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Abstract

Let <7 be a connected cochain DG algebra such that H (<) is a Noetherian graded algebra.
We give some criteria for .7 to be homologically smooth in terms of the singularity category,
the cone length of the canonical module k and the global dimension of 7. For any coho-
mologically finite DG </-module M, we show that it is compact when &7 is homologically
smooth. If & is in addition Gorenstein, we get

CMregM = depth , o7 + Extreg M < 00,

where CMregM is the Castelnuovo-Mumford regularity of M, depth , o/ is the depth of </
and Ext.reg M is the Ext-regularity of M.

Keywords Homologically smooth - DG algebra - Cone length - Global dimension -
Castelnuovo-Mumford regularity
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Introduction

Over the past two decades, the introduction and application of DG homological methods
and techniques have been one of the main areas in homological algebra. In DG homological
algebra, the homologically smoothness of a DG algebra plays a similar important role as the
regularity of an algebra does in the homological ring theory. The research on this fundamental
property of DG algebras have attracted many people’s interests. In [ 18], He-Wu introduced the
concept of Koszul DG algebras, and obtained a DG version of the Koszul duality for Koszul,
homologically smooth and Gorenstein DG algebras. The author and Wu [26] proved that
any homologically smooth connected cochain DG algebra <7 is cohomologically unbounded
unless o7 is quasi-isomorphic to the simple algebra k. And it was proved that the Ext-algebra
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of a homologically smooth DG algebra </ is Frobenius if and only if both A@lbf(lzzi) and

@f"f (2°P) admit Auslander-Reiten triangles. In [33], Shklyarov developed a Riemann-Roch
Theorem for homologically smooth DG algebras. Besides these, some important classes of
DG algebras are homologically smooth. For example, Calabi-Yau DG algebras introduced by
Ginzburg in [15] are homologically smooth by definition. Especially, non-trivial Noetherian
DG down-up algebras and DG free algebras generated by two degree 1 elements are Calabi-
Yau DG algebras by [29] and [30], respectively. Moreover, there is a construction called
‘Calabi-Yau completion’ [23] which produces a canonical Calabi-Yau DG algebra from a
homologically smooth DG algebra.

One sees from above that it is meaningful to study homologically smooth DG algebras
thoroughly. A feasible way to study an algebra is via various homological invariants of the
modules on them. There have been many kinds of invariants on DG module since Appasov’s
PhD thesis [4], where he defined homological dimensions of DG modules from both reso-
lutional and functorial points of view. Frankild and Jgrgensen [13] introduced and studied
k-projective dimension and k-injective dimension for DG modules over a local chain DG
algebra. Later, Yekutieli-Zhang [35] introduced projective dimension proj.dim , M and flat
dimension flat.dim, M for a DG module M over a homologically bounded DG algebra 7.
Any one of these invariants for DG modules can be seen as a generalization of the corre-
sponding classical homological dimensions of modules over a ring. However, it seems that
none of them can be used to define a finite global dimension of a DG algebra. Inspired
from the definition of free class for differential modules over a commutative ring in [1], the
invariant DG free class for semi-free DG modules was introduced in [27]. Recall that the
DG free class a semi-free DG .<7-module is defined to be the shortest length of all its strictly
increasing semi-free filtrations. For any DG «7-module, the least DG free classes of all its
semi-free resolutions is called cone length. This invariant of DG modules plays a similar
role as projective dimension of modules does in homological ring theory. It is well known
in homological ring theory that the projective dimension of a module over a local ring is
equal to the length of its minimal projective resolution. In this paper, we prove the following
theorem (see Theorem 3.7).

Theorem A Let M be an object in 2 (/) such that cls M < oo. Then there is a minimal
semi-free resolution G of M such that DGfree.class s G = cl M.

In [20], Jgrgensen put forward a question on how to define global dimension of DG
algebras. As explained in [27], it is reasonable to some degree to define left (resp. right)
global dimension of a connected DG algebra </ to be the supremum of the set of the cone
lengthes of all DG <f -modules (resp. </ °P-modules). In classical theory of homological
algebra, it is well known that the regular property of a commutative noetherian local ring
can be characterized by the finiteness of its global dimension and projective dimensions
for all finitely generated modules. By [9], we know a commutative noetherian local ring is
regular if and only if every homologically finite complex is small in the derived category. It
is natural to ask whether we can get analogous results in DG setting. The following theorem
(see Theorem 4.2) confirm this positively.

Theorem B Let o be a connected cochain DG algebra such that H(</) is a Noetherian
graded algebra. Then the following statements are equivalent:

(a) < is homologically smooth.
(b) clyedd < o0.

(c) 1.Gl.dim .« < 0.

(d) 2°() = Do ().
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(e) Dso(?) =0.
(f) clok < oo.
(g) ke 9°(H).

Here, Do (/) and 9° (/) are the full triangulated subcategories of the derived category
of DG <7 -modules consisting of cohomologically finite DG < -modules and compact DG
o/ -modules, respectively. Note that compact DG </ -modules are just small objects in 9(<),
and D¢ () is the singularity category Do ()| D ().

In [21], Jorgensen introduced Dwyer-Greenlees theory to differential graded homological
algebra and developed a duality between D4 (/) and D pq(/ °P) under the hypothesis [21,
Setup 4.1] and the the additional condition that H (<) is Noetherian with a balanced dualiz-
ing complex. Applying Theorem B, one sees that 9 rq (/) = (/) when </ is homologically
smooth and H (<) is Noetherian. This leads straightforwardly to the following duality:

RHom, (—,</)

D) Do)

o —
RHOmV/op (7.&?)

The Ext-regularities and Castelnuovo-Mumford regularities for DG modules were intro-
duced by Jgrgensen in [21]. Under the assumptions mentioned above, he obtained some
interesting results on these two invariants for DG modules in Zq(</) (see [21, Theorem
5.7]). In this paper, we show the following theorem (See Theorem 5.12).

Theorem C Let o7 be a Gorenstein and homologically smooth connected cochain DG algebra
such that H (/) is a Noetherian graded algebra. Then for any object M in Do (), we have

CMregM = depth, o7 + Extreg M < o0.

1 Preliminaries

In this section, we review some basics on differential graded (DG for short) homological
algebra, whose main main novelty is the study of the internal structure of a category of
DG modules from a point of view inspired by classical homological algebra. There is some
overlap here with the papers [12, 25, 26]. It is assumed that the reader is familiar with basics
on the theory of triangulated categories and derived categories. If this is not the case, we refer
to [31, 34] for more details on them.

Throughout the paper, k is a fixed field. Let <7 be a Z-graded k-algebra. If there is a
k-linear map 0, : &/ — «/ of degree 1 such that 8371 =0 and

ey (ab) = o ()b + (= 1) ad , (b)

for all graded elements a, b € <7, then 7 is called a cochain differential graded k-algebra.
We write DG for differential graded. For any cochain DG k-algebra <7, its underlying graded
algebra obtained by forgetting the differential of .7 is denoted by .o7*. If .o7* is a connected
graded algebra, then o7 is called a connected cochain DG algebra.

For the rest of this paper, we denote <7 as a connected DG algebra over a field & if no special
assumption is emphasized. The cohomology graded algebra of .7 is the graded algebra

ker(d )
H(o) = EB ﬁ.

i€eZ
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For any cocycle element z € ker(a(fy), we write [z] as the cohomology class in H (<)
represented by z. It is easy to check that H(<7) is a connected graded algebra if < is a
connected DG algebra. We denote .«7°P as the opposite DG algebra of .7, whose multiplication
is defined as a - b = (—1)!?"?Ipq for all homogeneous elements @ and b in <. For any
connected cochain DG algebra <7, it has the following maximal DG ideal

Mmoo 0o o B2 B s B
Obviously, the enveloping DG algebra &/ = o ® «°P of o/ is also a connected DG algebra
with H(&/¢) = H(</)¢, and its maximal DG ideal is m ® .7 + &/ @ m°P.
A left DG module over .« (DG .«7-module for short) is a graded «7*-module together with
a linear k-map 9y : M — M of degree 1 satisfying the Leibniz rule:

dnr(am) = 8,y (@ym + (—1)adp (m),

for all graded elements a € <7, m € M. For any left DG .<7-module, it is well known that
H(M) is a left graded H (</)-module. We say that a DG .«7-module is acyclic if H(M) = 0.
A right DG module over <7 is defined similarly. It is easy to check that any right DG modules
over .o/ can be identified with DG 7°P-modules. For any DG .&/-module M and i € Z, the
i-th suspension of M is the DG .«7-module X! M defined by (£ M)/ = M+ Ifm € M', the
corresponding element in (M)~ is denoted by Sim. We have aXim = (=119 St (am)
and 8ZiM(Eim) = (—=1)' X9y (m), for any graded elements a € o/, m € M.

