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Let M be any quasivariety of Abelian groups, domM
G (H) be the dominion of a subgroup H of a

group G in M, and Lq(M) be the lattice of subquasivarieties of M. It is proved that domM
G (H)

coincides with a least normal subgroup of the group G containing H, the factor group with respect
to which is in M. Conditions are specified subject to which the set L(G,H,M) = {domN

G(H) |
N ∈ Lq(M)} forms a lattice under set-theoretic inclusion and the map ϕ : Lq(M) → L(G,H,M)
such that ϕ(N) = domN

G(H) for any quasivariety N ∈ Lq(M) is an antihomomorphism of the
lattice Lq(M) onto the lattice L(G,H,M).

INTRODUCTION

The notion of a dominion was introduced in [1] for studying epimorphisms. A dominion of a subalgebra
H of a universal algebra A in the full category M (A ∈ M), denoted domM

A (H), is a set of elements a ∈ A
such that ϕ(a) = ψ(a) for any two morphisms ϕ, ψ : A→M (M ∈ M), which coincide on H . It is not hard
to see that ϕ : A→ B (A,B ∈M) is an epimorphism in M iff domM

B (ϕ(A)) = B.
The notion of a dominion is closely related to the concept of an amalgam (see [2]). An amalgam [A,B;H ]

is a pair of universal algebras A and B with a common subalgebra H . An amalgam [A,B;H ] is said to
be special if there exists an isomorphism between the universal algebras A and B, keeping the elements
of H fixed. If, for the special amalgam [A,B;H ] in M, there exists a free amalgamated product, denoted
A ∗M

H B, that is, there are canonical injective morphisms λ : A→ A ∗M
H B and ρ : B → A ∗M

H B, with A and
B identified with λ(A) and ρ(B), respectively, then domM

A (H) = λ(A) ∩ ρ(B) (see [2, 3]).
The dominions were dealt with in different classes of universal algebras [3-5]. Among axiomatizable

classes, however, only quasivarieties were found to enjoy a complete theory of defining relations, which
allows of determining a free amalgamated product in these, given any amalgam [6; see also 7]. This
was an important argument for launching a study into dominions in quasivarieties of universal algebras,
undertaken in [8]. There, the concept of a dominion is extended to the case A �∈ M, which turns out useful
in dealing with dominions in quasivarieties. There arose a possibility to bring under consideration the set
L(A,H,M) = {domN

A (H) | N ∈ Lq(M)}, where Lq(M) is the lattice of subquasivarieties of a quasivariety M.
Also, in [8], conditions were specified under which L(A,H,M) forms a lattice under set-theoretic inclusion,
and the problem was posed as to the interplay between the lattices Lq(M) and L(A,H,M). In particular,
a question was dubbed asking which conditions are necessary for the map ϕ : Lq(M)→ L(A,H,M), under
which ϕ(N) = domN

A(H) for any N ∈ Lq(M), is an antihomomorphism of Lq(M) onto L(A,H,M). For the
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most part of the present paper, we work to resolve this problem for the case of an arbitrary quasivariety of
Abelian groups.

We prove that the dominion of a subgroup H of G in an arbitrary quasivariety M of Abelian groups
coincides with a least normal subgroup of the group G containing H , the factor group w.r.t. which belongs
to M. It is also stated that if G/domM

G (H) is a finitely generated group then the set L(G,H,M) forms a
complete lattice under set-theoretic inclusion. Finally, we specify necessary and sufficient conditions under
which ϕ : Lq(M) → L(G,H,M), provided that ϕ(N) = domN

G(H) for any quasivariety N ∈ Lq(M), is an
antihomomorphism of Lq(M) onto L(G,H,M).

1. PRELIMINARIES

Let M be a quasivariety of groups, G a group, and H a subgroup of G. Following [8], the dominion of
the subgroup H of the group G in the quasivariety M is defined thus:

domM
G (H) = {g ∈ G | ∀M ∈M ∀ϕ, ψ : G→M if ϕ|H = ψ|H then ϕ(g) = ψ(g)},

where ϕ, ψ : G→ M are homomorphisms of the group G into the group M ; ϕ|H , ψ|H is the restriction of
ϕ, ψ to H .

