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Abstract
Let A be a connected cochain DG algebra such that H(A ) is a Noetherian graded algebra.
We give some criteria forA to be homologically smooth in terms of the singularity category,
the cone length of the canonical module k and the global dimension of A . For any coho-
mologically finite DG A -module M, we show that it is compact when A is homologically
smooth. If A is in addition Gorenstein, we get

CMregM = depthA A + Ext.reg M < ∞,

where CMregM is the Castelnuovo-Mumford regularity of M, depthA A is the depth of A
and Ext.reg M is the Ext-regularity of M.

Keywords Homologically smooth · DG algebra · Cone length · Global dimension ·
Castelnuovo-Mumford regularity
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Introduction

Over the past two decades, the introduction and application of DG homological methods
and techniques have been one of the main areas in homological algebra. In DG homological
algebra, the homologically smoothness of a DG algebra plays a similar important role as the
regularity of an algebra does in the homological ring theory. The research on this fundamental
property ofDGalgebras have attractedmany people’s interests. In [18],He-Wu introduced the
concept of Koszul DG algebras, and obtained a DG version of the Koszul duality for Koszul,
homologically smooth and Gorenstein DG algebras. The author and Wu [26] proved that
any homologically smooth connected cochain DG algebraA is cohomologically unbounded
unlessA is quasi-isomorphic to the simple algebra k. And it was proved that the Ext-algebra
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of a homologically smooth DG algebra A is Frobenius if and only if both Db
l f (A ) and

Db
l f (A

op) admit Auslander-Reiten triangles. In [33], Shklyarov developed a Riemann-Roch
Theorem for homologically smooth DG algebras. Besides these, some important classes of
DG algebras are homologically smooth. For example, Calabi-Yau DG algebras introduced by
Ginzburg in [15] are homologically smooth by definition. Especially, non-trivial Noetherian
DG down-up algebras and DG free algebras generated by two degree 1 elements are Calabi-
Yau DG algebras by [29] and [30], respectively. Moreover, there is a construction called
‘Calabi-Yau completion’ [23] which produces a canonical Calabi-Yau DG algebra from a
homologically smooth DG algebra.

One sees from above that it is meaningful to study homologically smooth DG algebras
thoroughly. A feasible way to study an algebra is via various homological invariants of the
modules on them. There have been many kinds of invariants on DG module since Appasov’s
PhD thesis [4], where he defined homological dimensions of DG modules from both reso-
lutional and functorial points of view. Frankild and Jørgensen [13] introduced and studied
k-projective dimension and k-injective dimension for DG modules over a local chain DG
algebra. Later, Yekutieli-Zhang [35] introduced projective dimension proj.dimA M and flat
dimension flat.dimA M for a DG module M over a homologically bounded DG algebra A .
Any one of these invariants for DG modules can be seen as a generalization of the corre-
sponding classical homological dimensions of modules over a ring. However, it seems that
none of them can be used to define a finite global dimension of a DG algebra. Inspired
from the definition of free class for differential modules over a commutative ring in [1], the
invariant DG free class for semi-free DG modules was introduced in [27]. Recall that the
DG free class a semi-free DG A -module is defined to be the shortest length of all its strictly
increasing semi-free filtrations. For any DG A -module, the least DG free classes of all its
semi-free resolutions is called cone length. This invariant of DG modules plays a similar
role as projective dimension of modules does in homological ring theory. It is well known
in homological ring theory that the projective dimension of a module over a local ring is
equal to the length of its minimal projective resolution. In this paper, we prove the following
theorem (see Theorem 3.7).

Theorem A Let M be an object in D+(A ) such that clA M < ∞. Then there is a minimal
semi-free resolution G of M such that DGfree.classA G = clA M.

In [20], Jørgensen put forward a question on how to define global dimension of DG
algebras. As explained in [27], it is reasonable to some degree to define left (resp. right)
global dimension of a connected DG algebra A to be the supremum of the set of the cone
lengthes of all DG A -modules (resp. A op-modules). In classical theory of homological
algebra, it is well known that the regular property of a commutative noetherian local ring
can be characterized by the finiteness of its global dimension and projective dimensions
for all finitely generated modules. By [9], we know a commutative noetherian local ring is
regular if and only if every homologically finite complex is small in the derived category. It
is natural to ask whether we can get analogous results in DG setting. The following theorem
(see Theorem 4.2) confirm this positively.

Theorem B Let A be a connected cochain DG algebra such that H(A ) is a Noetherian
graded algebra. Then the following statements are equivalent:

(a) A is homologically smooth.
(b) clA eA < ∞.
(c) l.Gl.dimA < ∞.
(d) Dc(A ) = D f g(A ).
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(e) Dsg(A ) = 0.
(f) clA k < ∞.
(g) k ∈ Dc(A ).

Here, D f g(A ) and Dc(A ) are the full triangulated subcategories of the derived category
of DG A -modules consisting of cohomologically finite DG A -modules and compact DG
A -modules, respectively. Note that compact DG A -modules are just small objects in D(A ),
and Dsg(A ) is the singularity category D f g(A )/Dc(A ).

In [21], Jørgensen introduced Dwyer-Greenlees theory to differential graded homological
algebra and developed a duality between D f g(A ) and D f g(A

op) under the hypothesis [21,
Setup 4.1] and the the additional condition that H(A ) is Noetherian with a balanced dualiz-
ing complex. Applying Theorem B, one sees thatD f g(A ) = Dc(A ) whenA is homologically
smooth and H(A ) is Noetherian. This leads straightforwardly to the following duality:

D f g(A )

RHomA (−,A )

D f g(A
op)

RHomA op (−,A )

.

The Ext-regularities and Castelnuovo-Mumford regularities for DG modules were intro-
duced by Jørgensen in [21]. Under the assumptions mentioned above, he obtained some
interesting results on these two invariants for DG modules in D f g(A ) (see [21, Theorem
5.7]). In this paper, we show the following theorem (See Theorem 5.12).

Theorem C LetA be a Gorenstein and homologically smooth connected cochain DG algebra
such that H(A ) is a Noetherian graded algebra. Then for any object M in D f g(A ), we have

CMregM = depthA A + Ext.reg M < ∞.

1 Preliminaries

In this section, we review some basics on differential graded (DG for short) homological
algebra, whose main main novelty is the study of the internal structure of a category of
DG modules from a point of view inspired by classical homological algebra. There is some
overlap here with the papers [12, 25, 26]. It is assumed that the reader is familiar with basics
on the theory of triangulated categories and derived categories. If this is not the case, we refer
to [31, 34] for more details on them.

Throughout the paper, k is a fixed field. Let A be a Z-graded k-algebra. If there is a
k-linear map ∂A : A → A of degree 1 such that ∂2A = 0 and

∂A (ab) = ∂A (a)b + (−1)n|a|a∂A (b)

for all graded elements a, b ∈ A , then A is called a cochain differential graded k-algebra.
We write DG for differential graded. For any cochain DG k-algebraA , its underlying graded
algebra obtained by forgetting the differential of A is denoted by A #. If A # is a connected
graded algebra, then A is called a connected cochain DG algebra.

For the rest of this paper, we denoteA as a connectedDGalgebra over a field k if no special
assumption is emphasized. The cohomology graded algebra of A is the graded algebra

H(A ) =
⊕

i∈Z

ker(∂ i
A )

im(∂ i−1
A )

.
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For any cocycle element z ∈ ker(∂ i
A ), we write �z� as the cohomology class in H(A )

represented by z. It is easy to check that H(A ) is a connected graded algebra if A is a
connectedDGalgebra.WedenoteAop as the oppositeDGalgebra ofA , whosemultiplication
is defined as a · b = (−1)|a|·|b|ba for all homogeneous elements a and b in A . For any
connected cochain DG algebra A , it has the following maximal DG ideal

m : · · · → 0 → A 1 ∂1→ A 2 ∂2→ · · · ∂n−1→ A n ∂n→ · · · .

Obviously, the enveloping DG algebraA e = A ⊗Aop ofA is also a connected DG algebra
with H(A e) ∼= H(A )e, and its maximal DG ideal is m ⊗ A op + A ⊗ mop .

A left DGmodule overA (DGA -module for short) is a gradedA #-module together with
a linear k-map ∂M : M → M of degree 1 satisfying the Leibniz rule:

∂M (am) = ∂A (a)m + (−1)|a|a∂M (m),

for all graded elements a ∈ A , m ∈ M . For any left DG A -module, it is well known that
H(M) is a left graded H(A )-module. We say that a DG A -module is acyclic if H(M) = 0.
A right DGmodule overA is defined similarly. It is easy to check that any right DGmodules
over A can be identified with DG A op-modules. For any DG A -module M and i ∈ Z, the
i-th suspension ofM is the DGA -module�i M defined by (�i M) j = M j+i . Ifm ∈ Ml , the
corresponding element in (�i M)l−i is denoted by �i m. We have a�i m = (−1)|a|i�i (am)

and ∂�i M (�i m) = (−1)i�i∂M (m), for any graded elements a ∈ A , m ∈ M .
An A -homomorphism f : M → N of degree i between DG A -modules M and N is a

k-linear map of degree i such that

f (am) = (−1)i ·|a|a f (m), for all a ∈ A , m ∈ M .

