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Abstract
We show that the order type of the simplest version of a hammock for string algebras lies in
the class of finite description linear orders–the smallest class of linear orders containing 0,
1, and that is closed under isomorphisms, finite order sum, anti-lexicographic product with
ω and ω∗, and shuffle of finite subsets–using condensation (localization) of linear orders as
a tool. We also introduce two finite subsets of the set of bands and use them to describe the
location of left N-strings in the completion of hammocks.
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1 Introduction

Let � be a string algebra over an algebraically closed field K. Brenner [2] introduced cer-
tain partially ordered sets known as hammocks to study factorization of maps between finite
dimensional indecomposable right �-modules. The simplest version of hammocks intro-
duced by Schröer [10, § 3] in the context of string algebras are bounded discrete linear
orders–this is the only type of hammock we will deal with in this paper. We compute the
order type of a hammock for� in terms of some standard order types, thus generalizing (one
direction of) the main result of Sardar and the second author from [11] that only dealt with
the case when � is domestic.

The algebra � is domestic if and only if there are only finitely many bands for it. These
bands are vertices of a finitary combinatorial gadget known as the bridge quiver [10, § 4]–its
slight modification was used for the explicit computation of the order type in the domestic
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case. To extend the concept of a (finitary) bridge quiver to the non-domestic setting, a finite
subset [3, Theorem 3.1.6] of the set of bands was introduced in [3, Definition 3.1.1], whose
elements are called prime bands. We partition the set of bands using an equivalence relation
in such a way that each equivalence class contains at least one prime band to obtain a finite
set QBa of equivalence classes that is equipped with a natural reachability partial order
�. We classify the elements of QBa as domestic or non-domestic depending on whether
the equivalence class is finite or infinite. The existence of a non-domestic element in QBa

characterizes the non-domesticity of the algebra �. In this regard, the study of non-domestic
string algebras is a combination of domestic and meta-

⋃
-cyclic string algebras ([3, § 3.4]),

where the latter type of algebras are characterized as those with QBa consisting only of
non-domestic elements such that no two distinct elements are �-related.

Let rad� denote the radical of the category of finite length right �-modules. Schröer
characterized [10, Theorem 2] domestic string algebras as those whose radical is nilpotent.
In fact, when � is domestic, he showed that radω·(n+2)

� = 0, where n is the maximum length
of a path in its bridge quiver, bypassing the computation of the order types of hammocks. It
is conjectured [3, Conjecture 4.4.1] that the stable rank of a non-domestic string algebra is
strictly bounded above by ω2. The results in this paper, especially those in § 11,12, will be
used in a future work to settle this conjecture in the affirmative.

Yet another characterization of a non-domestic (string) algebra was given by Prest [6,
Proposition 0.6] in terms of the existence of a factorizable system in its radical–such a
factorizable system is indexed by a bounded interval in rationals with non-empty interior.

To explain the main result of the paper, we need to set up some order-theoretic notations
and conventions, for which we mostly follow Rosenstein [8]. The notations N and N

+ stand
for the sets of natural numbers and positive natural numbers respectively. For n ∈ N, the
notation n stands for the order type of the finite linear order with n elements. The notation ω

stands for the order type of N, ω∗ for its dual, ζ for the order type of the set of integers, η for
the order type of rationals, λ for the order type of reals and ϑ for the order type of irrationals.
For linear orders L1 and L2, the notations L1 + L2 and L1 · L2 stand for their order sum and
their anti-lexicographic product respectively. The notation

∑
i∈(I ,<) Li stands for the order

sum of linear orders Li indexed by a (possibly infinite) linear order (I ,<). A linear order
(L,<) is said to be scattered if there is no embedding of η in it. An element a in a linear
order (L,<) is said to be an immediate predecessor (resp. successor) of b ∈ L if a < b
(resp. b < a) and there is no element c ∈ L such that a < c < b (resp. b < c < a). A linear
order (L,<) is said to be discrete if each element except the minimum, if it exists, has an
immediate predecessor and each element except the maximum, if it exists, has an immediate
successor.

