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Abstract
We use a unified elementary approach to prove the second part of classical, mixed, super,
and mixed super Schur-Weyl dualities for general linear groups and supergroups over an
infinite ground field of arbitrary characteristic. These dualities describe the endomorphism
algebras of the tensor space and mixed tensor space, respectively, over the group algebra of
the symmetric group and the Brauer wall algebra, respectively. Our main new results are the
second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over
an infinite ground field of positive characteristic.
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1 Introduction

The classical Schur-Weyl duality is one of the cornerstones of the representation theory of
algebraic groups. It connects the representation theory of the general linear and symmetric
groups. This duality has been generalized to mixed tensor space settings and established
for various groups and supergroups. This paper studies Schur-Weyl dualities over an infi-
nite ground field K of arbitrary characteristic. Its main contribution is a characteristic-free
elementary approach that unifies the second parts of the classical, mixed, super, and mixed
super Schur-Weyl dualities over infinite ground fields. The results for the mixed and mixed
super Schur-Weyl dualities in positive characteristics are new.

Let K be an infinite field, G be the general linear group GL(m) or the general linear
supergroup GL(m|n), and Dist(G) the distribution algebra of G. Let V be a natural G-
supermodule, W = V ∗ be its dual, and �r be the symmetric group on r elements. There are
commuting actions of the distribution algebra Dist(G) and the group algebra K�r on V⊗r .
The image of Dist(GL(m)) in EndK (V⊗r ) is called the Schur algebra and is denoted by
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S(m, r). The image of Dist(GL(m|n)) in EndK (V⊗r ) is called the Schur superalgebra and
is denoted by S(m|n, r). The first part of the Schur-Weyl duality says the image of K�r in
EndK (V⊗r ) is EndG(V⊗r )op . The second part states that EndK�r (V

⊗r ) is isomorphic to
S(m, r) if G = GL(m) and to S(m|n, r) if G = GL(m|n).

Schur first established the Schur-Weyl duality for GL(m) over the ground field C of
complex numbers in [15]. For the survey of Schur-Weyl duality over a field of positive
characteristic, please consult [10]. The proof of the first part of Schur-Weyl duality that uses
the first fundamental theorem of invariant theory is given in [5, Thm 4.1]. A simple proof of
the first part of Schur-Weyl duality in the case m ≥ r is provided in [4, p.210].

The super Schur-Weyl duality over fields of characteristic zero was established in [2] and
[16]. The second part of super Schur-Weyl duality over fields of positive characteristic was
established by N. Muir as described in [9, 2.3 (1)].

Next, consider the mixed tensor product space V⊗r ⊗ W⊗s . Let δ = m − n and Br ,s(δ)
be the walled Brauer algebra.

There are commuting actions of the distribution algebra Dist(G) and the Brauer wall
algebra Bm,n

r ,s (δ) on V⊗r ⊗ W⊗s . The image of Dist(GL(m)) in EndK (V⊗r ⊗ W⊗s) is
called the rational Schur algebra and is denoted by S(m, r , s). The image of Dist(GL(m|n))

in EndK (V⊗r ⊗ W⊗s) is called the rational Schur superalgebra and is denoted by
S(m|n; r , s). The first part of the mixed Schur-Weyl duality states that the image of
Bm,n
r ,s (δ) in EndK (V⊗r ⊗ W⊗s) is EndG(V⊗r ⊗ W⊗s). The second part states that

EndBm,n
r,s (δ)(V

⊗r ⊗ W⊗s) is isomorphic to S(m, r , s) if G = GL(m) and to S(m|n, r , s)
if G = GL(m|n).

The mixed Schur-Weyl duality for GL(m) over fields of characteristic zero was first
established in [8], and an alternative proof was given in [18]. The first part was proved using
the first fundamental theorem of invariant theory (see [5, Thm 3.1]), while the second part
was called “the hard part” in [18]. We are not aware of analogous results in the positive
characteristic case.

The first part of the mixed super Schur-Weyl duality was proved over the ground field
K of characteristic zero in [3] (see also [6]) following the approach specified in [13]. In
particular, by Theorem 7.8 of [3], if (m + 1)(n + 1) > r + s, then Bm,n

r ,s (δ) is isomorphic to
EndG(V⊗r ⊗W⊗s). Partial mixed super Schur-Weyl duality results were established earlier
in [17]. We have learned recently that the second part of the mixed super Schur-Weyl duality
was established in the case when r + s ≤ m − n in [14]. We are unaware of a general proof
of the second part of the mixed super Schur-Weyl duality in the characteristic zero case and
of any evidence in the positive characteristic case.

This paper aims to give elementary proofs of the second part of the classical, super,
mixed, and mixed super Schur -Weyl dualities over an infinite ground field of an arbitrary
characteristic. We obtain new results for the mixed Schur-Weyl dualities in the positive
characteristic case and for the mixed super Schur-Weyl dualities in the case of arbitrary
characteristic.

Since we use the algebraic independence of polynomial functions in several variables, we
need to assume that the ground field is infinite. In general, this property is not true over finite
fields. For Schur-Weyl duality over finite fields, see [1].

In Section 2, we first introduce the Brauer wall algebra, actions of the general linear group
GL(m), and the general linear supergroupGL(m|n) on ordinary tensor space V⊗r andmixed
tensor space V⊗r ⊗W⊗s . We consider induced homomorphisms �r , �r , �r ,s and �r ,s and
state classical, mixed, super and mixed super Schur-Weyl dualities.
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In Sections 3 through 6, we use elementary methods to investigate the second part of
Schur-Weyl dualities. In Section 3, we prove the second part of the classical Shur-Weyl
duality, and in Section 4, we demonstrate the second part of the mixed Schur-Weyl duality,
both involving the group GL(m). In Section 5, we prove the second part of the super Schur-
Weyl duality, and in Section 6, we derive the second part of the mixed super Schur-Weyl
duality, both involving the supergroup GL(m|n). In Section 7, we show the limitation of this
elementary approach to proving the first part of the classical Schur-Weyl duality.

2 Notation

Throughout the paper, we assume that the ground field K is an infinite field of characteristic
zero or positive characteristic p.

2.1 BrauerWall Algebra Br,s(ı)

Let δ be an element of K. We define generators of Br ,s(δ) by (the isotopy classes of) dia-
grams. A diagram is a bipartite graph on the set of upper vertices 1, . . . , r + s and lower
vertices 1, . . . , r + s such that each vertex is connected to exactly one other vertex by an
edge. The edges can be horizontal or vertical. Each vertical edge connects an upper vertex
from the set 1, . . . , r to a lower vertex from the set 1, . . . , r , or an upper vertex from the
set r + 1, . . . , r + s to a lower vertex from the set r + 1, . . . , r + s. Each horizontal edge
connects an upper vertex from 1, . . . , r to an upper vertex from r + 1, . . . , r + s, or a lower
vertex from 1, . . . , r to a lower vertex from r + 1, . . . , r + s.

To define the multiplication of diagrams σ and τ put the diagram σ under τ and create
their concatenation σ ◦ τ by removing any internal cycles (appearing in the middle of the
concatenation). If there are t internal cycles, then the product στ equals δtσ ◦ τ . We extend
this to (δaσ)(δbτ) = δa+b+tσ ◦ τ .

To a transposition σi = (i, i + 1) for 1 ≤ i �= r ≤ r + s, denote the diagram τi obtained
by connecting each upper vertex j to a lower vertex σi ( j).

For σr = (r , r + 1), denote the diagram τr obtained by connecting vertex j to j for each

j �= r , r + 1, connecting r to r + 1, and r + 1 to r .
Then τ1, . . . , τr+s−1 are generators of Br ,s(δ).
The relations between τi are described in (2.3)—(2.6) of [3].
The group algebra K�r+s can be described by permutation diagrams such that there is a

vector space isomorphism flipr ,s : K�r+s → Br ,s(δ) as in (2.1) of [3].
The above description of Br ,s(δ) is valid for an arbitrary δ. However, since we work with

G = GL(m|n) in this paper, we always assume δ = m − n.

2.2 Actions and Homomorphisms

We consider two cases: the classical case when G = GL(m) and the supercase when G =
GL(m|n).