Denote HomA (M, N ) as the graded vector space of all gradedA -homomorphisms from
M to N. This is a complex with them differential ∂Hom defined by

∂Hom( f ) = ∂N ◦ f − (−1)| f | f ◦ ∂M

for all f ∈ HomA (M, N ). A morphism of DG A -modules from M to N is an A -
homomorphism f of degree 0 such that ∂N ◦ f = f ◦ ∂M . The induced map H( f ) of f
on the cohomologies is then a morphism of left graded H(A )-modules. If H( f ) is an iso-

morphism, then f is called a quasi-isomorphism, which is denoted as f : M

→ N . Let f and

g be two morphisms of DG A -modules between M and N. If there is an A -homomorphism
σ : M → N of degree -1 such that f − g = ∂N ◦ σ + σ ◦ ∂M , then we say that f and g are
homotopic to each other and we write f ∼ g. A DG A -module M is called homotopically
trivial if idM ∼ 0. A morphism f : M → N of DG A -modules is called a homotopy
equivalence if there is a morphism h : N → M such that f ◦ h ∼ idN and h ◦ f ∼ idM .
And h is called a homotopy inverse of f. One sees easily that any homotopy equivalence is a
quasi-isomorphism.

A DG A -module P (resp. I) is called K-projective (resp. K-injective) if the functor
HomA (P,−) (resp. HomA (−, I )) preserves quasi-isomorphisms. And a DG A -module
F is called K-flat if the functor − ⊗A F preserves quasi-isomorphisms. A K-projective res-
olution (resp. K-flat resolution) of a DG A -module M is a quasi-isomorphism θ : P → M ,
where P is a K-projective (resp. K-flat) DG A -module. Similarly, a K-injective resolution

of M is defined as a quasi-isomorphism η : M

→ I , where I is a K-injective DGA -module.

A DG A -module is called DG free, if it is isomorphic to a direct sum of suspensions of A
(note it is not a free object in the category of DG modules). Let Y be a graded set, we denote
A (Y ) as the free DG module ⊕y∈YA ey , where |ey | = |y| and ∂(ey) = 0. Let M be a DG
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A -module. A subset E of M is called a semi-basis if it is a free basis of M# overA # and has
a decomposition E = ⊔

i≥0 Ei as a union of disjoint graded subsets Ei such that

∂(E0) = 0 and ∂(Eu) ⊆ A(
⊔

i<u

Ei ) for all u > 0.

A DG A -module F is called semi-free if there is a sequence of DG submodules

0 = F−1 ⊂ F0 ⊆ · · · ⊆ Fn ⊂ · · ·
such that F = ∪n≥0 Fn and that each Fn/Fn−1 = A ⊗ V (n) is a DG free A -module. The
differential of F can be decomposed as ∂F = d0 + d1 + · · · , where d0 = ∂A ⊗ id and each
di , i ≥ 1 is an A -linear map satisfying di (V (l)) ⊆ A # ⊗ V (l − i). It is easy to check that
a DG A -module is semi-free if and only if it admits a semi-basis. A semi-free resolution of
a DG A -module M is a quasi-isomorphism ε : F → M, where F is a semi-free DG A -
module. Sometimes, we just say that F is a semi-free resolution of M. Semi-free resolutions
play a similar important role in DG homological algebra as ordinary free resolutions do in
homological ring theory.

Let C (A ) be the category of DG A -modules and morphisms of DG A -modules. The
derived category of C (A ) is denoted by D(A ), which is constructed from C (A ) by invert-
ing quasi-isomorphisms. The right derived functor of Hom, is denoted by RHom, and the
left derived functor of ⊗, is denoted by L⊗. They can be computed via K-projective, K-
injective and K-flat resolutions of DG modules. It is easy to check that HomD (A )(M, N ) =
H0(RHomA (M, N )), for any objects M, N in D(A ). A DG A -module is called compact,
if the functor HomD (A )(M,−) preserves all coproducts in D(A ). By [22, Theorem 5.3], a
DGA -module M is compact, if and only if it is in the smallest triangulated thick subcategory
of D(A ) containing A A . To use the language of topologists, a DG A -module is compact
if it can be built finitely from A A , using suspensions and distinguished triangles.

For anyDGA -moduleM, it is called cohomologically finite ifH(M) is a finitely generated
H(A )-module. We say that M is cohomologically locally finite if each dimk Hi (M) <

∞. Let D f g(A ) and Dl f (A ) be the full triangulated subcategories of D(A ) consisting of
cohomologically finite DG A -modules and cohomologically locally finite DG A -modules,
respectively. If the graded H(A )-module H(M) is bounded below (resp. bounded above),
we say that M is cohomologically bounded below (resp. cohomologically bounded above).
Let D+(A ) (resp. D−(A )) be the full triangulated subcategory of D(A ) consisting of
cohomologically bounded above (resp. cohomologically bounded below) DG A -modules.
One sees easily thatD−(A )∩D+(A ) consists ofDGA -moduleswith bounded cohomology.
It is natural to write Db(A ) = D−(A ) ∩D+(A ). Obviously, we have inclusions Dc(A ) ⊆
D f g(A ) ⊆ D+(A ). Following [5, 7, 24, 32], the singularity category of A is defined as
the Verdier quotient Dsg(A ) = D f g(A )/Dc(A ). It is confirmed by the results of [32] that
that singularity category of an algebra measures the degree to which the algebra is ‘singular’.
One of the motivations of this paper is to seek a similar result for DG version.

2 Some Basic Lemmas

In this section, we will give some fundamental lemmas on semi-free resolutions, isomor-
phisms and compact DG modules. Semi-free resolutions play an important role in DG
homological algebra as ordinary free resolutions do in homological ring theory. The fol-
lowing lemma indicates that any DG A -module has a semi-free resolution.
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Lemma 2.1 [12, Proposition 6.6] For any DG algebra A , each DG A -module M admits a

semi-free resolution f : F

→ M. If g : G


→ M is a second semi-free resolution, then there
is a homotopy equivalence h : G → F such that g ∼ f ◦ h.

Lemma 2.2 [12, Proposition 6.4] For any DG algebra A , if F is a semi-free DG A -module
and η : M → N is a quasi-isomorphism, then HomA (F, η) is a quasi-isomorphism. Equiv-
alently, the functor HomA (F,−) maps quasi-trivial DG A -modules to acyclic complexes.
Hence any semi-free DG A -module is K-projective.

Let A be a connected cochain DG algebra. A semi-free DG A -module F is minimal
if ∂F (F) ⊆ mF . The minimality of F implies that both HomA (F, k) and k ⊗A F have
vanishing differentials. As to the existence of the minimal semi-free resolution of a DG
A -module, we have the following lemma.

Lemma 2.3 [25, Proposition 2.4] Let A be a connected cochain DG algebra. If M is a DG
A -module in D+(A ) with b = inf{ j |H j (M) �= 0}, then there exists a minimal semi-free
resolution FM of M with F#

M
∼= ∐

i≥b
�−i (A #)(�

i ), where each �i is an index set.

Lemma 2.4 [26, Proposition 3.3] Let A be a connected cochain DG algebra. If M is
a DG A -module in D+(A ), then M is compact if and only if dimk H(k ⊗A M) =
dimk H(RHomA (M, k)) < ∞
Remark 2.5 Let M be an object in D+(A ). By Lemmas 2.3 and 2.4, one sees easily that
M is compact if and only if it admits a minimal semi-free resolution FM which has a finite
semi-basis. To use the language of topologists, a DG A -module is compact if it can be built
finitely from A A , using suspensions and distinguished triangles. Compact DGmodules play
the same role as finitely presented modules of finite projective dimension do in ring theory.
One sees that compact DG modules are just small objects in D(A ).

Lemma 2.6 [12, Remark 20.1] Any bounded below projective graded module over a con-
nected graded algebra is a free graded module.

Since any DG A -module is a graded A #-module by forgetting its differential, we can
easily get the following lemma by the graded version of Nakayama Lemma.

Lemma 2.7 (DG Nakayama Lemma) Let A be a connected cochain DG algebra. If M is a
bounded below DG A -module and L is a DG A -submodule of M such that L + mM = M,
then L = M.

Lemma 2.8 Let A be a connected cochain DG algebra. Suppose that F is a bounded below
DG A -module such that ∂F (F) ⊆ m F and F# is a projective A #-module. If a DG morphism
α : F → F is homotopic to the identity morphism idF , then α is an isomorphism.

Proof Since α 
 idF , there is a homotopy map h : F → F such that

α − idF = h ◦ ∂F + ∂F ◦ h.

