 0002-5232/07/4601-0046 c© 2007 Springer Science+Business Media, Inc.



A subgroup U of a group G is strongly isolated if CG(u) ≤ U for any non-identity element u ∈ U . A
proper subgroup B of G is strongly embedded if B contains an involution, and for any element g ∈ G \ B,
the subgroup B∩Bg contains none. A doubly transitive permutation group in which only unity keeps three
points fixed is a Z-group (a Zassenhaus group).

The following properties of dihedral groups are well known and so given without proofs.

LEMMA 1. Let D = 〈i, j〉, where i and j are involutions. Then:
(1) D = 〈ij〉λ〈i〉 = 〈ij〉λ〈j〉, (ij)i = (ij)j = ji = (ij)−1, and the set D \ 〈ij〉 consists of involutions;
(2) if 〈ij〉 has an involution z then z ∈ Z(D), D has no isolated and strongly embedded subgroups, i

and j are not conjugate in D, and D contains three conjugacy classes of involutions: {z}, iD, and jD;
(3) D is a Frobenius group iff the order of an element ij is finite and odd, in which case iD is a sole

conjugacy class of involutions in the group D, i = jc, where c ∈ 〈ij〉, c2 = ij, and for an involution k = ic,
j = ik and ik = j.

(4) if the order of ij is infinite then D has two conjugacy classes of involutions: iD and jD.
Let G satisfy the hypotheses of the theorem, j be an involution in G, U = CG(j), and B = NG(U). We

also make the convention that the notation appearing in the formulations of the lemmas below will be kept
throughout.

LEMMA 2. The following statements hold:
(1) U is a strongly isolated elementary Abelian 2-subgroup of G. In particular, U ∩ Ug = 1 for any

element g ∈ G \B.
(2) For U = G or B = G, item (1) of the theorem holds true.
(3) For U = B �= G, the subgroup U is equal to 〈j〉 and item (2) of the theorem holds true.
Proof. (1) By the hypotheses of the theorem, U is an elementary Abelian 2-group; moreover, U is

maximal among the elementary Abelian 2-subgroups, and for any involution u ∈ U , U = CG(u). Hence the
subgroup U is strongly isolated in G, and since it is Abelian, U ∩ Ug = 1 for any element g ∈ G \B.

(2) If U = G, there is nothing to prove. Let U �= B = G. In view of the hypotheses of the theorem, all
2-elements of G are involutions. If k is an involution in G \ U then (by Lemma 1 and the fact that U is
normal in G), the dihedral group D = 〈k, j〉 is Klein’s four-group and k ∈ CG(j), which clashes with the
definition of U . Consequently the set G \ U and the factor group G/U are involution free. By virtue of
statement (1), every element of G \ U acts on the subgroup U regularly.

(3) In view of (1), (G,U) is a Frobenius pair. We prove that j is perfect in G. Let k ∈ iG \ U and
D = 〈k, j〉. If the subgroup D is finite, then j and k are conjugate in D (cf. Lemma 1(3)) and j ∈ iG,
since U is isolated in G. For the case where D = 〈k, j〉 is infinite, by the definition of an almost perfect
involution it follows that there is an involution v ∈ iG such that kv = kj. Consequently vj ∈ CG(k), and
either v = j or |vj| = 2. If |vj| = 2 then v ∈ U (cf. Lemma 1(2)) and 1 �= vj ∈ U ∩Uk, which is impossible.
Hence v = j and j is perfect. The result now follows from [5, Lemma 3]. �

Based on Lemma 2, below we assume that U �= B �= G. Denote by J the set of all involutions in G.

