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ISOMORPHISM TYPES OF ROGERS SEMILATTICES

FOR FAMILIES FROM DIFFERENT LEVELS

OF THE ARITHMETICAL HIERARCHY
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We investigate differences in isomorphism types for Rogers semilattices of computable number-
ings of families of sets lying in different levels of the arithmetical hierarchy.

Among the many possible applications of the theory of generalized computable numberings propounded
in [1], a particularly interesting and popular one is to arithmetical numberings, that is, numberings of
families of arithmetical sets. When considering a family A of Σ0

n-sets, generalized computable numberings
can be characterized as follows: a numbering α of A is generalized computable if and only if the set
{〈x, i〉 | x ∈ α(i)} is Σ0

n. In what follows, such a numbering α will merely be referred to as Σ0
n-computable.

We recall that if α and β are numberings of the same family of objects, then α is said to be reducible
to β (written α � β) if there exists a computable function f such that α = β ◦ f . We write α ≡ β

if α � β and β � α. An equivalence class of a numbering α (depending of course on the collection of
numberings under study) will be denoted by the symbol deg(α). Since � is a preordering relation, ≡ is an
equivalence relation. If A is a family of Σ0

n-sets, then ≡ partitions the set Com0
n(A) of all Σ0

n-computable
numberings into equivalence classes, thus generating a degree structure, denoted by R0

n(A) and called the
Rogers semilattice of A.

In this paper we continue research on isomorphism types of Rogers semilattices, started in [2]. We
are interested in differences between elementary theories and isomorphism types at different arithmetical
levels. In [3, 4] it was shown that for every fixed level of the arithmetical hierarchy, there exist infinitely
many families with pairwise different elementary theories for their Rogers semilattices. In [2] we established
that, for every n, the isomorphism type of the Rogers semilattice of some Σ0

n+5-computable family B is
different from the isomorphism type of the Rogers semilattice R0

n+1(A) of an arbitrary Σ0
n+1-computable

family A. In this paper we improve on this result by showing that, for every n, the isomorphism type of
the Rogers semilattice of any non-trivial (i.e., non one-element) Σ0

n+4-computable family B is different from
the isomorphism type of the Rogers semilattice R0

n+1(A) of any Σ0
n+1-computable family A.

For the unexplained terminology and notation relative to computability theory, our main references are
in [5-7]. We will use the term computable function to connote completely defined computable functions. For
the main concepts and notions of the theory of numberings and computable Boolean algebras, we ask the
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reader to consult [8, 9]. The basic notions, notation, and methods bearing on arithmetical numberings and
their Rogers semilattices can be found in [10, 11]. For the reader’s convenience, and to make our discussion
more self-contained, here, we recall the definition of the Lachlan operator for numberings, and summarize
some of its properties in Lemma 1 below.

Definition 1. If β is a numbering of a family A, and C is a non-empty c.e. set, with f a computable
function such that range(f) = C, then we define βC � β ◦ f .

The definition does not depend on f : if we define βC starting from any other computable function g

such that range(g) = C then we obtain a numbering which is equivalent to one given by f . The assignment
C �→ βC from c.e. sets to numberings (up to equivalence of the numberings) is called the Lachlan operator.

LEMMA 1 [11, Lemma 2.2]. For every pair A,B of non-empty c.e. sets and for every pair of numberings
α, β,

(1) the following are equivalent:
(a) βA � βB;
(b) there is a partial computable function ϕ satisfying dom(ϕ) ⊇ A, ϕ[A] ⊆ B, and β(x) = β(ϕ(x)) for

all x ∈ A;
(2) if A ⊆ B then βA � βB;
(3) if βA � βB then βB ≡ βA∪B;
(4) if α � β then α = βC for some c.e. set C;
(5) if α � β and α ≡ βC for some c.e. set C then for every γ such that α � γ � β there exists a c.e. set

D with C ⊆ D and γ ≡ βD;
(6) βA∪B ≡ βA ⊕ βB.
The three lemmas given below and the notion of an X-computable Boolean algebra play a key role

in establishing our claim. Recall that a Boolean algebra A is said to be X-computable if its universe,
operations, and relations are X-computable (see [9]).

