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It is proved that the lattice of all τ-closed totally saturated formations of finite groups is algebraic.

In the paper we consider finite groups only. Information on all relevant terms is contained in [1-4].
The methods and constructions of general lattice theory used in exploring the inner structure of for-

mations allow of creating simpler schemes of proving both the known facts and new results in formation
theory (see [2-5]). General properties of the lattice of totally saturated formations as well as the structure
of such formations with prescribed restrictions on lattices of totally saturated subformations are dealt with
in [6-13].

At the same time the lattice of totally saturated formations is now one of the least known lattices of
group formations. A number of open questions posed in [2-5, 14] testify to this judgement.

In [3], it was proved that for any non-negative integer n, both the lattice of all τ -closed n-multiply
saturated formations and the lattice of all soluble totally saturated ones are algebraic. Moreover, the
question was posed whether the lattice lτ∞ of all τ -closed totally saturated formations is algebraic (see [3,
Question 4.4.6]). In the present paper, this question is answered in the affirmative.

We recall some of the notation and definitions. A non-empty system θ of formations is called a complete
lattice of formations if the intersection of any family of formations in θ is again in θ and the set θ contains a
formation F such that H ⊆ F, for any formation H ∈ θ. The formations in θ are referred to as θ-formations.

Let A and B be groups, ϕ : A→ B be an epimorphism, and Ω and Σ be some systems of subgroups in
A and B, respectively. We denote by Ωϕ the set {Hϕ | H ∈ Ω}, and by Σϕ−1

the set {Hϕ−1 | H ∈ Σ} of
all preimages in A of all groups of Σ. Let X be any non-empty class of groups, and let G ∈ X be associated
with some system τ(G) of its subgroups. Following [3] we say that τ is a subgroup X-functor (or else τ is a
subgroup functor on X) if (τ(A))ϕ ⊆ τ(B) and (τ(B))ϕ−1 ⊆ τ(A) for every epimorphism ϕ : A→ B, where
A,B ∈ X; moreover, G ∈ τ(G) for any group G ∈ X.

The class F of groups is said to be τ -closed if τ(G) ⊆ F, for any group G ∈ F. Every formation of finite
groups is said to be 0-multiply saturated. For n � 1, the formation F is n-multiply saturated if it has a local
screen such that all non-empty values of the screen are (n− 1)-multiply saturated formations. A formation
that is n-multiply saturated for any non-negative integer n is referred to as totally saturated. If, in addition,
F is τ -closed then we call F a τ -closed n-multiply saturated, and accordingly, a τ -closed totally saturated,
formation.
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Let X be some set of groups. By lτ∞formX we denote a τ -closed totally saturated formation generated
by the class X of groups — that is, the intersection of all τ -closed totally saturated formations containing
X. If, moreover, X = {G} then lτ∞formG is conceived of as a one-generated τ-closed totally saturated
formation. For any M and H in lτ∞, we put M ∨τ

∞ H = lτ∞form (M ∪ H). The set of all τ -closed totally
saturated formations lτ∞ which is partially ordered w.r.t. inclusion ⊆ forms a complete lattice.

A screen all of whose non-empty values are lτ∞-formations is said to be lτ∞-valued. Let {fi | i ∈ I} be some

system of lτ∞-valued screens. Then ∨τ∞(fi | i ∈ I) denotes a screen f such that f(p) = lτ∞form
(⋃

i∈I

fi(p)
)

,

if at least one of the formations fi(p) is not ∅. Otherwise we put f(p) = ∅.
Recall that an element a of a lattice L is compact if a ≤ ∨(xj | j ∈ F ) holds for a ≤ ∨(xj | j ∈ J) and

some finite subset F ⊂ J [15]. A lattice L is algebraic if each element a ∈ L is a union of compact elements
of the lattice L. Below, for every non-empty set π of primes, by Nπ and Sπ we denote the respective classes
of all nilpotent and all soluble π-groups.

In order to prove our main result, we need some of the well-known facts from the formation theory of
groups.

LEMMA 1 [3]. Let A be a monolithic group with non-Abelian monolith, M be some τ -closed semifor-
mation, and A ∈ lτnformM. Then A ∈ M.

LEMMA 2 [2]. Let f be the local screen of a formation F and G be a finite group. If there is a prime
p for which G/Op(G) ∈ f(p) ∩ F then the group G belongs to the formation F.

LEMMA 3 [2]. Let f1 be the local screen of F and let H be a non-empty formation such that
π(H) ⊆ π(F). Then the formation FH has the local screen f such that for every prime p, the following
statements hold:

(1) f(p) = f1(p)H if p ∈ π(F);
(2) f(p) = ∅ if p �∈ π(F).