The parity | j | is defined as | j | = 0 for j = 1, . . . ,m and | j | = 1 for j = m+1, . . . ,m+n.
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If G = GL(m), then a matrix unit ei j ∈ Dist1(G) acts on basis elements {v1, . . . , vm} of
the natural module V via ei jvk = δ jkvi and on the basis elements {v∗

1 , . . . , v
∗
m} of W = V ∗

as ei jv∗
k = −δikv

∗
j .

Analogously, if G = GL(m|n), then a matrix unit ei j ∈ Dist1(G) acts on basis ele-
ments {v1, . . . , vm+n} of the natural module V via ei jvk = δ jkvi and on the basis elements
{v∗

1 , . . . , v
∗
m+n} of W = V ∗ as ei jv∗

k = −δik(−1)|i |(|i |+| j |)v∗
j .

2.2.1 Actions on V⊗r

We write generators of V⊗r as
vi1 ⊗ . . . ⊗ vir = vI .

If G = GL(m), then the right action of generators τ j = ( j, j + 1), for 1 ≤ j < r , of the
group algebra K�r on generators of the tensor product space V⊗r is given as (vI )τ j = vJ ,
where the multi-index J = I .( j, j + 1) is obtained from I by transposing entries at the jth
and ( j + 1)st place.

If G = GL(m|n), the right action of K�r on V⊗r is given as

(vI )τ j = (−1)|i j ||i j+1|vJ = (−1)|i j ||i j+1|vI .( j, j+1).

The left action of GL(m) on V⊗r is given by

g.vI = g.(vi1 ⊗ . . . ⊗ vir ) = g.vi1 ⊗ . . . ⊗ g.vir ,

and the left action of the general linear Lie algebra gl(m) on V⊗r is given as

ei j .vI = ei j .(vi1 ⊗ . . . ⊗ vir ) =
r∑

a=1

vi1 ⊗ . . . ⊗ ei jvia ⊗ . . . ⊗ vir

=
r∑

a=1

δ j iavi1 ⊗ . . . ⊗ vi ⊗ . . . ⊗ vir .

The left action of GL(m|n) on V⊗r is given analogously as

g.vI = g.(vi1 ⊗ . . . ⊗ vir ) = g.vi1 ⊗ . . . ⊗ g.vir ,

and the left action of the general linear Lie superalgebra gl(m|n) on V⊗r is given as

ei j .vI = ei j .(vi1 ⊗ . . . ⊗ vir ) =
r∑

a=1

(−1)|ei j |(|i1|+...+|ia−1|)vi1 ⊗ . . . ⊗ ei jvia ⊗ . . . ⊗ vir

=
r∑

a=1

δ j ia (−1)|ei j |(|i1|+...+|ia−1|)vi1 ⊗ . . . ⊗ vi ⊗ . . . ⊗ vir .

The right action of K�r on V⊗r commutes with the left action of G on V⊗r .
Therefore, there are induced homomorphisms

�r : Dist(G) → EndK�r (V
⊗r )op (1)

and
�r : K�r → EndG(V⊗r )op. (2)

123



A Note on Schur-Weyl Dualities...

If G = GL(m), the image of Dist(G) in EndK�r (V
⊗r )op is the Schur algebra S(m, r).

If G = GL(m|n), the image of Dist(G) in EndK�r (V
⊗r )op is the Schur superalgebra

S(m|n, r).

2.2.2 Actions on V⊗r ⊗ W⊗s

We write the generators of V⊗r ⊗ W⊗s as

vi1 ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ v∗
ir+s

= vI ,

where the multi-index I = (i1, . . . , ir+s) has entries in the set {1, . . . ,m + n}.
The left actions of GL(m) and GL(m|n) on V⊗r ⊗ W⊗s are given as

g.vI = g.(vi1 ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ v∗
r+s)

= g.vi1 ⊗ . . . ⊗ g.vir ⊗ g.v∗
ir+1

⊗ . . . g.v∗
ir+s

.

Also, the actions of gl(m) and gl(m|n) on V⊗r ⊗ W⊗s are given as

ei j .vI = ei j .(vi1 ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ v∗
ir+s

)

=
r∑

a=1

vi1 ⊗ . . . ⊗ ei jvia ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ v∗
ir+s

+
s∑

b=1

vi1 ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ ei jv
∗
ir+b

⊗ . . . ⊗ v∗
ir+s

=
r∑

a=1

δ j iavi1 ⊗ . . . ⊗ vi ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ v∗
ir+s

−
s∑

b=1

δi ir+bvi1 ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ v∗
j ⊗ . . . ⊗ v∗

ir+s

and

ei j .vI = ei j .(vi1 ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ v∗
ir+s

) =
r∑

a=1

(−1)|ei j |(|i1|+...+|ia−1|)vi1 ⊗ . . . ⊗ ei jvia ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ v∗
ir+s

+
s∑

b=1

(−1)|ei j |(|i1|+...+|ir+b−1|)vi1 ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ ei jv
∗
ir+b

⊗ . . . ⊗ v∗
ir+s

=
r∑

a=1

δ j ia (−1)|ei j |(|i1|+...+|ia−1|)vi1 ⊗ . . . ⊗ vi ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ v∗
ir+s

−
s∑

b=1

δi ir+b (−1)|i |(|i |+| j |)(−1)|ei j |(|i1|+...+|ir+b−1|)

vi1 ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ v∗
j ⊗ . . . ⊗ v∗

ir+s
,
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respectively.
The right action of generators of the Brauer algebra Br ,s(δ) on generators of the mixed

tensor product space V⊗r ⊗ W⊗s is given as follows.
Assume G = GL(m). If 1 ≤ j ≤ r + s − 1 and j �= r , then we define

(vI )τ j = vJ = vI .( j, j+1),

where the multi-index J is obtained from I by transposing entries at the jth and ( j + 1)st
place. For j = r , we define

(vI )τr = δir ,ir+1

r+s∑

k=1

vi1 ⊗ . . . ⊗ vir−1 ⊗ vk ⊗ v∗
k ⊗ v∗

ir+2
⊗ . . . ⊗ v∗

ir+s
.

Assume G = GL(m|n). If 1 ≤ j ≤ r + s − 1 and j �= r , then we define

(vI )τ j = (−1)|i j ||i j+1|vJ = (−1)|i j ||i j+1|vI .( j, j+1),

where the multi-index J is obtained from I by transposing entries at the jth and ( j + 1)st
place.

For j = r , we define

(vI )τr = −v∗
ir+1

(vir )(−1)|ir |
r+s∑

k=1

vi1 ⊗ . . . ⊗ vir−1 ⊗ vk ⊗ v∗
k ⊗ v∗

ir+2
⊗ . . . ⊗ v∗

ir+s
.

Lemma 2.1 The element τ = ∑r+s
k=1 vk ⊗ v∗

k spans a one-dimensional G-supermodule.

Proof Compute

ei jτ =
r+s∑

k=1

[ei jvk ⊗ v∗
k + (−1)|ei j ||vk |vk ⊗ ei jv

∗
k ] = ei jv j ⊗ v∗

j + (−1)|ei j ||vi |vi ⊗ ei jv
∗
i

= vi ⊗ v∗
j + (−1)|ei j ||vi |vi ⊗ −(−1)|ei j ||v∗

i |v∗
j = 0

because |vi | = |v∗
i |. 
�

Lemma 2.2 The right action of Br ,s(δ) on V⊗r ⊗ W⊗s commutes with the left action of G.