An o/-homomorphism f : M — N of degree i between DG «7-modules M and N is a
k-linear map of degree i such that

flam) = (=D)"af@m), forall a e o/, m e M.

Denote Hom,, (M, N) as the graded vector space of all graded .«7-homomorphisms from
M to N. This is a complex with them differential dyon, defined by

dom(f) =y o f— (=D fody

for all f € Homg (M, N). A morphism of DG «/-modules from M to N is an /-
homomorphism f of degree 0 such that dy o f = f o dy. The induced map H(f) of f
on the cohomologies is then a morphism of left graded H (./)-modules. If H(f) is an iso-
morphism, then f is called a quasi-isomorphism, which is denoted as f : M S N.Let fand
g be two morphisms of DG «7-modules between M and N. If there is an </-homomorphism
o : M — N of degree -1 such that f — g = dy o 0 + 0 o d), then we say that f and g are
homotopic to each other and we write f ~ g. A DG «/-module M is called homotopically
trivial if idy; ~ 0. A morphism f : M — N of DG «/-modules is called a homotopy
equivalence if there is a morphism 2 : N — M such that f oh ~ idy and h o f ~ idy.
And £ is called a homotopy inverse of f. One sees easily that any homotopy equivalence is a
quasi-isomorphism.

A DG «/-module P (resp. I) is called K-projective (resp. K-injective) if the functor
Hom,, (P, —) (resp. Hom (—, I)) preserves quasi-isomorphisms. And a DG ./-module
F is called K-flat if the functor — ® ., F preserves quasi-isomorphisms. A K-projective res-
olution (resp. K-flat resolution) of a DG «7-module M is a quasi-isomorphism 6 : P — M,
where P is a K-projective (resp. K-flat) DG «7-module. Similarly, a K-injective resolution
of M is defined as a quasi-isomorphism n : M =y , where [ is a K-injective DG .«/-module.
A DG «7-module is called DG free, if it is isomorphic to a direct sum of suspensions of .o/
(note it is not a free object in the category of DG modules). Let Y be a graded set, we denote
'Y as the free DG module Dyey ey, where |ey| = |y| and d(ey) = 0. Let M be a DG
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/-module. A subset E of M is called a semi-basis if it is a free basis of M* over o#* and has
a decomposition E = | |, E; as a union of disjoint graded subsets E; such that

d(Ep) =0 and 9(E,) < A(|_| E;) forall u > 0.

i<u
A DG «7-module F is called semi-free if there is a sequence of DG submodules
O=F CFC---CF,C---

such that F = U,,>o F, and that each F,,/F,,_| = &/ ® V(n) is a DG free </-module. The
differential of F' can be decomposed as dp = dy + d1 + - - -, where dp = 9y ® id and each
d;i,i > 11is an </-linear map satisfying d; (V (I)) € AP V(I —i). Itis easy to check that
a DG «7/-module is semi-free if and only if it admits a semi-basis. A semi-free resolution of
a DG «7-module M is a quasi-isomorphism ¢ : F — M, where F is a semi-free DG «7-
module. Sometimes, we just say that F' is a semi-free resolution of M. Semi-free resolutions
play a similar important role in DG homological algebra as ordinary free resolutions do in
homological ring theory.

Let ¥ («7) be the category of DG .«7-modules and morphisms of DG </-modules. The
derived category of ¥ (<) is denoted by Z(<7), which is constructed from %' (<) by invert-
ing quasi-isomorphisms. The right derived functor of Hom, is denoted by RHom, and the
left derived functor of ®, is denoted by ©®. They can be computed via K-projective, K-
injective and K-flat resolutions of DG modules. It is easy to check that Homg 7y (M, N) =
HO9(RHom_, (M, N)), for any objects M, N in (/). A DG «7-module is called compact,
if the functor Homg () (M, —) preserves all coproducts in Z(.27). By [22, Theorem 5.3], a
DG «7-module M is compact, if and only if it is in the smallest triangulated thick subcategory
of (<) containing . /. To use the language of topologists, a DG «/-module is compact
if it can be built finitely from ., <7, using suspensions and distinguished triangles.

For any DG .27-module M, it is called cohomologically finite if H(M) is a finitely generated
H (7)-module. We say that M is cohomologically locally finite if each dimy H! (M) <
00. Let Z¢4 (/) and 2y (/) be the full triangulated subcategories of Z(<7) consisting of
cohomologically finite DG .«7-modules and cohomologically locally finite DG .#-modules,
respectively. If the graded H («7)-module H(M) is bounded below (resp. bounded above),
we say that M is cohomologically bounded below (resp. cohomologically bounded above).
Let 2% (/) (resp. 2~ (7)) be the full triangulated subcategory of Z(</) consisting of
cohomologically bounded above (resp. cohomologically bounded below) DG .o7-modules.
One sees easily that 2~ (/)N 2T (/) consists of DG .«7-modules with bounded cohomology.
It is natural to write 2° (&) = 2~ () N 91 (). Obviously, we have inclusions 2¢ (&) C
Dre(el) C 97T (). Following [5, 7, 24, 32], the singularity category of .27 is defined as
the Verdier quotient P () = Zyq (/)] 2 (/). It is confirmed by the results of [32] that
that singularity category of an algebra measures the degree to which the algebra is ‘singular’.
One of the motivations of this paper is to seek a similar result for DG version.

2 Some Basic Lemmas

In this section, we will give some fundamental lemmas on semi-free resolutions, isomor-
phisms and compact DG modules. Semi-free resolutions play an important role in DG
homological algebra as ordinary free resolutions do in homological ring theory. The fol-
lowing lemma indicates that any DG .«7-module has a semi-free resolution.
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Lemma 2.1 [12, Proposmon 6.6] For any DG algebra <7, each DG </ -module M admits a

semi-free resolution f : F 5 M. Ifg: G S M is a second semi -free resolution, then there
is a homotopy equivalence h : G — F such that g ~ f o h.

Lemma 2.2 [12, Proposition 6.4] For any DG algebra <, if F is a semi-free DG </ -module
andn : M — N is a quasi-isomorphism, then Hom, (F, ) is a quasi-isomorphism. Equiv-
alently, the functor Homg, (F, —) maps quasi-trivial DG <f -modules to acyclic complexes.
Hence any semi-free DG </ -module is K-projective.

Let « be a connected cochain DG algebra. A semi-free DG «/-module F is minimal
if dp(F) € mF. The minimality of F implies that both Hom, (F, k) and k ® s F have
vanishing differentials. As to the existence of the minimal semi-free resolution of a DG
«/-module, we have the following lemma.

Lemma 2.3 [25, Proposition 2.4] Let </ be a connected cochain DG algebra. If M is a DG
o -module in 2% (<7) with b = inf{j|H/ (M) # 0}, then there exists a minimal semi-free
resolution Fy; of M with F,ﬁ[ =1] E_i(ﬂ#)(‘/\l), where each Al is an index set.

i>b
Lemma 2.4 [26, Proposition 3.3] Let </ be a connected cochain DG algebra. If M is
a DG o/ -module in 9 (<f), then M is compact if and only if dim H(k ® M) =
dimy H(RHom,, (M, k)) < oo

Remark 2.5 Let M be an object in 27 (/). By Lemmas 2.3 and 2.4, one sees easily that
M is compact if and only if it admits a minimal semi-free resolution Fj; which has a finite
semi-basis. To use the language of topologists, a DG .«7-module is compact if it can be built
finitely from ., .7, using suspensions and distinguished triangles. Compact DG modules play
the same role as finitely presented modules of finite projective dimension do in ring theory.
One sees that compact DG modules are just small objects in Z(«).

