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Abstract

We use a unified elementary approach to prove the second part of classical, mixed, super,
and mixed super Schur-Weyl dualities for general linear groups and supergroups over an
infinite ground field of arbitrary characteristic. These dualities describe the endomorphism
algebras of the tensor space and mixed tensor space, respectively, over the group algebra of
the symmetric group and the Brauer wall algebra, respectively. Our main new results are the
second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over
an infinite ground field of positive characteristic.

Keywords Schur-Weyl dualities - General linear group - General linear supergroup

Mathematics Subject Classification (2010) 20G05 - 16G99

1 Introduction

The classical Schur-Weyl duality is one of the cornerstones of the representation theory of
algebraic groups. It connects the representation theory of the general linear and symmetric
groups. This duality has been generalized to mixed tensor space settings and established
for various groups and supergroups. This paper studies Schur-Weyl dualities over an infi-
nite ground field K of arbitrary characteristic. Its main contribution is a characteristic-free
elementary approach that unifies the second parts of the classical, mixed, super, and mixed
super Schur-Weyl dualities over infinite ground fields. The results for the mixed and mixed
super Schur-Weyl dualities in positive characteristics are new.

Let K be an infinite field, G be the general linear group GL(m) or the general linear
supergroup G L(m|n), and Dist(G) the distribution algebra of G. Let V be a natural G-
supermodule, W = V* be its dual, and X, be the symmetric group on r elements. There are
commuting actions of the distribution algebra Dist(G) and the group algebra K ¥, on V&,
The image of Dist(GL(m)) in Endg(V®") is called the Schur algebra and is denoted by
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S(m, r). The image of Dist(GL(m|n)) in Endg (V®") is called the Schur superalgebra and
is denoted by S(m|n, r). The first part of the Schur-Weyl duality says the image of K%, in
Endg (V®") is Endg(V®)°P. The second part states that Endg s, (V®") is isomorphic to
S(m,r)if G = GL(m) and to S(m|n, r) if G = GL(m|n).

Schur first established the Schur-Weyl duality for GL(m) over the ground field C of
complex numbers in [15]. For the survey of Schur-Weyl duality over a field of positive
characteristic, please consult [10]. The proof of the first part of Schur-Weyl duality that uses
the first fundamental theorem of invariant theory is given in [5, Thm 4.1]. A simple proof of
the first part of Schur-Weyl duality in the case m > r is provided in [4, p.210].

The super Schur-Weyl duality over fields of characteristic zero was established in [2] and
[16]. The second part of super Schur-Weyl duality over fields of positive characteristic was
established by N. Muir as described in [9, 2.3 (1)].

Next, consider the mixed tensor product space V& @ W®* Let§ = m — n and B, ()
be the walled Brauer algebra.

There are commuting actions of the distribution algebra Dist(G) and the Brauer wall
algebra B,";"(8) on V& ® W®S. The image of Dist(GL(m)) in Endg (VE @ W) is
called the rational Schur algebra and is denoted by S(m, r, s). The image of Dist(G L (m|n))
in Endg(V® ® W®5) is called the rational Schur superalgebra and is denoted by
S(@m|n; r,s). The first part of the mixed Schur-Weyl duality states that the image of
B""(8) in Endg(V® ® W®) is Endg(V® ® W®%). The second part states that
E"dB;’f;”(a)(Vépr ® W®%) is isomorphic to S(m, r,s) if G = GL(m) and to S(m|n, r,s)
if G = GL(m|n).

The mixed Schur-Weyl duality for GL(m) over fields of characteristic zero was first
established in [8], and an alternative proof was given in [18]. The first part was proved using
the first fundamental theorem of invariant theory (see [5, Thm 3.1]), while the second part
was called “the hard part” in [18]. We are not aware of analogous results in the positive
characteristic case.

The first part of the mixed super Schur-Weyl duality was proved over the ground field
K of characteristic zero in [3] (see also [6]) following the approach specified in [13]. In
particular, by Theorem 7.8 of [3], if (m + 1)(n + 1) > r + s, then Bf'fg” (8) is isomorphic to
Endg(V® ® W®%). Partial mixed super Schur-Weyl duality results were established earlier
in [17]. We have learned recently that the second part of the mixed super Schur-Weyl duality
was established in the case when r + s < m — n in [14]. We are unaware of a general proof
of the second part of the mixed super Schur-Weyl duality in the characteristic zero case and
of any evidence in the positive characteristic case.

This paper aims to give elementary proofs of the second part of the classical, super,
mixed, and mixed super Schur -Weyl dualities over an infinite ground field of an arbitrary
characteristic. We obtain new results for the mixed Schur-Weyl dualities in the positive
characteristic case and for the mixed super Schur-Weyl dualities in the case of arbitrary
characteristic.

Since we use the algebraic independence of polynomial functions in several variables, we
need to assume that the ground field is infinite. In general, this property is not true over finite
fields. For Schur-Weyl duality over finite fields, see [1].

In Section 2, we first introduce the Brauer wall algebra, actions of the general linear group
G L(m), and the general linear supergroup G L (m|n) on ordinary tensor space V®" and mixed
tensor space V" ® W®*. We consider induced homomorphisms W,, ®,, W, s and &, ; and
state classical, mixed, super and mixed super Schur-Weyl dualities.
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In Sections 3 through 6, we use elementary methods to investigate the second part of
Schur-Weyl dualities. In Section 3, we prove the second part of the classical Shur-Weyl
duality, and in Section 4, we demonstrate the second part of the mixed Schur-Weyl duality,
both involving the group G L(m). In Section 5, we prove the second part of the super Schur-
Weyl duality, and in Section 6, we derive the second part of the mixed super Schur-Weyl
duality, both involving the supergroup G L (m|n). In Section 7, we show the limitation of this
elementary approach to proving the first part of the classical Schur-Weyl duality.

2 Notation

Throughout the paper, we assume that the ground field K is an infinite field of characteristic
zero or positive characteristic p.

2.1 Brauer Wall Algebra B, s(9)

Let § be an element of K. We define generators of B, ;(§) by (the isotopy classes of) dia-
grams. A diagram is a bipartite graph on the set of upper vertices 1,...,7 + s and lower
vertices 1, ..., r + s such that each vertex is connected to exactly one other vertex by an
edge. The edges can be horizontal or vertical. Each vertical edge connects an upper vertex
from the set 1, ..., 7 to a lower vertex from the set 1, ..., r, or an upper vertex from the
setr +1,...,r +s to a lower vertex from the set r + 1, ..., r + s. Each horizontal edge
connects an upper vertex from 1, ..., 7 to an upper vertex fromr + 1,..., 7 + s, or a lower
vertex from 1, ..., r to alower vertex fromr 4 1,...,r + 5.