In amodel-theoretic study of linear orders, Läuchli and Leonard [5] introduced two classes
M0 ⊂ M of linear orders (see [8, Definitions 7.6, 7.19]) to understand graded versions of
elementary equivalence described via Ehrenfeucht-Fraïssé games. The classM0 is a subclass
of the class of scattered linear orderswhereas each linear order inM\M0 is not scattered. The
class M0 appeared in [11] as the class LOfp of finitely presented linear orders. Its subclass
dLO11

fp consisting of bounded discrete finitely presented linear orders was characterized as
the class of order types of hammocks for domestic string algebras [11, Theorem 12.15].

The main result of this paper (Theorem 11.9) shows that the order type of a hammock for
a (non-domestic) string algebra lies in a subclass of the class M of Läuchli and Leonard.
We will refer to the orders in M as finite description linear orders, and thus use a more
suggestive notation LOfd instead of M; its subclass consisting of bounded discrete orders
will be denoted by dLO11

fd . Eachfinite description order is constructed using only finitelymany
order-theoretic operations on a fixed finite set of linear orders (Definition 2.3). However, in
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contrast to the domestic case, we do not expect that every linear order in dLO11
fd is isomorphic

to a hammock for a string algebra (Question 11.13).
The technique used to prove the main theorem is “recursive reconstruction” (Lemma

2.4) of a hammock–to explain this method better we need the concept of condensation. A
condensation of a linear order L is a monotone surjective map c : L � L ′. When a linear
order is thought of as a (small) category then each of its condensations is equivalent to its
localization with respect to an appropriate choice of weak equivalences. It is possible to
reconstruct L from the knowledge of L ′ and all fibers of the map c as

L ∼=
∑

x∈L ′
c−1(x).

If L is the hammock under consideration, we choose a suitable B ∈ QBa to define a split
condensation cB : L � LB in such away that LB ∈ dLO11

fd , eachfiber of cB is itself a hammock
(Lemma 7.8) and there are only finitely many distinct order types of fibers. Depending on
whether B is domestic or non-domestic, the condensed order LB is isomorphic to a finite order
sum of copies of ω + ω∗ or ω + ζ · η + ω∗ respectively (Corollary 11.8). Finiteness of QBa

helps to inductively prove that the fibers of cB are indeed in dLO11
fd . The “finite description”

of the order type of hammock needs several other supporting finiteness results sprinkled
throughout the paper (Corollaries 4.7, 6.7, 6.10, Remark 10.2 and Propositions 11.1, 11.4).

We show in Corollary 9.4 that for an element in LB, the condensation of its immediate
successor (resp. predecessor) in L is its immediate successor (resp. predecessor) in LB. We
also identify a subset of LB that is in bijectionwith its finite condensation (see [8, § 4.2])–such
a subset is finite if and only if B is domestic. In case B is non-domestic, we further identify
its cofinite subset, the elements of which will be called B-centers, whose order type (as a
suborder of L) is η (Corollary 11.5).

The completion of the hammock is obtained by adding to it the so-called left N-strings
(Proposition 4.11). Recall that every left N-string in a domestic string algebra is almost
periodic [7, Proposition 2]; this statement fails in a non-domestic string algebra. Each interval
in the hammock isomorphic to ω or ω∗ contributes to the completion an almost periodic left
N-string of the form ∞bu, where u is a string and b is a special type of prime band (Definition
8.4). The remaining left N-strings, which also include some almost periodic left N-strings,
occupy irrational locations in λ (Proposition 12.8).

Though Theorem 11.9 generalizes the backward direction of [11, Theorem 12.15], which
computes the order type of hammocks for domestic string algebras, the former employs a
recursive algorithm and thus is computationally more complex than the latter.

A finite dimensionalK-algebra that is presented as a bound quiver algebra has only a finite
amount of data. We believe that for such algebras if one identifies a finite poset that plays the
same role asQBa for string algebras then the method of “condensation away from" elements
of this poset could be used to recursively reconstruct hammocks. The class LOfd seems to
be the natural class of countably infinite linear orders which admit description using only a
finite amount of data.

Theorem 11.9 is the key ingredient in the proof of [13, Theorem 1] where Srivastava and
the first two authors show that the stable rank of a special biserial algebra–an ordinal that
measures the complexity of factorizations in the module category–is strictly bounded above
by ω2, thereby settling [3, Conjecture 4.4.1] in the affirmative. An interested reader is also
referred to [12, Theorem α] for an alternate shorter proof of Theorem 11.9 by Srivastava and
the second author that uses finite automata.