LEMMA 3. The following statements hold:
(1) a subgroup B is strongly embedded in G;
(2) J = jG, J ∩B = jB, and j is an involution, perfect in G.
(3) there exists a one-one correspondence between the set of involutions of B and the set of involutions

of any right coset Bg, g ∈ G; moreover, if j is a fixed involution in U then every involution k ∈ U (including
the j) is associated with a unique involution vk ∈ Bg such that g−1kg = vkjvk;

(4) each element g ∈ G is represented as g = bv, where b ∈ B and v is some involution;
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(5) for each involution v ∈ G \ B, the subgroup B contains a set Hv of elements, strictly real w.r.t. v,
which has the same cardinality as the set of involutions in U .

Proof. (1) Clearly, all hypotheses of the theorem hold true for B. In view of Lemma 2(2), all 2-elements
of B are contained in U , and by Lemma 2(1), U ∩ Ug = 1 for any element g ∈ G \B. Hence the subgroup
B is strongly embedded in G.

(2) Let t be any involution in B and k ∈ iG \ B. If the subgroup D = 〈k, t〉 is finite, then j and k

are conjugate in D in view of Lemma 1(2),(3), since B is strongly embedded in G. If D = 〈k, t〉 is infinite
then there is an involution v ∈ iG such that kv = kt. It follows that vt ∈ CG(k), and by the hypotheses
of the theorem, either v = t or |vt| = 2. In the latter case v ∈ CG(t) = U and 1 �= vt ∈ B ∩ Bk, which is
impossible by (1). Thus it is always true that t ∈ iG.

Since t is any involution of U and j, in defining U , was chosen arbitrarily in G, J = iG is the set of all
involutions in G. Keeping in mind that B is strongly embedded in G, we have J ∩ B = jB. If k ∈ J and
kj �= jk, then k ∈ J \ U , and by the above, there exists an involution v ∈ J \ U with kv = j and jv = k.
Hence J is the class of perfect involutions in G.

(3) Let g ∈ G \H ; the involutions k and t are not necessarily distinct in B, and D = 〈g−1kg, j〉. By
(2), J contains an involution vk such that vkjvk = g−1kg. In view of (1), vk ∈ Bg. Similarly, we define an
involution vt ∈ Bg. If k �= t then g−1kg = vkjvk �= g−1tg = vtjvt and vk �= vt.

Now, let v be any involution of Bg and let g = bv, where b ∈ B. Put k = bjb−1. Then g−1kg = vjv and
v = vk. Thus the mapping k ↔ vk is bijective.

(4) By (3), the coset Bg contains an involution v, and g = bv, where b ∈ B.
(5) Let v be an involution of G \ B. By (3), the coset Bv contains a set Jv of involutions of the same

cardinality as the set of involutions in U . Every involution k ∈ Jv is represented as k = bkv, where bk ∈ B.
Obviously, bk is an element of B which is strictly real w.r.t. v, and all elements bk are distinct. Inversely,
if b is an element of B that is strictly real w.r.t. v then k = bv is an involution in Bv and b = bk by
Lemma 1(1). �

LEMMA 4. Let v be any involution in G \ B and H = B ∩ Bv. Then H = Hv is an Abelian group,
invertible by v, and the subgroup B = UλH is a Frobenius group with kernel U and complement H ,
isomorphic to an affine transformation group of a suitable field Q of characteristic 2.

Proof. Obviously, H is a subgroup containing the set Hv and intersecting the subgroup U at unity. In
view of Lemma 3, for every involution k ∈ U , Hv contains an element bk with jbk = k. Since CG(j)∩H = 1,
jh = k, and h ∈ H , we have h = bk. Thus H = Hv and hv = h−1 for any element h ∈ H , and H is Abelian.

Suppose b ∈ B and b /∈ K = UλH . Then jb = k for an appropriate involution k ∈ U , and bkb
−1 ∈

CG(j) \K, which is a contradiction with CG(j) = U . Hence B = UλH , in which case H acts regularly on
the set of involutions in U . As stated in [6], B is isomorphic to an affine transformation group of a suitable
field Q of characteristic 2, and it is a Frobenius group with kernel U and complement H . Moreover, H is
isomorphic to the multiplicative group of Q and U is isomorphic to its additive group. �

LEMMA 5. A subgroup H is strongly isolated in G, NG(H) = Hλ〈v〉 = K, and J ∩K = J ∩Bv = vK .
In particular, H is a 2-complete group and the field Q is quadratically closed.