In the next lemma, the symbol [γ, δ] denotes the following interval of degrees in R0
n+1(A):

[γ, δ] � {deg(β) | γ � β � δ}.

LEMMA 2. Let γ and δ be Σ0
n+1-computable numberings of a family A. If [γ, δ] is a Boolean algebra,

then it is 0(n+3)-computable.
Proof. First, we observe that given n, A, γ, and δ as in the hypothesis of the lemma, it follows by

Lemma 1(4),(5) that there exists a c.e. set C such that γ ≡ δC and

[γ, δ] = {deg(δX) | X is c.e. and X ⊇ C}.

For every i, let Ui � C ∪Wi. This gives an effective listing of all c.e. supersets of C. By Lemma 1(1b),
for every i, j, we have δUi � δUj if and only if

∃p[∀x(x ∈ Ui ⇒ ∃y(ϕp(x) = y & y ∈ Uj)) & ∀x∀y(x ∈ Ui & ϕp(x) = y ⇒ δ(x) = δ(y))].

Since δ ∈ Com0
n+1(A), δUi � δUj is a Σ0

n+3-relation in i, j.
Consider the equivalence relation η on ω defined by setting

(i, j) ∈ η ⇔ δUi � δUj & δUj � δUi .

Let B � {x | ∀y(y < x ⇒ (x, y) /∈ η)}. Define a bijection ψ1 : B → [γ, δ], letting ψ1(i) = deg(δUi)
for all i ∈ B. It is evident that ψ1 induces in R0

n+1(A) a partially ordered set B, which is a Boolean
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algebra isomorphic to [γ, δ]. The interval B is a 0(n+3)-computable partially ordered set. It follows from
[9, Thm. 3.3.4; 12] that the Boolean algebra B under Boolean operations is also 0(n+3)-computable. �

LEMMA 3 [13]. Let F be a computable atomless Boolean algebra. Then for every X there is an ideal
J such that J is X-c.e. and the quotient F/J is not isomorphic to any X-computable Boolean algebra.

Below, we will use the following notation. For a given c.e. set H , {Vi | i ∈ ω} denotes an effective
listing of all c.e. supersets of the set H defined, for instance, by Vi � H ∪Wi, for all i. We will assume
for convenience that V0 = H . Let εH stand for the distributive lattice of all c.e. supersets of H . For a
given c.e. set V ⊇ H , by V ∗ we denote the image of V under the canonical homomorphism of εH onto ε∗H
(i.e., εH modulo the finite sets), and write ⊆∗ to denote the partial ordering relation on ε∗H . Obviously,
J∗ � {V ∗ | V ∈ J} is an ideal in ε∗H if J is one in εH .

As is known, if A is a Boolean algebra and J is an ideal of A, then the universe of the quotient algebra
A/J is given by the set of equivalence classes [a]J , a ∈ A, under the equivalence relation ≡J defined by
setting

a ≡J b⇔ ∃c1, c2 ∈ J(a ∨ c1 = b ∨ c2),

and the partial ordering relation is given by the rule

[a]J �J [b]J ⇔ a− b ∈ J,

where a− b stands for a ∧ ¬b (see, e.g., [9]).

LEMMA 4. Let B be a Σ0
m+1-computable family, β ∈ Com0

m+1(B), and H be any c.e. set such that
β[H ] = B and ε∗H is a Boolean algebra. Let ψ2 : εH → [βH , β] be the mapping given by ψ2(Vi) = deg(βVi)
for all i, and let I be any ideal of εH containing all finite sets. Then ψ2 induces an isomorphism of ε∗H/I

∗

onto [βH , β] if and only if for all i, j we have the following:
(1) Vi ∈ I ⇒ βVi � βH ;
(2) Vi − Vj /∈ I ⇒ βVi � βVj (where Vi − Vj � (Vi \ Vj) ∪H).
Proof. Let H , B, β, and ψ2 be given. The “only if” direction is immediate. To show that the conditions

stated in the lemma are also sufficient, we can argue as follows. By Lemma 1(4),(5), it follows that every
γ with βH � γ � β is of the form γ ≡ βC for some c.e. set C ⊇ H . Therefore the mapping induced by ψ2

is clearly onto.
Suppose now that [V ∗

i ]I∗ ⊆∗
I∗ [V ∗

j ]I∗ . Then V ∗
i − V ∗

j ∈ I∗. But V ∗
i − V ∗

j = (Vi − Vj)∗, with Vi − Vj a
c.e. superset of H , since ε∗H is a Boolean algebra. Hence Vi − Vj ∈ I. On the other hand,

Vi = (Vi − Vj) ∪ (Vi ∩ Vj).