To define the multiplication of diagrams o and t put the diagram o under t and create
their concatenation o o T by removing any internal cycles (appearing in the middle of the
concatenation). If there are ¢ internal cycles, then the product o equals §’c o T. We extend
this to (8%0)(8%7) = §¢4tP+ s o 1.

To a transposition 0; = (i,i + 1) for 1 <i # r <r + s, denote the diagram t; obtained
by connecting each upper vertex j to a lower vertex o; (j).

For o, = (r, r + 1), denote the diagram 7, obtained by connecting vertex j to J for each

j #r,r+1,connecting7tor +1,andr +1tor.

Then 1y, ..., 7,451 are generators of B, ;(8).

The relations between t; are described in (2.3)—(2.6) of [3].

The group algebra K ¥, ;¢ can be described by permutation diagrams such that there is a
vector space isomorphism flip, ; : KX,y — By s(8) asin (2.1) of [3].

The above description of B, (8) is valid for an arbitrary §. However, since we work with
G = GL(m|n) in this paper, we always assume 6 = m — n.

2.2 Actions and Homomorphisms
We consider two cases: the classical case when G = G L(m) and the supercase when G =

GL(m|n).
The parity | j| isdefinedas |j| = Ofor j = 1,...,mand|j| = 1forj = m+1, ..., m+n.
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If G = GL(m), then a matrix unit ¢;; € Dist|(G) acts on basis elements {vy, ..., v;,} of
the natural module V' via e;;vx = §;xv; and on the basis elements {v}, ..., vy} of W = V*
as e;jvf = —8;xv7.

Analogously, if G = GL(m|n), then a matrix unit ¢;; € Dist;(G) acts on basis ele-
ments {vy, ..., Un4n} of the natural module V via e;jvr = §xv; and on the basis elements
i, .. v of W=V*ase v = —(Sik(—l)'"(""*m)vf.

2.2.1 Actions on V/®"
We write generators of V&' as

Vi, ®...00;, =vy.

If G = GL(m), then the right action of generators t; = (j, j +1),for1 < j < r, of the
group algebra K X, on generators of the tensor product space V®" is given as (v7)T i =vy,
where the multi-index J = I.(j, j + 1) is obtained from / by transposing entries at the jth
and (j + 1)st place.

If G = GL(m|n), the right action of K ¥, on V®” is given as

wnrj = (=D, = (Dt .
The left action of GL(m) on V&' is given by
g =81, @...0v;,) =gV, ®...0 g.v,,
and the left action of the general linear Lie algebra gl(m) on V®" is given as

.
eij.vr = eij. (v, ®...0V,) =Y vy ®...Qe€jv;, ®...0U;,

a=1

-
:Zaﬁavil ®..0VQ...0v,.
a=1

The left action of GL(m|n) on V® is given analogously as
g =80, ®...00;,) =81, ®...0 g.v,,
and the left action of the general linear Lie superalgebra gl(m|n) on V®" is given as

,
ejj.vy = eij.(vil R...0v;,) = Z(—l)leijl(lilH"'Hi"_l‘)Ui] R...Q0¢€jvi, ®...Qv;,

a=1
r
= Za./ia (_1)|€ij‘(|ll|+-~+|la—1|)vil Q.. Q...Q vj, .
a=1

The right action of K =, on V& commutes with the left action of G on V&,
Therefore, there are induced homomorphisms

U, : Dist(G) — Endgs, (V)P (1)

and
&, : KX, — Endg(V®)°P. ()
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If G = GL(m), the image of Dist(G) in Ender(V@”)”p is the Schur algebra S(m, r).
If G = GL(m|n), the image of Dist(G) in EndKzr(V@”)"p is the Schur superalgebra
S(m|n,r).

2.2.2 Actions on V®" @ W®s

We write the generators of V& @ W®S as

Vi ®...0V, Qv ®...QV

Ir+1 Irys — vr,

where the multi-index / = (iy, ..., i,4s) has entries in the set {1, ..., m + n}.
The left actions of GL(m) and GL(m|n) on V& @ W®* are given as

g =8, ®...0v, QU] ®...0v )

Ir41
=8V, ®...08v, ®gV;, ®...8.V] .
Also, the actions of gl(m) and gl(m|n) on V& @ W®S are given as

eijur =¢€;j.(vj, ®...0V;, OV ®...Q0V )

Ir+1 lr4s

Ir+1 lr+s

.
=) v ®..®ejv,®...00, V| ®...0]
a=1

N
Y 0y ®... 0V, v, ®... Qv , ®...Q V]

Ir41 irs
b=1

ir41 irts

,
= 8,y ®...0U®...0V, @V} ®...®
a=1

N
=) iV ®... 0V, @V} ®...0VI®... Qv

Iy lr4s
b=1

and

eij.w:eij.(vil®...®v,~r®v-* ®...0v )=

Ir+1 irs
r

D o(plallatttlicby, @ @ eijv, ®... @ v, @V, ®...® v

Ir+1 irts
a=1

K
+ Z(_l)‘eijl(‘il|+m+|ir+b71|)vi| R...® v;, ® vf" R...Q eijvi*rer R...Q® v

Ir+1 Ir+s
b=1

= 8ji, (=plellit-tiely, @ @ue..0u, ®v, ®...0u

Ir+1 lr4s
a=1
S
_ Z 8iir+b (— 1)\1|(|l\+\./|)(_1)|€ij|(\ll [+t lirrp—11)
b=1
Ui ®...0V, ®V ®...0V;®...001;
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respectively.

The right action of generators of the Brauer algebra B, (5) on generators of the mixed
tensor product space V& ® W® is given as follows.

Assume G = GL(m).If 1 < j <r+4s —1and j # r, then we define

(vt = vy =V, j+D)s
where the multi-index J is obtained from / by transposing entries at the jth and (j + 1)st
place. For j = r, we define

r+s
(Ul)fr—(sz, 1r+lzvll® ®Uzr 1®Uk®vk®v
k=1

Assume G = GL(m|n).If 1 < j <r+4s —1and j # r, then we define
(v)tj = (_1)|ij|\ij+1\vj — (_1)‘ij‘|ij+l|v1.(j’j+l)7

where the multi-index J is obtained from / by transposing entries at the jth and (j + 1)st
place.
For j = r, we define

®...0vf

Ir+2 Irs”

r+s
Nt =—vi, @)D" Y 0 @ v, @u e ® ]
k=1

®...0v

Ir+2 lr+s

Lemma 2.1 The element T = ng] vk ® vy spans a one-dimensional G-supermodule.