Let F = k ⊗A F, α = k ⊗A α and h = k ⊗A h. Since ∂F (F) = mF , we have α =
idF +h ◦∂F +∂F ◦h = idF . Hence F = im(α)+mF . By Lemma 2.7, we have im(α) = F .
Since F# is a projective A #-module, the short exact sequence

0 → ker(α) → F
α→ F → 0
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is linearly split. Note that a short exact sequence of DG A -modules is called linearly split if
it is split as a short exact sequence of graded A #-modules. Acting k ⊗A − on this linearly
split short exact sequence, gives a short exact sequence

0 → k ⊗A ker(α) → F
α→ F → 0

of graded k-verctor spaces. Since α is a monomorphism, we have

ker(α)/mker(α) = k ⊗A ker(α) = 0.

Suppose that ker(α) �= 0, then ker(α) is a bounded below DGA -module since it is a DGA -
submodule of F. This implies that ker(α) �= mker(α). It contradicts with ker(α)/mker(α) =
0. Hence ker(α) = 0. ��
Lemma 2.9 For any DG algebra A and morphism of DG A -modules f : M → N, if there
are DG morphisms g : N → M and g′ : N → M such that g′ ◦ f ∼ idM and f ◦ g ∼ idN ,
then f is a homotopy equivalence and g is a homotopy inverse of f.

Proof By assumptions, we have g′ ∼ g′ ◦ idN ∼ g′ ◦ ( f ◦ g) = (g′ ◦ f ) ◦ g ∼ idM ◦ g = g.
So g ◦ f ∼ g′ ◦ f ∼ idM . Hence f is a homotopy equivalence and g is its homotopy inverse.��
Lemma 2.10 For any DG algebra A and any DG A -module M, the DG module M is homo-
topically trivial if and only if H(HomA (M, M)) = 0.

Proof If M is homotopically trivial, then HomA (M, M) is homotopically trivial since the
functor HomA (M,−) is additive. So H(HomA (M, M)) = 0.

Conversely, suppose that H(HomA (M, M)) = 0, we need to prove that M is homotopi-
cally trivial. Since ∂Hom(idM ) = ∂M ◦ idM − idM ◦ ∂M = 0, there is σ ∈ HomA (M, M)

of degree -1 such that idM = ∂Hom(σ ) = ∂M ◦ σ + σ ◦ ∂M . Therefore, M is homotopically
trivial. ��
Lemma 2.11 Let A be a connected cochain DG algebra. Assume that A is a DG free A -
module with a direct summand P such that H(P) is bounded below. Then P is also a DG free
A -module.

Proof Let F = ⊕
i∈I

A ei . By the assumption,H(P) is a direct summand ofH(F), which is a free

graded H(A )-module. Hence H(P) is a projective H(A )-module. Since H(P) is bounded
below and H(A ) is connected, H(P) is a free H(A )-module. Let H(P) = ⊕

j∈J
H(A )[ f j ],

where each f j is a cocycle in P.
Let L = ⊕

j∈J
A x j be the DG free A -module with a cocyle basis {x j | j ∈ J }. We define

a morphism of DG A -modules: ε : L → P by ε(x j ) = f j , for any j ∈ J . It is easy to
check that ε is a quasi-isomorphism. Since both L and P are K-projective, ε is a homotopy
equivalence. Hence ε is an isomorphism as both L and P are minimal. ��
Lemma 2.12 Let A be a connected cochain DG algebra. If F is a semi-free DG A -module
such that H(F) is bounded below, then there is a minimal semi-free resolution G of F such
that F ∼= G ⊕ Q as a DG A -module, where Q is homotopically trivial DG A -submodule of
F.
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Proof By Lemma 2.3, F admits a minimal semi-free resolution g : G → F with inf{i |Gi �=
0} = inf{i |Hi (F) �= 0}. Since F can be considered as a semi-free resolution of itself, there
is a homotopy equivalence h : G → F such that idF ◦h ∼ g by Lemma 2.1. Let f : F → G
be the homotopy inverse of h. Then f ◦h ∼ idG . Hence there is anA -linear homomorphism
σ : G → G of degree -1 such that f ◦ h − idG = ∂G ◦ σ + σ ◦ ∂G . Since ∂G(G) ⊆ mG and
σ isA -linear, we have f ◦ h − idG ⊆ mG. Hence f ◦ h = k ⊗A ( f ◦ h) is the identity map
of

G = G/mG = k ⊗A G.

Acting on the exact sequence

G
f ◦h−→ G −→ coker( f ◦ h) −→ 0

by k ⊗A − gives a new exact sequence

G
f ◦h−→ G −→ coker( f ◦ h) −→ 0.

This implies that coker( f ◦ h) = 0. Hence coker( f ◦ h) = m · coker( f ◦ h). If coker( f ◦
h) = G/im( f ◦ h) is not zero, then it is bounded below since G is bounded below. Let
v = inf{i |(coker( f ◦ h))i �= 0}. Since m is concentrated in degrees ≥ 1, m · coker( f ◦ h)

is concentrated in degrees ≥ v + 1. This contradicts with coker( f ◦ h) = m · coker( f ◦ h).
Therefore, coker( f ◦ h) = 0 and f ◦ h is surjective. We have the following linearly split
short exact sequence

0 −→ ker( f ◦ h) −→ G
f ◦h−→ G −→ 0. (1)

Note that a short exact sequence of DG A -modules is called linearly split if it is split as a
short exact sequence of graded A #-modules. Acting on Eq. 1 by k ⊗A − gives a new short
exact sequence

0 −→ ker( f ◦ h) −→ G
f ◦h−→ G −→ 0.

This implies that ker( f ◦ h) = 0 since f ◦ h is the identity map. Hence ker( f ◦ h) =
m · ker( f ◦ h). If ker( f ◦ h) is not zero, then it is bounded below since it is a DG A -
submodule of G. Let u = inf{i |(ker( f ◦ h))i �= 0}. Then m · ker( f ◦ h) is concentrated in
degrees ≥ u + 1. This contradicts with ker( f ◦ h) = m · ker( f ◦ h). Thus ker( f ◦ h) = 0
and f ◦ h is an isomorphism. Let θ : G → G be the inverse of f ◦ h. Then θ ◦ f ◦ h = idG .
This implies that h is a monomorphism and the short exact sequence

0 −→ G
h−→ F −→ coker(h) −→ 0

is split. Hence F ∼= G ⊕ coker(h) as a DG A -module. One sees that coker(h) is quasi-
trivial since H(h) is an isomorphism. By Lemma 2.2, both HomA (F, coker(h)) and
HomA (G, coker(h)) are acyclic. Since

HomA (F, coker(h)) ∼= HomA (G, coker(h)) ⊕ HomA (coker(h), coker(h)),

we have H(HomA (coker(h), coker(h))) = 0. By Lemma 2.10, the DGA -module coker(h)

is homotopically trivial. ��
Lemma 2.13 Let A be a connected cochain DG algebra. Suppose that M, N are two DG
A -modules and X is a DG A e-module. Then the chain map

φ : HomA (X ⊗A M,N ) → HomA e (X ,Homk(M, N ))

f �→ φ( f ) : x �→ fx : m → f (x ⊗ m)
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is an isomorphism.

Proof It suffices to prove the following two statements:

(1) For any f ∈ HomA (X ⊗A M, N ), we need to show φ( f ) is A e-linear.
(2) The map φ is a chain map and has an inverse chain map.

For any a ⊗ b ∈ A e, x ∈ X and m ∈ M , we have

φ( f )[(a ⊗ b)x](m) = f(a⊗b)x (m) = f [(a ⊗ b)x ⊗ m]
= (−1)|b|·|x | f [axb ⊗ m] = (−1)|b|·|x |+| f |·|a|a f [xb ⊗ m]

and

[(a ⊗ b)φ( f )(x)](m) = [(a ⊗ b) fx ](m) = (−1)| f |·|b|+|x |·|b|a fx (bm)

= (−1)| f |·|b|+|x |·|b|a f (x ⊗ bm).

Hence φ( f )[(a ⊗ b)x] = (−1)| f |·(|b|+|a|)(a ⊗ b)φ( f )(x). We prove statement (1).
For any f ∈ HomA (X ⊗A M, N ), x ∈ X and m ∈ M , we have

[∂Hom ◦ φ( f )](x)(m) = [∂Homk (M,N ) ◦ φ( f ) − (−1)| f |φ( f ) ◦ ∂X ](x)(m)

= [∂N ◦ fx − (−1)| f |+|x | fx ◦ ∂M ](m) − (−1)| f | f∂X (x)(m)

= ∂N [ f (x ⊗ m)] − (−1)| f |+|x | f [x ⊗ ∂M (m)] − (−1)| f | f [∂X (x) ⊗ m]
and

[φ ◦ ∂Hom( f )](x)(m) = [φ(∂N ◦ f − (−1)| f | f ◦ ∂⊗)](x)(m)

= (∂N ◦ f − (−1)| f | f ◦ ∂⊗)x (m) = (∂N ◦ f − (−1)| f | f ◦ ∂⊗)(x ⊗ m)

= ∂N [ f (x ⊗ m)] − (−1)| f | f [∂X (x) ⊗ m] − (−1)| f |+|x | f [x ⊗ ∂M (m)].
Thus φ is a chain map. It remains to show that φ has an inverse chain map. We define

ψ : HomA e (X ,Homk(M, N )) → HomA (X ⊗A M, N )

g �→ ψ(g) : x ⊗ m �→ g(x)(m).