Proof It is clear that the right action of�r ⊗�s commuteswith the left action ofG. Therefore,
it is enough to verify that g(vI τr ) = (gvI )τr for each g ∈ G. We have

(gvI )τr

=
r∑

t=1

(−1)|g|(|i1|+...+|it−1|)(vi1 ⊗ . . . ⊗ gvit ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ v∗
ir+2

⊗ . . . ⊗ v∗
ir+s

)τr

+
r+s∑

t=r+1

(−1)|g|(|i1|+...+|it−1|)(vi1 ⊗ . . . ⊗ vir ⊗ v∗
ir+1

⊗ . . . ⊗ gv∗
it ⊗ . . . ⊗ v∗

ir+s
)τr

=
r−1∑

t=1

(−1)|g|(|i1|+...+|it−1|)(−1)|ir |+1v∗
ir+1

(vir )

r+s∑

k=1

vi1 ⊗ . . . ⊗ gvit ⊗ . . . ⊗ vir−1 ⊗ vk ⊗ v∗
k ⊗ v∗

ir+2
⊗ . . . ⊗ v∗

ir+s
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+ (−1)|g|(|i1|+...+|ir−1|)(−1)|g|+|ir |+1v∗
ir+1

(gvir )

r+s∑

k=1

vi1 ⊗ . . . ⊗ vir−1 ⊗ vk ⊗ v∗
k ⊗ v∗

ir+2
⊗ . . . ⊗ v∗

ir+s

+ (−1)|g|(|i1|+...+|ir−1|+|ir |)(−1)|ir |+1gv∗
ir+1

(vir )

r+s∑

k=1

vi1 ⊗ . . . ⊗ vir−1 ⊗ vk ⊗ v∗
k ⊗ v∗

ir+2
⊗ . . . ⊗ v∗

ir+s

+
r+s∑

t=r+2

(−1)|g|(|i1|+...+|it−1|)(−1)|ir |+1v∗
ir+1

(vir )

r+s∑

k=1

vi1 ⊗ . . . ⊗ vir−1 ⊗ vk ⊗ v∗
k ⊗ v∗

ir+2
⊗ . . . ⊗ gv∗

it ⊗ . . . ⊗ v∗
ir+s

.

Since gv∗
ir+1

(vir ) = (−1)|g||ir+1|+1v∗
ir+1

(g−1vir ), the expression

(−1)|g|(|i1|+...+|ir−1|+|ir |)(−1)|ir |+1gv∗
ir+1

(vir )

= (−1)|g|(|i1|+...+|ir−1|+|ir |+|ir+1|)(−1)|ir |v∗
ir+1

(g−1vir )

is the opposite of
(−1)|g|(|i1|+...+|ir−1|)(−1)|g|+|ir |+1v∗

ir+1
(g−1vir )

because if v∗
ir+1

(g−1vir ) �= 0, then |g| = |ir | + |ir+1|.
Therefore, the two middle terms in the above sum offset each other, and

(gvI )τr

=
r−1∑

t=1

(−1)|g|(|i1|+...+|it−1|)(−1)|ir |+1v∗
ir+1

(vir )

r+s∑

k=1

vi1 ⊗ . . . ⊗ gvit ⊗ . . . ⊗ vir−1 ⊗ vk ⊗ v∗
k ⊗ v∗

ir+2
⊗ . . . ⊗ v∗

ir+s

+
r+s∑

t=r+2

(−1)|g|(|i1|+...+|it−1|)(−1)|ir |+1v∗
ir+1

(vir )

r+s∑

k=1

vi1 ⊗ . . . ⊗ vir−1 ⊗ vk ⊗ v∗
k ⊗ v∗

ir+2
⊗ . . . ⊗ gv∗

it ⊗ . . . ⊗ v∗
ir+s

.
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On the other hand,

g(vI τr )

= g(v∗
ir+1

(vir )(−1)|ir |+1
r+s∑

k=1

vi1 ⊗ . . . ⊗ vir−1 ⊗ vk ⊗ v∗
k ⊗ v∗

ir+2
⊗ . . . ⊗ v∗

ir+s
)

=
r−1∑

t=1

(−1)|g|(|i1|+...+|it−1|)(−1)|ir |+1v∗
ir+1

(vir )

r+s∑

k=1

vi1 ⊗ . . . ⊗ gvit ⊗ . . . ⊗ vir−1 ⊗ vk ⊗ v∗
k ⊗ v∗

ir+2
⊗ . . . ⊗ v∗

ir+s

+
r+s∑

t=r+2

(−1)|g|(|i1|+...+|ir−1|+|ir+2|+...+|it−1|)(−1)|ir |+1v∗
ir+1

(vir )

r+s∑

k=1

vi1 ⊗ . . . ⊗ vir−1 ⊗ vk ⊗ v∗
k ⊗ v∗

ir+2
⊗ . . . ⊗ gv∗

it ⊗ . . . ⊗ v∗
ir+s

due to Lemma 2.2. If v∗
ir+1

(vir ) �= 0, then |it+1| = |it | and

(−1)|g|(|i1|+...+|ir−1|+|ir+2|+...+|it−1|) = (−1)|g|(|i1|+...+|it−1|).

Therefore g(vI τr ) = (gvI )τr . 
�
Therefore, there are induced homomorphisms

�r ,s : Dist(G) → EndBr,s (δ)(V
⊗r ⊗ W⊗s)op (3)

and
�r ,s : Br ,s(δ) → EndG(V⊗r ⊗ W⊗s)op. (4)

The image of Dist(GL(m)) in EndBr,s (δ)(V
⊗r ⊗ W⊗s)op is, by definition, the rational

Schur algebra S(m, r , s). We denote A(m, r , s) = S(m, r , s)∗.
The image of Dist(GL(m|n)) in EndBr,s (δ)(V

⊗r ⊗W⊗s)op is, by definition, the rational
Schur superalgebra S(m|n, r , s). We denote A(m|n, r , s) = S(m|n, r , s)∗.

2.3 Schur-Weyl Dualities

The Schur-Weyl dualities are often expressed as a double centralizer property. Their conve-
nient formulation is stated as follows. The first part of the Schur-Weyl dualities states that
the morphism�r , or�r ,s respectively, is surjective, while the second part of the Schur-Weyl
dualities states that the morphism �r , or �r ,s respectively, is surjective.

The classical Schur-Weyl dualities overCwere established by Schur in [15]. For a survey
of results over fields of positive characteristic, consult [10]. If r ≤ m, then �r is injective
and the first part of the classical Schur-Weyl duality can be reformulated as the isomophism
K�r � EndGL(m)(V⊗r )op . The second part of the classical Schur-Weyl duality states that

S(m, r) � EndK�r (V
⊗r )op.
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The super Schur-Weyl duality over fields of characteristic zero were derived in [2]. The
second part of the super Schur-Weyl duality states that

S(m|n, r) � EndK�r (V
⊗r )op.

The second part of the super Schur-Weyl duality over fields of positive characteristic was
determined by N. Muir - see [10].

The mixed Schur-Weyl duality over fields of characteristic zero was proved in [8]. If the
characteristic of the ground field K is zero and r + s < (m + 1)(n+ 1), then �r ,s is injective
by [3], and the first part of the mixed Schur-Weyl duality can be reformulated as

K Br ,s � EndGL(m)(V
⊗r ⊗ W⊗s)op.

The second part of the mixed Schur-Weyl duality states that

S(m, r , s) � EndBr,s (V
⊗r ⊗ W⊗s)op.

We are unaware of general results on mixed Schur-Weyl duality over fields of positive char-
acteristic. We will show that the second part of mixed Schur-Weyl duality is valid over any
infinite field of arbitrary characteristic.

While this paper was under review, we have learned that A. Riesen [14] has established
the second part of the mixed super Schur-Weyl duality over the fields of characteristic zero,
stating that

S(m|n, r , s) � EndBr,s (δ)(V
⊗r ⊗ W⊗s)op

under the condition r + s ≤ m − n. We will show that the second part of mixed super
Schur-Weyl duality is valid over any infinite field of arbitrary characteristic.

To derive the second parts of Schur-Weyl dualities, we determine the structure of the duals
of End�r (V

⊗r )op and EndBr,s (δ)(V
⊗r ⊗ W⊗s)op , and compare it with A(m, r), A(m|n, r),

A(m, r , s) and A(m|n, r , s), respectively.

3 The Second Half of the Schur-Weyl Duality forGL(m)

The second part of Schur-Weyl duality states that S(m, r) is isomorphic to EndK�r (V
⊗r )op .

Let I , J be multi-indices of length r with entries from the set {1, . . . ,m}. Denote by EI J

the matrix unit given by EI J (vK ) = δJ K vI . The elements EI J form a K -basis of the space
EndK (V⊗r ). For φ ∈ EndK (V⊗r ), we write φ = ∑

I J aI J EI J for appropriate coefficients
aI J .