Proof Compute

r+s
eijt =y leijue @ vf + (=D @ ejvf] = eijv; ® vF + (=DM @ e
k=1

= ® v>‘f + (_1)I€ij|\vi\vl. ® _(_1)|€i_f||vf\v;f =0
because |v;| = |v}. ]
Lemma 2.2 The right action of By 5(8) on V& @ W®S commutes with the left action of G.

Proof Ttis clear that the right action of 3, ® 35 commutes with the left action of G. Therefore,
it is enough to verify that g(v;7,) = (gvr)t, for each g € G. We have

(gvl)"—'r
r
— Z(_l)‘gl(mH"'H”_ll)(vn ®...08v,®...0U, ®v] Qv ®...0v )y
=1
r+s
+ Y (=pBlatAiabo @ L @u, @V, ®... ®gu®... 8 )T
t=r+1
r—1
— Z(_l)‘gmll‘+~..+‘lt—l|)(_1)|lr|+l I*_H(vlr)
=1
r—+s
ZUH L ®gU®.. U, BUBY BB BV
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+ (=gl D ettt ys (g, )

r+s
Z vil -® Vi, QU ® vk ® vlr+2 ®...® U;H
+ (_1)|g|(\i1|+~-+|ir—1\Hir\)(_l)lirlJrl l ” (vi,)
r+s
D v ®...®v,_ UV, ®... Qv
r+s
+ Z (_1)|g|(‘il|+~-+|ir—l|)(_1)|1r|+l 5 ()
v; 1 \Vir
t=r+2
r+s

Y0 ®... ®u,  @u BV, ®... 08V ®... Qv

Lrts®

. _ H 1 71 .
Since gvi*m (vi,) = (—=1)l8llirs1l+ Ui*r+1 (g7 "vi,), the expression

(_1)\g|(\i1 [+ Flir—1 \+\ir\)(_1)|ir|+1 (i,)

= (= Dttt i D iy (g1, )

lr+1

lr

is the opposite of . .
(_l)lg\(lll|+-~+|lr—1|)(_1)|g|+|lr|+l z*_,_l(gilvir)

because if v;’:H (g ") # 0, then |g| = |ir| + lir+1]-
Therefore, the two middle terms in the above sum offset each other, and

(gv1)rr
r—1
— Z(_l)lg‘(lll|+m+|“_1|)(_1)“r‘+lvit“ (vi,)
=1
r+s
Do ®...08v,®...0v, , @UBV RV, ®... Qv
r+s ) )
+ Z (_l)lgl(lll\+--»+|lr—|\)(_1)|1r|+1 ;;H(vir)
t=r+2
r+s
Zvll ®...QU;,_, Uk QUL ®v,r+2 Q. ®gv R...QU ,*,ﬂ-
k=1
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On the other hand,
g(vlfr)
) r+s
=g, @)D Y 0 @@ v, @u U Y, 8.8 )
k=1
r—1
= S (sl D Ly
=1
r+s
Zvil ®...®8V;®...0V, | U UV ®...0U
k=1
r+s
n Z (_1)|g\(\i1|+.4.+|l’r—l‘+‘ir+2|+-~+|il—l|)(_l)‘i"+lUl-* (vi,)
r+1 r
t=r+2
r+s
Zvil ®...0Uv, ®vk®v;:®vi*r+2®...®gvz (X)...(X)vi*rer
k=1

due to Lemma 2.2. If Ui*m (vi,) # 0, then |i;41]| = |i;| and

(_l)lgl(lilH“.»‘Hir—]|+|ir+2|+-~+|ir—l|) — (_1)\g|(\i1H—-~+\it71|).
Therefore g(v;t) = (gvy) T, ]

Therefore, there are induced homomorphisms
W, ; : Dist(G) — Endg, (5(V® @ WE)P 3)

and
@, : By s(8) — Endg(V® @ WP, (4)

The image of Dist(GL(m)) in Endp, ,5)(VE" ® W) is, by definition, the rational
Schur algebra S(m, r, s). We denote A(m, r,s) = S(m, r,s)*.

The image of Dist(GL(m|n)) in Endp, (5)(VE" ® W®*) is, by definition, the rational
Schur superalgebra S(m|n, r, s). We denote A(m|n,r,s) = S(m|n,r,s)*.

2.3 Schur-Weyl Dualities

The Schur-Weyl dualities are often expressed as a double centralizer property. Their conve-
nient formulation is stated as follows. The first part of the Schur-Weyl dualities states that
the morphism @, or ®,  respectively, is surjective, while the second part of the Schur-Weyl
dualities states that the morphism W, or W, ¢ respectively, is surjective.

The classical Schur-Weyl dualities over C were established by Schur in [15]. For a survey
of results over fields of positive characteristic, consult [10]. If » < m, then ®, is injective
and the first part of the classical Schur-Weyl duality can be reformulated as the isomophism
K%, >~ Endgrm) (V®r)°r The second part of the classical Schur-Weyl duality states that

S(m, r) >~ Endgs, (VE)P.
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The super Schur-Weyl duality over fields of characteristic zero were derived in [2]. The
second part of the super Schur-Weyl duality states that

S(mln,r) ~ Endgs, (V).

The second part of the super Schur-Weyl duality over fields of positive characteristic was
determined by N. Muir - see [10].

The mixed Schur-Weyl duality over fields of characteristic zero was proved in [8]. If the
characteristic of the ground field K is zero and r +s < (m + 1)(n + 1), then &, ¢ is injective
by [3], and the first part of the mixed Schur-Weyl duality can be reformulated as

KB, s >~ EndGLum(VE @ W®)%P.
The second part of the mixed Schur-Weyl duality states that
S(m,r,s) >~ Endg, (V¥ @ W®)°.

We are unaware of general results on mixed Schur-Weyl duality over fields of positive char-
acteristic. We will show that the second part of mixed Schur-Weyl duality is valid over any
infinite field of arbitrary characteristic.

While this paper was under review, we have learned that A. Riesen [14] has established
the second part of the mixed super Schur-Weyl duality over the fields of characteristic zero,
stating that

S(mln,r,s) >~ Endpg, 5 (V® @ W)

under the condition r + s < m — n. We will show that the second part of mixed super
Schur-Weyl duality is valid over any infinite field of arbitrary characteristic.

To derive the second parts of Schur-Weyl dualities, we determine the structure of the duals
of Ends, (V®")°? and Endpg, (5(V®" @ W) and compare it with A(m, r), A(m|n, r),
A(m,r,s)and A(m|n, r,s), respectively.

3 The Second Half of the Schur-Weyl Duality for GL(m)

The second part of Schur-Weyl duality states that S(m, r) is isomorphic to Endgx, (V®")°P.