Now, by (1), βVi−Vj � βH , so βVi ≡ βVi∩Vj by Lemma 1(3), and hence βVi � βVj by Lemma 1(2), since
Vi ∩ Vj ⊆ Vj .

Finally, if [V ∗
i ]I∗ �⊆∗

I∗ [V ∗
j ]I∗ then Vi − Vj /∈ I, and therefore βVi � βVj by (2). �

THEOREM 1. For every n, every non-trivial Σ0
n+5-computable family B, and every Σ0

n+1-computable
family A, the Rogers semilattices R0

n+5(B) and R0
n+1(A) are not isomorphic.

Proof. Let n be given, suppose that B is an arbitrary non-trivial Σ0
n+5-computable family, and as-

sume that A is any Σ0
n+1-computable family. By Lemma 2, all Boolean intervals in R0

n+1(A) are 0(n+3)-
computable Boolean algebras. Therefore, to prove the theorem, it is sufficient to do the following:

(i) find a computable atomless Boolean algebra F and an ideal J of F (as in Lemma 3) such that J is
c.e. in 0(n+3) and F/J is not isomorphic to any 0(n+3)-computable Boolean algebra;
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(ii) find Σ0
n+5-computable numberings α and β of B such that the interval [α, β] of R0

n+5(B) is a Boolean
algebra isomorphic to F/J .

First, we show how to satisfy the requirement (i). Let F be a computable atomless Boolean algebra. By
a famous result of Lachlan [14], there exists a hyperhypersimple set H for which ε∗H is isomorphic to F. We
fix such a set H .

We refer the reader to [7] for details of the construction of a suitable isomorphism χ of the Boolean
algebra ε∗H onto F. Here, we need only notice that starting from a computable listing {b0, b1, . . .} of the
elements of F, we can find a Σ0

3-computable Friedberg numbering {B0, B1, . . .} of some subfamily of εH
such that ε∗H = {B∗

0 , B
∗
1 , . . .} and χ(B∗

i ) = bi.
We will use the technique for embedding posets into intervals of Rogers semilattices developed in [11].

Let J be any 0(n+3)-c.e. ideal of F satisfying Lemma 3, and let Ĵ = {j ∈ ω | bj ∈ J}. Then Ĵ is a
0(n+3)-c.e. set, I∗ � {B∗

j | j ∈ Ĵ} is an ideal of ε∗H , and F/J is isomorphic to ε∗H/I
∗. Thus, as the Boolean

algebra F/J in the requirement (ii) above we can take ε∗H/I
∗.

Let I � {V | V ∈ εH & V ∗ ∈ I∗} and Î = {i ∈ ω | V ∗
i ∈ I∗}. Obviously, I is an ideal of εH containing

all finite subsets.

LEMMA 5. The relations Vi ∈ I (equivalently, i ∈ Î) in i and Vi − Vj ∈ I in i, j are both 0(n+3)-c.e.
Proof. First we note that for any sets A and B, the relation A =∗ B is c.e. relative to A = B. Indeed,

if D0, D1, . . . is the canonical numbering of the family of all finite sets (see [5, 6]), then

A =∗ B ⇔ ∃p ∃q(A ∪Dp = B ∪Dq).

Since
i ∈ Î ⇔ ∃j(Vi =∗ Bj & j ∈ Ĵ),
Vi − Vj ∈ I ⇔ ∃k((Vi ∩ Vj) ∪H = Vk, k ∈ Î),

routine calculations show that Î ∈ Σ0
n+4 and that the relation Vi − Vj ∈ I is also c.e. in 0(n+3). �

Due to Lemma 4, we can now construct a suitable numbering β of B and consider the corresponding
mapping ψ2, which will yield an isomorphism of ε∗H/I

∗ onto the interval [βH , β].
Requirements. First, it is necessary that the numbering β satisfies the requirement