Lemma 3.1 If p > r , then every morphism in EndK�r (V
⊗r ) is a linear combination of

morphisms φ = ψ ⊗ . . . ⊗ ψ , where ψ ∈ EndK (V ). If ψ = ∑
i, j ai j ei j , then φ =∑

I J aI J EI J , where aI J = ai1 j1 . . . air jr for I = i1 . . . ir and J = j1 . . . jr . Additionally,
a subspace of V⊗r is K�r -submodule if and only if it is invariant under the action of
G = GL(V ).

Proof We adapt the classical arguments, e.g., [11, Lemma 6.23 ].
Write U = EndK (V ) = V ∗ ⊗ V . Then EndK (V⊗r ) = (V ∗)⊗r ⊗ V⊗r = (V ∗ ⊗ V )⊗r

with the compatible action of �r . Therefore EndK�r (V
⊗r ) � Symr (EndK (V )).

Since p > r , the space Symr (U ) is spanned by ur = r !u ⊗ . . . ⊗ u for u ∈ U . This
follows from the polarization identity

∑

σ∈�r

fσ(1) ⊗ fσ(2) ⊗ . . . ⊗ fσ(r) =
∑

I⊂{1,...,r}
(−1)r−|I |(

∑

i∈I
fi )

⊗r .
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Therefore when we set ψ = 1
n√r !u, we obtain aI J = ai1 j1 . . . air jr .

The second statement follows because GL(V ) is dense in End(V ) either in Euclidean or
Zariski topology. 
�

Note that even though the coefficients of the map φ = ψ ⊗ . . . ψ are built multiplicatively
from the coefficients of ψ , it is difficult to work with the linear combinations of such maps
φ.

We will follow the approach of [8] based on the following lemma. The multiplicative
property we will use will follow from the particular choice of the basis B.

Lemma 3.2 (Lemma 2.3 of [8]) Let R be a commutative ring with 1. Let M be a free R-module
with basis B = {b1, . . . , bl} and U a submodule of M given by a set of linear equations on
the coefficients with respect to the basis B, i.e., ai j ∈ R such that U = {∑ c j b j ∈ M :∑

j ai j c j = 0 for all i} exist. Let {b∗
1, . . . , b

∗
l } be the basis of M∗ = HomR(M, R) dual to

B, and let X be the submodule of M∗ generated by all
∑

j ai j b
∗
j . Then U � (M∗/X)∗.

Proposition 3.3 There is S(m, r) � EndK�r (V
⊗r )op.

Proof We show that the dual of EndK�r (V
⊗r )op is isomorphic to the coalgebra A(m, r).

We modify and clarify the arguments appearing in the proof of Lemma 3.1 of [8]. We
apply Lemma 3.2 for R = K , M = EndK (V⊗r ), the basis B consisting of all elements EI J

for multi-indices I = i1 . . . ir and J = j1 . . . jr of length r , and U = EndK�r (V
⊗r ).

Let φ ∈ U and φ = ∑
I J aI J EI J .

If 1 ≤ j < r , then

φ(vL)τ j = (
∑

I J

aI J EI J (vL ))τ j = (
∑

I

aI LvI )τ j =
∑

I

aI LvI .( j, j+1)

=
∑

I

aI .( j, j+1),LvI

and

φ(vLτ j ) = φ(vL.( j, j+1)) =
∑

I J

aI J EI J (vL.( j, j+1)) =
∑

I

aI ,L.( j, j+1)vI .

Thus φ is invariant under the transposition τ j if and only if aI .( j, j+1),L = aI ,L.( j, j+1) for
each I , L . Therefore,U is described by the set of equations in the coefficients aI J of φ ∈ U
as

φ ∈ U if and only if aI .( j, j+1),J = aI ,J .( j, j+1) for each I , J and 1 ≤ j < r .

The basis B∗ of M∗, dual to B, consists of the coefficient functions E∗
I J = xI J that are

constructed multiplicatively from the coefficient functions xi j = e∗
i j , meaning that xI J =

xi1 j1 . . . xir jr for I = i1 . . . ir and J = j1 . . . jr .
The submodule X of M∗ is generated by equations xI .( j, j+1),J = xI ,J .( j . j+1) for all I , J

and 1 ≤ j < r . Due to the multiplicativity of the coefficient functions, these equations are
identical to the relations generated by the commutativity relations xi j xkl = xkl xi j for all
1 ≤ i, j, k, l ≤ m.

If F is the free algebra on generators xi j for 1 ≤ i, j ≤ m and Y the submodule of F
generated by elements xi j xkl − xkl xi j for all 1 ≤ i, j, k, l ≤ m, then M∗/X is isomorphic
to the degree r component Dr of the polynomial algebra F/Y on generators xi j .

Then Dr � A(m, r) shows that S(m, r) = A(m, r)∗ has the same dimension as
EndK�r (V

⊗r )op . We conclude that �r is surjective and S(m, r) � EndK�r (V
⊗r )op . 
�
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4 The Second Half of theMixed Schur-Weyl Duality for GL(m)

Let r , s ≥ 0 and I , J , K be multi-indices of length r+s with entries from the set {1, . . . ,m}.
We write every multi-index I = (i1, . . . , ir+s) as a concatenation I = IV IW , where IV =
(i1 . . . ir ) and IW = (ir+1 . . . ir+s).

Let v1, . . . , vm be a K -basis of V and v∗
1 , . . . , v

∗
m be the corresposponding dual basis

of W . Then the elements vI = vIV vIW = vi1 . . . vir v
∗
ir+1

. . . v∗
ir+s

for all multi-indices I of

length r + s form a basis of V⊗r ⊗ W⊗s .
Since

EndK (V⊗r ⊗ W⊗s) � V⊗r ⊗ W⊗s ⊗ (V⊗r ⊗ W⊗s)∗ � V⊗r ⊗ W⊗s ⊗ W⊗r ⊗ V⊗s

� (V⊗r ⊗ W⊗r ) ⊗ (W⊗s ⊗ V⊗s) � EndK (V⊗r ) ⊗ EndK (W⊗s)

� EndK (V )⊗r ⊗ EndK (W )⊗s ,

every map from EndR(V⊗r ⊗ W⊗s) is a linear combination of maps φV⊗r ⊗ φW⊗s , where
φV⊗r ∈ EndK (V⊗r ) and φW⊗s ∈ EndK (W⊗s).

Denote by EV
I J the matrix unit given by EV

I J (vLV ) = δJV LV vIV , and by EW
I J the matrix

unit given by EW
I J (vLW ) = δJW LW vIW . Then the elements EI J = EV

I J E
W
I J form a K -basis

of the space EndK (V⊗r ⊗ W⊗s). For φ ∈ EndK (V⊗r ⊗ W⊗s) we write φ = ∑
I J aI J EI J

for appropriate coefficients aI J .

Lemma 4.1 Assume φ ∈ EndK (V⊗r ⊗ W⊗s) commutes with the action of �r on the first
r components and with the action of �s on the last s components of V⊗r ⊗ W⊗s . If p >

max{r , s}, then φ can be written as a linear combination of maps (ψV ⊗ . . . ⊗ ψV ) ⊗
(ψW ⊗ . . . ⊗ ψW ) for some ψV ∈ EndK (V ) and ψW ∈ EndK (W ). If ψV = ∑

i j ai j Ei j ,
ψW = ∑

i j a
∗
i j Ei j and (φV ⊗ . . . ⊗ ψV ) ⊗ (ψW ⊗ . . . ⊗ ψW ) = ∑

I J aI J EI J , then aI J =
ai1 j1 . . . air jr a

∗
ir+1 jr+1

. . . a∗
ir+s jr+s

.

Proof Since

EndK (V⊗r ⊗ W⊗s) � EndK (V⊗r ) ⊗ EndK (W⊗s) � EndK (V )⊗r ⊗ EndK (W )⊗s ,

every map from EndR(V⊗r ⊗ W⊗s) is a linear combination of maps φV⊗r ⊗ φW⊗s , where
φV⊗r ∈ EndK (V⊗r ) and φW⊗s ∈ EndK (W⊗s). If φ ∈ EndK (V⊗r ⊗ W⊗s) commutes
with the action of �r on the first r components and with the action of �s on the last s
components, then its image in EndK (V⊗r ) ⊗ EndK (W⊗s) belongs to Symr (EndK (V )) ⊗
Syms(EndK (W )).