LEMMA 4 (see 3, [Lemma 4.1.2]). Let Fi be a τ -closed totally saturated formation and fi be a
minimal lτ∞-valued local screen for Fi (i ∈ I). Then ∨τ

∞(fi | i ∈ I) is the minimal lτ∞-valued local screen of
∨τ
∞(Fi | i ∈ I).

LEMMA 5 [13]. Let F be a non-empty τ -closed formation and π be the set of primes such that
π(F) ⊆ π. Then the product SπF is a τ -closed totally saturated formation.

LEMMA 6. Let H = lτ∞form
(⋃

i∈I

Fi

)
, where Fi (i ∈ I) is a τ -closed totally saturated formation, and

let A ∈ H be a monolithic group. Then A ∈ ⋃
i∈I

Fi if Soc(A) is a non-Abelian group.

Proof. Let A be as in the assumption, with π = π(H). By Lemma 5, H = lτ∞form
(⋃

i∈I

Fi

)
⊆

Sπτ form
(⋃

i∈I

Fi

)
. Hence A ∈ Sπτ form

(⋃
i∈I

Fi

)
. Since Soc(A) is non-Abelian, A ∈ τ form

(⋃
i∈I

Fi

)
. By

Lemma 1, A ∈ ⋃
i∈I

Fi. The proof is complete.

THEOREM. The lattice lτ∞ of all τ -closed totally saturated formations is algebraic.
Proof. First, we prove that for any group A, a one-generated τ -closed totally saturated formation

F = lτ∞formA is a compact element of the lattice lτ∞. The proof is by induction on the order of A.
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Let A be the counterexample of minimal order, that is,

F = lτ∞formA ⊆ H = lτ∞form

(⋃
i∈I

Fi

)
,

where Fi (i ∈ I) is an lτ∞-formation. We claim that A is a monolithic group. Suppose the contrary. Let N1

and N2 be distinct minimal normal subgroups of A. Put L = lτ∞form (A/N1) and M = lτ∞form (A/N2).
By induction, the statement is true for the groups A/N1 and A/N2. Since

L = lτ∞form (A/N1) ⊆ H = lτ∞form

(⋃
i∈I

Fi

)
,

M = lτ∞form (A/N2) ⊆ H = lτ∞form

(⋃
i∈I

Fi

)
,

there are tuples of indices i1, . . . , ik and j1, . . . , jn such that

L ⊆ lτ∞form
(
Fi1

⋃
. . .
⋃

Fik

)
,

M ⊆ lτ∞form
(
Fj1

⋃
. . .
⋃

Fjn

)
.

Hence
F = L ∨τ

∞ M ⊆ lτ∞form
(
Fi1

⋃
. . .
⋃

Fik

⋃
Fj1

⋃
. . .
⋃

Fjn

)
.

Contradiction. Therefore A is a monolithic group.

Let P = Soc(A). Assume that P is a non-Abelian group. Since A ∈ lτ∞form
(⋃

i∈I

Fi

)
, A ∈ ⋃

i∈I

Fi by

Lemma 6. Therefore there is an index i ∈ I such that A ∈ Fi. Contradiction.
Hence P is an Abelian p-group. Since lτ∞form (A/Φ(A)) = lτ∞formA, using induction we obtain P �⊆

Φ(A). Therefore P = Fp(A) = Op(A) and A = [P ]B for some maximal subgroup B of A. Let fi, f ,
and h be minimal lτ∞-valued local screens for the formations Fi, F, and H, respectively. By Lemma 4,
h = ∨τ

∞(fi | i ∈ I). Since P = Fp(A) and A ∈ H, we have

B � A/Fp(A) ∈ h(p) = ∨τ
∞(fi(p) | i ∈ I).

Keeping in mind that |B| < |A| and using induction, we find an index set J = {j1, . . . , jt}, for which

B � A/Fp(A) ∈ ∨τ
∞(fj(p) | j ∈ J).

By Lemma 4, l = ∨τ
∞(fj | j ∈ J) is a minimal lτ∞-valued local screen of the formation L = ∨τ

∞(Fj | j ∈ J).
Hence

A/Op(A) � B ∈ l(p) = ∨τ
∞(fj(p) | j ∈ J).

By Lemma 2, A belongs to L. Consequently F = lτ∞formA ⊆ L = lτ∞form
( ⋃

j∈J

Fj

)
. Contradiction. We

have thus shown that our assumption is invalid, and so F is a compact element of the lattice lτ∞. Since every
lτ∞-formation is obviously a union of its one-generated lτ∞-subformations in lτ∞, the lattice lτ∞ is algebraic.
The theorem is proved.

Recall that the subgroup X-functor τ is trivial if τ(G) = {G} for any group G ∈ X.
Applying the theorem to the case where τ is a trivial subgroup functor, we derive the following:

COROLLARY. The lattice of all totally saturated formations is algebraic.
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