Lemma 2.6 [12, Remark 20.1] Any bounded below projective graded module over a con-
nected graded algebra is a free graded module.

Since any DG «7-module is a graded .&*-module by forgetting its differential, we can
easily get the following lemma by the graded version of Nakayama Lemma.

Lemma 2.7 (DG Nakayama Lemma) Let <7 be a connected cochain DG algebra. If M is a
bounded below DG <7 -module and L is a DG <7 -submodule of M such that L +mM = M,
then L = M.

Lemma 2.8 Let </ be a connected cochain DG algebra. Suppose that F is a bounded below
DG </ -module such that 3¢ (F) € mF and F* is a projective <«#*-module. If a DG morphism
o : F — F is homotopic to the identity morphism id g, then « is an isomorphism.

Proof Since @ >~ id, there is a homotopy map & : F — F such that
o —idp =hodr + 0F oh.

Let fﬁ: k®y F.0 =k ®y a and h = k ®. h. Since dp(F) = mF, we have @ =
idg+hodz+dFoh =idg. Hence F = im(a) +mF. By Lemma 2.7, we have im(a) =
Since F* is a projective «7*-module, the short exact sequence

0— ker(@) > F > F — 0
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is linearly split. Note that a short exact sequence of DG .«7-modules is called linearly split if
it is split as a short exact sequence of graded .</#-modules. Acting k ® ., — on this linearly
split short exact sequence, gives a short exact sequence

0 — k ®. ker(a) SFEF>o0
of graded k-verctor spaces. Since o is a monomorphism, we have
ker(a) /mker(a) = k ® ker(a) = 0.

Suppose that ker(«) # 0, then ker(«) is a bounded below DG .<7-module since it is a DG /-
submodule of F. This implies that ker(«) # mker(«). It contradicts with ker(«) /mker (o) =
0. Hence ker(x) = 0. ]

Lemma 2.9 For any DG algebra </ and morphism of DG </ -modules f : M — N, if there
are DG morphisms g : N — M and g’ : N — M such that g’ o f ~ idy and f o g ~ idy,
then fis a homotopy equivalence and g is a homotopy inverse of f.

Proof By assumptions, we have g’ ~ g’ oidy ~ g’ o (fog) =(g'o flog~idyog=g.
Sogo f ~ g'of ~idy.Hencef is ahomotopy equivalence and g is its homotopy inverse.O

Lemma 2.10 For any DG algebra </ and any DG <7 -module M, the DG module M is homo-
topically trivial if and only if H(Hom (M, M)) = 0.

Proof If M is homotopically trivial, then Hom, (M, M) is homotopically trivial since the
functor Hom (M, —) is additive. So H (Hom (M, M)) = 0.

Conversely, suppose that H (Hom g (M, M)) = 0, we need to prove that M is homotopi-
cally trivial. Since dgom(idas) = 9y o idys — idpys o 9y = O, there is ¢ € Hom (M, M)
of degree -1 such that idy; = dgom(0) = Iy 0 0 + o o dyy. Therefore, M is homotopically
trivial. m]

Lemma 2.11 Let o7 be a connected cochain DG algebra. Assume that </ is a DG free < -
module with a direct summand P such that H(P) is bounded below. Then P is also a DG free
<7 -module.

Proof LetF = P o el By the assumption, H(P) is a direct summand of H(F), which s a free

iel
graded H (<7)-module. Hence H (P) is a projective H (<7)-module. Since H(P) is bounded
below and H (&) is connected, H(P) is a free H(«/)-module. Let H(P) = @ H()[f/],
jelJ

where each f/ is a cocycle in P.

Let L = @ #/x; be the DG free «/-module with a cocyle basis {x;|j € J}. We define

jeJ

a morphism of DG «/-modules: ¢ : L — P by e(x/) = f/, forany j € J. It is easy to
check that ¢ is a quasi-isomorphism. Since both L and P are K-projective, € is a homotopy
equivalence. Hence ¢ is an isomorphism as both L and P are minimal. O

Lemma 2.12 Let o be a connected cochain DG algebra. If F is a semi-free DG </ -module
such that H(F) is bounded below, then there is a minimal semi-free resolution G of F such
that F = G & Q as a DG o/ -module, where Q is homotopically trivial DG <f -submodule of
F.
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Proof By Lemma 2.3, F admits a minimal semi-free resolution g : G — F with inf{i|G' #
0} = inf{i|H (F) # 0}. Since F can be considered as a semi-free resolution of itself, there
is a homotopy equivalence & : G — F suchthatidpoh ~ gbyLemma2.1.Let f : F - G
be the homotopy inverse of 4. Then f oh ~ idg. Hence there is an .<7-linear homomorphism
0 : G — G ofdegree -1 such that f oh —idg = dg 00 + 0 0 dg. Since Ig(G) € mG and
o is «/-linear, we have f oh —idg € mG. Hence f oh = k ® (f oh) is the identity map
of

G=G/mG=k®, G.

Acting on the exact sequence

G L4 6 — coker(foh) — 0

by k ® ,» — gives a new exact sequence

Eﬂia—)coker(foh)—>0.

This implies that coker(f o h) = 0. Hence coker(f o h) = m - coker(f o h). If coker(f o
h) = G/im(f o h) is not zero, then it is bounded below since G is bounded below. Let
v = inf{i|(coker(f o h))! # 0}. Since m is concentrated in degrees > 1, m - coker(f o h)
is concentrated in degrees > v + 1. This contradicts with coker(f o ) = m - coker(f o h).
Therefore, coker(f o h) = 0 and f o & is surjective. We have the following linearly split
short exact sequence

oh
0—sker(foh) — G L4 6 — 0. (1
Note that a short exact sequence of DG «7-modules is called linearly split if it is split as a

short exact sequence of graded «7#-modules. Acting on Eq. 1 by k ®_ — gives a new short
exact sequence

0—ker(foh) — G L4 G —o.

This implies that ker(f o 4) = O since f o & is the identity map. Hence ker(f o h) =
m - ker(f o h). If ker(f o h) is not zero, then it is bounded below since it is a DG -
submodule of G. Let u = inf{i|(ker(f o h))! # 0}. Then m - ker(f o &) is concentrated in
degrees > u + 1. This contradicts with ker(f o h) = m - ker(f o h). Thus ker(f o h) =0
and f o & is an isomorphism. Let 6 : G — G be the inverse of f o h. Thenf o f oh =idg.
This implies that 4 is a monomorphism and the short exact sequence

0— G - F — coker(h) —> 0

is split. Hence FF = G & coker(h) as a DG «7-module. One sees that coker (/) is quasi-
trivial since H(h) is an isomorphism. By Lemma 2.2, both Hom, (F, coker(h)) and
Hom_, (G, coker(h)) are acyclic. Since

Hom_, (F, coker(h)) = Hom,, (G, coker(h)) ® Hom ., (coker(h), coker(h)),

we have H (Hom 4, (coker(h), coker(h))) = 0. By Lemma 2.10, the DG .27-module coker (/)
is homotopically trivial. O

Lemma 2.13 Let <7 be a connected cochain DG algebra. Suppose that M, N are two DG
o/ -modules and X is a DG </°-module. Then the chain map

¢ : Homy (X ® y M,N) — Hom (X, Homy (M, N))
fo(f)ix— frim— f(x @m)
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is an isomorphism.

Proof Tt suffices to prove the following two statements:

(1) Forany f € Homy (X ®o M, N), we need to show ¢ (f) is «7¢-linear.
(2) The map ¢ is a chain map and has an inverse chain map.
Foranya ® b € &7, x € X and m € M, we have

P (Hla®b)x1(m) = fragpx(m) = fl(a ® b)x @ m]
— (—l)lb"lx‘f[axb @m] = (_1)|b|-lx\+\f|-ltl|af[xb ® m]
and
[(a ® b)p(f)()](m) = [(a @ b) fl(m) = (=D IPHIIPla g (bm)
— (_1)|f\~\b\+\xl-|b|af(x ® bm).