B : β[H ] = B,

which guarantees that βH is a numbering of the whole family B. Next, in view of Lemma 4, we must make
it sure that all i, j, and p meet the following requirements:

Pi : Vi ∈ I ⇒ βVi � βH ,

Ri,j,p : Vi − Vj �∈ I ⇒ βVi � βVj via ϕp,

where by “βVi � βVj via ϕp” we mean that ϕp does not reduce βVi to βVj in the sense of Lemma 1(1b).
In the construction we use an oracle 0(n+4) to answer questions such as “Vi ∈ I?” or “Vi−Vj ∈ I?” and

to verify some properties of c.e. sets and computable functions. Computations with 0(n+4) will ensure that
β ∈ Com0

n+5(B).
The strategy for B. We fix a numbering α ∈ Com0

n+5(B) and build by stages a 0(n+4)-computable
function a(x) with range(a) ⊆ H . We will “insert” the numbering α into the numbering β by setting
β(a(x)) = α(x) for all x. Since we never change the values β(a(x)) we ultimately arrive at β(H) = B.

The strategy for Ri,j,p. Since B is non-trivial, we can fix two different sets A,B ∈ B. To meet Ri,j,p, we
will destroy any possible reducibility of the numbering βVi to the numbering βVj via a partial computable
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function ϕp, for which Vi ⊆ dom(ϕp) and ϕp[Vi] ⊆ Vj . We choose some β-index x ∈ Vi \Vj and let β(x) = A

and β(ϕp(x)) = B, or, conversely, β(x) = B and β(ϕp(x)) = A. Note that x �= ϕp(x) since x /∈ Vj and
ϕp[Vi] ⊆ Vj .

The strategy for Pi. Fix an infinite computable set R ⊆ H and a computable partition of R into
disjoint infinite computable sets Ri, i ∈ ω. Lastly, fix a computable sequence {ri}i∈ω of injective unary
partial computable functions such that dom(ri) = Vi \R and range(ri) = Ri. For every i ∈ Î, it is sufficient
to guarantee that β(x) = β(ri(x)), for all x ∈ Vi \ R, to meet the requirement Pi. Indeed, by Lemma 1, if
so then we have βVi\R � βRi . Since βVi ≡ βVi\R ⊕ βR � βRi ⊕ βR ≡ βR, it follows that βVi � βH .

Unfortunately, the P- and R-strategies described above can give rise to conflicts of two types. More
precisely, the strategy for Ri,j,p may want β(x) �= β(ϕp(x)) for some x ∈ Vm with m ∈ Î, whereas the
strategy for Pm forces us to have β(x) = β(rm(x)). Since the functions ϕ and rm are fixed a priori, the
equality ϕp(x) = rm(x) is quite possible and the two strategies clash in this instance.

Moreover, for any i, j, andm, there exist infinitely many numbers p such that ϕp �(Vi\Vj) = rm �(Vi\Vj),
and it may seem impossible to prevent conflicts whatsoever. Fortunately, this is not true: the next lemma
and its corollary provide us with tools to avoid almost all conflicts between the Pm-strategy for any fixed
m ∈ Î and all R-strategies. For t ∈ ω, we denote by Ut the set

⋃{Vs | s � t & s ∈ Î}.

LEMMA 6. Let H and I be as above, and let V ′ and V be arbitrary sets of the lattice εH such that
V ′ /∈ I and V ∈ I. Then the following statements hold:

(a) V ′ − V ∈ εH ;
(b) V ′ − V /∈ I, and in particular, V ′ \ V is an infinite set.
Proof. (a) Follows from the trivial equality

(V ′ − V )∗ = (V ′)∗ − V ∗.

(b) Is easily verified by contradiction using the following equality:

V ′ = (V ′ − V ) ∪ (V ′ ∩ V ). �

COROLLARY 1. For any i, j, t ∈ ω, if Vi − Vj /∈ I then Vi \ (Vj ∪ Ut) is infinite.
We give absolute priority to R-strategies over P-strategies. For any i, j, and p, we exclude all conflicts

between a strategy for Ri,j,p and all strategies for Pm, with m ∈ Î and m � 〈i, j, p〉, in the following way.
We choose a β-index x to satisfy the requirement Ri,j,p, not in the set Vi \ Vj (as in the strategy for Ri,j,p

above), but in the set Vi \ (Vj ∪ U〈i,j,p〉). And we do not pay attention to the conflicts between a strategy
for fixed Ri,j,p and Pm-strategies with m ∈ Î and m > 〈i, j, p〉. Thus, for every fixed m ∈ Î, there will be
not more than finitely many conflicts with R-strategies.