We need to show the following statements:
(3) For any g ∈ HomA e (X ,Homk(M, N )), ψ(g) is A -linear.
(4) ψ is a chain map and ψ is the inverse of φ.

For any a ∈ A and x ⊗ m ∈ X ⊗A M , we have

ψ(g)[a(x ⊗ m)] = ψ(g)(ax ⊗ m) = g(ax)(m)

= a(g(x))(m) = a[g(x)(m)] = a[ψ(g)(x ⊗ m)].
Hence ψ(g) is A -linear and we get (3). For any g ∈ HomA e (X ,Homk(M, N )) and
x ⊗ m ∈ X ⊗A M , we have

[∂Hom ◦ ψ(g)](x ⊗ m) = [∂N ◦ ψ(g) − (−1)|g|ψ(g) ◦ ∂⊗](x ⊗ m)

= ∂N [g(x)(m)] − (−1)|g|ψ(g)[∂X (x) ⊗ m + (−1)|x |x ⊗ ∂M (m)]
= ∂N [g(x)(m)] − (−1)|g|g(∂X (x))(m) − (−1)|g|+|x |g(x)[∂M (m)]

and

[ψ ◦ ∂Hom(g)](x ⊗ m) = [ψ(∂Homk (M,N ) ◦ g − (−1)|g|g ◦ ∂X )](x ⊗ m)

= (∂Homk (M,N ) ◦ g − (−1)|g|g ◦ ∂X )(x)(m)
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= [∂N ◦ g(x) − (−1)|g|+|x |g(x) ◦ ∂M ](m) − (−1)|g|g(∂X (x))(m)

= ∂N [g(x)(m)] − (−1)|g|+|x |g(x)[∂M (m)] − (−1)|g|g(∂X (x))(m).

So φ is a chain map. Furthermore,

[φ ◦ ψ(g)(x)](m) = ψ(g)x (m) = ψ(g)(x ⊗ m) = g(x)(m)

and

[ψ ◦ φ( f )](x ⊗ m) = [φ( f )(x)](m) = fx (m) = f (x ⊗ m).

Hence ψ is the inverse of φ. ��
Lemma 2.14 Let A be a connected cochain DG algebra. If M is a DG A -module such
that dimk H(M) < ∞, then for any DG A -module N, the DG A e-module Homk(M, N ) is
quasi-isomorphic to N ⊗ M∗.

Proof Since dimk H(M) < ∞, M is a compact DG k-module. Then we have

Homk(M, N ) = Homk(M, k ⊗ N ) ∼= Homk(M, k) ⊗ N = M∗ ⊗ N ∼= N ⊗ M∗

in D(Ae). More precisely, the morphism

θ : N ⊗ M∗ → Homk(M, N )

n ⊗ f �→ (m �→ n f (m))

is a quasi-isomorphism. ��
Lemma 2.15 Let A be a connected cochain DG algebra. If M is a DG A -module such that
dimk H(M) < ∞, then for any DG A -module N, we have

H(RHomA e (A , N ⊗k M∗)) ∼= H(RHomA (M, N )).

Proof Let FM be a semi-free resolution of M and let IN be a K-injective resolution of N. The

DG A e-module A has a minimal semi-free resolution X

→ A . As a DG A -module, X is

K-projective since

HomA (X ,−) ∼= HomA (A e ⊗A e X ,−) ∼= HomA e (X ,HomA (A e,−))

and A e = A ⊗ A op is a K-projective DG A -module. We have

H(RHomA (M, N )) ∼= H(HomA (FM , N ))

∼= H(HomA (FM , IN ))

∼= H(HomA(X ⊗A FM , IN ))

(a)∼= H(HomA e (X ,Homk(FM , IN )))

(b)∼= H(HomA e (X , IN ⊗k F∗
M ))

∼= H(HomA e (X , N ⊗k M∗))
∼= H(RHomA e (A , N ⊗k M∗)),

where (a) and (b) are by Lemmas 2.13 and 2.14 respectively. ��
Lemma 2.16 Let A be a connected cochain DG algebra. Then A k is compact if and only if
A is homologically smooth, which is also equivalent to the condition that kA is compact.
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Proof Let M = N = k in Lemma 2.15. Then we have

H(RHomA e (A , k)) ∼= H(RHomA (k, k)).

Hence dimk H(RHomA e (A , k)) < ∞ if and only if dimk H(RHomA (k, k)) < ∞. By
Lemma 2.4, A is a compact DG A e-module if and only if A k is compact. The DG module
Ak is compact if and only if kA is compact by considering the dimension of H(kL ⊗A k). ��

3 Two Invariants of DGModules

The terminology ‘class’ in group theory is used to measure the shortest length of a filtration
with sub-quotients of certain type. Carlsson [6] introduced ‘free class’ for solvable free
differential graded modules over a graded polynomial ring. In [1], Avramov, Buchweitz and
Iyengar introduced free class, projective class and flat class for differential modules over a
commutative ring. Inspired from them, the notion of DG free class for semi-free DGmodules
was introduced in [27].

Definition 3.1 Let F be a semi-free DG A -module. A semi-free filtration of F

0 = F(−1) ⊆ F(0) ⊆ · · · ⊆ F(n) ⊆ · · ·
is called strictly increasing, if F(i − 1) �= F(i) when F(i − 1) �= F, i ≥ 0. If there is some
n such that F(n) = F and F(n − 1) �= F , then we say that this strictly increasing semi-free
filtration has length n. If no such integer exists, then we say the length is +∞. The DG free
class of F is the shortest length of all strictly increasing semi-free filtrations of F. We denote
it by DGfree classA F .

In general, it is hard to determine the DG free class of a semi-free DG A -module. For
this, lets consider a special kind of semi-free filtration. Let F be a semi-free A-module with a
semi-basis E = {ei |i ∈ I }. Then F# = A # ⊗ V is a freeA #-module, where V = ⊕

e∈E
ke is a

graded k-vector space spanned by E. Let V0 = {v ∈ V |∂F (v) = 0} and define F(0) as a DG
A -submodule of F with F(0)# = A # ⊗ V0. Similarly, let V≤1 = {v ∈ V |∂F (v) ∈ F(0)},
we define F(1) as a DG A -submodule of F such that F(1)# = A # ⊗ V≤1. It is easy to
see that F(1) is a semi-free A -submodule of F. Inductively, we suppose that F(n) has been
defined. Let V≤n+1 = {v ∈ V |∂F (v) ∈ F(n)} and define F(n +1) as a DGA -submodule of
F such that F(n + 1)# = A ⊗ V≤n+1. In general, we let V (i) be a subspace of V≤i such that
V≤i = V (i) ⊕ V≤i−1, i ≥ 0. In this way, we define a strictly increasing semi-free filtration
of F:

0 = F(−1) ⊂ F(0) ⊂ F(1) ⊂ · · · ⊂ F(n) ⊂ · · · ,

such that each F(i)/F(i −1) = A ⊗V (i), i ≥ 0 is DG free on a cocycle basis, which is also
a basis of bi-graded k-vector space V (i). Note that ∂F (v) ∈ F(i −1) but∂F (v) /∈ F(i −2), for
any v ∈ V (i). We call this semi-free filtration a standard semi-free filtration of F associated
with the semi-basis E. Obviously, the DG free class of F must be equal to the length of
some standard semi-free filtration. In general, the lengths of standard semi-free filtrations
of a minimal semi-free DG A-module associated with different semi-basis is generally not
equal to each other. Lets see the following example.
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Example 3.2 Let A be a connected cochain DG algebra such that there is a graded element
a ∈ A 1, ∂A (a) = x �= 0. Let F be a semi-free A -module such that

F# ∼=
n⊕

i=0

A #ei ,

where the degree of ei is i, and the differential is defined by

∂F (e0) = 0 and ∂F (ei ) = ∂A (a)ei−1 − a∂F (ei−1), i ≥ 1.

It is easy to check that F has a standard semi-free filtration

0 ⊂ F(0) ⊂ F(1) ⊂ · · · ⊂ F(n − 1) ⊂ F(n) = F,

such that F(i)/F(i − 1) = A ei , 1 ≤ i ≤ n. The length of this filtration is n. On the other
hand, F = A e0 ⊕A (ae0 − e1)⊕· · ·⊕A (aen−1 − en) is a DG freeA -module on a cocycle
basis. Hence F has a standard semi-free filtration of length 0.

In rational homotopy theory, cone length of a topological space X is defined to be the least
m such that X has the homotopy type of an m-cone. It is a useful invariant in the evaluation of
Lusternik-Schnirelmann category, which is an important invariant of homotopy type. In [27],
this invariant was introduced to DG homological algebra.