Hence ¢ (f)[(a ® b)x] = (=D UPIHaD (4 @ b)p (f)(x). We prove statement (1).
Forany f € Homgy (X ® s M, N),x € X and m € M, we have

[Bttom © & (/)1(X) (M) = [Btom m.n) © $(f) — (=D Ip(f) 0 dx1(x) (m)
=[dy o fx — (=D £ 0 8y 1m) — (= DV fi () (m)
= an[f(x ®@m)] — (=D flx @ dy(m)] — (—DV! flax (x) @ m]
and
[ 0 Btom (S)I(X)(m) = [p(dy o f — (=D £ 0 8)1(x)(m)
=@y o f— (=D fodg)m) =@yof—(=Dfoidg)x@m)
= av[f(x ®@m)] — (=D flax (x) @ m] — (=D £x ® 9y (m)].
Thus ¢ is a chain map. It remains to show that ¢ has an inverse chain map. We define
Y : Homge (X, Homg (M, N)) - Hom (X Qo M, N)
gr> ¥(g) i x ®@mi—> g(x)(m).

We need to show the following statements:
(3) For any g € Hom (X, Homy (M, N)), ¥(g) is </ -linear.
(4)  is a chain map and  is the inverse of ¢.

Foranya € o andx @ m € X ® s M, we have

Vv(@latx @ m)] = ¥ (g)(ax @ m) = g(ax)(m)
=a(g(x))(m) = alg(x)(m)] = a[Y(g)(x @ m)].

Hence v (g) is </-linear and we get (3). For any ¢ € Hom/¢ (X, Homy (M, N)) and
x®@®m e X Q. M, we have

[Btiom © ¥ ()1(x ® m) = [Ay 0 ¥ (g) — (—1)¢1Y(g) 0 dp1(x @ m)
= dn[g()m)] — (=DEly (9)[0x (x) @ m + (=1)*x @ 3y (m)]
= dn[g()m)] — (—=1)'¢lg(dx (x))(m) — (= 1D)EH¥ g () [y (m)]
and
[V 0 3tiom (§)1(x ® m) = [V (ttomy (m.n) © g — (—1)'Elg 0 9x)1(x ® m)
= ttomem.N) © 8 — (=1)/8g 0 8x) (x) (m)
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=[Oy 0 g(x) — (=D g(x) 0y 1m) — (—1)I¥!g(dx (x)) (m)
= In[g(x)(m)] — (= DEF g ) [3p m)] — (= 1) g(Bx (x)) (m).

So ¢ is a chain map. Furthermore,

[P o ¥ (&) (X)](m) = Y (g)x(m) = ¥ (g)(x ® m) = g(x)(m)
and

[V od(NIx ®@m) = [p(/H(x)](m) = fr(m) = f(x @ m).

Hence v is the inverse of ¢. O

Lemma 2.14 Let </ be a connected cochain DG algebra. If M is a DG </-module such
that dimy H(M) < oo, then for any DG </ -module N, the DG </¢-module Homy (M, N) is
quasi-isomorphic to N @ M*.

Proof Since dimy H(M) < oo, M is a compact DG k-module. Then we have
Homy (M, N) = Homy (M, k ® N) = Homg(M, k) @ N = M* @ N = N @ M*
in 2(A°). More precisely, the morphism
0: N®M* — Homy(M, N)
n® f > (m— nf(m))
is a quasi-isomorphism. O

Lemma 2.15 Let <7 be a connected cochain DG algebra. If M is a DG <7 -module such that
dimy H(M) < oo, then for any DG <7 -module N, we have

H(RHome(</, N @ M*)) = H(RHom, (M, N)).

Proof Let F); be a semi-free resolution of M and let Iy be a K-injective resolution of N. The
DG «7¢-module <7 has a minimal semi-free resolution X — . As a DG &/ -module, X is
K-projective since

Hom (X, —) = Homy (&€ Qe X, —) = Hom (X, Hom (7€, —))
and «7/¢ = o/ ® &/°P is a K-projective DG «7-module. We have

H(RHom (M, N)) = H(Hom (Fy, N))
= HHomy (Fy, Iy))
= HMHoma(X ®4 Fy, In))

(a)
= H(Homge(X, Homg (Fy, Iy)))

)
= HMHomgy (X, Iy ®k Fip))

= H(Hom,/«(X, N & M*))

= H(RHom (o7, N @ M™)),
where (a) and (b) are by Lemmas 2.13 and 2.14 respectively. O
Lemma 2.16 Let o be a connected cochain DG algebra. Then ok is compact if and only if

o/ is homologically smooth, which is also equivalent to the condition that k. is compact.
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Proof Let M = N = k in Lemma 2.15. Then we have
H(RHom /e (27, k)) = H(RHom,y (k, k)).

Hence dimy H(RHom (<7, k)) < oo if and only if dimy H(RHom (k, k)) < oo. By
Lemma 2.4, o/ is a compact DG .7¢-module if and only if ;& is compact. The DG module
_k is compact if and only if k,, is compact by considering the dimension of H (k" ®,, k).00

3 Two Invariants of DG Modules

The terminology ‘class’ in group theory is used to measure the shortest length of a filtration
with sub-quotients of certain type. Carlsson [6] introduced ‘free class’ for solvable free
differential graded modules over a graded polynomial ring. In [1], Avramov, Buchweitz and
Iyengar introduced free class, projective class and flat class for differential modules over a
commutative ring. Inspired from them, the notion of DG free class for semi-free DG modules
was introduced in [27].

Definition 3.1 Let F be a semi-free DG .«/-module. A semi-free filtration of F
0=F(-)CSFO) - CFn)C---

is called strictly increasing, if F(i — 1) # F(i) when F(i — 1) # F,i > 0. If there is some
nsuch that F(n) = F and F(n — 1) # F, then we say that this strictly increasing semi-free
filtration has length n. If no such integer exists, then we say the length is +o00. The DG free
class of F is the shortest length of all strictly increasing semi-free filtrations of F. We denote
it by DGfree class, F.

In general, it is hard to determine the DG free class of a semi-free DG o7-module. For
this, lets consider a special kind of semi-free filtration. Let F' be a semi-free A-module with a

semi-basis E = {¢;|i € I}. Then F* = &7* ® V is a free &7*-module, where V = P keisa
ecE
graded k-vector space spanned by E. Let Vo = {v € V|dr(v) = 0} and define F(0) as a DG

-submodule of F with F(0)* = &* ® Vj. Similarly, let V<1 = {v € V]|9r(v) € F(0)},
we define F(1) as a DG «/-submodule of F such that F(1)¥ = «#* @ V<i1. It is easy to
see that F(7) is a semi-free </-submodule of F. Inductively, we suppose that F(n) has been
defined. Let V<41 = {v € V|0r(v) € F(n)} and define F (n 4 1) as a DG «7-submodule of
Fsuchthat Fn+1)¥ = 7 ® V<n+1.In general, we let V (i) be a subspace of V<; such that
V<i = V(i) ® V<i—1,i > 0. In this way, we define a strictly increasing semi-free filtration
of F:
O=F(-1)CFO cCcFlc---CFn)c---,

suchthateach F(i)/F(i—1) = &/®V(i),i > 0is DG free on a cocycle basis, which is also
abasis of bi-graded k-vector space V (7). Note that dp (v) € F(i —1) butdp(v) ¢ F(i —2), for
any v € V(i). We call this semi-free filtration a standard semi-free filtration of F associated
with the semi-basis E. Obviously, the DG free class of F must be equal to the length of
some standard semi-free filtration. In general, the lengths of standard semi-free filtrations
of a minimal semi-free DG A-module associated with different semi-basis is generally not
equal to each other. Lets see the following example.
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Example 3.2 Let </ be a connected cochain DG algebra such that there is a graded element
aed, dya) =x # 0. Let F be a semi-free .«#-module such that

n
F* =P ate;.
i=0
where the degree of ¢; is i, and the differential is defined by
0r(eg) =0 and Or(e;)) = 0 (a)ei—1 —adr(ei—1), i > 1.
It is easy to check that F has a standard semi-free filtration
OCFOCFQl)c---CFn—-1)CFn)=F,

such that F(i)/F({ — 1) = /e;, 1 <i < n. The length of this filtration is n. On the other
hand, F = o/eq ® o/ (aeg —e1) D - - - D o/ (ae,—1 —ey) is a DG free o7/-module on a cocycle
basis. Hence F has a standard semi-free filtration of length 0.