Conflicts of the second type between Ri,j,p- and Pm-strategies may arise even in the case ϕp(x) �= rm(x),
due to the function a built by the B-strategy. Assume that the number y ∈ H \ R has become a value
of the function a and that β(y) = α(z) is defined for some z. If x is chosen to meet the requirement
Ri,j,p then we have to set β(x) and β(ϕp(x)) equal to A or to B (with β(x) �= β(ϕp(x))). Suppose also
that ϕp(x) ∈ R. It may so happen that ϕp(x) = rm(y) for some m ∈ Î. The strategy for Pm forces
us to have β(ϕp(x)) = β(rm(y)) = α(z). A conflict arises if either α(z) /∈ {A,B} or α(z) ∈ {A,B} and
β(ϕp(x)) �= α(z). Unfortunately, we cannot determine whether α(z) = A or α(z) = B relative to the oracle
0(n+4). Again, for every m ∈ Î, we would have not more than finitely many conflicts of this type, if we
restricted the choice of x by an extra condition — m > 〈i, j, p〉.
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In order to describe the construction, we need some optional notions and notation. For every x ∈ R,
we consider the set {x} ∪ {rm(x) | m ∈ ω}. This set is called a star with center x. Obviously, stars with
different centers are disjoint, and the collection of all stars form a partition of ω. For every x ∈ ω, it is
easy to compute the center x+ of the star which contains x: namely, x+ = x, if x /∈ R, and x+ = r−1

m (x) if
x ∈ R and Rm is the element of the partition {Ri}i∈ω which contains x.

In terms of stars, our plan of preventing conflicts between P- and R-strategies, mentioned above, can be
described as follows. First note that, given x, conflicts of the first type do not arise whatsoever, provided
that x �= (ϕp(x))+, and also x = (ϕp(x))+ whenever ϕp(x) ∈ Rm, m /∈ Î. For every fixed m, we allow only
finitely many strategies Ri,j,p to injure Pm; that is, β(ϕp(x)) �= β(x) while β(rm(x)) �= β(x). The stars
with centers in range(a) are the sole source of conflicts of the second type. And, for every fixed m, we allow
only finitely many such stars to injure Pm.

Now we proceed to a stage-by-stage construction of a numbering β of the family B, and an auxiliary
function a. If a value β(x), or a(x), has not been explicitly modified by the end of stage t + 1 then by
default βt+1(x) = βt(x) or at+1(x) = at(x), respectively. Note that in the construction below, the functions
β and a will never become undefined if will their values have been defined before.

Construction

Stage 0. Let β(x) and a(x) be undefined for all x. Go to the next stage.
Stage t+ 1. Let t = 〈i, j, p〉. We carry out three procedures, starting from Ri,j,p.
Procedure Ri,j,p. We verify the following conditions (which we can do relative to the oracle 0(n+4)):
(i) Vi − Vj /∈ I;
(ii) Vi ⊆ dom(ϕp) and ϕp[Vi] ⊆ Vj .
If one of (i), (ii) fails then go to Procedure Pi. Otherwise choose the least element x of the set

Xt � {x | x ∈ Vi \ (Vj ∪ Ut) & βt(x)↑ & βt(ϕp(x))↑}

such that at least one of the following holds:
(iii) ∃y(y �= x & y ∈ Xt & ϕp(y) = ϕp(x));
(iv) (ϕp(x))+ ∈ range(at) ⇒ ∀m(ϕp(x) ∈ Rm ⇒ m > t).