Let 7, J be multi-indices of length » with entries from the set {1, ..., m}. Denote by Ej;
the matrix unit given by Ej;(vk) = 8 xv;. The elements E7; form a K -basis of the space
Endg (V®").For ¢ € Endg (V®"), we write ¢ = Y, ar; E; for appropriate coefficients
aryj.

Lemma3.1 If p > r, then every morphism in Endgs, (V®") is a linear combination of
morphisms ¢ = ¥ Q@ ... @ ¥, where ¥ € Endg (V). If ¥ = Zi’j ajjeij, then ¢ =
Z” ajjEry, where ary = ajj, ...a;,j, for I =iy...i, and J = j| ... j.. Additionally,
a subspace of V®' is KX,-submodule if and only if it is invariant under the action of
G =GL(V).
Proof We adapt the classical arguments, e.g., [11, Lemma 6.23 ].

Write U = Endg (V) = V*® V. Then Endg (V®') = (VH)® @ V& = (V* ® V)®"
with the compatible action of X,. Therefore EndKzr(V‘@") ~ Sym”"(Endg (V)).

Since p > r, the space Sym"(U) is spanned by u” = rlu ® ... ® u for u € U. This
follows from the polarization identity

Y S ® e ® . ® o= ), DR M

oEL, I1c{1,....r} iel
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1 .
Therefore when we set Y = U We obtaina;; = a;,j, ...a,j,.

The second statement follows because GL(V) is dense in End(V) either in Euclidean or
Zariski topology. O

Note that even though the coefficients of the map ¢ = ¥ ®. .. ¢ are built multiplicatively
from the coefficients of ¥, it is difficult to work with the linear combinations of such maps
@.

We will follow the approach of [8] based on the following lemma. The multiplicative
property we will use will follow from the particular choice of the basis 5.

Lemma 3.2 (Lemma 2.3 of [8]) Let R be a commutative ring with 1. Let M be a free R-module
with basis B = {b1, ..., b;} and U a submodule of M given by a set of linear equations on
the coefficients with respect to the basis B, i.e., a;j € R such that U = {) cjb; € M :
Zj ajjcj = 0 for all i} exist. Let {b], ..., b}'} be the basis of M* = Hompg(M, R) dual to
B, and let X be the submodule of M* generated by all Zj aijb}k.. Then U >~ (M*/X)*.

Proposition 3.3 There is S(m, r) >~ Endgs, (V®")P.

Proof We show that the dual of Endg, (V®)°P is isomorphic to the coalgebra A(m, r).
We modify and clarify the arguments appearing in the proof of Lemma 3.1 of [8]. We
apply Lemma 3.2 for R = K, M = Endg (V®"), the basis 3 consisting of all elements E;;
for multi-indices I/ =iy ...i, and J = jj ... j, of lengthr,and U = Endkgr(v‘@’).
Let¢p eUandp =) ;,;a17Eq;.
If1 <j <r,then

Pt = (Z argEpy(vp))tj = (Z arLv)Tj = ZaILUI.(j,j+l)
17 I 1

= Z“l.(j-,jﬂ),LUl
1

and

Q(vrti) = d(VL.,j+1) = ZaIJEIJ(UL.(j,j+1)) = Zal,L.(j,jH)vl-
17 1

Thus ¢ is invariant under the transposition t; if and only if a; (j j+1),L = ar,1.j,j+1) for
each I, L. Therefore, U is described by the set of equations in the coefficients a;;y of ¢ € U
as

¢ e Uifandonlyifay j j+1),s =ar,j.j,j+1) foreach I, Jand 1 < j <r.

The basis B* of M*, dual to B, consists of the coefficient functions E}; = x;, that are
constructed multiplicatively from the coefficient functions x;; = el’."j, meaning that x;; =
Xiyj - Xipjr f0r1=i1...i, andJ=j1...jr.

The submodule X of M* is generated by equations x7.(;, j+1),7 = X7,7.(j.j+1) forall I, J
and 1 < j < r. Due to the multiplicativity of the coefficient functions, these equations are
identical to the relations generated by the commutativity relations x;;xx; = xyx;; for all
1<i,j,k, 1 <m.

If F is the free algebra on generators x;; for 1 < i, j < m and Y the submodule of F
generated by elements x;;xy — xgx;; forall 1 < i, j, k,I < m, then M*/X is isomorphic
to the degree r component D, of the polynomial algebra F'/Y on generators x;;.

Then D, =~ A(m,r) shows that S(m,r) = A(m,r)* has the same dimension as
Endky, (V®)°P. We conclude that W, is surjective and S(m, r) ~ Endgy, (V®)P. O
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4 The Second Half of the Mixed Schur-Weyl Duality for GL(m)

Letr,s > 0and I, J, K be multi-indices of length r + s with entries from the set {1, ..., m}.
We write every multi-index / = (i1, ..., i,4s) as a concatenation I = Iy Iy, where Iy =
@(1...0)and Iy = (fpg1 -+ Brgs)-

Let vy, ..., v, be a K-basis of V and v, ..., vy, be the corresposponding dual basis
of W. Then the elements v; = vy, vy, = vi; ... 0;, vi";H . vi*,ﬂ for all multi-indices I of
length r + s form a basis of V& @ W&,

Since

Endg (V¥ @ W) = V' @ WP @ (V¥ @ W) = V& @ WS @ W™ g v
~ (VS @ WE) @ (W ® V®) =~ Endg (V®") ® Endg (W)
~ Endg (V)®" ® Endg (W)™,

every map from Endg(V®" ® W®) is a linear combination of maps ¢yer ® ¢yes, where
dyer € Endg (V®") and ¢pyes € Endg (W®S).

Denote by E}/J the matrix unit given by E}/J (vLy) = 84y Ly V1, and by E,V‘; the matrix
unit given by EI“; (vLy) = 8Ly V1 - Then the elements E;; = EYJEI“; form a K-basis
of the space Endg (VE" @ W®S). For ¢ € Endg (V" @ W®) wewritep = >, arsEry
for appropriate coefficients ay ;.