The rest of the paper is organized as follows. The class LOfd of finite description linear
orders is defined in § 2; the highlight of this section is the recursive reconstruction lemma
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(Lemma 2.4). After describing the completion of a linear order in § 3, completions of some
orders in dLO11

fd are computed. The notations and conventions for string algebras are set
up in § 4 and the finiteness of the poset (QBa,�) is proved in § 5. Before describing the
condensation operator cB in § 7, the condensed hammock is introduced in § 6. Lemma 7.8
helps to decompose a hammock as an order sum of smaller hammocks, which enables setting
up the induction for the computation of the order type. After introducing two special subsets
of the set of prime bands in § 8, the description of the immediate neighbours of strings in the
condensed hammock is completed in § 9. The definition and classification of B-centers into
finitelymany classes is achieved in § 10. Combining all tools gathered thus far, themain result
is proved in § 11, where the potential impossibility of its converse is also discussed. Finally,
in § 12, based on the description of the completion of the hammock from Proposition 4.11,
the set of left N-strings is classified into three classes and their locations in the completion
are described.

2 Finite Description Linear Orders

Weintroducedbasic notations, conventions andoperations on linear orders in §1.Weneed two
more finitary operations defined on linear orders. If L1 and L2 are non-empty linear orders,
define L1�L2 to be the linear order obtained by identifying in L1+L2 themaximum element
of L1 with the minimum element of L2, if they both exist; otherwise setting L1 � L2 :=
L1 + L2.

The other finitary operation is that of the shuffle of a finite set of linear orders, which we
recall below from [8] for the convenience of the reader. This operation will be used in the
construction of finite description linear orders.

Cantor proved that η is the only countably infinite dense linear ordering without maximum
and minimum elements up to isomorphism (see [8, Theorem 2.8]). The technique used to
prove this result is known as the back-and-forth method, which can also be used to prove the
following.

Proposition 2.1 [8, Theorems 7.11, 7.13] For each n ∈ ω, there is a partition of η into sets
{Di | 1 ≤ i ≤ n} such that each Di is dense in η. Such a partition is unique in the following
sense: If (A,<) and (A′,<′) are countable, unbounded, dense linear orders, A is partitioned
into n subsets {Di | 1 ≤ i ≤ n} each of which is dense in A, and A′ is partitioned into n
subsets {D′

i | 1 ≤ i ≤ n} each of which is dense in A′ then there is an order isomorphism
f : (A,<) → (A′,<′) such that f (Di ) = D′

i for each 1 ≤ i ≤ n.

The uniqueness of the partition described in the above result enables us to combine the data
of a finite set of linear orders into a single linear order as described below.

Definition 2.2 [8, Definition 7.14] Let n ∈ N. Suppose L1, · · · , Ln is a finite set of linear
orders. If n ∈ N

+, let {D1, · · · , Dn} be a partition of η guaranteed by Proposition 2.1, where
each Di is dense in η. Define the shuffle, denoted 	, of linear orders L1, · · · , Ln as

	(L1, · · · , Ln) :=
{
0 if n = 0,
∑

i∈η L
′
i , where L ′

i = L j when i ∈ Dj otherwise.

The shuffle operator is a generalization of anti-lexicographic product with η, i.e., 	(L1) ∼=
L1 · η, and it ignores repetitions, 0 and permutations, i.e.,

	(L1, L1, L2, · · · , Ln) ∼= 	(L1, L2, · · · , Ln) ∼= 	(L1, L2, · · · , Ln, 0)
∼= 	(Lπ(1), Lπ(2), · · · , Lπ(n))
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for a permutation π of {1, 2, · · · , n}.
Since η + 1 + η = η, for any 1 ≤ j ≤ n, we also get

	(L1, L2, · · · , Ln) + L j + 	(L1, L2, · · · , Ln) ∼= 	(L1, L2, · · · , Ln). (2.1)

If L j = L j1 + L j2 then using η · ζ = η and the above identity we get

(L j2 + 	(L1, L2, · · · , Ln) + L j1) · ζ ∼= 	(L1, L2, · · · , Ln). (2.2)

Definition 2.3 [8, Definition 7.19] The class LOfd of finite description linear orders is defined
as the smallest subclass of linear orders closed under isomorphisms such that

1. 0, 1 ∈ LOfd;
2. if L1, L2 ∈ LOfd then L1 + L2 ∈ LOfd;
3. if L ∈ LOfd then L · ω, L · ω∗ ∈ LOfd;
4. if L1, L2, · · · , Ln ∈ LOfd for n ∈ N

+ then 	(L1, L2, · · · , Ln) ∈ LOfd.