Definition 3.3 [27] Let M be a non-acyclic DG A -module. The cone length of M is defined
to be the number

clA M = inf{DGfree classA F | F

→ M is a semi-free resolution of M}.

And we define clA N = −1 if H(N ) = 0.

Note that clA M may be +∞. Cone length of a DGA -module plays a similar role in DG
homological algebra as projective dimension of a module over a ring does in classic homo-
logical ring theory. This invariant is called ‘cone length’ because any DG A -module admits
semi-free resolutions and the following lemma indicates that semi-free DG A -modules can
be constructed by iterative cone constructions from DG free A -modules.

Lemma 3.4 Let F be a semi-free DG A -module and let F ′ be a semi-free DG submodule of
F such that F/F ′ = A ⊗V is DG free on a set of cocycles. Then there exists a DG morphism
f : A ⊗ �−1V → F ′ such that F = cone( f ). ��
Proof Let {ei |i ∈ I } be a basis of V. We define DG morphism f : A ⊗ �−1V → F ′ by
f (�−1ei ) = ∂F (ei ). It is easy to check that ∂cone( f )(ei ) = f (�−1ei ) = ∂F (ei ). Hence
F = cone( f ).

Proposition 3.5 Let M be a DG A -module with clA M = 0. If M ′ is a direct summand of M
such that H(M ′) is bounded below, then clA M ′ = 0.

Proof Since clA M = 0, M admits a semi-free resolution f : F

→ M such that

DGfree classA F = 0. Clearly, F is a DG free A -module and is therefore minimal.
Since H(M ′) is bounded below, the DGA -module M ′ has a minimal semi-free resolution

f ′ : F ′ → M ′. Let p : M → M ′ and i : M ′ → M be the natural projection map and the
inclusion map respectively.

Since both F and F ′ are semi-free, there are DGmorphisms g : F → F ′ and g′ : F ′ → F
such that f ′ ◦g ∼ p◦ f and f ◦g′ ∼ i ◦ f ′. We have f ′ ◦g◦g′ ∼ p◦ f ◦g′ ∼ p◦ i ◦ f ′ = f ′.
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Since f ′ is a quasi-isomorphism, it is easy to check that g ◦ g′ is a quasi-isomorphism. By
Lemma 2.2,

HomA (F ′, g ◦ g′) : HomA (F ′, F ′) → HomA (F ′, F ′)

is a quasi-isomorphism. There exists h ∈ Z0(HomA (F ′, F ′)) such that

�idF ′ � = H0(HomA (F ′, g ◦ g′))(�h�) = �(g ◦ g′) ◦ h�.
Hence (g ◦ g′) ◦ h 
 idF ′ . Thus h is also a quasi-isomorphism. By Lemma 2.2 again,

HomA (F ′, h) : HomA (F ′, F ′) → HomA (F ′, F ′)

is a quasi-isomorphism. There exists q ∈ Z0(HomA (F ′, F ′)) such that

�idF ′ � = H0(HomA (F ′, h))(�q�) = �h ◦ q�.
So h ◦ q ∼ idF ′ . By Lemma 2.9, h is a homotopy equivalence and g ◦ g′ is a homotopy
inverse of h. Hence g ◦g′ is also a homotopy equivalence. By Lemma 2.8, g ◦g′ is an isomor-
phism since F ′ is minimal. This implies that F ′ is a direct summand of F. By Lemma 2.11,
DGfree classA F ′ = 0. Therefore clA M ′ = 0. ��
Proposition 3.6 Let A be a connected DG algebra such that clA eA < ∞. Then for any DG
A -module M, we have clA M ≤ clA eA .

Proof Let clA eA = n. By the definition of cone length, the DG A e-module A admits a
semi-free resolution X such that DGfree classA e X = n. This implies that X admits a strictly
increasing semi-free filtration

0 = X(−1) ⊂ X(0) ⊂ X(1) ⊂ · · · ⊂ X(n) = X ,

where X(0) = A e ⊗ V (0) and X(i)/X(i − 1) ∼= A e ⊗ V (i) is a DG free A e-module,
i = 0, · · · , n. Let Ei = {ei j | j ∈ Ii }, i ≥ 0, be a basis of V (i). For any i ≥ 1, define
fi : A e ⊗ �−1V (i) → X(i − 1) such that fi (�

−1ei j ) = ∂X(i)(ei j ). By Lemma 3.4,
X(i) ∼= cone( fi ), i = 1, 2, · · · , n.

For any DG A -module M, let �M : F → M be a semi-free resolution of M. As a DG
A -module, X(i) ⊗A F ∼= cone( fi ⊗A idF ), i = 1, 2, · · · , n. Since A e ⊗A F ∼= A ⊗ F ,
we have

(A e ⊗ V (i)) ⊗A F ∼= A ⊗ V (i) ⊗ F, i = 0, 1, · · · , n.

Choose a subset Z ⊆ F such that each element z ∈ Z is a cocycle and {�z�|z ∈ Z} is a basis
of the k-vector space H(F). Define a DG morphism

φi : A ⊗ V (i) ⊗ H(F) → A ⊗ V (i) ⊗ F

such that φi (a ⊗ v ⊗ �z�) = a ⊗ v ⊗ z, for any a ∈ A , v ∈ V (i) and �z�. It is easy to check
that φi is a quasi-isomorphism.

In the following, we prove inductively that clA (X(i) ⊗A F) ≤ i, i = 0, 1, · · · , n. Since
φ0 : A ⊗V (0)⊗H(F) → X(0)⊗A F is a quasi-isomorphism, we have clA (X(0)⊗A F) =
0. Suppose inductively that we have proved that

clA (X(l) ⊗A F) ≤ l, l ≥ 0.

We should prove clA (X(l + 1) ⊗A F) ≤ l + 1. Since clA (X(l) ⊗A F) ≤ l, there is

a semi-free resolution ϕl : Gl

→ X(l) ⊗A F such that DGfree classA Gl ≤ l. Because

A ⊗ �−1V (l + 1) ⊗ H(F) is semi-free, there is a DG morphism

ψl : A ⊗ �−1V (l + 1) ⊗ H(F) → Gl
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such that ϕl ◦ ψl ∼ ( fl ⊗A idF ) ◦ �−1(φl+1).
For convenience, we write Q(l + 1) = A ⊗ V (l + 1) and K (l + 1) = A e ⊗ V (l + 1).

In D(A ), there is a morphism hl+1 : cone(ψl) → X(l + 1) ⊗A F making the diagram

�−1Q(l + 1) ⊗ H(F)
ψl

�−1(φl+1)

Gl

ϕl

τl
cone(ψl )

∃hl+1

εl
Q(l + 1) ⊗k H(F)

φl+1

�−1K (l + 1) ⊗A F
fl⊗A idF

X(l) ⊗A F
ιl

X(l + 1) ⊗A F
πl

K (l + 1) ⊗A F

commute. By five-lemma, hl+1 is an isomorphism in D(A ). This implies that there are
quasi-isomorphisms g : Y → cone(ψl) and t : Y → X(l + 1) ⊗A F , where Y is some DG
A -module. Hence clA (X(l + 1) ⊗A F) = clA Y = clA cone(ψl) ≤ l + 1. By induction,
we have clA (X ⊗A F) ≤ n. Since F 
 X ⊗A F , we get clA M ≤ n. ��
Theorem 3.7 Let M be an object in D+(A ) such that clA M < ∞, then there is a minimal
semi-free resolution G of M such that DGfree.classA G = clA M.

Proof Let clA M = t and b = inf{i |Hi (M) �= 0}. There exists a semi-free resolution P of
M such that DGfree.classA P = t . By [25, Proposition 2.4], M admits a minimal semi-free
resolution G with G# ∼= ∐

i≥b �−i (A #)(�
i ) each �i is an index set. We have P ∼= G ⊕ Q

by Lemma 2.12, where Q is a homotopically trivial DG A -module. Set F = G ⊕ Q. Then
DGfree classA F = t and hence F admits a semi-free filtration

0 = F(−1) ⊂ F(0) ⊂ F(1) ⊂ · · · ⊂ F(t) = F .

Let E =
t⊔

i=0
Ei be a semi-basis of F with respect to the semi-free filtration above. For any i ∈

{1, 2, · · · , t}, let Ei = {ei j | j ∈ Ii } and Fi = F(i)/F(i −1). We have ∂F (ei j ) ⊆ A (
i−1⊔
j=0

E j ).

Then each graded free A #-module F(r)# can be decomposed as
r⊕

i=0

⊕

j∈Ii

A #ei j , 0 ≤ r ≤ t .

Let ei j = gi j + qi j , where gi j ∈ G and qi j ∈ Q, for any j ∈ Ii , i = 0, 1, · · · , t . We have

F(r) = [
r∑

i=0

(
∑

j∈Ii

A gi j )] ⊕ [
r∑

i=0

(
∑

j∈Ii

A qi j )], 0 ≤ r ≤ t .