(That such x exists will be shown in item (7) below.)
If (iii) holds then we pick the least y satisfying (iii) and put β(x) = A, β(y) = B. Go to Procedure Pi.
If (iii) does not hold (but (iv) does) then we denote by z the center (ϕp(x))+ and carry out the

instructions specified in the two cases below. Go to Procedure Pi.
Case 1. Let ϕp(x) ∈ R, z �= x, and z /∈ range(at). If βt(z) ↑ then put β(z) = A. Denote by C the set

β(z), and by D an element of the set {A,B} \ {C}. Put β(x) = D and β(ϕp(x)) = C.
Case 2. Case 1 fails. We let β(x) = A and β(ϕp(x)) = B.
Procedure Pi. Choose the least number x ∈ Ri such that β(x) is still not defined. If β(x+) is also

undefined then let β(x+) = β(x) = A. If β(x+)↓ then put β(x) = β(x+). Go to Procedure B.
Procedure B. Choose the least number y ∈ H \R such that β is still not defined at all nodes of the star

with center y, and put a(t) = y and β(y) = α(t). Go to the next stage.
Obviously, β is a Σ0

n+5-computable numbering.

Properties of the construction. (1) For every t, functions βt and at are defined only on finite sets.
(2) For every x, there exists a stage t starting with which β(x) becomes defined forever. Furthermore,

after this stage t, the function β will never change its value in x.
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(3) a Is a total function with range(a) ⊆ H \R. For every x, α(x) = β(a(x)).
(4) For every x, at least one of the following holds: β(x) = A, β(x) = B, or β(x) = α(y) for some y.
(5) For every x and t, if βt(x)↓ then βt(x+)↓.
(6) For every x and t, if x ∈ range(at) then βt(x)↓.
Properties (1)-(6) are evident, and (2)-(4) imply that β is a numbering for the family B.
(7) For every i, j, p, t, if the conditions (i) and (ii) above hold then there exists x ∈ Xt satisfying (iii)

or (iv).
To prove this, we choose any numbers i, j, p, t for which (i) and (ii) are satisfied, and assume that both

(iii) and (iv) fail. Then ϕp is injective on Xt, and

(∀x ∈ X ∀t)(ϕp(x))+ ∈ range(at) & ∃m(ϕp(x) ∈ Rm & m � t).

The set Xt is infinite by Lemma 6 and property (1). By the same property, the set Y � {y | r−1
m (y) ∈

range(at) & m � t} is finite since all mappings rk, k ∈ ω, are injective. Therefore ϕp maps the infinite set
Xt into the finite set Y in a one-to-one manner. Contradiction.

(8) For every i, j, p, if (i) and (ii) are satisfied then there exists z ∈ Vi such that β(z) �= β(ϕp(z)).
Let Vi − Vj /∈ I, Vi ⊆ dom(ϕp), ϕp[Vi] ⊆ Vj , and t = 〈i, j, p〉. If (iii) holds at stage t + 1 then ϕp

maps two different numbers x, y ∈ Vi into the same number ϕp(x) = ϕp(y), and by construction, we have
β(x) �= β(y). Therefore at least one of the inequalities β(x) �= β(ϕp(x)) and β(y) �= β(ϕp(y)) holds.

Suppose now that (iii) fails at stage t + 1 and let x ∈ Xt be a number chosen by Procedure Ri,j,p at
this stage. By construction, x ∈ Vi \ (Vj ∪ Ut) and both βt(x) and βt(ϕp(x)) are undefined. This implies
that x /∈ Vm and rm(x) is undefined for all m ∈ Î, m � t. Note that ϕp(x) /∈ range(at) in view of property
(6). We consider the following four possibilities:

(a) ϕp(x) /∈ R;
(b) ϕp(x) ∈ R, (ϕp(x))+ = x;
(c) ϕp(x) ∈ R, (ϕp(x))+ �= x, and (ϕp(x))+ ∈ range(at);
(d) ϕp(x) ∈ R, (ϕp(x))+ �= x, and (ϕp(x))+ /∈ range(at).
For (a), (b), and (c), we have β(x) = A and β(ϕp(x)) = B by Case 2 of Procedure Ri,j,p at stage t+ 1.