The class LOfp of finitely presented linear orders is the subclass of LOfd whose definition
omits clause (4) in the above. The notation dLOfd denotes the subclass of LOfd containing
only discrete linear orders. The class dLOfd of discrete finite description linear orders can be
further partitioned into four subclasses, viz. dLOi j

fd for i, j ∈ {0, 1}, where L ∈ dLOi j
fd only

if it has i minimum elements and j maximum elements. In particular, dLO11
fd is the class of

bounded discrete finite description linear orders. The orders (ω + 	(ζ, ζ, · · · ζ
︸ ︷︷ ︸

n times

) + ω∗) for

n ∈ N form a simple family of examples of orders in dLO11
fd . We similarly partition dLOfp

into four subclasses.
We will use the method of recursive reconstruction described in the introduction to con-

struct complex orders in dLO11
fd . An indispensable tool to prove the main result (Theorem

11.9) is the following lemma which shows that, under suitable conditions, if L admits a
condensation c : L � (ω + 	(ζ, ζ, · · · ζ

︸ ︷︷ ︸
n times

) + ω∗) with fibers in dLO11
fd then L ∈ dLO11

fd .

Lemma 2.4 Fix n ∈ N. Given any (n+2) functions L j : ζ → dLO11
fd , for j ∈ {0, 1, · · · , n+

1}, satisfying
• L0(−k) = Ln+1(k) = 0 for every k > 0;
• for each j ∈ {0, 1, · · · , n}, there exist s j ≥ 0 and p j > 0 such that L j (s j + p j + k) ∼=

L j (s j + k) for every k ∈ N;
• for each j ∈ {1, · · · , n+ 1}, there exist s′

j ≤ 0 and p′
j > 0 such that L j (s′

j − p′
j − k) ∼=

L j (s′
j − k) for every k ∈ N,

we have

L :=
∑

k∈ζ

L0(k) + 	(
∑

k∈ζ

L1(k), · · · ,
∑

k∈ζ

Ln(k)) +
∑

k∈ζ

Ln+1(k) ∈ dLO11
fd .

Proof Set

H :=
∑

k∈ζ

L0(k) ∼= L0(0) + · · · + L0(s0 − 1) + (L0(s0) + · · · + L0(s0 + p0 − 1)) · ω,

R :=
∑

k∈ζ

Ln+1(k) ∼= (Ln+1(s
′
n+1 − p′

n+1 + 1) + · · · + Ln+1(s
′
n+1)) · ω∗

+Ln+1(s
′
n+1 + 1) + · · · + Ln+1(0),

123



V. Sinha et al.

and for each 1 ≤ j ≤ n,

Mj :=
∑

k∈ζ

L j (k) ∼= (L j (s
′
j − p′

j + 1) · ω∗ + · · · + L j (s
′
j ))

+L j (s
′
j + 1) + · · · + L j (s j − 1) + (L j (s j ) + · · · + L j (s j + p j − 1)) · ω.

It is trivially seen that H ∈ dLO10
fd , R ∈ dLO01

fd and Mj ∈ dLO00
fd for each 1 ≤ j ≤ n. Hence

it follows that L = H + 	(M1, · · · , Mn) + R ∈ dLO11
fd . �

Corollary 2.5 Using the notations of the above proposition, if we have n = 0 and the images
of L0 and L1 lie in dLO11

fp then L ∈ dLO11
fp .

3 Completions of Linear Orders

Recall from [8, Definition 2.19] that a linear order L is complete if each of its suborders
that is bounded above has a least upper bound. Completeness of a linear order is an order-
theoretic property, i.e., it is preserved and reflected by order isomorphisms [8, Lemma 2.21].
ADedekind cut [8, Definition 2.22] of a linear order L is a pair (X , Y ) of non-empty intervals
of L whose union is L such that each element of X precedes every element of Y . A Dedekind
cut (X , Y ) is called a gap in L if X does not have a maximum element and Y does not
have a minimum element. Denote the set of all gaps of L by G(L). An equivalent criterion
[8, Lemma 2.23] for a linear order L to be complete is that L is Dedekind complete, i.e.,
G(L) = ∅.