Hence
Fr = F(r)/F(r − 1) = (

∑

j∈Ir

A gr j ) ⊕ (
∑

j∈Ir

A qr j ), 0 ≤ r ≤ t .

By Lemma 2.11,
∑
j∈Ir

A gr j is either a zero module or a DG free A -module, for any r =
0, 1, · · · , t . Let ωrλ , λ ∈ �r be its DG free basis (�r = ∅ and ωrλ = 0 if

∑
j∈Ir

A gr j = 0).

Then
∑
j∈Ir

A gr j = ⊕
j∈�r

A ωr j . Note that

⊕

i∈Ir

A #eri =
⊕

λ∈�r

A #ωrλ ⊕ (
∑

j∈Ir

A qr j )
#
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is a graded A #-submodule of F#. So
⊕

λ∈�r

A #ωrλ is also a graded A #-submodule of F#.

Since ∂Fr (ωrλ ) = 0, we have

∂F (ωrλ) ∈ F(r − 1) ∩
r∑

i=0

(
∑

j∈Ii

A gi j ) =
r−1∑

i=0

(
∑

j∈Ii

A gi j ), 0 ≤ r ≤ t .

Let G(r) =
r∑

i=0
(
∑
j∈Ii

A gi j ), r = 0, 1, · · · , t . Then

0 ⊆ G(0) ⊆ G(1) ⊆ G(2) ⊆ · · · ⊆ G(t) = G

is a filtration of DG A -submodules of G. Moreover, G(r)/G(r − 1) = ∑
j∈Ir

A gr j is either

zero or a DG freeA -module
⊕

j∈�r

A ωr j . If G(r)/G(r − 1) = 0, for some r ∈ {0, 1, · · · , t},
then we just cancel such G(r). In this way, we can get a strictly increasing semi-free filtration
with length smaller than t . Then DGfree.classA G < t = clA M . It contradicts with

clA M = inf{DGfree.classA P|P ∼→ M is a semi-free resolution} ≤ DGfree.classA G.

Therefore,
0 ⊂ G(0) ⊂ G(1) ⊂ G(2) ⊂ · · · ⊂ G(t) = G

is a strictly increasing semi-free filtration of G. Then DGfree.classA G ≤ t . On the other
hand, t = clA M ≤ DGfree.classA G. Hence DGfree.classA G = t . ��

In ring theory and homological algebra, it is well known that the global dimension of a
ring R is defined to be the supremum of the set of projective dimensions of all R-modules.
Since the invariant cone length of a DG A -module plays a similar role in DG homological
algebra as projective dimension of a module over a ring does in homological ring theory, the
following definition is reasonable to some extent.

Definition 3.8 [27] Let A be a connected cochain DG algebra. The left global dimension
and the right global dimension of A are respectively defined by

l.Gl.dimA = sup{clA M |M ∈ D(A )}
and

r .Gl.dimA = sup{clA op M |M ∈ D(Aop)}.
LetA be a connected cochain DG algebra such that H(A ) is a graded algebra with finite

global dimension. Then by the existence of Eilenberg-Moore resolution, one sees that anyDG
A -module admits a semi-free resolutionwhoseDG free class is not bigger than gl.dimH(A ).
So l.Gl.dimA ≤ gl.dimH(A ). If we assume in addition that H(A ) is Noetherian, then any
cohomologically finitely generated DG A -module is compact. Especially, the DG algebra
A is homologically smooth by Lemma 2.16. We emphasize that there are homologically
smooth connected cochain DG algebras whose cohomology graded algebras are Noetherian
graded algebraswith infinite global dimension (see [26,Example 3.12]). So the homologically
smoothness ofA is weaker than gl.dimH(A ) < ∞when H(A ) is Noetherian. Beside these,
we have the following interesting results.

Remark 3.9 We can similarly prove the following results as in [27].
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(1) l.Gl.dimA = 0 if and only if H(A ) 
 k.
(2) If ∂A = 0, then l.Gl.dimA = gl.dimA # = r .Gl.dimA .

(3) clA k = 1 if and only if l.Gl.dimA = 1 if and only if gl.dimH(A ) = 1.
(4) If gl.dimH(A ) = 2, then l.Gl.dimA = clA k = 2.
(5) If either clA k or gl.dimH(A ) is finite and equals to depthH(A ) H(A ), then

l.Gl.dimA = gl.dimH(A ) = clA k.

Note that the DG algebras considered in [27] are Adams connected DG algebras, which are a
family of bigraded algebras. Although the DG algebras studied here are different from those
in [27], the original proofs of the results above in [27] are suitable to connected cochain
DG algebras. The reason for this is because these two kinds of DG algebras admit unique
maximal DG ideals and their underlying graded algebras are essentially connected graded
algebras.

4 Some Criteria of Homologically Smooth DG Algebras

In DG homological algebra, homologically smooth DG algebras are fundamental and impor-
tant as regular algebras in homological ring theory. The motivation of this section is to figure
out some criteria for a connected cochain DG algebra to be homologically smooth. The
following proposition will be useful for this purpose.

Proposition 4.1 Let A be a connected cochain DG algebra such that H(A ) is a Noetherian
graded algebra. If G is a minimal semi-free DG A -module with finite DG free class in
D f g(A ), then G ∈ Dc(A ).

Proof Let DGfree classA G = t < ∞. Then G admits a semi-free filtration

0 = G(−1) ⊂ G(0) ⊂ G(1) ⊂ · · · ⊂ G(t) = G

such that G(i)/G(i − 1) = A ⊗ Wi is a DG free A -module on a cocycle basis, for any
i ∈ {0, 1, · · · , t}. It suffices to show each dimk Wi < ∞. Let {ei, j | j ∈ Ii } be a basis of
Wi , i = 0, 1, · · · , t . Let ι0 : G(0) → G be the inclusion morphism. Since imH(ι0) is
a graded H(A )-submodule of H(G) and H(A ) is a Noetherian graded algebra, we can
conclude that imH(ι0) ∼= H(G(0))

kerH(ι0)
is a finitely generated H(A )-module. Let

imH(ι0) = H(A ) f0,1 + H(A ) f0,2 + · · · + H(A ) f0,n .

Since H(G(0)) ∼= ⊕
j∈I0

H(A )e0, j is a free graded H(A )-module, there is a finite subset

J0 = {i1, i2, · · · , il} of I0 such that

f0,s =
l∑

r=1

as,r e0,ir , s = 1, 2, · · · , n,

where each as,r ∈ H(A ). If V (0) is infinite dimensional, then both I0 and I0 \ J0 are infinite
sets. Hence for any j ∈ I0 \ J0, we have e0, j ∈ kerH(ι0). Since [ι0(e0, j )] = [e0, j ] = 0 in
H(G), there exists x0, j ∈ G such that ∂G(x0, j ) = e0, j . This contradicts with the minimality
of G. Thus W0 is finite dimensional and G(0) ∈ D f (A ).

Assume inductively that dimk W j < ∞ has been proved j = 0, 1, · · · , i − 1. Then each
G( j)/G( j − 1) is an object in D f g(A ), j = 0, 1, · · · , i − 1. We can prove inductively that
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each G( j) is in D f g(A ) by the following sequence of short exact sequences

0 −→ G( j − 1) −→ G( j) −→ G( j)/G( j − 1) −→ 0, j = 1, · · · , i − 1.

Similarly, G/G(i − 1) is also an object in D f g(A ) by the short exact sequence

0 −→ G(i − 1) −→ G −→ G/G(i − 1) −→ 0.

On the other hand, it is easy to see that G/G(i −1) is also aminimal semi-free DGA -module
and it has a semi-free filtration

G(i)/G(i − 1) ⊆ G(i + 1)/G(i − 1) ⊆ · · · ⊆ G(t)/G(i − 1) = G/G(i − 1).

Let ιi : G(i)/G(i − 1) → G/G(i − 1) be the inclusion morphism. Since imH(ιi ) is
a graded H(A )-submodule of H(G/G(i − 1)) and H(A ) is Noetherian, one sees that
imH(ιi ) ∼= H(G(i)/G(i−1))

kerH(ιi )
is a finitely generated H(A )-module. Let

imH(ιi ) = H(A ) fi,1 + H(A ) fi,2 + · · · + H(A ) fi,m .

Since
H(G(i)/G(i − 1)) ∼=

⊕

j∈Ii

H(A )ei, j

is a free graded H(A )-module, there is a finite subset Ji = {s1, s2, · · · , sq} of Ii such that

fi,l =
q∑

j=1

al, j ei,s j , l = 1, 2, · · · , m,

where each al, j ∈ H(A ). If Wi is an infinite dimensional space, then both Ii and Ii \ Ji are
infinite sets. Hence for any j ∈ Ii \ Ji , we have ei, j ∈ kerH(ιi ). Since [ιi (ei, j )] = [ei, j ] = 0
in H(G/G(i − 1)), there exist xi, j ∈ G/G(i − 1) such that ∂G(xi, j ) = ei, j . This contradict
with the minimality of G. Thus Wi is finite dimensional.