In rational homotopy theory, cone length of a topological space X is defined to be the least
m such that X has the homotopy type of an m-cone. It is a useful invariant in the evaluation of
Lusternik-Schnirelmann category, which is an important invariant of homotopy type. In [27],
this invariant was introduced to DG homological algebra.

Definition 3.3 [27] Let M be a non-acyclic DG «7-module. The cone length of M is defined
to be the number

claM = inf{ DGfree class. F | F = M is a semi-free resolution of M }.

And we definecl,;, N = —1if H(N) =0.

Note that cl,; M may be 4+-00. Cone length of a DG o/-module plays a similar role in DG
homological algebra as projective dimension of a module over a ring does in classic homo-
logical ring theory. This invariant is called ‘cone length’ because any DG .«7-module admits
semi-free resolutions and the following lemma indicates that semi-free DG .«7-modules can
be constructed by iterative cone constructions from DG free .<7-modules.

Lemma 3.4 Let F be a semi-free DG </ -module and let F' be a semi-free DG submodule of
Fsuchthat F/F' = o/ ®V is DG free on a set of cocycles. Then there exists a DG morphism
f:o @SV — F such that F = cone(f). o

Proof Let {¢;|i € I} be a basis of V. We define DG morphism f : & ® 7'V — F’ by
F(Z7le;) = dp(er). Tt is easy to check that deone(f)(€;) = f(E7'e;) = dp(e;). Hence
F = cone(f).

Proposition 3.5 Let M be a DG <7 -module with cl; M = 0. If M' is a direct summand of M
such that H(M') is bounded below, then cly M' = 0.

Proof Since cly;M = 0, M admits a semi-free resolution f : F S M such that
DGtfree classs F = 0. Clearly, F is a DG free «7-module and is therefore minimal.

Since H (M) is bounded below, the DG .«7-module M’ has a minimal semi-free resolution
f'F — M.Letp: M — M andi : M’ — M be the natural projection map and the
inclusion map respectively.

Since both F and F’ are semi-free, there are DG morphisms g : F — F'andg': F' — F
suchthat f'og ~ pofand fog ~iof'.Wehave f'ogog’ ~ pofog ~ poiof = f'.
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Since f’ is a quasi-isomorphism, it is easy to check that g o g’ is a quasi-isomorphism. By
Lemma 2.2,
Hom,, (F',go g’) : Hom (F', F') — Hom,, (F', F')

is a quasi-isomorphism. There exists & € Z%(Hom,y (F’, F')) such that
lidp] = H'(Hom.y (F', g 0 g")(Th]) = [(g 0 g') o h1.
Hence (g o g’) o h >~ idpr. Thus & is also a quasi-isomorphism. By Lemma 2.2 again,
Hom,, (F', h) : Hom (F', F') — Hom, (F’, F')
is a quasi-isomorphism. There exists ¢ € Z%Hom,, (F’, F’)) such that
lidp] = H'(Homy (F', ))(Tq1) = [hoq].

So hogq ~ idp. By Lemma 2.9, i is a homotopy equivalence and g o g’ is a homotopy
inverse of . Hence g o g’ is also a homotopy equivalence. By Lemma 2.8, g o g’ is an isomor-
phism since F’ is minimal. This implies that F’ is a direct summand of F. By Lemma 2.11,
DGfree class,, F’ = 0. Therefore cl,, M’ = 0. O

Proposition 3.6 Ler <7 be a connected DG algebra such that cl e/ < co. Then for any DG
o -module M, we have cly M < clged.

Proof Let cle/ = n. By the definition of cone length, the DG «7°-module </ admits a
semi-free resolution X such that DGfree class, e X = n. This implies that X admits a strictly
increasing semi-free filtration

0O=X-HcCcXOcXxXc---CcXn =X,

where X(0) = ¢ ® V(0) and X(i)/X(i — 1) = ¢ ® V(i) is a DG free .&/¢-module,
i =0,---,n Let E; = {e;|j € I;i},i > 0, be a basis of V(i). For any i > 1, define
fi + @°® L7V (i) - X( — 1) such that fi(E7'e;;) = dx((ei;). By Lemma 3.4,
X(@i) = cone(fi),i =1,2,--- ,n. ' '

For any DG «/-module M, let o)y : F — M be a semi-free resolution of M. As a DG
o/-module, X (i) ® y F = cone(fi ® idr),i =1,2,--- ,n.Since ¥ @y F = A QF,
we have

(V) Qyw FEAZQVHQF, i=0,1,---,n.

Choose a subset Z C F such that each element z € Z is a cocycle and {[z]|z € Z} is a basis
of the k-vector space H(F). Define a DG morphism

¢ A QVI)QH(F) > ZQV(3IH)QF

suchthat; (@ @v® [z]) =a®v®z,foranya € &/, v € V(i) and [z]. Itis easy to check
that ¢; is a quasi-isomorphism.

In the following, we prove inductively that ¢l (X (i) @y F) <i,i =0, 1,---,n. Since
¢o: RQV(0)QH(F) - X(0)® F isaquasi-isomorphism, we have cl s (X (0)® . F) =
0. Suppose inductively that we have proved that

cly X()Qy F)<I1,1>0.

We should prove cly/ (X(I + 1) @ F) < I+ 1. Since cly (X(I) ®y F) < I, there is

a semi-free resolution ¢; : G; — X(I) ®¢ F such that DGfree class,y G; < [. Because
o QT +1)® H(F) is semi-free, there is a DG morphism

Y QT TVI+1)®H(F) — G
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such that ¢; o Yy ~ (fi ®4 idr) o 7 (dr41).
For convenience, we write Q(l + 1) =7 @ V(I + 1) and K(I +1) = #/°Q V(I + 1).
In 2(), there is a morphism Ay : cone(y;) — X( + 1) ® » F making the diagram

S0+ e H(F) G T cone(y) ———= QU + 1) & H(F)

lz_l((ﬁH»l) J/‘ﬂl J/thﬂ l¢1+1
i L

1 ]}@dldF 1 R
TTKUADN®y F——> X Qy F ——=X(+1)Q@y F ——=K(I+1DH®y F

commute. By five-lemma, 4;41 is an isomorphism in Z(<7). This implies that there are
quasi-isomorphisms g : ¥ — cone(y;) and ¢ : Y — X(I + 1) ® F, where Y is some DG
o7/-module. Hence ¢l (X(I +1) Qo F) = clyy Y = clgcone(y;) <1+ 1. By induction,
we have ¢l (X Qo F) <n.Since F ~ X Q. F,wegetcly M <n. O

Theorem 3.7 Let M be an object in 9 (/) such that cly M < oo, then there is a minimal
semi-free resolution G of M such that DGfree.classy G = cly M.