Obviously, a dominion is a subgroup of the group G containing H . Moreover, if M is an arbitrary
quasivariety of Abelian groups then domM

G (H) is a normal subgroup containing a derived subgroup of G.
Also it is not hard to see that for arbitrary quasivarieties M and N, N ⊆ M implies domM

G (H) ⊆ domN
G(H).

In the paper we adopt the following notation:
N is the set of natural numbers;
(n, r) is the greatest common divisor of numbers n, r ∈ N;
H ≤ G signifies that H is a subgroup of G;
H �G signifies that H is a normal subgroup of G;
G/H is the factor subgroup of G w.r.t. a normal subgroup H ;
g is an element gH of G/H ;
gr(H) is a subgroup of G generated by H ;
E = {e} is a trivial group;
Z is an infinite cyclic group;
Zn is cyclic of order n;
Zp∞ is a quasicyclic group of type p∞, p is a prime;
G′ is a derived subgroup of G;
kerϕ is the kernel of a homomorphism ϕ;
ψϕ(g) = ψ(ϕ(g)) is the image of an element g under the composition of two homomorphisms ϕ and ψ.
By M(G,H) we denote the least normal subgroup of the group G containing H , the factor group

w.r.t. which belongs to a quasivariety M. It is not hard to show that for any quasivariety M of groups,
M(G,H) = {g ∈ G | ∀M ∈ M ∀ϕ : G → M if H ⊆ kerϕ then ϕ(g) = e}, where ϕ is a homomorphism of
G into M . By IsG(H) = gr(g | g ∈ G& (∃n)(n ∈ N& gn ∈ H)) we denote the isolator of a subgroup H

in a group G. If G′ ⊆ H then IsG(H) = {g | g ∈ G& (∃n)(n ∈ N& gn ∈ H)} and IsG(H) �G. We write
q(G1, . . . , Gn) to denote a quasivariety generated by the groups G1, . . . , Gn.

According to [9], two quasivarieties of Abelian groups coincide iff they have equal intersections with a
set Q of groups, consisting of groups Z, E and cyclic p-groups, where p runs through the set of all primes.
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Relevant results in [9] imply that an arbitrary quasivariety M of Abelian groups is representable as M = q(S)
for some S ⊆ Q, and a cyclic p-group belongs to the quasivariety q(S) iff it is isomorphic to a suitable

subgroup of some group in S. Furthermore, if M =
∨
i∈I

Mi, Mi = q(Si) (Si ⊆ Q) then M = q

(⋃
i∈I
Si

)
. It is

also worth observing the following: if the group Z does not belong to the quasivariety M = q(S) then the
set S consists of finitely many non-isomorphic cyclic p-groups, and M is a variety.

The mapping ϕ of a lattice (L1,∧,∨) into a lattice (L2,∧,∨) is called an antihomomorphism if ϕ(a∨b) =
ϕ(a) ∧ ϕ(b) and ϕ(a ∧ b) = ϕ(a) ∨ ϕ(b) for any a, b ∈ L1. A 1-1 antihomomorphism is called an anti-
isomorphism. A lattice is said to be complete if for any non-empty subset in that lattice there exist a least
upper bound and a greatest lower bound. The mapping of a complete lattice into a complete lattice is called
a complete antihomomorphism if it sends greatest (least) lower (upper) bounds of non-empty subsets to
least (greatest) upper (lower) bounds of their images. Relevant information on the theory of quasivarieties
and on lattice theory can be found in [7, 10, 11].

We describe the structure of a dominion in an arbitrary quasivariety of Abelian groups.

THEOREM 1. The dominion of a subgroup H of a group G in any quasivariety M of Abelian groups
coincides with a least normal subgroup of the group G containing H , the factor group w.r.t. which belongs
to M, that is, domM

G (H) = M(G,H).
Proof. Assume that a ∈ domM

G (H) and ϕ : G → M (M ∈ M) is a homomorphism satisfying the
condition that H ⊆ kerϕ. Consider a homomorphism ψ : G → M , under which ψ(g) = e for any element
g ∈ G. Since ϕ|H = ψ|H , ϕ(a) = ψ(a) by the definition of a dominion. Hence ϕ(a) = e and a ∈M(G,H).