Lemma4.1 Assume ¢ € Endg (VS @ W®S) commutes with the action of %, on the first

r components and with the action of ¥ on the last s components of V& @ W®S. If p >

max{r, s}, then ¢ can be written as a linear combination of maps (Yy ® ... @ ¥y) ®

Ww ® ... Yw) for some Yy € Endg(V) and Yw € Endg (W). If Yy = Zij a;jjEjj,

Yw = Zij a,-*jEij and (py ® ... QVYV) @ (Yw ®...®Yw) = ;,a17E1, thenayy =
*

ai]j' e ai’j’air+ljr+l e ail‘+sjr+x'
Proof Since
Endg(VE @ W) ~ Endg (V") ® Endx (W®) ~ Endg (V)®" @ Endg (W)®*,

every map from Endg(V®" ® W®?) is a linear combination of maps ¢yer ® ¢yes, where
dyer € Endg(V®) and pyes € Endg(W®). If ¢ € Endg (VS @ W) commutes
with the action of X, on the first » components and with the action of X on the last s
components, then its image in Endg (V®") ® Endx (W®*) belongs to Sym” (Endg (V)) ®
Sym® (Endg (W)).

If p > rand p > s, then by Lemma 3.1 the maps ¢yer and ¢y es are linear combinations
ofmaps Yy ® ... Yy and Yyw ® ... ® Yw for ¥y € Endg (V) and ¥w € Endg (W),
respectively. The multiplicativity statement is obvious. O

To prove the next statement, we will not use the above lemma, but we modify arguments
in Section 4 of [8] to the supercase. The partial multiplicativity will follow from the choice
of the basis B in Lemma 3.2.

Proposition 4.2 There is S(m, r,s) =~ Endp, 5 (V® @ W)

Proof We apply Lemma 3.2 for R = K, M = Endg (V®" ® W®%), the basis B consisting of
all elements E;; for multi-indices I =iy ...ix 41 .. ipqss I = j1 oo JrJr41 - jrts, and
U= EndBrys((g)(V@r ® W®s).
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Assume ¢ € U and write ¢ = Y, arsE;y. If j # r, then

o)t = (ZGIJEIJ(UL))TJ = (Zauw)fj ZalLvL(j,jH)
I

= Zal (j,j+D,LVI

and

Prti) = PV, j+1) = ZaIJEIJ(UL.(j,j-H)) = Zal,L.(j,j+1)Ul-
1J 1

Comparing coefficients at v;, we obtain that the above expressions coincide if and only if
ar.(j,j+1,L = ai,L.(j,j+1) foreach j #r.

It remains to deal with 7,.. For simplicity of writing, assume r = s = 1 (similar arguments
remain valid for all values of r, 5.) Then

m
)t = arsEryw)t = O aiLv)t =Y agL Y v
1J 1 i =1
and

m m
d(vrt) =01 Z d () = 811, Z Zal(tt)El(tt)(v(tz))

t=1 t=1 1

=1 Z Z a@nvr.

t=1

The last two expressions coincide if and only if the following conditions are satisfied.

If I # [», then Zi ail, ® ai*l2 = 0 (comparing coefficients at v)).

Ifly =l and i} # i>, then Z:"Zl ai;r @ ai*zt = 0 (comparing coefficients at v, ;,)).

Ifly =l =landij =iy then ) ;ay ®af = >/ ai; ® al.*lt (comparing coefficients
at U(ilil))'

The basis B* of M*, dual to B, consists of coefficient functions E}k ; = xpy that are
constructed multiplicatively from the coefficient functions x;; = (ev)* and xl.*j = (el.vj‘./ )* for
1 < i, j < m in the sense that

*

—_— PR PR *
X1j = xll]l o 'xlrj"xir+ljr+l e xir+s./i‘+s

forl =iy...0041.. dpgsand J = Ji ... Jrjrgl - Jrts-

Let us review the generating equations for the submodule X of M* given by Lemma 3.2.
Due to the multiplicativity of the coefficient functions x;;, the equations x; (j j+1),7 =
x7,5..j+n forall I,J and 1 < j < r are identical to the relations generated by the
commutativity relations x;;xx; = xgx;; forall 1 < i, j,k,I < m. The same equations
forr < j < r + s are identical to the relations generated by the commutativity relations
xi*jx,fl = x,flxi*j forall1 <i,j,k,l <m.

Using the multiplicativity of x;;, we derive that the remaining equations for X are gen-
erated by the equations Y ;1 xyix;; = O fori # j, 3L, xixf, = 0 fori # j and
D ohet Xki X = D pei xXjkx’y foralli, j.

Denote by F = F1 ®k F>, where F; the K-submodule of the free algebra on generators
x;j generated by monomials of degree r, and F, the K-submodule of the free algebra on
generators xi*j generated by monomials of degree s, where 1 < i, j < m.
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Let Y the submodule of F generated by relations
Xjjxp = xgixij forall i, j;

* ok * %k EREEN
XjjXg = xgx;; forall i, j;

m
Zxk,-x,fj =0fori # j;
k=1

m
Zx,-kx;?k =0fori # j;
k=1

m m
Zxk,-x,fi = ijkx";k forall i, j.
k=1 k=1
Then by Lemma 3.2, ((Endp, ,5)(V®" @ W®))°P)*, as a K-module, is isomorphic to
F/Y.
Recall the definition of A(m; r, s) on p- 62 of [7]. We write A(m, r, s) instead of A(m;r,s)
for simplicity. Let ¢;; be the coefficient functions of the generic matrix C and

Cll,....k.....m|l,....T,...,
dij = (-1 " "
C[l,...,m|l,...m]

be the coefficient functions of the matrix C~1. Then A(m, r, s) is the subspace (and a sub-
coalgebra) of K[GL(m)] spanned by all products of the form [T, j c;ljj Il j dl.l}"j such that
aij, b,’j >0, Zij ajj =r and Zij b,’j =Ss.

The generators ¢;; and d;; commute and are subject to additional relations Z?:l cikdyj =
(Sl‘j and ZZLZI Ckidjk = 5ij~

In particular,

m m
Y cidij =0and Y cuidjr = 0if i # j,
k=1 k=1

and
m m
Zcikdk,- = chjdjk forall1 <i,j <m.
k=1 k=1
Since we need to have Zij ajj = r and Zij bjj = s, we cannot equate the terms

il Cikdki = Y gy Ck jdjk to 1 since it would reduce the corresponding degrees to less
than r and s.
Therefore, the K-space F/Y is isomorphic to A(m, r, s) via

[T @ [T = [ T
ij ij ij ij
Please note the use of the transposition x;; > c;;. Instead, we could have used a transposition
in the second component xi*j = djj.

In particular, the dimension of S(m,r,s) is the same of that of A(m,r,s) and
EndB,,S((S)(V@r ® W®‘Y))0’).

Therefore, the morphism W, s : Dist(G) — Endp, ;5 (V® @ W®)) is surjective,
and S(m, r,s) ~ EndBrJ((g)(V@r ® W®S))0p. [}
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5 The Second Half of the Super Schur-Weyl Duality

The second part of super Schur-Weyl duality states that S(m|n,r) is isomorphic to
EndKz,_ (V®r)op'

Let 7, J be multi-indices of length r with entries from the set {1, ..., m + n}. Denote
by E;j the matrix unit given by Ej;(vg) = §ygxvr. The elements Ej; form a K-basis of
the space Endg (V®"). For ¢ € Endg(V®") we write ¢ = Z” ajj Epj for appropriate
coefficients ay .