Proof. That J ∩Bv ⊂ J ∩K is obvious. On the other hand, J ∩K = Hv ⊂ Bv and Bv ∩ J = J ∩K.
Assume Hv �= vK and t ∈ Hv \ vK . In view of Lemma 3, vk = t for some involution k ∈ J . Clearly,
vk /∈ H ; on the other hand, (vk)2 = vt ∈ H . Hence vt ∈ B ∩ Bk = Hk, and in virtue of Lemma 4, Hk

are non-invariant factors of the Frobenius group B which intersect pairwise at unity. Since vt �= 1, we have
Hk = H , and by Lemma 4, k inverts every element of H . Consequently kv ∈ CG(H). Using Lemma 4 we
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conclude that vk /∈ B, and by Lemma 3, vk = bs for some s ∈ J and b ∈ B. As above, Hs = B ∩Bs = H

and the involution s inverts every element of H . Consider a group CG(H)λ〈v〉; it contains involutions v, k,
and s. Therefore b, s ∈ CG(H), a contradiction. We have J ∩K = vK .

Suppose that the inclusion CG(h) ≤ H fails for some non-identity element h ∈ H . By Lemma 4,
CB(h) = H , and so there is an element t ∈ CG(h) \ B. By Lemma 3, t = bs for some s ∈ J and b ∈ B.
As stated above, Hs = B ∩ Bs = H and s inverts every element of H . The subgroup CG(h)λ〈s〉 contains
elements t and b. It follows that the element b ∈ B inverts h, which is a contradiction with Lemma 4.
Consequently the subgroup H is strongly isolated in G.

Let h ∈ H . Since v and hv are conjugate in K, we obtain hv = tvt−1 = t2v and h = t2, for an
appropriate element t ∈ H . Hence H is a 2-complete group and Q is a quadratically closed field. �

Consider a permutation representation of G on a set Ω = {Ux | x ∈ G}. The subgroup U , being an
element of Ω, is denoted by α, and Uv — by β.

LEMMA 6. G is a permutation Z-group on the set Ω, with Gα = B and Gαβ = H .
Proof. The group G is transitive on Ω by definition. It is clear that B = NG(U) = Gα. In view of

Lemma 5 and the fact that v was chosen arbitrarily in Lemma 4, the subgroup B = Gα is transitive on a set
of all involutions not in B, and moreover, Gα is transitive on Ω \ {α}. Hence G is doubly transitive on Ω.
Lemmas 4 and 5 entail H = Gαβ . If 1 �= h ∈ Gαβγ for some γ ∈ Ω, then Lemmas 3 and 4 imply that there
exists an involution s ∈ J \K, inverting h ∈ H . Consequently sv ∈ CG(h) \ H , which is a contradiction
with Lemma 5. Since involutions j and v (or, equivalently, their centralizers — points α and β) and a point
γ are chosen arbitrarily, the stabilizer of any three points in Ω is trivial. �

Proof of the theorem. We claim that G is triply transitive on Ω. In view of Lemma 5, this claim
is equivalent to the subgroup H being transitive on Ω \ {α, β}. We choose arbitrary γ, δ ∈ Ω \ {α, β}.
By Lemmas 4 and 5, Gαγ = Hb and Gαγ = Hc for suitable b, c ∈ B. The group B, being an affine
transformation group of a field Q (cf. Lemma 4), is a sharply doubly transitive group with stabilizer H ,
which is equivalent to H being transitive on a set {Hx | x ∈ B \H} of subgroups. Hence there exists h ∈ H
mapping Hb to Hc, and γh = δ. Thus G is triply transitive on Ω. Therefore G satisfies all the hypotheses
of Theorem 1 in [2], which says that G is isomorphic to PGL2(Q). �
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