We argue for the inverse inclusion. Let a ∈M(G,H), and let ϕ, ψ : G→M (M ∈ M) be homomorphisms
such that ϕ|H = ψ|H . Consider a map ϕ

ψ : G → M , defined by setting ϕ
ψ (g) = ϕ(g)ψ(g)−1. It is easy

to verify that ϕ
ψ is a homomorphism and H ⊆ ker ϕψ . Since a ∈ M(G,H), we have ϕ

ψ (a) = e. Hence
ϕ(a) = ψ(a), and a ∈ domM

G (H) by the definition of a dominion. �

COROLLARY 1. Let M be any quasivariety of Abelian groups, G be a group, and H ≤ G. Then
domM

G (H) = H if and only if H �G and G/H ∈ M.

COROLLARY 2. Let M be the quasivariety of torsion-free Abelian groups, G be a group, and H ≤ G.
Then domM

G (H) = H if and only if H �G and IsG(H) = H .

COROLLARY 3. Let M be any variety of Abelian groups, G ∈M, and H�G. Then domM
G (H) = H .

We note that Theorem 1, for H = E, was proved in [8], and Corollary 3 follows from [3, Lemma 2.6].
For non-Abelian quasivarieties of groups, according to [8], Theorem 1 fails; however, domM

G (H) ⊆ M(G,H)
holds in this instance. For example, let G = S3 be a symmetric group of degree 3, whose elements are
permutations of the same degree, and let H = gr((12)) ≤ G, M = qG. Clearly, M(G,H) = G and the
map ϕ : G → G, under which ϕ((12)) = (12), ϕ((13)) = (23), ϕ((23)) = (13), ϕ((123)) = (132), and
ϕ((132)) = (123), is a homomorphism. Since ϕ|H = ψ|H , where ψ is the identity map of G into itself, we
have domM

G (H) = H .

2. BASIC RESULT

LEMMA 1. Let M be any quasivariety of Abelian groups, G be a group, H ≤ G, and G/domM
G (H)

be a finitely generated group. For any set of quasivarieties Ni ∈ Lq(M) (i ∈ I),

dom

∨
i∈I

Ni

G (H) =
⋂
i∈I

domNi

G (H).
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Proof. If I is a finite set then the statement of the lemma follows from [8, Lemma 4.2]. Let I
be infinite. Put N =

∨
i∈I

Ni. Since Ni ⊆ N, we have domN
G(H) ⊆ domNi

G (H) for any i ∈ I. Hence

domN
G(H) ⊆ ⋂

i∈I
domNi

G (H).

Let a ∈ ⋂
i∈I

domNi

G (H). We claim that a ∈ domN
G(H). Consider an arbitrary homomorphism ϕ : G →

N ∈ N satisfying the condition that H ⊆ kerϕ. Since G/ kerϕ ∈ N ⊆ M, domM
G (H) ⊆ kerϕ in view

of Theorem 1. We have ϕ(G) ∼= G/ kerϕ ∼= (G/domM
G (H))/(kerϕ/domM

G (H)). Hence ϕ(G) is a finitely
generated group, which factors, according to [12], into a direct product of cyclic p-groups and infinite cyclic
groups.

Assume ϕ(a) �= e. We claim that a �∈ domNi

G (H) for some i ∈ I under this assumption. First, consider
the case where there is a projection π of the group ϕ(G) onto one of the cyclic p-groups in the factorization
of ϕ(G) for which πϕ(a) �= e. Since ϕ(G) ∈ N, that cyclic p-group is contained in some quasivariety Ni,
i ∈ I. Keeping in mind that a �∈ ker(πϕ) and using Theorem 1, we obtain a �∈ domNi

G (H).
It remains to consider the case where πϕ(a) �= e only if ϕ(G) is projected onto an infinite cyclic group

in the factorization. If Z ∈ Ni for some i ∈ I, using a similar argument, we see that a �∈ domNi