For (d), by Case 1 we obtain β(x) = D and β(ϕp(x)) = C, where {C,D} = {A,B}.
(9) For every m ∈ Î and for almost all x ∈ Vm \R, β(x) = β(rm(x)).
Let m ∈ Î. We suppose that v ∈ Vm \R and β(v) �= β(rm(v)) and prove that this inequality is caused

by a conflict between the strategy for Pm and the Ri,j,p-strategy for some i, j, p.
Let s + 1 and t + 1 be stages at which, respectively, β(v) and β(rm(v)) are defined. By property (2),

β(v) = βs+1(v) and β(rm(v)) = βt+1(rm(v)). Consider a star with center v and denote by q + 1 the least
stage at which β is defined at a node of this star for the first time. By property (5), q = s and s � t since
(rm(v))+ = v. We consider the cases s = t and s < t separately.

Let s = t. This means that β is defined exactly at two nodes of the star with center v by the end of
stage t+ 1, and that one of these nodes is v. Therefore β(v) cannot be defined at stage t+ 1 in Procedure
B, and (iii) does not hold at stage t+ 1. Thus we have to examine the possibilities (a)-(d) specified in the
proof of property (8).

Obviously, β(v) and β(rm(v)) cannot be defined by (a) and (c) since in these cases β is determined from
the values in the centers of two disjoint stars. Case (d) is also impossible, for in this instance the values
of β at the nodes v and rm(v) have to be identical by construction. We are therefore left with the only
possibility — (b). We adopt the notation used in the description of the procedure for Ri,j,p and in the
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proof of property (8). In this notation, v = x, ϕp(x) = rm(x), and t = 〈i, j, p〉. We have a conflict of the
first type: β(x) = A and β(ϕp(x)) = β(rm(x)) = B. Moreover, x ∈ Vi \ (Vj ∪Ut), and so m > 〈i, j, p〉. This
implies that we can have not more than a finite number of β-indices v ∈ Vm \ R for which the inequality
β(v) �= β(ϕp(v)) is caused by conflicts of the first type.

Now let s < t. In view of property (5), we should handle stage t+ 1 at which β is defined at node rm(v)
provided that β has been defined in the center v before. As with s = t, it is easy to see that, at stage
t+ 1, β(rm(v)) cannot be defined via Procedure B, (iii) does not hold, and the inequality β(v) �= β(ϕp(v))
cannot be caused by (a), (b), and (d).

With the above conventions on the notation, we handle possibility (c). In this case ϕp(x) = rm(x),
(ϕp(x))+ = v, v ∈ range(at), and hence the inequality m > 〈i, j, p〉 is a consequence of (iv). We have
β(x) = A, β(rm(x)) = B, and β(v) �= B. Thus there are not more than finitely many β-indices v ∈ Vm \R
for which the inequality β(v) �= β(ϕp(v)) is caused by conflicts of the second type.

Properties (3), (8), and (9) imply that all the requirements are met.

THEOREM 2. For every n, every non-trivial Σ0
n+4-computable family B, and every Σ0

n+1-computable
family A, the Rogers semilattices R0

n+4(B) and R0
n+1(A) are not isomorphic.

Proof. Let B be any Σ0
n+4-computable family, and let α ∈ Com0

n+4(B). Instead of working directly
with the relation “Vi − Vj ∈ I” (in i, j) and with the set Î, we use their enumerations relative to the oracle
0(n+3). The relation and set are 0(n+3)-c.e. by Lemma 5.

Denote the relation “Vi − Vj ∈ I” by Q(i, j). Let Qt(i, j), t ∈ ω, be its approximation, that is, Qt(i, j)
is a 0(n+3)-computable relation in i, j, t;

Qt(i, j) → Qt+1(i, j) for any i, j, and t;
Q(i, j) ↔ ∃s ∀t � sQt(i, j) for any i and j.

Let Ît, t ∈ ω, be an enumeration of the set Î relative to 0(n+3), that is, Ît ⊆ Ît+1, t ∈ ω, and Î =
⋃

t∈ω
Ît,

and let Ût and X̂t be approximations of the sets Ut and Xt, and namely,

Ût =
⋃

{Vk | k � t & k ∈ Ît},

X̂t = {x | x ∈ Vi \ (Vj ∪ Û t) & βt(x)↑ & βt(ϕp(x))↑} for t = 〈i, j, p〉.
Hereinafter, we use the notation adopted in the proof of Theorem 1. The construction below is an ample

approximation of the construction of Theorem 1.