Proposition 5.1 The Schur superalgebra S(m|n, r) is isomorphic to Endgs, (veryor,

Proof We show that the dual of Endgs, (V® )P is isomorphic to the supercoalgebra
A(@m|n,r).

We modity the arguments from the proof Proposition 3.3. We apply Lemma 3.2 for R = K,
M = Endg (V®"), the basis B consisting of all elements E;; for multi-indices I = iy ...i,
and J = ji ... j- of length r, and U = Endgy, (V®").

Letp € U and ¢ = ZIJCIIJE[].

If1 <j <r,then

$(v)T; = (ZaIJEu(UL))fj = (ZalLvl)Tj
1

1J

— Z(_l)‘ij”iﬂ—l‘alLUI.(j,j+l) — Z(—l)“j”inIal.(j,j+1),LUI
1 1

and

prj) = ¢ty G i) = (DY " ay By or )
17

=Y 0ltlag iy
1

Thus ¢ is invariant under the transposition t; if and only if
(=Dllilay iy L= (=Dlay g i)

for each 7, L. Therefore, U is described by the set of equations in the coefficients ay; of
¢ € U as ¢ € U if and only if

(—l)linij"'llaj,(jyj_H)yL = (—l)lljluj"'l‘a[YL,(jyj_;,_l) for each 1, L and 1 < ] <r.

The basis B* of M*, dual to B, consists of coefficient functions E}, = x;; that are
constructed multiplicatively from the coefficient functions x;; = e;‘j, meaning that xj; =
Xiyjy -+ Xiy jiy for I :il ...ir and J :j1 Jr

The submodule X of M* is generated by equations

(=Dl ey = (=D Gy

forall I, L and 1 < j < r. Due to the multiplicativity of the coefficient functions, these
equations are identical to the relations generated by the commutativity relations

(= DIMKxxg = (=11 Mg
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foralll <i, j,k,l <m.

The last relations are not the usual supercommutativity relations between coordinate func-
tions. To get the usual supercommutativity relations, we need to replace the basis B by a
different basis. To motivate this switch, recall that the coefficient functions of V®" for the
basis consisting of vy are given as

x1s = (= DXi=t il Uil e et 4D )
where ¢;; = ¢;y j, - .- ci,,j, is the product of the matrix coefficient functions. The functions
X1 are easier to work with because the comultiplication in terms of x;; is nicer than in
terms of ¢y .
Define a different basis B of Endg (V®") consisting of elements

Fyy = (= D) Zim lilllie e i 4D

and write = Y, by Fry. Then by = (=)=t |iz\(\it+1|+|./'t+1.|+~'~+!i"|+|jr\)alj.
If weset F; = yryandy;; = ff;.,the relation x;j x = (—1)"”"|+|f””xk1x,3,- is equivalent
to

— (=)l DMK+ 1 — (—)Uill
(=D ) (=D

Xijxe = (
— (_1)Ii|\l|+|j\|l\+\klli\+\k||j\

Yij Yk XkIXij

- (_1)(\il+ljl)(\k\+\ll)

X Xij

Ykl Yij YklYij

- (_1)|yij”.\’k[|yklyij7

which is the usual supercommutativity relation between y;; and yy;.

Let F be the free algebra on generators y;; for 1 < i, j < m and Y the submodule of F
generated by elements y;; yy — (—1)‘yii||y’<’|yk1y,'j foralll <i, j,k,Il <m.Then M*/X,asa
K -vector space, is isomorphic to the degree r component D, of the algebra F /Y. Therefore,
(Endgs, (V®))*, considered as a K -space, is isomorphic to D, by Lemma 3.2. On the other
hand, D, >~ A(m|n, r), as K -spaces, via the isomorphism ]_[ij c?j':j — ]_[ij y?}'f. This shows
that S(m|n, r) = A(m|n, r)* has the same dimension as Endgy, (V®)°P  We conclude that
W, is surjective and S(m|n, r) >~ Endgs, (V& )°P. O

6 The Second Half of the Mixed Super Schur-Weyl Duality
Let vy, ..., vnyn be a K-basis of V, and v}, ..., vy, be the corresponding dual basis
of W. Recall that the standard matrix units ¢;; act on V and W as e;jvx = Jj;v; and
eijvf = —Six(= DIy

Let r,s > 0 and I, J, K be multi-indices of length r + s with entries from the set
{1,...,m + n}. We write every multi-index / = (i1, ..., i,4+5) as a concatenation | =
IvIw, where Iy = (iy...i;) and Iw = (i,41...ir45). The elements v; = vy vy, =
Viy - v, v ... vp for all multi-indices / of length r + s form a basis of V& @ W®".
Since

Endg (VE @ W) ~ Endg (V") ® Endx (W®) ~ Endg (V)®" @ Endg (W)®*,

every map from Endg(V®" ® W®*) is a linear combination of maps ¢yer ® ¢yes, where
¢V®r (S EndK(V®r) and ¢W®S (S EndK(W@)S).
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Denote by E,VJ the matrix unit given by E}/J (vLy) = 84y Ly V1y, and by E,V‘; the matrix
unit given by EI“} (vLy) = 8y Ly V1 - Then the elements E;; = EYJEI“} form a K-basis
of the space Endg (V®" @ W®S). For ¢ € Endg (V" @ W®) we write g = >, ,ar/Ery
for appropriate coefficients a; .

We want to determine the dual of Endp, (5 (V® ® W®) and compare it with
A(m|n,r,s). '

6.1 (Endg, ,(5)(V®" ® W®)°P)* Expressed by Generators and Relations

We apply Lemma 3.2 for R = K, M = Endg(V® @ W®5), the basis B consisting of
all elements E;; for multi-indices I =iy ...ip0p41---lr4ss J = J1 - JrJr41--- jrts, and
U = Endg, ,5(VE @ W).