A completion of L [8, Definition 2.31], denoted C(L), is a complete linear order contain-
ing L such that no proper suborder of C(L) containing L is complete. A completion C(L)

of L exists, the construction of one involves “filling up” its gaps (see the proof of [8, The-
orem 2.32(1)]), and is unique up to order isomorphism [8, Theorem 2.32(2)]. The set G(L)

being a subset of C(L) inherits an order structure from C(L).
In order to identify a gap (X , Y ) of a linear order L , it suffices to find a cofinal sequence

of elements of X and a coinitial sequence of elements of Y , where X ′ ⊆ X is cofinal in X if
for every a ∈ X , there is b ∈ X ′ such that a ≤ b, and dually, Y ′ is said to be coinitial in Y if
for every a ∈ Y , there is b ∈ Y ′ such that b ≤ a.

Example 3.1 It is trivial to note that C(ω) ∼= ω, C(ω∗) ∼= ω∗, C(ζ ) ∼= ζ . Moreover, reals
are constructed as the completion of η using cofinal/coinitial sequences, i.e., C(η) ∼= λ.

We will use the technique of finding cofinal/coinitial sequences to compute the completion
of certain linear orders in Propositions 4.11 and 12.4.

The main goal of this section is to compute the completions of two classes of order
types in dLO11

fd which are important in the context of this paper, namely (ω + ω∗) · n and
(ω + 	(ζ) + ω∗) · n ∼= (ω + ζ · η + ω∗). The computation of the completion of the former
class of order types is easy.

Example 3.2 C((ω + ω∗) · n) ∼= (ω + 1 + ω∗) · n.

Given n ∈ N
+ and non-empty linear orders L1, · · · , Ln , recall the construction of the

shuffle 	(L1, · · · , Ln) from Definition 2.2. Using those notations, it is easily verified that
the following four types of Dedekind cuts are elements in G(	(L1, · · · , Ln)).
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G1. (
∑

r∈(−∞,r0)∩Q L ′
r ,

∑
r∈(r0,∞)∩Q L ′

r ) for r0 ∈ R \ Q;
G2. (

∑
r∈(−∞,r0)∩Q L ′

r ,
∑

r∈[r0,∞)∩Q L ′
r ) for r0 ∈ Dj if L j does not have a minimum;

G3. (
∑

r∈(−∞,r0]∩Q L ′
r ,

∑
r∈(r0,∞)∩Q L ′

r ) for r0 ∈ Dj if L j does not have a maximum;

G4. (
∑

r∈(−∞,r0)∩Q L ′
r + L1

j , L
2
j + ∑

r∈(r0,∞)∩Q L ′
r ) for r0 ∈ Dj if (L1

j , L
2
j ) ∈ G(L j ).

The following result says that in fact these are all the gaps.

Proposition 3.3 Given n ∈ N
+ and non-empty linear orders L1, · · · , Ln, if (X , Y ) ∈

G(	(L1, · · · , Ln)) then (X , Y ) is of one of the four types listed above.

Proof Define a map proj : ∑
r∈Q L ′

r → Q by proj(x) = r if x ∈ L ′
r . Thus if (X , Y ) ∈

G(	(L1, · · · , Ln)) then proj(X) ∪ proj(Y ) = Q and r1 ≤ r2 whenever r1 ∈ proj(X) and
r2 ∈ proj(Y ). Hence proj(X) ∩ proj(Y ) is either empty or singleton. If proj(X) ∩ proj(Y ) =
{r0} for some r0 ∈ Q then (X ∩ L ′

r0 , Y ∩ L ′
r0) is a gap in L ′

r0 ; this gap is of the form described
in G4.

Now assume that proj(X) ∩ proj(Y ) = ∅. There are three cases.
• If proj(X) does not have a maximum element and proj(Y ) does not have a minimum
element then there exists r0 ∈ R \ Q such that r1 < r0 < r2 for every r1 ∈ proj(X) and
every r2 ∈ proj(Y ). This gap is of the form described in G1.