If p > r and p > s, then by Lemma 3.1 the maps φV⊗r and φW⊗s are linear combinations
of maps ψV ⊗ . . . ⊗ ψV and ψW ⊗ . . . ⊗ ψW for ψV ∈ EndK (V ) and ψW ∈ EndK (W ),
respectively. The multiplicativity statement is obvious. 
�

To prove the next statement, we will not use the above lemma, but we modify arguments
in Section 4 of [8] to the supercase. The partial multiplicativity will follow from the choice
of the basis B in Lemma 3.2.

Proposition 4.2 There is S(m, r , s) � EndBr,s (δ)(V
⊗r ⊗ W⊗s)op.

Proof We apply Lemma 3.2 for R = K , M = EndK (V⊗r ⊗W⊗s), the basis B consisting of
all elements EI J for multi-indices I = i1 . . . ir ir+1 . . . ir+s , J = j1 . . . jr jr+1 . . . jr+s , and
U = EndBr,s (δ)(V

⊗r ⊗ W⊗s).
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Assume φ ∈ U and write φ = ∑
I J aI J EI J . If j �= r , then

φ(vL)τ j = (
∑

I J

aI J EI J (vL ))τ j = (
∑

I

aI LvI )τ j =
∑

I

aI LvI .( j, j+1)

=
∑

I

aI .( j, j+1),LvI

and

φ(vLτ j ) = φ(vL.( j, j+1)) =
∑

I J

aI J EI J (vL.( j, j+1)) =
∑

I

aI ,L.( j, j+1)vI .

Comparing coefficients at vI , we obtain that the above expressions coincide if and only if
aI .( j, j+1),L = aI ,L.( j, j+1) for each j �= r .

It remains to deal with τr . For simplicity of writing, assume r = s = 1 (similar arguments
remain valid for all values of r , s.) Then

φ(vL)τr = (
∑

I J

aI J EI J (vL ))τr = (
∑

I

aI LvI )τr =
∑

i

a(i i)L

m∑

t=1

v(t t)

and

φ(vLτr ) = δl1l2

m∑

t=1

φ(v(t t)) = δl1l2

m∑

t=1

∑

I

aI (t t)EI (t t)(v(t t))

= δl1l2

m∑

t=1

∑

I

aI (t t)vI .

The last two expressions coincide if and only if the following conditions are satisfied.
If l1 �= l2, then

∑
i ail1 ⊗ a∗

il2
= 0 (comparing coefficients at v(t t)).

If l1 = l2 and i1 �= i2, then
∑m

t=1 ai1t ⊗ a∗
i2t

= 0 (comparing coefficients at v(i1i2)).
If l1 = l2 = l and i1 = i2, then

∑
i ail ⊗ a∗

il = ∑m
t=1 ai1t ⊗ a∗

i1t
(comparing coefficients

at v(i1i1)).
The basis B∗ of M∗, dual to B, consists of coefficient functions E∗

I J = xI J that are
constructed multiplicatively from the coefficient functions xi j = (eVi j )

∗ and x∗
i j = (eWi j )

∗ for
1 ≤ i, j ≤ m in the sense that

xI J = xi1 j1 . . . xir jr x
∗
ir+1 jr+1

. . . x∗
ir+s jr+s

for I = i1 . . . ir ir+1 . . . ir+s and J = j1 . . . jr jr+1 . . . jr+s .
Let us review the generating equations for the submodule X of M∗ given by Lemma 3.2.

Due to the multiplicativity of the coefficient functions xI J , the equations xI .( j, j+1),J =
xI ,J .( j . j+1) for all I , J and 1 ≤ j < r are identical to the relations generated by the
commutativity relations xi j xkl = xkl xi j for all 1 ≤ i, j, k, l ≤ m. The same equations
for r ≤ j < r + s are identical to the relations generated by the commutativity relations
x∗
i j x

∗
kl = x∗

kl x
∗
i j for all 1 ≤ i, j, k, l ≤ m.

Using the multiplicativity of xI J , we derive that the remaining equations for X are gen-
erated by the equations

∑m
k=1 xki x

∗
k j = 0 for i �= j ,

∑m
k=1 xik x

∗
jk = 0 for i �= j and∑m

k=1 xki x
∗
ki = ∑m

k=1 x jk x
∗
jk for all i, j .

Denote by F = F1 ⊗K F2, where F1 the K -submodule of the free algebra on generators
xi j generated by monomials of degree r , and F2 the K -submodule of the free algebra on
generators x∗

i j generated by monomials of degree s, where 1 ≤ i, j ≤ m.
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Let Y the submodule of F generated by relations

xi j xkl = xkl xi j for all i, j;
x∗
i j x

∗
kl = x∗

kl x
∗
i j for all i, j;

m∑

k=1

xki x
∗
k j = 0 for i �= j;

m∑

k=1

xik x
∗
jk = 0 for i �= j;

m∑

k=1

xki x
∗
ki =

m∑

k=1

x jk x
∗
jk for all i, j .

Then by Lemma 3.2, ((EndBr,s (δ)(V
⊗r ⊗ W⊗s))op)∗, as a K -module, is isomorphic to

F/Y .
Recall the definition of Ã(m; r , s) on p. 62 of [7].Wewrite A(m, r , s) instead of Ã(m; r , s)

for simplicity. Let ci j be the coefficient functions of the generic matrix C and

di j = (−1)l+k C[1, . . . , k̂, . . . ,m|1, . . . , l̂, . . . ,m]
C[1, . . . ,m|1, . . .m]

be the coefficient functions of the matrix C−1. Then A(m, r , s) is the subspace (and a sub-

coalgebra) of K [GL(m)] spanned by all products of the form
∏

i j c
ai j
i j

∏
i j d

bi j
i j such that

ai j , bi j ≥ 0,
∑

i j ai j = r and
∑

i j bi j = s.
The generators ci j and di j commute and are subject to additional relations

∑m
j=1 cikdk j =

δi j and
∑m

k=1 cki d jk = δi j .
In particular,

m∑

k=1

cikdk j = 0 and
m∑

k=1

cki d jk = 0 if i �= j,

and
m∑

k=1

cikdki =
m∑

k=1

ck j d jk for all 1 ≤ i, j ≤ m.

Since we need to have
∑

i j ai j = r and
∑

i j bi j = s, we cannot equate the terms∑m
k=1 cikdki = ∑m

k=1 ck j d jk to 1 since it would reduce the corresponding degrees to less
than r and s.

Therefore, the K -space F/Y is isomorphic to A(m, r , s) via
∏

i j

x
ai j
i j ⊗

∏

i j

(x∗
i j )

bi j �→
∏

i j

c
ai j
j i

∏

i j

(di j )
bi j .

Please note the use of the transposition xi j �→ c ji . Instead, we could have used a transposition
in the second component x∗

i j �→ d ji .
In particular, the dimension of S(m, r , s) is the same of that of A(m, r , s) and

EndBr,s (δ)(V
⊗r ⊗ W⊗s))op .

Therefore, the morphism �r ,s : Dist(G) → EndBr,s (δ)(V
⊗r ⊗ W⊗s))op is surjective,

and S(m, r , s) � EndBr,s (δ)(V
⊗r ⊗ W⊗s))op . 
�
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5 The Second Half of the Super Schur-Weyl Duality

The second part of super Schur-Weyl duality states that S(m|n, r) is isomorphic to
EndK�r (V

⊗r )op .
Let I , J be multi-indices of length r with entries from the set {1, . . . ,m + n}. Denote

by EI J the matrix unit given by EI J (vK ) = δJ K vI . The elements EI J form a K -basis of
the space EndK (V⊗r ). For φ ∈ EndK (V⊗r ) we write φ = ∑

I J aI J EI J for appropriate
coefficients aI J .

Proposition 5.1 The Schur superalgebra S(m|n, r) is isomorphic to EndK�r (V
⊗r )op.