Assume ¢ € U and write ¢ = Y, arsEyy. If j # r, then

pvp)tj = (Z‘UJEIJ(UL))T]’ = (ZaILUI)Tj
17 7

— Z(_l)“j”i”l‘GILUI.(j,j+1) — Z(—l)“j”ij“Ial.(j,j+1),LUI
1 1

and

pwrr)) = ¢ty sy = (DN "ay By or )
1J

Ll
=Y 0llag gy
1

Comparing coefficients at v;, we obtain that the above expressions coincide if and only if
(—0litlay iy L= (=Dlay )

for each j # r.
It remains to deal with 7. For simplicity of writing, assume »r = s = 1 (analogous
arguments remain valid for all values of r, s.) Then

m-+n
¢t = arEry)t = Q) arv)t =Y (D" ag Y v
17 1 i i=1

and

m—+n m+n

¢ (L) = 8,1, (—DIF! Z ¢ (Wan) = 811, (=D)L Z Zal(tr)EI(tt)(U(n))
=1 t=1 1

m—+n

=8 (=D YN g
=1 1

The last two expressions coincide if and only if the following conditions are satisfied.

If Iy # [», then Zi(—l)“‘a,-l1 ® ai*l2 = 0 (comparing coefficients at v(;)).

Ifl; = b =l and iy # i», then (—1)!l Z’,":l" aiye ® af, = 0 (comparing coefficients at
Viyiz))-
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Iftly =l =landi; =iy, then 3, (= DVlayy ®aj; = ()" 31" 4y, ®a;:, (comparing
coefficients at v(;,;,)).

The basis B* of M*, dual to B, consists of coefficient functions E}k ;7 = xqy that are
constructed multiplicatively from the coefficient functions x;; = (el.‘;)* and xl.*j = (ei‘}}/ )* for
1 <i,j <m + nin the sense that

Xy = xll]l e xl’]rxir+ljr+l o xir+sjr+s

for 1 =i1...irir+1...ir+s and J =j1...jrjr+1 ...jr+5.
Next, we look at the generating equations for the submodule X of M* given by Lemma 3.2.
Due to the multiplicativity of the coefficient functions x;, the equations

(=Dl e, = (DI 5 Gy

forall I, L and 1 < j < r are identical to the relations generated by the commutativity
relations
(—1)“”””"xijﬂljxi,-lj“ = (_1)\1j||1j+1lxijlj_+]xl_jmj
which are equivalent to
xijag = (= DR

forall 1 <i, j,k,I < m + n. The same equations for » < j < r + s are identical to the
relations generated by the commutativity relations

Xy = (= DIKHTM g e
foralll <i, j,k,l <m+n.

Using the multiplicativity of x;7,, we derive that the remaining equations for X are gener-
ated by the equations ZTI{’(—I)""xkix,jj =0fori # j, Y xigx7, = Ofori # j, and
S (DR = (DY xjpxs forall | < i, j < m +n.

Using Lemma 3.2, we establish the following statement.

Proposition 6.1 Denote by F = F| Qg F», where Fy is the K -submodule of the free algebra

on generators x;j generated by monomials of degree r, and F; is the K-submodule of the

free algebra on generators xi*j generated by monomials of degree s, where 1 < i, j <m-+n.
Let Y the submodule of F generated by relations

xijxi = (=DM for all i j;

i(1k|+1j11 2.
x;ij;{kl — (_1)Iz|\ [+1711 'x,flejforalll,j,

m+n
> (=D)Fxgixg; = 0fori # j:
k=1
m-+n
inkx;fk = 0fori # j;
k=1
m+n m-+n
Z(—])‘klxmxlfi = (=Dl Z xi,‘kx;’fk foralli, j.
k=1 k=1

Then ((EndBr‘s(g)(V@’r ® W®)°PY* as a K-space, is isomorphic to F /Y.
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6.2 Mixed Super Schur-Weyl Duality
Proposition 6.2 There is S(m|n, r,s) ~ Endg, (5(V®" @ W®)%P.

Proof Analogously to the second half of the proof of Proposition 5.1, we define a different
basis of Endg (V®") consisting of elements

FY, = (= Zi=t lirllis i etlin 3D gV
a different basis of Endg (W®*) consisting of elements
FY = () il i et livss s pW

which gives a different basis of Endg (V®" ® W®*) consisting of elements F;; = F IVJ F 1“;.
If we write ¢ € Endg (V" @ W®)as ¢ =Y, byy Fy, then

by = (_1)2?:1 i |Vt [ Lo 1 [l L D220 Il:\(\lr+1|+|/x+1\+~~~+|tr+s|+|./r+s\)a”'

We define y;; = (f,.}’)*, 5= (fl.;V)* for1 <i,j <m+nand

7= F)" = Yigji o Yirjo Vi ot -

*
yir+.\' Jrts®

In the same way as in the second half of the proof of Proposition 5.1, we obtain that the
relation x;;xy = (—1)"||k‘+‘1|”|xklx,'j is equivalent to

vijy = (=P gy,
which is the usual supercommutativity relations between y;; and yy;. Analogously, the relation
x;“jxlfl = (—1)"”""“”””x,flx;‘j is equivalent to
[yEyEl
iy = (=Dl pe

The remaining relations are rewritten in terms of y;;’s and yl.*j ’s as follows.

m+n m+n
Z(_l)ll\(|k|+1)ykiy;:j — Z(_1)|k\+\l|(_1)\k|(|k|+\t|)ykiyl>:j
k=1 k=1
m+n
= (D" (=DFxxg; =0
k=1
fori # j,
m-+n m-+n
Z( 1)\]\(|l|+|/<\) szkx =0
k=1
fori # j, and
m+n m+n
Z(_])ll\(\lirl)ykiy;:i — Z(_l)lk\+\l|(_1)\k|(|k\+\l|)yk v
k=1 k=1
) m-+n m+n m+n o
— (_l)ll\ Z(_l)kxkix;:i — ijkx;‘k — Z(_l)ljl(\]\+\k|)yjky*
k=1 k=1 k=1

@ Springer



A Note on Schur-Weyl Dualities...

for every i, j.
Therefore, ((EndBr.S(g)(V@ ® W®$))oPy* as a K-space, is isomorphic to F/Y, where
F is as above, and Y is generated by the supercommutativity relations

yijykl = (=1)Piillaly, . forall i, j;
iy = (DRIl ys forall i, j,

and the additional relations

m+n

Z(_l)lzl(\k\ﬂ)ykiyzj =0fori # j;

k=1

m-+n

Z(_])\J\(Illﬂk\)yijy;fk =0fori # j;

k=1
m+n m+n
Z(_])\ll(lkHl)ykiy:i — Z(_])I]l(l]\ﬂkl)yjky;fk forall i, j.
k=1 k=1

We will show that the K-spaces F /Y and A(m|n, r, s) are isomorphic.
Recall that we have denoted by c;; the coefficient functions of the generic matrix C and
by

Cll, ..., kyeomll,
dij = (~1y+EL | ud
Cll,...,m|l,...m]

the coefficient functions of the matrix C~!. Then A(m|n, r, s) is the subspace (and a sub-
coalgebra) of K[GL(m|n)] spanned by all products of the form [; j ciajfj L j dl»}’]fj such that
ajj, b,’j >0, Zij ajj =r and Zij bij =3s.