G (H). Let
Z �∈ Ni for any i ∈ I. Denote by b the generator of a fixed group Z in the factorization of ϕ(G), for which
πϕ(a) = bn �= e for some n ∈ N given a projection π onto that Z. Let n = pl11 . . . p

lk
k be the factorization

of n into a product of degrees of distinct primes p1, . . . , pk. Since Z ∈ N, q(Z
p

l1
1
, . . . , Z

p
lk
k

) �= N and there
exists a group Z

p
sj
j
∈ N such that sj > lj for some j, 1 � j � k, or there exists a Zqs ∈ N, where q is a

prime, and q �= pi for any i = 1, . . . , k
Let Z

p
sj
j

= gr(c) ∈ N. Consider a natural homomorphism ψ : Z → Z/gr(bp
sj
j ) = Z

p
sj
j

. Then ψπϕ(a) =

ψ(bn) = cn = cp
lj
j n

′ �= e, since sj > lj and (pj , n′) = 1. If Zqs = gr(c) ∈ N, we handle a homomorphism
ψ : Z → Z/gr(bq

s

) = Zqs . Since (q, n) = 1, ψπϕ(a) = ψ(bn) = cn �= e. Each of the groups Z
p

sj
j

and

Zqs belongs to some quasivariety Ni, and so a �∈ domNi

G (H) by Theorem 1. Thus the assumption that
ϕ(a) �= e implies that a �∈ domNi

G (H) for some i ∈ I. Hence a �∈ ⋂
i∈I

domNi

G (H), a contradiction with the

initial assumption on a. Consequently, ϕ(a) = e, and by Theorem 1, a ∈ domN
G(H). �

The next lemma — an analog of Theorem 4.4 in [8] — follows from Lemma 1.

LEMMA 2. Let M be any quasivariety of Abelian groups, G be a group, H ≤ G, and G/domM
G (H) be

a finitely generated group. The set L(G,H,M) = {domN
G(H) | N ∈ Lq(M)} forms a complete lattice under

set-theoretic inclusion.
For any quasivariety M of Abelian groups, we consider the following sublattices of Lq(M):

L1
q(M) = {N | N ∈ Lq(M), Z �∈ N},

L2
q(M) = {N | N ∈ Lq(M), Z ∈ N}.

For every i = 1, 2, we define the set

Li(G,H,M) = {domN
G(H) | N ∈ Liq(M)}.

LEMMA 3. Let M be any quasivariety of Abelian groups, G be a group, H ≤ G, and G/domM
G (H)

be a finitely generated group. For N,R ∈ Liq(M), i = 1, 2, the equality domN∧R
G (H) = domN

G(H)domR
G(H)

holds.
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Proof. That domN∧R
G (H) ⊇ domN

G(H)domR
G(H) follows from the definition of a dominion. We argue

for the way back. We consider an arbitrary element a ∈ domN∧R
G (H) and show that there are numbers

n, r ∈ N such that an ∈ domN
G(H) and ar ∈ domR

G(H).
Let N,R ∈ L1

q(M). Then G/domN
G(H) ∈ N and G/domR

G(H) ∈ R by Theorem 1. Hence G/domN
G(H)

and G/domR
G(H) are periodic groups, and so the required n, r exist.

Let N,R ∈ L2
q(M). Since G/IsG(gr(G′, H)) ∈ qZ ⊆ N∧R, domN∧R

G (H) ⊆ IsG(gr(G′, H)) by Theorem 1.
The inclusions gr(G′, H) ⊆ domN

G(H) and gr(G′, H) ⊆ domR
G(H) imply that an ∈ domN

G(H) and ar ∈
domR

G(H) for some n, r ∈ N.
Let n, r ∈ N be least with the properties an ∈ domN

G(H) and ar ∈ domR
G(H). If (n, r) = 1 then

a ∈ domN
G(H)domR

G(H), and so the lemma is proved. Assume that (n, r) �= 1, and p is a prime, which is
a divisor of (n, r). The group G/domM