Construction

Stage 0. Let β(x) and a(x) be undefined for all x. Go to the next stage.
Stage t + 1. Let t = 〈i, j, p〉. We carry out the following three procedures, starting with Procedure

Ri,j,p. (All the instructions of the stage are performed relative to the oracle 0(n+3).)
Procedure Ri,j,p. Check whether the following condition holds:
(ii) Vi ⊆ dom(ϕp) and ϕp[Vi] ⊆ Vj .

If (ii) does not hold then go to Procedure Pi. Otherwise search for the least s > t such that Qs(i, j) or
there exists x ∈ X̂s for which at least one of the following two conditions is satisfied:

(iii)′ ∃y(y �= x & y ∈ X̂s & ϕp(y) = ϕp(x));
(iv) (ϕp(x))+ ∈ range(at) ⇒ ∀m(ϕp(x) ∈ Rm ⇒ m > t).
If Qs(i, j) then go to Procedure Pi. Otherwise choose the least x ∈ X̂s which meets the requirements

above. If (iii)′ holds then pick the least y satisfying (iii)′ and put β(x) = A, β(y) = B. Go to Procedure Pi.
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If (iii)′ does not hold (but (iv) does) then denote by z the center (ϕp(x))+ and carry out the instructions
of the next two cases, and then go to Procedure Pi.

Case 1. We have ϕp(x) ∈ R, z �= x, and z /∈ range(at). If βt(z)↑ then let β(z) = A. Denote by C the
set β(z), and by D an element of the set {A,B} \ {C}. Now let β(x) = D and β(ϕp(x)) = C.

Case 2. Case 1 fails. Let β(x) = A and β(ϕp(x)) = B.
Procedure Pi. Choose the least number x ∈ Ri such that β(x) is still not defined. If β(x+) is also

undefined then let β(x+) = β(x) = A. If β(x+)↓ then put β(x) = β(x+). Go to Procedure B.
Procedure B. Choose the least number y ∈ H \R such that β is still not defined at all nodes of the star

with center y, and put a(t) = y and β(y) = α(t). Go to the next stage.

Properties of the construction. Obviously, β is a Σ0
n+4-computable numbering. It is easy to see

that the construction is a slight modification of the construction of Theorem 1. For this reason, we omit
unnecessary repetitions in proving the properties of the modified construction. Properties (1)-(6) are exactly
the same as in the proof of Theorem 1. These ensure that β is a Σ0

n+4-computable numbering of the family
B. Consider the remaining properties.

(7) For any i, j, p, if condition (ii) holds at stage t+ 1 with t = 〈i, j, p〉 then there exists s > t such that
Qs(i, j), or there exists x ∈ X̂s satisfying at least one of (iii)′, (iv).

If Vi − Vj ∈ I then there evidently exists s such that Qs(i, j). Suppose now that Vi − Vj /∈ I and let s
be the least number such that s > t and

{k | k � 〈i, j, p〉 & k ∈ Î} = {k | k � 〈i, j, p〉 & k ∈ Îs}.

Then Ûs = Ut, X̂s = Xt, and hence the condition (iii)′ is identical to (iii). Now, therefore, we can argue as
we did in the proof of property (7) of the previous construction.

(8) For any i, j, p, if Vi − Vj /∈ I and (ii) holds then there exists z ∈ Vi such that β(z) �= β(ϕp(z)).
Let Vi − Vj /∈ I. Keeping in mind that Qs(i, j) fails for all s, we repeat the proof for property (8) in

Theorem 1.
(9) For every m ∈ Î and almost all x ∈ Vm \R, β(x) = β(rm(x)).
Let m ∈ Î and let t0 be the least number such that m ∈ Ît0 . Then Vm ⊆ Ûs for all s � t0, and hence

Vm ∩ X̂t = ∅ for all t � t0. Repeating the argument used in the proof of property (9) of Theorem 1, we
can show that for every t > max{t0,m} there is no v ∈ Vm \R such that:

(a) β(v) �= β(rm(v));
(b) at least one of the values β(v) or β(rm(v)) is defined at stage t;
(c) both β(v) and β(rm(v)) are defined by the end of stage t.

Property (1) implies that the number of v’s which satisfy the three conditions above at stages t � max{t0,m}
is finite.

Again, properties (3), (8), and (9) imply that all the requirements are met. �
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