Proof We show that the dual of EndK�r (V
⊗r )op is isomorphic to the supercoalgebra

A(m|n, r).
Wemodify the arguments from the proof Proposition 3.3.We applyLemma3.2 for R = K ,

M = EndK (V⊗r ), the basis B consisting of all elements EI J for multi-indices I = i1 . . . ir
and J = j1 . . . jr of length r , and U = EndK�r (V

⊗r ).
Let φ ∈ U and φ = ∑

I J aI J EI J .
If 1 ≤ j < r , then

φ(vL)τ j = (
∑

I J

aI J EI J (vL ))τ j = (
∑

I

aI LvI )τ j

=
∑

I

(−1)|i j ||i j+1|aI LvI .( j, j+1) =
∑

I

(−1)|i j ||i j+1|aI .( j, j+1),LvI

and

φ(vLτ j ) = φ((−1)|l j ||l j+1|vL.( j, j+1)) = (−1)|l j ||l j+1| ∑

I J

aI J EI J (vL.( j, j+1))

=
∑

I

(−1)|l j ||l j+1|aI ,L.( j, j+1)vI .

Thus φ is invariant under the transposition τ j if and only if

(−1)|i j ||i j+1|aI .( j, j+1),L = (−1)|l j ||l j+1|aI ,L.( j, j+1)

for each I , L . Therefore, U is described by the set of equations in the coefficients aI J of
φ ∈ U as φ ∈ U if and only if

(−1)|i j ||i j+1|aI .( j, j+1),L = (−1)|l j ||l j+1|aI ,L.( j, j+1) for each I , L and 1 ≤ j < r .

The basis B∗ of M∗, dual to B, consists of coefficient functions E∗
I J = xI J that are

constructed multiplicatively from the coefficient functions xi j = e∗
i j , meaning that xI J =

xi1 j1 . . . xir jr for I = i1 . . . ir and J = j1 . . . jr .
The submodule X of M∗ is generated by equations

(−1)|i j ||i j+1|xI .( j, j+1),L = (−1)|l j ||l j+1|xI ,L.( j, j+1)

for all I , L and 1 ≤ j < r . Due to the multiplicativity of the coefficient functions, these
equations are identical to the relations generated by the commutativity relations

(−1)|i ||k|xi j xkl = (−1)| j ||l|xkl xi j
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for all 1 ≤ i, j, k, l ≤ m.
The last relations are not the usual supercommutativity relations between coordinate func-

tions. To get the usual supercommutativity relations, we need to replace the basis B by a
different basis. To motivate this switch, recall that the coefficient functions of V⊗r for the
basis consisting of vI are given as

χI J = (−1)
∑r

t=1 |it |(|it+1|+| jt+1|+...+|ir |+| jr |)cI J ,

where cI J = ci1, j1 . . . cir , jr is the product of the matrix coefficient functions. The functions
χI J are easier to work with because the comultiplication in terms of χI J is nicer than in
terms of cI J .

Define a different basis B of EndK (V⊗r ) consisting of elements

FI J = (−1)
∑r

t=1 |it |(|it+1|+| jt+1|+...+|ir |+| jr |)EI J

and write φ = ∑
I J bI J FI J . Then bI J = (−1)

∑r
t=1 |it |(|it+1|+| jt+1|+...+|ir |+| jr |)aI J .

If we set F∗
I J = yI J and yi j = f ∗

i j , the relation xi j xkl = (−1)|i ||k|+| j ||l|xkl xi j is equivalent
to

yi j ykl = (−1)|i ||k|+|i ||l|xi j xkl = (−1)|i ||k|+|i ||l|+|i ||k|+| j ||l|xkl xi j = (−1)(|i ||l|+| j ||l|)xkl xi j
= (−1)|i ||l|+| j ||l|+|k||i |+|k|| j |ykl yi j = (−1)(|i |+| j |)(|k|+|l|)ykl yi j
= (−1)|yi j ||ykl |ykl yi j ,

which is the usual supercommutativity relation between yi j and ykl .
Let F be the free algebra on generators yi j for 1 ≤ i, j ≤ m and Y the submodule of F

generated by elements yi j ykl −(−1)|yi j ||ykl |ykl yi j for all 1 ≤ i, j, k, l ≤ m. ThenM∗/X , as a
K -vector space, is isomorphic to the degree r component Dr of the algebra F/Y . Therefore,
(EndK�r (V

⊗r ))∗, considered as a K -space, is isomorphic to Dr by Lemma 3.2. On the other
hand, Dr � A(m|n, r), as K -spaces, via the isomorphism

∏
i j c

ai j
i j �→ ∏

i j y
ai j
i j . This shows

that S(m|n, r) = A(m|n, r)∗ has the same dimension as EndK�r (V
⊗r )op . We conclude that

�r is surjective and S(m|n, r) � EndK�r (V
⊗r )op . 
�

6 The Second Half of theMixed Super Schur-Weyl Duality

Let v1, . . . , vm+n be a K -basis of V , and v∗
1 , . . . , v

∗
m+n be the corresponding dual basis

of W . Recall that the standard matrix units ei j act on V and W as ei jvk = δ jkvi and
ei jv∗

k = −δik(−1)|i |(|i |+| j |)v∗
j .

Let r , s ≥ 0 and I , J , K be multi-indices of length r + s with entries from the set
{1, . . . ,m + n}. We write every multi-index I = (i1, . . . , ir+s) as a concatenation I =
IV IW , where IV = (i1 . . . ir ) and IW = (ir+1 . . . ir+s). The elements vI = vIV vIW =
vi1 . . . vir v

∗
ir+1

. . . v∗
ir+s

for all multi-indices I of length r + s form a basis of V⊗r ⊗ W⊗s .
Since

EndK (V⊗r ⊗ W⊗s) � EndK (V⊗r ) ⊗ EndK (W⊗s) � EndK (V )⊗r ⊗ EndK (W )⊗s ,

every map from EndR(V⊗r ⊗ W⊗s) is a linear combination of maps φV⊗r ⊗ φW⊗s , where
φV⊗r ∈ EndK (V⊗r ) and φW⊗s ∈ EndK (W⊗s).
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Denote by EV
I J the matrix unit given by EV

I J (vLV ) = δJV LV vIV , and by EW
I J the matrix

unit given by EW
I J (vLW ) = δJW LW vIW . Then the elements EI J = EV

I J E
W
I J form a K -basis

of the space EndK (V⊗r ⊗ W⊗s). For φ ∈ EndK (V⊗r ⊗ W⊗s) we write φ = ∑
I J aI J EI J

for appropriate coefficients aI J .
We want to determine the dual of EndBr,s (δ)(V

⊗r ⊗ W⊗s)op and compare it with
A(m|n, r , s).

6.1 (EndBr,s(ı)(V
⊗r ⊗ W⊗s)op)∗ Expressed by Generators and Relations

We apply Lemma 3.2 for R = K , M = EndK (V⊗r ⊗ W⊗s), the basis B consisting of
all elements EI J for multi-indices I = i1 . . . ir ir+1 . . . ir+s , J = j1 . . . jr jr+1 . . . jr+s , and
U = EndBr,s (δ)(V

⊗r ⊗ W⊗s).
Assume φ ∈ U and write φ = ∑

I J aI J EI J . If j �= r , then

φ(vL)τ j = (
∑

I J

aI J EI J (vL ))τ j = (
∑

I

aI LvI )τ j

=
∑

I

(−1)|i j ||i j+1|aI LvI .( j, j+1) =
∑

I

(−1)|i j ||i j+1|aI .( j, j+1),LvI

and

φ(vLτ j ) = φ((−1)|l j ||l j+1|vL.( j, j+1)) = (−1)|l j ||l j+1| ∑

I J

aI J EI J (vL.( j, j+1))

=
∑

I

(−1)|l j ||l j+1|aI ,L.( j, j+1)vI .

Comparing coefficients at vI , we obtain that the above expressions coincide if and only if

(−1)|i j ||i j+1|aI .( j, j+1),L = (−1)|l j ||l j+1|aI ,L.( j, j+1)

for each j �= r .
It remains to deal with τr . For simplicity of writing, assume r = s = 1 (analogous

arguments remain valid for all values of r , s.) Then

φ(vL)τr = (
∑

I J

aI J EI J (vL ))τr = (
∑

I

aI LvI )τr =
∑

i

(−1)|i |+1a(i i)L

m+n∑

t=1

v(t t)

and

φ(vLτr ) = δl1l2(−1)|l1|+1
m+n∑

t=1

φ(v(t t)) = δl1l2(−1)|l1|+1
m+n∑

t=1

∑

I

aI (t t)EI (t t)(v(t t))

= δl1l2(−1)|l1|+1
m+n∑

t=1

∑

I

aI (t t)vI .