G (H) is finitely generated; hence, G/domN
G(H) and G/domR

G(H) too
are finitely generated. Consider projections π1 : G/domN

G(H)→ Zps ∈ N and π2 : G/domR
G(H) → Zpt ∈ R

onto the p-components in the factorizations of G/domN
G(H) and G/domR

G(H) into direct products of cyclic
groups such that π1θ1(a) �= e and π2θ2(a) �= e, where θ1 : G→ G/domN

G(H) and θ2 : G→ G/domR
G(H) are

natural homomorphisms. Without loss of generality, we may assume that s � t. Then Zps ∈ N ∧ R. Since
H ⊆ ker(π1θ1) and π1θ1(a) �= e, by Theorem 1 it follows that a �∈ domN∧R

G (H), which is a contradiction.
We have (n, r) = 1, a ∈ domN

G(H)domR
G(H). The inverse inclusion is thus proved, that is, domN∧R

G (H) =
domN

G(H)domR
G(H). �

LEMMA 4. Let M be any quasivariety of Abelian groups, G be a group, H ≤ G, and G/domM
G (H)

be a finite group. Then domN∧R
G (H) = domN

G(H)domR
G(H) for N,R ∈ Lq(M).

Proof. It suffices to show that domN∧R
G (H) ⊆ domN

G(H)domR
G(H). Lemma 3 implies that we can

limit ourselves to the case Z �∈ N, Z ∈ R. Let m be the order of G/domM
G (H), and let m = pm1

1 . . . pmk

k

be the factorization of m into a product of degrees of distinct primes p1, . . . , pk. It is easy to see that
R = R1∨R2, where R1 = q(Z,Z

q
l1
1
, . . . , Zqls

s
, . . .), R2 = q(Zpr1

1
, . . . , Zprk

k
), and q1, . . . , qs, . . . are primes that

are not divisors of m; l1, . . . , ls, . . . , r1, . . . , rk ∈ N ∪ {∞} ∪ {0}.
Note that domR1

G (H) = G. Indeed, let ϕ : G → R ∈ R1 be any homomorphism satisfying H ⊆ kerϕ.
Since G/ kerϕ ∈ R1 ⊆ M, we have domM

G (H) ⊆ kerϕ by Theorem 1. The map ψ : G/domM
G (H) → R,

given by the rule ψ(g) = ϕ(g) for any g ∈ G, is a homomorphism. It is clear that ϕ = ψθ, where θ : G →
G/domM

G (H) is a natural homomorphism. The description of the quasivariety R1 implies ϕ(G) = ψθ(G) =
ψ(G/domM

G (H)) = E. By Theorem 1, domR1
G (H) = G. By Lemma 1, domR

G(H) = domR1∨R2
G (H) =

domR1
G (H) ∩ domR2

G (H) = G ∩ domR2
G (H) = domR2

G (H). Using the property of being distributive for the
lattice of quasivarieties of Abelian groups, stated in [10], we obtain

domN∧R
G (H) = domN∧(R1∨R2)

G (H) = dom(N∧R1)∨(N∧R2)
G (H) =

domN∧R1
G (H) ∩ domN∧R2

G (H) = G ∩ domN∧R2
G (H) = domN∧R2

G (H).

We put s1 = min(m1, r1), . . . , sk = min(mk, rk) and consider a quasivariety R′
2 = q(Zps1

1
, . . . , Zpsk

k
).

Obviously, R′
2 = R2 ∧ q(G/domM

G (H)) and domR2
G (H) ⊆ domR′

2
G (H). Since q(G/domM

G (H)) is a va-
riety, using the isomorphism G/domR2

G (H)) ∼= (G/domM
G (H))/(domR2

G (H)/domM
G (H)), we arrive at

G/domR2
G (H) ∈ R2∧q(G/domM

G (H)) = R′
2. By Theorem 1, domR′

2
G (H) ⊆ domR2

G (H), whence domR2
G (H) =

domR′
2

G (H). Now, applying Lemma 3, we have

domN∧R
G (H) = domN∧R2 ⊆ domN∧R′

2
G (H) = domN

G(H)domR′
2

G (H) =

domN
G(H)domR2

G (H) = domN
G(H)domR

G(H). �
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LEMMA 5. Let M be any quasivariety of Abelian groups, G be a group, H ≤ G, and G/domM
G (H)

be a finitely generated group. If M = q(G/domM
G (H)) then N = q(G/domN

G(H)) for any quasivarieties
N,R ∈ Lq(M), and the following equality holds:

domN
G(H) ∨ domR

G(H) = domN∧R
G (H).