By the induction above, we get dimk Wi < ∞ for any i ∈ {0, 1, · · · , t}. Hence G has a
finite semi-basis and G is compact. ��

The following theorem completely characterize homologically smooth DG algebra intrin-
sically.

Theorem 4.2 Let A be a connected cochain DG algebra such that H(A ) is a Noetherian
graded algebra. Then the following statements are equivalent:

(a) A is homologically smooth.
(b) clA eA < ∞.
(c) l.Gl.dimA < ∞.
(d) Dc(A ) = D f g(A ).
(e) Dsg(A ) = 0.
(f) clA k < ∞.
(g) k ∈ Dc(A ).

Proof (a)⇒(b) Since A is a homologically smooth DG algebra, the DG A e-module A is
compact. So it admits a minimal semi-free resolution X with a finite semi-basis. This implies
that DGfree.classA e X < ∞. By the definition of cone length,

clA e ≤ DGfree.classA e X < ∞.
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(b)⇒(c) For any DG A -module M, we have clA M ≤ clA eA by Proposition 3.6. There-
fore, l.Gl.dimA = sup{clA M |M ∈ D(A )} ≤ clA eA < ∞.

(b)⇒(d) It suffices to show that any DG A -module M in D f g(A ) is compact. By
Proposition 3.6, we have clA M ≤ clA eA < ∞. By Proposition 3.7, M admits a minimal
semi-free resolution G such that DGfree.classA G = clA M . Then G is an object in Dc(A )

by Proposition 4.1. Since G is a semi-free resolution of M, we conclude that M ∈ Dc(A ).
(d)⇔(e) Since Dsg(A ) = D f g(A )/Dc(A ), D f g(A ) = Dc(A ) ⇔ Dsg(A ) = 0.
(c)⇒ (f) We have clA k ≤ sup{clA M |M ∈ D(A )} = l.Gl.dimA < ∞.
(d)⇒(f) Since k ∈ D f g(A ) = Dc(A ), k admits a minimal semi-free resolution Fk which

has a finite semi-basis. We have DGfree.classA Fk < ∞. Therefore,

clA k ≤ DGfree.classA Fk < ∞.

(f)⇒(g) Let clA k = t . By Proposition 3.7, k has a minimal semi-free resolution Fk such
that DGfree.classA Fk = t . Applying Proposition 4.1 to Fk , we conclude Fk ∈ Dc(A ). Then
k ∈ Dc(A ) since Fk is a semi-free resolution of A k.

(g)⇒(a) By Lemma 2.16, A is homologically smooth since k ∈ Dc(A ). ��
By [26, Proposition 4.6], we have quasi-inverse contravariant equivalences of categories,

Dc(A )

RHomA (−,A )

Dc(Aop)
RHomA op (−,A )

.

By Theorem 4.2 and Lemma 2.16, Dc(A ) = D f g(A ) and Dc(A op) = D f g(A
op) when

A is homologically smooth and H(A ) is Noetherian. The following corollary is obviously
true.

Corollary 4.3 Let A be a homologically smooth connected cochain DG algebra such that
H(A ) is a Noetherian graded algebra. There is a duality between D f g(A ) and D f g(A

op).
To be precise, we have quasi-inverse contravariant equivalences of categories,

D f g(A )

RHomA (−,A )

D f g(A
op)

RHomA op (−,A )

.

5 Ext and Castelnuovo-Mumford Regularities of DGModules

In this section, we study the Ext and Castelnuovo-Mumford regularities of DG modules.
These two invariants of DG modules were introduced and studied in [21].

Definition 5.1 For any M ∈ D(A ), we define the Ext-regularity of M by

Ext.reg M = − inf{i |Hi (RHomA (M, k)) �= 0},
and similarly for N ∈ D(A op). Note that Ext.reg(0) = −∞.

Remark 5.2 For any DG A -module M in D f g(A ), it admits a minimal semi-free resolution
FM by Lemma 2.3. Let E be a semi-basis of FM . Then by the minimality of FM , we have

Ext.reg M = sup{|e| |e ∈ E}.
If A is homologically smooth and H(A ) is Noetherian, then D f g(A ) = Dc(A ) by
Theorem 4.2 and hence any object in D f g(A ) has finite Ext-regularity.
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Definition 5.3 [25] For any object M ∈ D(A ), the depth and k-injective dimension of M are
defined, respectively, as

depthA M = inf{ j |H j (RHomA (k, M)) �= 0}
and

k.idA M = sup{ j |H j (RHomA (k, M)) �= 0}.

In the rest of this section, we assume thatA is a homologically smooth connected cochain
DG algebra. Then both A k and kA are compact by Lemma 2.16. In this case, we have [21,
Setup 4.1]. Let K and L be the minimal semi-free resolutions of A k and kA , respectively.
We have 〈K 〉 = 〈A k〉 and 〈L〉 = 〈kA 〉 in D(A ). Set

N = 〈A k〉⊥ = 〈A K 〉⊥,D tors(A ) = ⊥N and Dcomp(A ) = N⊥

in D(A ). The DG modules in D tors(A ) and Dcomp(A ) are called torsion DG mod-
ules and complete DG modules, respectively. Then D tors(A ) = 〈A k〉 = 〈A K 〉. Let
E = HomA (K , K ) be the endomorphism DG algebra. We have the following lemma on
E .

Lemma 5.4 The DG algebra E satisfies the following conditions.

(1) dimk H(E) < ∞;
(2) 0 = sup{i ∈ Z|Hi (E) �= 0};
(3) H0(E) is a local finite dimensional algebra.

Proof (1) SinceA is homologically smooth, the minimal semi-free resolution K of A k has
a finite semi-basis E . By the minimality of K , one sees that

dimk H(E) = dimk H(HomA (K , K ))

= dimk HomA (K , k)

= dimk ⊕e∈E ke = |E | < ∞.

(2) By Lemma 2.3, A k has a minimal semi-free resolution K such that

K # =
∐

i≥0

�−i (A #)(�
i ),

where each �i is an index set. Thus

sup{ j ∈ Z|H j (E) �= 0} = sup{i ∈ Z|[HomA (K , k)]i �= 0}
= sup{ j ∈ Z|[HomA (

∐

i≥0

�−i (A #)(�
i ), k)] j �= 0}

= sup{ j ∈ Z|[
∏

i≥0

�i (k)(�
i )] j �= 0} = 0.

(3) By [26, Lemma 10.2], the algebra HomD (A )(k, k) is local. Thus the algebra

H0(E) = H0(RHomA (k, k)) = HomD (A )(k, k)

is a finite dimensional local algebra since dimk H(E) < ∞. ��
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ByLemma5.4, H0(E) is a local algebra. Let J be itsmaximal ideal. Setb = inf{i |Hi (E) �= 0,
Zi = ker(di

E ), Ci = E i/Zi , Hi = Hi (E) and Bi = im(di−1
E ). Then E admits two DG

subalgebras

E ′ : · · · di−1
E→ E i di

E→ E i+1 di+1
E→ · · · d−2

E→ E−1 d−1
E→ Z0 → 0

and

E ′′ : · · · d j−1
E→ E j d j

E→ E j+1 d j+1
E→ · · · db−1

E→ Bb → 0.

Clearly, E ′′ is a DG ideal of E ′. Note that the DG algebra E ′/E ′′ is

0 → Cb ⊕ Hb db
E→ Eb+1 db+1

E→ · · · d−2
E→ E−1 d−1

E→ Z0 → 0.

One sees that both the inclusion morphism ι : E ′ → E and the canonical surjection ε : E ′ →
E ′/E ′′ are quasi-isomorphisms. Let Rt = (E ′)−t and d R

t = d−t
E for any t ≥ 0. In this way, E ′

can be considered as a chain DG algebra R:

· · · d R
i+1→ Ri

d R
i→ Ri−1

d R
i−1→ · · · d R

2→ R1
d R
1→ R0 → 0.

Moreover, H0(R) = R0/im(d R
1 ) ∼= H0 is a finite dimensional local algebra and

dimk H(R) = dimk H(E ′) = dimk H(E) < ∞. Each Hi (R) is a finitely generated H0(R)-
module and −b = sup{i ∈ Z|Hi (R) �= 0}. So R is a local chain DG algebra introduced
in [13]. Its maximal DG ideal is

mR : · · · d R
i+1→ Ri

d R
i→ · · · d R

2→ R1
d R
1→ R0 = B0 ⊕ J → 0.

Remark 5.5 The DG algebra E ′ and E are both augmented DG algebras with augmented DG
ideals

mE ′ : · · · di−1
E→ E i di

E→ · · · d−2
E→ E−1 d−1

E→ B0 ⊕ J → 0

and

mE : · · · di−1
E→ E i di

E→ · · · d−2
E→ E−1 d−1

E→ B0 ⊕ J ⊕ C0 d0
E→ E1 d1

E→ · · · d j
E→ E j d j+1

E→ · · · .