The last two expressions coincide if and only if the following conditions are satisfied.
If l1 �= l2, then

∑
i (−1)|i |ail1 ⊗ a∗

il2
= 0 (comparing coefficients at v(t t)).

If l1 = l2 = l and i1 �= i2, then (−1)|l|
∑m+n

t=1 ai1t ⊗ a∗
i2t

= 0 (comparing coefficients at
v(i1i2)).
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If l1 = l2 = l and i1 = i2, then
∑

i (−1)|i |ail ⊗a∗
il = (−1)|l|

∑m+n
t=1 ai1t ⊗a∗

i1t
(comparing

coefficients at v(i1i1)).
The basis B∗ of M∗, dual to B, consists of coefficient functions E∗

I J = xI J that are
constructed multiplicatively from the coefficient functions xi j = (eVi j )

∗ and x∗
i j = (eWi j )

∗ for
1 ≤ i, j ≤ m + n in the sense that

xI J = xi1 j1 . . . xir jr x
∗
ir+1 jr+1

. . . x∗
ir+s jr+s

for I = i1 . . . ir ir+1 . . . ir+s and J = j1 . . . jr jr+1 . . . jr+s .
Next, we look at the generating equations for the submodule X ofM∗ given byLemma 3.2.

Due to the multiplicativity of the coefficient functions xI L , the equations

(−1)|i j ||i j+1|xI .( j, j+1),L = (−1)|l j ||l j+1|xI ,J .( j . j+1)

for all I , L and 1 ≤ j < r are identical to the relations generated by the commutativity
relations

(−1)|i j ||i j+1|xi j+1l j xi j l j+1 = (−1)|l j ||l j+1|xi j l j+1 xi j+1l j

which are equivalent to
xi j xkl = (−1)|i ||k|+| j ||l|xkl xi j

for all 1 ≤ i, j, k, l ≤ m + n. The same equations for r ≤ j < r + s are identical to the
relations generated by the commutativity relations

x∗
i j x

∗
kl = (−1)|i ||k|+| j ||l|x∗

kl x
∗
i j

for all 1 ≤ i, j, k, l ≤ m + n.
Using the multiplicativity of xI L , we derive that the remaining equations for X are gener-

ated by the equations
∑m+n

k=1 (−1)|k|xki x∗
k j = 0 for i �= j ,

∑m+n
k=1 xik x∗

jk = 0 for i �= j , and
∑m+n

k=1 (−1)|k|xki x∗
ki = (−1)|i |

∑m+n
k=1 x jk x∗

jk for all 1 ≤ i, j ≤ m + n.
Using Lemma 3.2, we establish the following statement.

Proposition 6.1 Denote by F = F1 ⊗K F2, where F1 is the K -submodule of the free algebra
on generators xi j generated by monomials of degree r , and F2 is the K -submodule of the
free algebra on generators x∗

i j generated by monomials of degree s, where 1 ≤ i, j ≤ m+n.
Let Y the submodule of F generated by relations

xi j xkl = (−1)|i ||k|+| j ||l|xkl xi j for all i, j;
x∗
i j x

∗
kl = (−1)|i ||k|+| j ||l|x∗

kl x
∗
i j for all i, j;

m+n∑

k=1

(−1)|k|xki x∗
k j = 0 for i �= j;

m+n∑

k=1

xik x
∗
jk = 0 for i �= j;

m+n∑

k=1

(−1)|k|xki x∗
ki = (−1)|i |

m+n∑

k=1

x jk x
∗
jk for all i, j .

Then ((EndBr,s (δ)(V
⊗r ⊗ W⊗s))op)∗, as a K-space, is isomorphic to F/Y .
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6.2 Mixed Super Schur-Weyl Duality

Proposition 6.2 There is S(m|n, r , s) � EndBr,s (δ)(V
⊗r ⊗ W⊗s)op.

Proof Analogously to the second half of the proof of Proposition 5.1, we define a different
basis of EndK (V⊗r ) consisting of elements

FV
I J = (−1)

∑r
t=1 |it |(|it+1|+| jt+1|+...+|ir |+| jr |)EV

I J ,

a different basis of EndK (W⊗s) consisting of elements

FW
I J = (−1)

∑r+s
t=r+1 |it |(|it+1|+| jt+1|+...+|ir+s |+| jr+s |)EW

I J ,

which gives a different basis of EndK (V⊗r ⊗W⊗s) consisting of elements FI J = FV
I J F

W
I J .

If we write φ ∈ EndK (V⊗r ⊗ W⊗s) as φ = ∑
I J bI J FI J , then

bI J = (−1)
∑r

t=1 |it |(|it+1|+| jt+1|+...+|ir |+| jr |)+∑r+s
t=r+1 |it |(|it+1|+| jt+1|+...+|ir+s |+| jr+s |)aI J .

We define yi j = ( f Vi j )
∗, y∗

i j = ( f Wi j )∗ for 1 ≤ i, j ≤ m + n and

yI J = (FI J )
∗ = yi1 j1 . . . yir jr y

∗
ir+1 jr+1

. . . y∗
ir+s jr+s

.

In the same way as in the second half of the proof of Proposition 5.1, we obtain that the
relation xi j xkl = (−1)|i ||k|+| j ||l|xkl xi j is equivalent to

yi j ykl = (−1)|yi j ||ykl |ykl yi j ,

which is the usual supercommutativity relations between yi j and ykl .Analogously, the relation
x∗
i j x

∗
kl = (−1)|i ||k|+| j ||l|x∗

kl x
∗
i j is equivalent to

y∗
i j y

∗
kl = (−1)|y

∗
i j ||y∗

kl |y∗
kl y

∗
i j .

The remaining relations are rewritten in terms of yi j ’s and y∗
i j ’s as follows.

m+n∑

k=1

(−1)|i |(|k|+1)yki y
∗
k j =

m+n∑

k=1

(−1)|k|+|i |(−1)|k|(|k|+|i |)yki y∗
k j

= (−1)|i |
m+n∑

k=1

(−1)|k|xki x∗
k j = 0

for i �= j ,

m+n∑

k=1

(−1)| j |(|i |+|k|)yi j y∗
jk =

m+n∑

k=1

xik x
∗
jk = 0

for i �= j , and

m+n∑

k=1

(−1)|i |(|k|+1)yki y
∗
ki =

m+n∑

k=1

(−1)|k|+|i |(−1)|k|(|k|+|i |)yki y∗
ki

= (−1)|i |
m+n∑

k=1

(−1)k xki x
∗
ki =

m+n∑

k=1

x jk x
∗
jk =

m+n∑

k=1

(−1)| j |(| j |+|k|)y jk y∗
jk
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for every i, j .
Therefore, ((EndBr,s (δ)(V

⊗r ⊗ W⊗s))op)∗, as a K -space, is isomorphic to F/Y , where
F is as above, and Y is generated by the supercommutativity relations

yi j ykl = (−1)|yi j ||ykl |ykl yi j for all i, j;
y∗
i j y

∗
kl = (−1)|y

∗
i j ||y∗

kl |y∗
kl y

∗
i j for all i, j,

and the additional relations
m+n∑

k=1

(−1)|i |(|k|+1)yki y
∗
k j = 0 for i �= j;

m+n∑

k=1

(−1)| j |(|i |+|k|)yi j y∗
jk = 0 for i �= j;

m+n∑

k=1

(−1)|i |(|k|+1)yki y
∗
ki =

m+n∑

k=1

(−1)| j |(| j |+|k|)y jk y∗
jk for all i, j .