Proof Let cl,, M =t and b = inf{i|H (M) # 0}. There exists a semi-free resolution P of
M such that DGfree.classs P = t. By [25,.Pr0position 2.4], M admits a minimal semi-free
resolution G with G* = ]_[»>b > (M#)(Al) each A’ is an index set. We have P = G & Q

1

by Lemma 2.12, where Q is a homotopically trivial DG «7/-module. Set F = G @ Q. Then
DGfree classs F = t and hence F admits a semi-free filtration

O=F(-1)CFO CFl)c---CF(@)=F.
t
Let E = |_| E; be a semi-basis of F with respect to the semi-free filtration above. For any i €
i=0

i—1
{1,2,--- ,t},1et E; = {e;;|j € Ii}and F; = F(i)/F(i —1). We have dr (e;;) © (L] E).

j=0
Then each graded free ./ #_module F (r)* can be decomposed as

,
e 0<r<t.
DD ",

i=0 jel;

Leteij = &i; +qi_,.,where 8i; € G andqij € Q,forany j € I;,i =0,1,---,¢. We have

Fry=01)_OQ_ dganely_ O oq)], 0<r=<t.

i=0 jel; i=0 jel;

Hence
Fr=F0)/For—-1)=0Q_ 78)® () q,;), 0<r <t
Jel, Jelr

By Lemma 2.11, ) szﬁ is either a zero module or a DG free .«/-module, for any r =

JElr
0,1,---,t. Let w,, A € A, beits DG free basis (A, = @ and w,, = 0if > dgT/ = 0).
jelr !
Then ) «/g,; = D “w,,. Note that
JElr JEA,
D orter = D or*or, & (T 7"

iel, LEA, Jjel,
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is a graded .«7*-submodule of F*. So @ «*w,, is also a graded «*-submodule of F*.
rEA,
Since 9, (wy,) = 0, we have

r r—1
() € Fr=1NY O i)=Y (O g) 0<r=t.

i=0 jel; i=0 jel;

,
Let G(r) = Y (Y gi;),r=0,1,--- 1. Then
i=0 jel; '

06O cGcSGR)c-- G =G

is a filtration of DG «-submodules of G. Moreover, G(r)/G(r — 1) = > o 8r; is either
jel,
zero or a DG free «/-module €5 dw,].‘ IfG@r)/G(r—1)=0,forsomer € {0, 1,---,t},
JEA,
then we just cancel such G (r). In this way, we can get a strictly increasing semi-free filtration
with length smaller than 7. Then DGfree.class,y G < t = cl M. It contradicts with

cly M = inf{DGfree.class,, P|P = Mis a semi-free resolution} < DGfree.class, G.

Therefore,
0OocGOcchHcGR)c---CcG)y=aG

is a strictly increasing semi-free filtration of G. Then DGfree.class,;G < t. On the other
hand, r = cly M < DGfree.class,y G. Hence DGfree.class,, G = 1. ]

In ring theory and homological algebra, it is well known that the global dimension of a
ring R is defined to be the supremum of the set of projective dimensions of all R-modules.
Since the invariant cone length of a DG .o#-module plays a similar role in DG homological
algebra as projective dimension of a module over a ring does in homological ring theory, the
following definition is reasonable to some extent.

Definition 3.8 [27] Let & be a connected cochain DG algebra. The left global dimension
and the right global dimension of .« are respectively defined by

1.Gl.dime/ = sup{cly M|M € 9(7))

and
r.Gl.dim«” = sup{clgyor M|M € 2(P)}.

Let 7 be a connected cochain DG algebra such that H (<) is a graded algebra with finite
global dimension. Then by the existence of Eilenberg-Moore resolution, one sees that any DG
o/-module admits a semi-free resolution whose DG free class is not bigger than gl.dim H (.<7).
Sol.Gl.dim«Z < gl.dimH (). If we assume in addition that H (<) is Noetherian, then any
cohomologically finitely generated DG .#-module is compact. Especially, the DG algebra
o/ 1s homologically smooth by Lemma 2.16. We emphasize that there are homologically
smooth connected cochain DG algebras whose cohomology graded algebras are Noetherian
graded algebras with infinite global dimension (see [26, Example 3.12]). So the homologically
smoothness of <7 is weaker than gl.dim H («7) < oo when H (/) is Noetherian. Beside these,
we have the following interesting results.

Remark 3.9 We can similarly prove the following results as in [27].
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(1) 1.Gl.dime = 0 if and only if H(&) ~ k.

() If 3,y = 0, then [.Gl.dim.&7 = gl.dim&/* = r.Gl.dim.«7.

(3) clgysk = 1if and only if /.Gl.dim« = 1 if and only if gl.dimH (&) = 1.
(4) If gl.dimH (/) = 2, then [.Gl.dim&/ = cl/k = 2.

(5) If either cle k or gl.dimH (<) is finite and equals to depth () H (&), then

1.GLdime/ = gl.dimH (/) = clk.

Note that the DG algebras considered in [27] are Adams connected DG algebras, which are a
family of bigraded algebras. Although the DG algebras studied here are different from those
in [27], the original proofs of the results above in [27] are suitable to connected cochain
DG algebras. The reason for this is because these two kinds of DG algebras admit unique
maximal DG ideals and their underlying graded algebras are essentially connected graded
algebras.

4 Some Criteria of Homologically Smooth DG Algebras

In DG homological algebra, homologically smooth DG algebras are fundamental and impor-
tant as regular algebras in homological ring theory. The motivation of this section is to figure
out some criteria for a connected cochain DG algebra to be homologically smooth. The
following proposition will be useful for this purpose.

Proposition 4.1 Let <7 be a connected cochain DG algebra such that H (/) is a Noetherian
graded algebra. If G is a minimal semi-free DG <7 -module with finite DG free class in
Do (), then G € 9°().

Proof Let DGfree class,y G =t < 0o. Then G admits a semi-free filtration
0=G(-Hh)cGOycGHc---CcG)y=G

such that G(i)/G(i — 1) = o ® W; is a DG free /-module on a cocycle basis, for any
i €{0,1,---,¢}. It suffices to show each dim; W; < oo. Let {¢; j|j € I;} be a basis of
Wi, i = 0,1,---,t. Letip : G(0) — G be the inclusion morphism. Since imH (i) is
a graded H (</)-submodule of H(G) and H (<) is a Noetherian graded algebra, we can

conclude that imH (1) = ]g Eg((?;; is a finitely generated H («)-module. Let

imH (1) = H() foq + H(A) for + -+ H(A) fon.
Since H(G(0)) = € H(«)eq,j is a free graded H (#)-module, there is a finite subset

jel
Jo ={i1, iz, -+, i} of Iy such that

I
fO,s = Zas.rm» s=1,2,---,n,
r=1

where each a; , € H(</).If V(0) is infinite dimensional, then both Iy and Iy \ Jo are infinite
sets. Hence for any j € Iy \ Jo, we have eq ; € kerH (10). Since [tp(eq, ;)] = [eo,;] = 0in
H (G), there exists xq ; € G such that 3G (xo, ;) = e, ;. This contradicts with the minimality
of G. Thus Wj is finite dimensional and G (0) € 27 («7).

Assume inductively that dim; W; < oo has been proved j =0, 1, ---,i — 1. Then each
G(j)/G(j —1)isanobjectin Pr4(e7), j =0,1,---,i — 1. We can prove inductively that
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each G(j) is in Z,(<7) by the following sequence of short exact sequences
0— GG -D—6G6() —G6()H/GG-1) —0, j=1,--,i—-1
Similarly, G/G(i — 1) is also an object in P, (<) by the short exact sequence
0—Gi—-1)—G—G/Gi—-1)— 0.

On the other hand, it is easy to see that G /G (i — 1) is also a minimal semi-free DG ./-module
and it has a semi-free filtration

GOH)/GG—-DHSGE+1)/GEG—-1)C---CGH)/GGE—-1)=G/G@IE —1).

Let ¢ : G@{i)/G(@ — 1) — G/G(i — 1) be the inclusion morphism. Since imH (¢;) is
a graded H(«/)-submodule of H(G/G(i — 1)) and H (/) is Noetherian, one sees that

imH () = %G(f”)_m is a finitely generated H (.</)-module. Let

imH () = H() fiy + H(A) fia + -+ H(A) fim-

Since
H(G()/G(i — 1) = P H()ei
J€l;
is a free graded H («/)-module, there is a finite subset J; = {s1, 52, - - - , 54} of I; such that

q
fir=)Y ajeis =12 .m,
j=1

where each a; j € H(&/). If W; is an infinite dimensional space, then both I; and I; \ J; are
infinite sets. Hence forany j € I; \ J;, we havee; ; € kerH(1;). Since [(;(¢; j)] = [e;,j]1=0
in H(G/G(i — 1)), there exist x; ; € G/G (i — 1) such that 9 (x; ;) = e; ;. This contradict
with the minimality of G. Thus W; is finite dimensional.

By the induction above, we get dimy W; < oo forany i € {0, 1,--- ,t}. Hence G has a
finite semi-basis and G is compact. O

The following theorem completely characterize homologically smooth DG algebra intrin-
sically.