Proposition 5.6 Let X be a left DG E ′-module such that each Hi (X) is a finitely generated
H0(E ′)-module and u = sup{i |Hi (X) �= 0} < ∞. Then X admits a minimal semi-free
resolution F with F#

X = ∐
j≤u

� j (E ′#)(β j ), where each β j is finite.

Proof Let M = ⊕
j∈Z

M j with M−i = Xi for any i ∈ Z. Then M is DG R-module such

that each Hi (M) is a finitely generate H0(R)-module. And H(M) is bounded below with
−u = inf{i |Hi (M) �= 0}. It follows from [13, 0.5] that M admits a minimal semi-free
resolution G such that

G# =
∐

i≥−u

�i (R#)(βi ),

where each βi is finite. Let Fi = G−i . Then F is a minimal semi-free E ′-module with

F# =
∐

j≤u

� j (E ′#)β j .

Moreover, it is a minimal semi-free resolution of X . ��

123



Homologically Smooth Connected Cochain DGAs

Proposition 5.7 Let N be a DG E-module such that u = sup{i |Hi (X) �= 0} < ∞ and each
Hi (N ) is a finitely generated H0(E)-module. Then N admits a minimal semi-free resolution
F such that F# = ∐

j≤u
� j (E#)β j , where each β j is finite.

Proof Via the inclusion morphism ι : E ′ → E , N can be considered as a DG E ′-module. By
Proposition 5.6, E ′ N admits a minimal semi-free resolution G such that

G# =
∐

j≤u

� j (E ′#)β j ,

where each β j is finite. One sees easily that F = E ⊗E ′ G is a minimal semi-free resolution
of E N and

F# =
∐

j≤u

� j (E#)β j ,

where each β j is finite. ��
The DG module K acquires the structure A ,E K while K ∗ = HomA (K ,A ) has the

structure K ∗
A ,E . Define functors T (−) = − L⊗E K ,

W (−) = HomA (K ,−) 
 K ∗ L⊗A − and C(−) = RHomEop (K ∗,−),

which form adjoint pairs (T , W ) and (W , C) between D(Eop) and D(A ). There are pairs of
quasi-inverse equivalences of categories as follows

Dcomp(A )
W

D(Eop)
C

T
D tors(A )

W
.

In particular, WC and W T are equivalent to the identity functor on D(Eop) , so if we set

� = T W ,� = CW ,

then we get endofunctors of D(A ) which form an adjoint pair (�,�) and satisfy

�2 
 �,�2 
 �,�� 
 �,�� 
 �.

These functors are adjoints of inclusions as follows, where left-adjoint are displayed above
right-adjoints

Dcomp(A )
inc

D(A )
�

�

D tors(A )
inc

.

Write Q = K ∗ L ⊗E K and D = Q∨ = Homk(Q, k). One sees that Q and D have the
structures A QA and A DA , respectively. From the definitions, we have

�(−) = Q L⊗A − and �(−) = RHomA (Q,−).

The following definition was introduced in [21, Definition 5.1].

Definition 5.8 For any DG A -module M, its Castelnuovo-Mumford regularity is defined by

CMregM = sup{i |Hi (�(M)) �= 0}.
Note that CMreg(0) = −∞.
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Definition 5.9 [11] Let A be a connected cochain DG algebra. If

dimk H(RHomA (k,A )) = 1, (resp. dimk H(RHomA op (k,A )) = 1),

thenA is called left (resp. right)Gorenstein. IfA is both left Gorenstein and rightGorenstein,
then we say that A is Gorenstein.

Remark 5.10 Assume that A is a left Gorenstein DG algebra. Then we have k.idA A =
depthA A since dimk H(RHomA (k,A )) = 1. By the way, the invariant k.idA A is called
‘formal dimension’ of A in [14]. Although a left Gorenstein DG algebra is not necessarily
right Gorenstein in noncommutative setting. For any homologically smooth DG algebra A ,
it is left Gorenstein if and only if it is right Gorenstein by [26, Remark 7.6].

Proposition 5.11 Suppose thatA is a homologically smooth connected cochain DG algebra.
If A is Gorenstein, then depthA A = depthA opA .

Proof Let depthA A = m and depthA opA = n. Then H(RHomA (k,A )) ∼= �−mk and
and H(RHomA op (k,A )) ∼= �−nk. By [28, Lemma 2.7], RHomA (k,A ) 
 �−mkA in
D(A op) and RHomA op (k,A ) ∼= �−n

A k in D(A ). Since A k is compact, the biduality
morphism

k → RHomA op (RHomA (k,A ),A )

is a quasi-isomorphism by [26, Proposition 4.6]. On the other hand,

H(RHomA op (RHomA (k,A ),A )) ∼= H(RHomA op (�−mkA ,A ))

∼= �m−nk.

Thus m = n. ��

Theorem 5.12 Let A be a Gorenstein and homologically smooth connected cochain DG
algebra such that H(A ) is a Noetherian graded algebra. Then for any object M in D f (A ),
we have

CMregM = depthA A + Ext.reg M < ∞.

Proof ByTheorem 4.2, we have M ∈ Dc(A ). ThenM admits aminimal semi-free resolution
F with a finite semi-basis E. By the minimality of F,

H(RHomA (M, k)) = HomA (F, k) ∼=
⊕

e∈E

ke.

One sees clearly that

Ext.reg M = − inf{i |Hi (RHomA (M, k)) �= 0} = sup{|e| | e ∈ E} < ∞.

Let b = inf{i ∈ Z|Hi (M) �= 0}, u = Ext.reg M and t = depthA A . Then

K ∗ = HomA (K ,A ) ∼= �−t kε,A

in D(A op) and
F# =

∐

b≤ j≤u

�− j (A #)(α j ),
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where each α j is finite. By Proposition 5.7, E K admits a minimal semi-free resolution P
such that P# = ∐

j≤0
� j (E#)(β j ), where each β j is finite. Therefore,

CMregM = sup{i ∈ Z|Hi (�(M)) �= 0}
= sup{i ∈ Z|Hi [(K ∗ L ⊗E K ) ⊗A F] �= 0}
= sup{i ∈ Z|Hi [(�−t kε,A ⊗E P) ⊗A F] �= 0}
= sup{i ∈ Z|Hi [(�−t kε,A ⊗E

∐

j≤0

� j (E#)(β j )) ⊗A F] �= 0}

= sup{i ∈ Z|[(
∐

j≤0

�−t+ j k(β j )) ⊗A

∐

b≤q≤u

�−q(A #)(αq )]i �= 0}

= sup{i ∈ Z|[(
∐

j≤0

∐

b≤q≤u

�−t+ j−q(k(β j ))(αq )]i �= 0}

= t + u = depthA A + Ext.reg M .

��
Remark 5.13 Note that a homologically smooth DG algebra is not necessarily Gorenstein.
For example, the trivial DG free algebra

A = (k〈x, y〉, 0) with |x | = |y| = 1

is homologically smoothbut notGorenstein (cf. [30, Proposition6.2]). Since there areNoethe-
rian non AS-Gorenstein connected graded algebras with finite global dimension, one sees
that homologically smooth DG algebras are not necessarily Gorenstein under the additional
assumption that the cohomology graded algebra H(A ) is Noetherian.

6 Some Examples

In this section, we list some homologically smooth and Gorenstein connected cochain DG
algebras whose cohomology algebra is Noetherian.

Example 6.1 Let A be a connected DG algebra such that A # = k〈x, y〉/(xy + yx) with
|x | = |y| = 1 and its differential ∂A is defined by ∂A (x) = y2 and ∂A (y) = 0. By [26,
Example 3.12], A is a homologically smooth and Gorenstein DG algebra with

H(A ) ∼= k[�x�2, �y�]/(�y�2).
Example 6.2 Let A be the connected cochain DG algebra such that

A # = k〈x, y〉/
(

x2y − (ξ − 1)xyx − ξ yx2

xy2 − (ξ − 1)yxy − ξ y2x

)

is the graded down-up algebra generated by degree 1 elements x,y, and its differential ∂A
is defined by ∂A (x) = y2 and ∂A (y) = 0, where ξ is a fixed primitive cubic root of unity.
By [29, Proposition 6.1], A is a Calabi-Yau DG algebra. So A is a homologically smooth
and Gorenstein DG algebra. By [29, Proposition 5.5],

H(A ) = k〈�xy + yx�, �y�〉(
ξ�y��xy + yx� − �xy + yx��y��y2� ) .
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Example 6.3 Let A be the connected cochain DG algebra such that

A # = k〈x, y〉/ (
x2y − yx2xy2 − y2x

)

is the graded down-up algebra generated by degree 1 elements x,y, and its differential ∂A is
defined by ∂A (x) = y2 and ∂A (y) = 0. By [29], A is a Calabi-Yau DG algebra with

H(A ) = k[�x2�, �y�, �xy + yx�]/(�y�2).
Hence A is a homologically smooth and Gorenstein DG algebra.

For the three examples above, the corresponding DG algebras are homologically smooth
and Gorenstein DG algebras whose cohomology algebras are Noetherian. We can apply
Theorems 4.2 and 5.12 to them.
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