The generators ¢;; and d;; supercommute and are subject to additional relations
Zl}lzl cikdyj = d;j and 221:1 djkcki = dij.

In particular,

m m
> cidij =0and Y (=D)Utlegay = 0ifi # j,

k=1 k=1
and
m m
> cikdii =Y (=D)% Mkl dyy forall 1 <, j < m.
k=1 k=1
Since we need to have Zij ajj = r and Zij bjj = s, we cannot equate the terms

ZZ’ZI cirdri = Z?:l ckjdjk to 1 since it would reduce the corresponding degrees to less
than r and s.

The isomorphism of K-spaces F'/Y and A(m|n, r, s) is given using a supertransposition
Yij = (—l)lil(‘jH—l)Cﬁ and yi*j = d,'j.

More explicitly, the above-defined map extends multiplicatively to an isomorphism

[Toi @ [Toi = TTe=DMHD e [T
ij ij ij ij

Thus, the dimension of S (m|n, r, s) is the same of thatof A(m|n, r, s) and Endp, ,(s) Ve Q®
W®S))op.
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Therefore, the morphism W, ; : Dist(GL(m|n)) — Endp, 5 (V® @ W®¥)) is sur-
jective, and S(m|n, r,s) ~ Endgr,x((g)(V@ ® Wes))or, O

7 The First Half of the Schur-Weyl Duality

Recall the definitions of ®, and @, ; from Section 2.
Theorem 7.1 The morphism ®, is surjective. It is injective if and only if r < m.

Proof The statement is the first part of the classical Schur-Weyl duality. See Propositions 11
and 15 of [10] for proof. O

The description of the kernel of @, is given in Lemma 3 of [12].

Theorem 7.2 (Theorem 7.8 of [3]) Assume the characteristic of the ground field K is zero.
Then the map ®,  is surjective. It is injective if and only if r +s < (m + 1)(n + 1).

To prove the above theorems using elementary methods analogous to those used earlier,
we first need to describe Endg(V®") and Endg(V®" ® W®*). However, even finding the
dimensions of these spaces is a nontrivial problem. The action of K %, on V® is faithful if
and only if » > m. Therefore, the dimension of Endg(V®") is r!if r > m, but it is unclear
what this dimension is if r < m. For example, if m = 2 and r = 3, this dimension is 5. If
m > r = 3, the dimension is r! = 6. However, even for m = r = 3, a direct verification
involves a fair amount of computations. Similar obstacles appear in the description of the
dimensions of Endg(V® @ W®5).

For simplicity, we consider only Endgr m)(V®") and assume that the characteristic of K
is zero.

An element of ¢ € Endgrem)(V®") is an element ¢ of Endg (V®") invariant under
the action of standard matrix units e;; from the general linear Lie algebra gl(m) for all
1 <i,j<m.

We write ¢ = ) _;; ary Ejy and evaluate

ejjp(vL)
= eij ZGIJEIJ(UL) = ejj ZalLvl ZaILeijUI
17 1
=Za1LZv,~1 ®...80¢jv;, ®...Q v,
1 1=l

-
=201L25i,,jvi1®~--®vz CRURES ZaILZ&,JUu dptdig ey
I 1=l
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and

,
p(ejjv) = ¢(Z v ®...0¢€v,Q...0U,)

t=1

=¢(251r,/’v11 R...9V®...Q0v,)

t=1

-
=Z(Sltqua1]El-](vll R..%VR...Qu,)
t=1 1J

.
=D 80 D il VI
t=1 1

The equality e;;¢ (vL) = ¢(e;jvr) is satisfied if and only if, for each multi-index I, the
coefficients at v;’s in the above two expressions are the same.

The following example shows that the direct comparison of coefficients yields the first
half of the Schur-Weyl duality in some simple cases.

Example 7.3 Assume m =2, r = 2. Then Endgr2)(V®?) ~ K %,.

Proof Consider cases
i=j=1
h=h=1
Ey = 2ai111vi1 + aizniviz + aziivad
Er =2ap1v11 + 2az11vi2 + 2az1j11v21 + 2a)11v22
implies a12)11 = a21j11 = a1 =0.
h=115L=2:
E1 = 2ai112v11 + ai2)12v12 + a21j12v21
Ey = anzvir + aizjzviz + aznji2v21 + axji2v2
implies ari|z = a2 = 0.
L =2,1=1:
E1 = 2anp1vi1 + azpiviz + a2ipivai
Ey = anpivir + azpiviz + a2ipiver + axnppiva
implies a11|21 = a22|21 =0.

L= =2:
Ey = 2a11p2v11 + a2122v12 + a2122v21
E,=0

implies ay122 = ai2;22 = az122 = 0.
That means only values unassigned are aj1)11, @12/12, @21/12, 41221, @21)21 and az2(22.

i=1,j=2

h=h=1:

E1 = apvir + aziivin + aniviz +axpjiiva =0
E,=0

h=1,01L=2:

E = aipjovi1 + az1j12v11 + a22p12v12 + a)12v21

E> = ayqivin +aizjniviz + a2qji1v21 + ax)iivee = aiiivii
implies a12)12 + a21j12 = aii

Lh=2,1=1:
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Ey = apzpivin + az121v11 + axpiviz + axnpival

E> = anvir + aizjniviz + azqiver + axjivae = arivi

implies ajop1 + a21)21 = ainn

L= =2:

Ey = apppavin + azi22v11 + a2p2viz + axpav2l = ax22v2)

E> = ayyiavin +aipivin +ang2viz +azpiviz +azi2v21 +aipivai + azji2ve +
an2|21v22

implies a1212 + aizp1 = a2 and axq12 + a21p1 = a222.

Asa consequence, we also get aii| = a2, azi|12 = 4aiz21 and a2 = azij2i-

The general solution of aj2(12 + ai221 = ai11)11 is a linear combination of two solutions:

a2 = aiz;p1 = L and aqq)11 = 2 (this corresponds to symmetric tensors) and

a2 =1, ai2;21 = —1 and ay1)11 = 0 (this corresponds to antisymmetric tensors).

Thus Endgr)(V®?) ~ KX, as expected. ]

For comparison, over arbitrary G L(m), there is a well-known decomposition of V®? ~
Symz(V) ® A2(V) into irreducible symmetric and antisymmetric tensors.

A better approach to the first half of Schur-Weyl duality is to consider the action of specific
elements g € GL(m) on V® as in Lemma 3.1 of [4] and Theorem 2.1 of [1].
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