We will show that the K-spaces F/Y and A(m|n, r , s) are isomorphic.
Recall that we have denoted by ci j the coefficient functions of the generic matrix C and

by

di j = (−1)l+k C[1, . . . , k̂, . . . ,m|1, . . . , l̂, . . . ,m]
C[1, . . . ,m|1, . . .m]

the coefficient functions of the matrix C−1. Then A(m|n, r , s) is the subspace (and a sub-

coalgebra) of K [GL(m|n)] spanned by all products of the form
∏

i j c
ai j
i j

∏
i j d

bi j
i j such that

ai j , bi j ≥ 0,
∑

i j ai j = r and
∑

i j bi j = s.
The generators ci j and di j supercommute and are subject to additional relations∑m
j=1 cikdk j = δi j and

∑m
k=1 d jkcki = δi j .

In particular,

m∑

k=1

cikdk j = 0 and
m∑

k=1

(−1)|cki ||d jk |cki d jk = 0 if i �= j,

and
m∑

k=1

cikdki =
m∑

k=1

(−1)|ck j ||d jk |ck j d jk for all 1 ≤ i, j ≤ m.

Since we need to have
∑

i j ai j = r and
∑

i j bi j = s, we cannot equate the terms∑m
k=1 cikdki = ∑m

k=1 ck j d jk to 1 since it would reduce the corresponding degrees to less
than r and s.

The isomorphism of K -spaces F/Y and A(m|n, r , s) is given using a supertransposition
yi j �→ (−1)|i |(| j |+1)c ji and y∗

i j �→ di j .
More explicitly, the above-defined map extends multiplicatively to an isomorphism

∏

i j

y
ai j
i j ⊗

∏

i j

(y∗
i j )

bi j �→
∏

i j

((−1)|i |(| j |+1)c ji )
ai j

∏

i j

(di j )
bi j .

Thus, the dimensionof S(m|n, r , s) is the sameof that of A(m|n, r , s) and EndBr,s (δ)(V
⊗r⊗

W⊗s))op .
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Therefore, the morphism �r ,s : Dist(GL(m|n)) → EndBr,s (δ)(V
⊗r ⊗ W⊗s))op is sur-

jective, and S(m|n, r , s) � EndBr,s (δ)(V
⊗r ⊗ W⊗s))op . 
�

7 The First Half of the Schur-Weyl Duality

Recall the definitions of �r and �r ,s from Section 2.

Theorem 7.1 The morphism �r is surjective. It is injective if and only if r ≤ m.

Proof The statement is the first part of the classical Schur-Weyl duality. See Propositions 11
and 15 of [10] for proof. 
�

The description of the kernel of �r is given in Lemma 3 of [12].

Theorem 7.2 (Theorem 7.8 of [3]) Assume the characteristic of the ground field K is zero.
Then the map �r ,s is surjective. It is injective if and only if r + s < (m + 1)(n + 1).

To prove the above theorems using elementary methods analogous to those used earlier,
we first need to describe EndG(V⊗r ) and EndG(V⊗r ⊗ W⊗s). However, even finding the
dimensions of these spaces is a nontrivial problem. The action of K�r on V⊗r is faithful if
and only if r ≥ m. Therefore, the dimension of EndG(V⊗r ) is r ! if r ≥ m, but it is unclear
what this dimension is if r < m. For example, if m = 2 and r = 3, this dimension is 5. If
m ≥ r = 3, the dimension is r ! = 6. However, even for m = r = 3, a direct verification
involves a fair amount of computations. Similar obstacles appear in the description of the
dimensions of EndG(V⊗r ⊗ W⊗s).

For simplicity, we consider only EndGL(m)(V⊗r ) and assume that the characteristic of K
is zero.

An element of φ ∈ EndGL(m)(V⊗r ) is an element φ of EndK (V⊗r ) invariant under
the action of standard matrix units ei j from the general linear Lie algebra gl(m) for all
1 ≤ i, j ≤ m.

We write φ = ∑
I J aI J EI J and evaluate

ei jφ(vL)

= ei j
∑

I J

aI J EI J (vL ) = ei j
∑

I

aI LvI =
∑

I

aI Lei jvI

=
∑

I

aI L

r∑

t=1

vi1 ⊗ . . . ⊗ ei jvit ⊗ . . . ⊗ vir

=
∑

I

aI L

r∑

t=1

δit , jvi1 ⊗ . . . ⊗ vi ⊗ . . . ⊗ vir =
∑

I

aI L

r∑

t=1

δit , jvi1...it−1i it+1...ir
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and

φ(ei jvL) = φ(

r∑

t=1

vl1 ⊗ . . . ⊗ ei jvlt ⊗ . . . ⊗ vlr )

= φ(

r∑

t=1

δlt , jvl1 ⊗ . . . ⊗ vi ⊗ . . . ⊗ vlr )

=
r∑

t=1

δlt , j
∑

I J

aI J EI J (vl1 ⊗ . . . ⊗ vi ⊗ . . . ⊗ vlr )

=
r∑

t=1

δlt , j
∑

I

aI (l1...lt−1ilt+1...lr )vI .

The equality ei jφ(vL) = φ(ei jvL) is satisfied if and only if, for each multi-index I , the
coefficients at vI ’s in the above two expressions are the same.

The following example shows that the direct comparison of coefficients yields the first
half of the Schur-Weyl duality in some simple cases.

Example 7.3 Assume m = 2, r = 2. Then EndGL(2)(V⊗2) � K�2.

Proof Consider cases
i = j = 1
l1 = l2 = 1:
E1 = 2a11|11v11 + a12|11v12 + a21|11v21
E2 = 2a11|11v11 + 2a12|11v12 + 2a21|11v21 + 2a22|11v22
implies a12|11 = a21|11 = a22|11 = 0.
l1 = 1, l2 = 2:
E1 = 2a11|12v11 + a12|12v12 + a21|12v21
E2 = a11|12v11 + a12|12v12 + a21|12v21 + a22|12v22
implies a11|12 = a22|12 = 0.
l1 = 2, l2 = 1:
E1 = 2a11|21v11 + a12|21v12 + a21|21v21
E2 = a11|21v11 + a12|21v12 + a21|21v21 + a22|21v22
implies a11|21 = a22|21 = 0.
l1 = l2 = 2:
E1 = 2a11|22v11 + a12|22v12 + a21|22v21
E2 = 0
implies a11|22 = a12|22 = a21|22 = 0.
That means only values unassigned are a11|11, a12|12, a21|12, a12|21, a21|21 and a22|22.
i = 1, j = 2
l1 = l2 = 1:
E1 = a12|11v11 + a21|11v11 + a22|11v12 + a22|11v21 = 0
E2 = 0
l1 = 1, l2 = 2:
E1 = a12|12v11 + a21|12v11 + a22|12v12 + a22|12v21
E2 = a11|11v11 + a12|11v12 + a21|11v21 + a22|11v22 = a11|11v11
implies a12|12 + a21|12 = a11|11
l1 = 2, l2 = 1:
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E1 = a12|21v11 + a21|21v11 + a22|21v12 + a22|21v21
E2 = a11|11v11 + a12|11v12 + a21|11v21 + a22|11v22 = a11|11v11
implies a12|21 + a21|21 = a11|11
l1 = l2 = 2:
E1 = a12|22v11 + a21|22v11 + a22|22v12 + a22|22v21 = a22|22v21
E2 = a11|12v11 + a11|21v11 + a12|12v12 + a12|21v12 + a21|12v21 + a21|21v21 + a22|12v22 +

a22|21v22
implies a12|12 + a12|21 = a22|22 and a21|12 + a21|21 = a22|22.
As a consequence, we also get a11|11 = a22|22, a21|12 = a12|21 and a12|12 = a21|21.
The general solution of a12|12 + a12|21 = a11|11 is a linear combination of two solutions:
a12|12 = a12|21 = 1 and a11|11 = 2 (this corresponds to symmetric tensors) and
a12|12 = 1, a12|21 = −1 and a11|11 = 0 (this corresponds to antisymmetric tensors).
Thus EndGL(2)(V⊗2) � K�2 as expected. 
�

For comparison, over arbitrary GL(m), there is a well-known decomposition of V⊗2 �
Sym2(V ) ⊕ �2(V ) into irreducible symmetric and antisymmetric tensors.

A better approach to the first half of Schur-Weyl duality is to consider the action of specific
elements g ∈ GL(m) on V⊗r as in Lemma 3.1 of [4] and Theorem 2.1 of [1].
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