Theorem 4.2 Let <7 be a connected cochain DG algebra such that H(<) is a Noetherian
graded algebra. Then the following statements are equivalent:

(a) < is homologically smooth.
(b) Clgedd < 0.

(c) [.Gl.dim &/ < 0.

(d) 2°(F) = Dyg ().

(e) Dsg(/) =0.

(f) clyk < oo.

(g) ke 2°(H).

Proof (a)=(b) Since < is a homologically smooth DG algebra, the DG «/¢-module < is
compact. So it admits a minimal semi-free resolution X with a finite semi-basis. This implies
that DGfree.class s« X < oo. By the definition of cone length,

clye < DGfree.class e X < o0.
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(b)=(c) For any DG «-module M, we have cl s M < cl .o/ by Proposition 3.6. There-
fore, [.Gl.dim &7 = sup{clyy M|M € P()} < clyed/ < 00.

(b)=(d) It suffices to show that any DG </-module M in Zf,(2/) is compact. By
Proposition 3.6, we have cls M < cly o/ < 0o. By Proposition 3.7, M admits a minimal
semi-free resolution G such that DGfree.class,s G = cl, M. Then G is an object in 2¢ ()
by Proposition 4.1. Since G is a semi-free resolution of M, we conclude that M € 2°(«).

(d)&(e) Since Dy () = Dy ()] D(A), Do () = D(A) & Do () = 0.

(c)= (f) We have cl k < sup{cly M|M € 9(<7)} =1.Gl.dim &7 < oo.

(d)=(f) Since k € Do () = 2°(/), k admits a minimal semi-free resolution Fy which
has a finite semi-basis. We have DGfree.class,, F; < oo. Therefore,

cl k < DGfree.class. Fi < oo.

(f)=(g) Let cls k = t. By Proposition 3.7, k has a minimal semi-free resolution Fj such
that DGfree.class ., Fi = t. Applying Proposition 4.1 to Fy, we conclude Fy € 2°(<7). Then
k € 2¢(«) since F}, is a semi-free resolution of . k.

(g)=(a) By Lemma 2.16, 7 is homologically smooth since k € 7¢(</). ]

By [26, Proposition 4.6], we have quasi-inverse contravariant equivalences of categories,

RHom / (—, /)
() DE(AP) .

I —
RHOl‘nw/op (—,K(Z/)

By Theorem 4.2 and Lemma 2.16, 2°(«/) = ZDyq(</) and 2°(o/°P) = Do (/°P) when
o/ is homologically smooth and H (/) is Noetherian. The following corollary is obviously
true.

Corollary 4.3 Let o/ be a homologically smooth connected cochain DG algebra such that
H (/) is a Noetherian graded algebra. There is a duality between P o (/) and D pg (7).
To be precise, we have quasi-inverse contravariant equivalences of categories,

RHom / (—,47)

Do) Dy AP) .

-
RHOm{Q/op (—,,W)

5 Ext and Castelnuovo-Mumford Regularities of DG Modules
In this section, we study the Ext and Castelnuovo-Mumford regularities of DG modules.
These two invariants of DG modules were introduced and studied in [21].
Definition 5.1 For any M € %(</), we define the Ext-regularity of M by
ExtoregM = — inf{i|Hi(RH0m,0/ (M, k)) # 0},
and similarly for N € D(&7°?). Note that Ext.reg(0) = —oo.

Remark 5.2 For any DG .2/-module M in %4 (<7), it admits a minimal semi-free resolution
Fy by Lemma 2.3. Let E be a semi-basis of Fjs. Then by the minimality of Fs, we have

Ext.reg M = sup{|e| |e € E}.

If &7 is homologically smooth and H(<7) is Noetherian, then Zy,(%/) = Z°(4/) by
Theorem 4.2 and hence any object in Z ¢ (/) has finite Ext-regularity.
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Definition 5.3 [25] For any object M € 2(<7), the depth and k-injective dimension of M are
defined, respectively, as

depth,, M = inf{j|H’/ (RHom,, (k, M)) # 0}
and

k.id.y M = sup{j|H/ (RHom,, (k, M)) # 0}.

In the rest of this section, we assume that <7 is a homologically smooth connected cochain
DG algebra. Then both .k and k., are compact by Lemma 2.16. In this case, we have [21,
Setup 4.1]. Let K and L be the minimal semi-free resolutions of o k and k., respectively.
We have (K) = (k) and (L) = (ko) in 2(). Set

N — (Mk)l — <,pr>l7 QIOI’S(M) — LN al‘ld @comp(&{) :NL

in 2(4). The DG modules in 2'%(&/) and 2°™ (/) are called torsion DG mod-
ules and complete DG modules, respectively. Then 2'°%(&/) = (,k) = (s K). Let
£ = Homg (K, K) be the endomorphism DG algebra. We have the following lemma on
E.

Lemma 5.4 The DG algebra & satisfies the following conditions.

(1) dimg H(E) < 00,
(2) 0 =sup{i € Z|H'(E) # 0};
(3) HY(&) isa local finite dimensional algebra.

Proof (1) Since <7 is homologically smooth, the minimal semi-free resolution K of .,k has
a finite semi-basis E. By the minimality of K, one sees that

dimy; H(£) = dimy H(Hom,, (K, K))
= dimg Hom . (K, k)

=dimy Pecpke = |E| < 00.
(2) By Lemma 2.3, .k has a minimal semi-free resolution K such that
Kt — ]_[ E—i(ﬂ#)(Ai)’
i>0
where each A’ is an index set. Thus
sup(j € ZIH (€) # 0} = sup{i € Z|[Hom, (K. k)]' # 0}
= sup{j € Z|[Hom (| [ =7/ (#") ™) b)Y # 0)

i=0

= sup(j € ZI[ [ =" 0™V # 0} =0.

i>0
(3) By [26, Lemma 10.2], the algebra Hom g (/) (k, k) is local. Thus the algebra
H°(€) = H'(RHom (k, k)) = Homg () (k. k)

is a finite dimensional local algebra since dimy H () < oo. O
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ByLemma5.4, H(?(E) isaloqal algebra. Let J be its maximalid;:al. Setb = inf{i|H!(€) # 0,
Z' = ker(dg), C' = £&'/Z'", H' = H'(§) and B' = im(d:{l). Then £ admits two DG
subalgebras

d[—l dl d1+1 d—2 d71
g oS gZgrls LS e 7050
and
dj—l d d]+1 db_l
& £ gl St s L5 B,

Clearly, £” is a DG ideal of £’. Note that the DG algebra £'/£" is

d[7+l d_

ds
0— Cto Hb Eeb“ L1 s :, 70 = o0.

One sees that both the inclusion morphism ¢ : £ — £ and the canonical surjection ¢ : £’ —
&'/€" are quasi-isomorphisms. Let R, = (£/) ™" and df = d' for any ¢ > 0. In this way, £’
can be considered as a chain DG algebra R:

d}il df dr, df dR
. R—>R,]—>-~- R1—>R0—>0
Moreover, Hy(R) = Ro/im(df) = H° is a finite dimensional local algebra and

dimy H(R) = dimy H(£") = dim; H(E) < oo. Each H;(R) is a finitely generated Hy(R)-
module and —b = sup{i € Z|H;(R) # 0}. So R is a local chain DG algebra introduced
n [13]. Its maximal DG ideal is

de dR dR lR 0
mg: - Ri > - —)Rl Ry=B"®J — 0.
Remark 5.5 The DG algebra £ and € are both augmented DG algebras with augmented DG
ideals

st dl dg? dg!
mer S g S 5 e TS Bg 0
and
dtl I d72 d71 d() dl d} d]‘H
& o—1 Y% £ £
me : 535515 Bgrpc St S 805

Proposition 5.6 Let X be a left DG &'-module such that each H (X) is a finitely generated
HOY(&Y-module and u = sup{i|H' (X) # 0} < oo. Then X admits a minimal semi-free
resolution F with Ff; = || =/(&#)BD, where each Bj is finite.

j=<u
Proof Let M = @ M; with M_; = X' for any i € Z. Then M is DG R-module such
jez
that each H; (M) is a finitely generate Hyp(R)-module. And H(M) is bounded below with
—u = inf{i|H; (M) # 0}. It follows from [13, 0.5] that M admits a minimal semi-free

resolution G such that
G = ]_[ o (R B
i>—u
where each f; is finite. Let F ! = G_;. Then F is a minimal semi-free £-module with
Fr=]]=/@&"b.
Jj<u

Moreover, it is a minimal semi-free resolution of X. O
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Prpposition 5.7 Let N be a DG E-module such that u = sup{i|H' (X) # 0} < oo and each
H'(N) is a finitely generated H 0(&)-module. Then N admits a minimal semi-free resolution
F such that F* = Iz (EMPi, where each Bj is finite.