Proof. By Theorem 1, q(G/domN
G(H)) ⊆ N. Suppose N �= q(G/domN

G(H)). We handle some cases.
Let Z �∈ q(G/domN

G(H)), Z ∈ N. Denote by a the generator of some group Z in the representation
of G/domM

G (H) as a direct product of cyclic groups; π : G/domM
G (H) → Z ∈ N is the projection of

G/domM
G (H) onto this component; θ : G→ G/domM

G (H) is a natural homomorphism; a is some preimage
of a under the natural homomorphism θ. For any n ∈ N, we have πθ(an) = π(an) = (π(a))n �= e and
H ⊆ ker(πθ); hence, an �∈ domN

G(H) for any n ∈ N by Theorem 1. This implies that Z ∈ q(G/domN
G(H)),

which is a contradiction with the hypothesis. Therefore the case where Z �∈ q(G/domN
G(H)) and Z ∈ N is

an impossibility.
Suppose Zpl �∈ q(G/domN

G(H)), Zpl ∈ N, and Zpl+1 �∈ N. Let a be the generator for Zpm (m � l) in the
representation ofG/domM

G (H) as a direct product of cyclic groups. Consider a subgroup (G/domM
G (H))p

m−l

of G/domM
G (H), letting ap

m−l

be the generator for Zpl in the representation of (G/domM
G (H))p

m−l

as a
direct product of cyclic groups. We construct a chain of homomorphisms where θ : G → G/domM

G (H)
is a natural homomorphism, ϕ : G/domM

G (H) → (G/domM
G (H))p

m−l

is a homomorphism mapping every
element into its pm−lth degree, and π : (G/domM

G (H))p
m−l → Zpl ∈ N is the projection of the group

(G/domM
G (H))p

m−l

onto the component Zpl , which is generated by an element ap
m−l

, in its factorization.
Let a be some preimage of a under the natural homomorphism θ. Since πϕθ(ap

l−1
) = πϕ(ap

l−1
) =

π((ap
m−l

)p
l−1

) = π(ap
m−1

) = ap
m−1 �= e and H ⊆ ker(πϕθ), we have ap

l−1 �∈ domN
G(H). From Zpl ∈ N

and Zpl+1 �∈ N, it follows that ψ(ap
l

) = e under any homomorphism ψ : G → N ∈ N. By Theorem 1,
ap

l ∈ domN
G(H), and hence Zpl ∈ q(G/domN

G(H)), which is a contradiction. This means that the case where
Zpl �∈ q(G/domN

G(H)), Zpl ∈ N, and Zpl+1 �∈ N is also impossible. Consequently, N = q(G/domN
G(H)).

We argue to show that domN
G(H)∨ domR

G(H) = domN∧R
G (H) for any quasivarieties N,R ∈ Lq(M). The

definition of a dominion maintains that N ⊆ R implies domN
G(H) ⊇ domR

G(H). We claim that N ⊆ R

if domN
G(H) ⊇ domR

G(H). We have domN
G(H) ∩ domR

G(H) = domR
G(H) = domN∨R

G (H). From the first
statement of the present lemma it follows that different subquasivarieties of M enjoy different dominions.
Hence R = N ∨ R and N ⊆ R.

By the definition of a least upper bound, domN
G(H)∨ domR

G(H) = domK
G (H), where K is a quasivariety

generated by the set of all quasivarieties Ni ∈ Lq(M) (i ∈ I) satisfying the condition that domNi

G (H) ⊇
domN

G(H) ∪ domR
G(H). It follows that Ni ⊆ N ∧ R, whence K = N ∧ R. �

LEMMA 6. Let M be any quasivariety of Abelian groups, suppose that G is a group, H ≤ G, and
G/domM

G (H) is a finitely generated group, and assume that one of the following conditions holds:
(1) G/domM