J=<u

Proof Via the inclusion morphism ¢ : & — &, N can be considered as a DG £’-module. By
Proposition 5.6, ¢/ N admits a minimal semi-free resolution G such that

Gt ==/,
J=u
where each B; is finite. One sees easily that F' = £ ®¢/ G is a minimal semi-free resolution
of ¢ N and _
Fr=]]=/eEhH?,
Jj=u
where each §; is finite. m}
The DG module K acquires the structure ./ oK while K* = Hom, (K, /) has the
structure K*, .. Define functors T'(—) = — LoeK,
W(—) =Hom, (K, -) ~ K*l®, — and C(—)= RHomgw(K*, —),

which form adjoint pairs (7', W) and (W, C) between Z(£°P) and 2 (<7). There are pairs of
quasi-inverse equivalences of categories as follows

w T
_@comp (JZ%) @(gop) @tors (JZ{) .
C w

In particular, WC and WT are equivalent to the identity functor on Z(£°?) , so if we set
Fr=TW,A=CW,
then we get endofunctors of Z(«/) which form an adjoint pair (I', A) and satisfy
M2 ~T, A’ >~ A, TA~T, AT ~A.

These functors are adjoints of inclusions as follows, where left-adjoint are displayed above
right-adjoints
inc r
gcomp (Jaf) .@(JZY) @tors (527) .

A inc

Write Q = K*L ®@¢ K and D = QY = Homy(Q, k). One sees that Q and D have the
structures s Qo and o Dy, respectively. From the definitions, we have

I =0"®y - and A(-) = RHomy(Q, -).
The following definition was introduced in [21, Definition 5.1].
Definition 5.8 For any DG .7-module M, its Castelnuovo-Mumford regularity is defined by
CMregM = sup{i|H (I'(M)) # 0}.
Note that CMreg(0) = —oo.
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Definition 5.9 [11] Let <7 be a connected cochain DG algebra. If
dimy H(RHom (k, <)) = 1, (resp.dimy H(RHom o (k, </)) = 1),

then .« is called left (resp. right) Gorenstein. If .« is both left Gorenstein and right Gorenstein,
then we say that < is Gorenstein.

Remark 5.10 Assume that <7 is a left Gorenstein DG algebra. Then we have k.id,, &/ =
depth , o since dimy H(RHom,, (k, </)) = 1. By the way, the invariant k.id .,y </ is called
‘formal dimension’ of 7 in [14]. Although a left Gorenstein DG algebra is not necessarily
right Gorenstein in noncommutative setting. For any homologically smooth DG algebra <7,
it is left Gorenstein if and only if it is right Gorenstein by [26, Remark 7.6].

Proposition 5.11 Suppose that </ is a homologically smooth connected cochain DG algebra.
If o is Gorenstein, then depth , .o/ = depth ,0p.27.

Proof Let depth , &/ = m and depth_, 0«7 = n. Then H(RHom (k, 7)) = ¥ "k and
and H(RHom o (k, 7)) = X7 "k. By [28, Lemma 2.7], RHom (k, &/) >~ X "k in
2(&/°P) and RHom yyop (k, &) = 7" 7k in 2(7). Since .k is compact, the biduality
morphism

k — RHom o (RHom, (k, o), <)

is a quasi-isomorphism by [26, Proposition 4.6]. On the other hand,
H(RHom o (RHomy (k, o), 7)) = H(RHom gop (8 "koy, o))
= 2" .

Thus m = n. O

Theorem 5.12 Let <7 be a Gorenstein and homologically smooth connected cochain DG
algebra such that H(<7) is a Noetherian graded algebra. Then for any object M in 27 (<),
we have

CMregM = depth, o7 + Extreg M < o0.

Proof By Theorem4.2, we have M € 2°(</). Then M admits a minimal semi-free resolution
F with a finite semi-basis E. By the minimality of F,

H(RHom; (M, k)) = Hom,/ (F, k) = @D ke.

ecE

One sees clearly that
ExtregM = —inf{i|H"(RHom@//(M,k)) # 0} = sup{le| | e € E} < o0.
Letbh = inf{i € Z|H' (M) # 0}, u = Extreg M and t = depth_, <7. Then
K* =Homy (K, &) = 2 ke o

in 2(<7°P) and
Fr= [] =/ @hH*,

b<j<u

@ Springer



Homologically Smooth Connected Cochain DGAs

where each «; is finite. By Proposition 5.7, & K admits a minimal semi-free resolution P

such that P# = 11 >/ (S#)(ﬁf ), where each B; is finite. Therefore,
Jj=<0

CMregM = sup{i € Z|H (I'(M)) # 0}
=sup{i € ZIH'[(K* ' ®¢ K) ®. F] # 0}
supli € ZIH'[(Z " ke,.r ®¢ P) ®or F1# 0}
= sup(i € ZIH'[(Z ke, ®e | [ 27 (HP) @ F1 £ 0)

Jj=<0
=supli € ZI(| [ =7k 9 [ B %) £0)
Jj=0 b=q=u
=sup(i e ZI(J | [] =" 9&P)) ) £ 0}

Jj<0b=<q=u
=1t + u = depth, .o/ + Ext.reg M.
[}

Remark 5.13 Note that a homologically smooth DG algebra is not necessarily Gorenstein.
For example, the trivial DG free algebra

o = (k(x,y),0) with |x|=]|y|=1

ishomologically smooth but not Gorenstein (cf. [30, Proposition 6.2]). Since there are Noethe-
rian non AS-Gorenstein connected graded algebras with finite global dimension, one sees
that homologically smooth DG algebras are not necessarily Gorenstein under the additional
assumption that the cohomology graded algebra H (<) is Noetherian.

6 Some Examples

In this section, we list some homologically smooth and Gorenstein connected cochain DG
algebras whose cohomology algebra is Noetherian.

Example 6.1 Let </ be a connected DG algebra such that &# = k(x, y)/(xy + yx) with
|x] = |y| = 1 and its differential d,, is defined by 9/ (x) = y2 and 9./ (y) = 0. By [26,
Example 3.12], </ is a homologically smooth and Gorenstein DG algebra with

H (/) = kI[x1%, [y11/ (7).
Example 6.2 Let < be the connected cochain DG algebra such that

2 2
— (& — Dxyx —&yx
ot = kix, x7y—(@¢

b/ (xy2 —(§ = Dyxy —£y*x
is the graded down-up algebra generated by degree 1 elements x,y, and its differential 9.,
is defined by 9. (x) = y2 and 9,/ (y) = 0, where & is a fixed primitive cubic root of unity.
By [29, Proposition 6.1], A is a Calabi-Yau DG algebra. So <7 is a homologically smooth
and Gorenstein DG algebra. By [29, Proposition 5.5],

k([xy + yx1, [yT)

(ETy1Txy 4+ yx1 — [xy 4+ yx1[y11y*1)

H() =
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Example 6.3 Let <7 be the connected cochain DG algebra such that
o* = k(x, y)/ (x%y — yx?xy? = y2x)

is the graded down-up algebra generated by degree 1 elements x,y, and its differential 9, is
defined by 9./ (x) = y2 and d. (y) = 0. By [29], 7 is a Calabi-Yau DG algebra with

H (<) = k[[x*1, Ty1, [xy + yx11/([y1%).

Hence <7 is a homologically smooth and Gorenstein DG algebra.

For the three examples above, the corresponding DG algebras are homologically smooth
and Gorenstein DG algebras whose cohomology algebras are Noetherian. We can apply
Theorems 4.2 and 5.12 to them.
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