G (H) is a finite group;
(2) M = q(G/domM

G (H)).
Then ∧

i∈I
domNi

G (H) = dom

∨
i∈I

Ni

G (H),
∨
i∈I

domNi

G (H) = dom

∧
i∈I

Ni

G (H)

for any set of quasivarieties Ni ∈ Lq(M) (i ∈ I).
Proof. That the first equality is valid follows from Lemma 1. If M = q(G/domM

G (H)), then the lattice
Lq(M) is finite, and so the second equality holds in view of Lemma 5.
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Let G/domM
G (H) be a finite group. Put R = q(G/domM

G (H)). Applying Lemma 4 with any quasivariety
N ∈ Lq(M) yields

domN∧R
G (H) = domNdomR

G(H) = domN
G(H)domM

G (H) = domN
G(H).

The fact that Lq(R) is finite implies that for any set of quasivarieties Ni ∈ Lq(M) (i ∈ I), there exists a
finite index subset J ⊆ I such that {Ni ∧ R | i ∈ I} = {Ni ∧R | i ∈ J}. By Lemma 4,

∨
i∈I

domNi

G (H) =
∨
i∈I

domNi∧R
G (H) =

∨
i∈J

domNi∧R
G (H) = dom

∧
i∈J

(Ni∧R)

G (H) =

dom

∧
i∈I

(Ni∧R)

G (H) = dom
(
∧

i∈J

Ni)∧R

G (H) = dom

∧
i∈J

Ni

G (H). �

THEOREM 2. Let M be any quasivariety of Abelian groups, G be a group, H ≤ G, and G/domM
G (H)

be a finitely generated group. Then the map ϕ : Lq(M)→ L(G,H,M), under which ϕ(N) = domN
G(H) for

any quasivariety N ∈ Lq(M), is an antihomomorphism of the lattice Lq(M) onto the lattice L(G,H,M) if
and only if one of the following conditions holds:

(1) G/domM
G (H) is a finite group;

(2) M = q(G/domM
G (H)).

If (1) and (2) are satisfied then ϕ is a complete antihomomorphism.
The map ϕ is an anti-isomorphism iff M = q(G/domM

G (H)).
Proof. Assume one of (1), (2) holds. By Lemma 6, ϕ is a complete antihomomorphism of Lq(M) onto

L(G,H,M). Now, suppose that none of (1), (2) holds. Put R = q(G/domM
G (H)); then M �= R, Z ∈ R.

Hence there is a group Zpm ∈ R such that Zpm+1 �∈ R and Zpm+1 ∈ M, where m � 0. The quasivariety R is
representable as R = q(Z) ∨ R′, where R′ is a quasivariety generated by all periodic Abelian groups in the
representation of G/domM

G (H) as a direct product of cyclic groups. Let N = q(Zpm+1) ∨R′. It is not hard
to see that domR

G(H) = domM
G (H) ⊆ domN

G(H) and N ∧ R = R′.
We argue to show that domN

G(H) �= domR′
G (H). Indeed, let a be one of the generators for a cyclic group

of infinite order in the representation of G/domM
G (H) as a direct product of cyclic groups. Since N and R′

are varieties of Abelian groups, we can choose least numbers l, n ∈ N with the properties al ∈ domR′
G (H) and

an ∈ domN
G(H). From Zpm+1 �∈ R′, Zpm+1 ∈ N, and Zpm+2 �∈ N, it follows that pm+1 divides n but does not

divide l, whence domN
G(H) �= domR′

G (H). Therefore ϕ(N ∧ R) = domN∧R
G (H) = domR′

G (H) �= domN
G(H) =

domN
G(H) ∨ domM

G (H) = domN
G(H) ∨ domR

G(H) = ϕ(N) ∨ ϕ(R). Hence ϕ is not an antihomomorphism.
We finish to prove the last claim of the theorem. Let M = q(G/domM

G (H)). By Lemma 5, N �= R

implies domN
G(H) �= domR

G(H). Hence ϕ is an anti-isomorphism. Conversely, let ϕ be an anti-isomorphism.

We have domM
G (H) = domq(G/domM

G (H))
G (H), and so M = q(G/domM

G (H)). �
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