• If proj(X) has a maximum element, say r0, then (X , Y ) is a gap if and only if L ′
r0 does

not have a maximum element. This gap is of the form described in G2.
• If proj(Y ) has a minimum element, say r0, then (X , Y ) is a gap if and only if L ′

r0 does
not have a minimum element. This gap is of the form described in G3. �

As a consequence, we have the following result, which computes the completion of
	(L1, · · · , Ln).

Corollary 3.4 Given n ∈ N
+ and non-empty linear orders L1, · · · , Ln, using notations of

Definition 2.2,

C(	(L1, · · · , Ln)) ∼=
∑

r∈R
Tr , where Tr :=

{
1 � C(L j ) � 1 if r ∈ Dj for some j ∈ {1, 2, · · · , n},
1 otherwise.

Using the standard embedding of η in λ, we compute the completion of a standard order
type in dLO11

fd .

Corollary 3.5 Suppose O := ω + ζ · η + ω∗. Then

C(O) ∼= ω + 1 +
(

∑

r∈λ

Tr

)

+ 1 + ω∗, where Tr =
{
1 + ζ + 1 if r ∈ η,

1 otherwise.

This result will be useful in §12 along with the partition of G(O) into three subsets given
below.

G+(O) := {x ∈ G(O) | x is minimum of G(O) or x is maximum of Tr when r ∈ η},
G−(O) := {x ∈ G(O) | x is maximum of G(O) or x is minimum of Tr when r ∈ η},
G0(O) := G(O) \ (G+(O) ∪ G−(O)) = {Tr | r ∈ ϑ}.
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4 Fundamentals of String Algebras

Fix an algebraically closed field K. A string algebra is a K-algebra � := KQ/〈ρ〉 presented
as a certain quotient of the path algebra of a finite quiver Q = (Q0, Q1, s, t), where Q0 is a
finite set of vertices, Q1 is a finite set of arrows, and s, t : Q1 → Q0 are the source and target
functions respectively, by the ideal generated by a set ρ of monomial relations. For technical
reasons, we also choose and fix a pair of maps σ, ε : Q1 → {1,−1} satisfying certain
conditions. We will always use small roman letters v,w possibly with numerical subscripts
to denote the vertices and a, b, c, d, · · · possibly with numerical subscripts to denote arrows
of the quiver. Let us denote by Q−

1 , the collection, for each bi ∈ Q1, the corresponding
capital roman letter Bi with the same subscript. We will use Greek letters α, β, γ, · · · with
numerical subscripts to denote syllables, i.e., elements of Q1 ∪ Q−

1 . We treat the syllable
Bi as the inverse of the arrow bi , and set s(Bi ) := t(bi ) and t(Bi ) := s(bi ). The reader
is referred to [3, § 2.1] for the definition of a string algebra as well as for notations and
conventions associated with certain combinatorial entities called strings and bands.

We use the notation St(�) to denote the set of strings for �. Strings are read from right
to left. For example, if x = α3α2α1 then α1 is the first syllable of x and α3 is the last syllable
of x. For strings x and y, we say that x is a left substring (resp. proper left substring) of y,
denoted x �l y (resp. x �l y) if y = ux for some (resp. positive length) string u. Dually say
that x is a right substring (resp. proper right substring) of y, denoted x �r y (resp. x �r y) if
y = xu for some (resp. positive length) string u. Given a string x, denote by |x| the length of
the string x, i.e., the number of syllables in it.

Suppose x ∈ St(�) and |x| > 0. Its sign, denoted θ(x) ∈ {1,−1}, is defined by θ(x) = 1
if and only if the first syllable of x is inverse. To identify if x has any sign changes, we define

δ(x) :=

⎧
⎪⎨

⎪⎩

1 if all syllables of x are inverse,

−1 if all syllables of x are direct,

0 otherwise.

We use the notation Ba(�) to denote the set of bands up to a cyclic permutation of its
syllables. Note that we work with the convention that the first syllable of a band is inverse
while the last syllable is direct. Let QBa

0 be a fixed set of representatives in Ba(�). Call a
cyclic permutation of an element inQBa

0 a cycle. Denote the set of all cycles in� by Cyc(�).
Associated to x ∈ St(�) there is a finite-dimensional indecomposablemoduleM(x), called

the string module, such that for distinct strings x, y, we have M(x) ∼= M(y) if and only if
x = y−1.

For any v ∈ Q0, let S(v) := M(1(v,1)) be the associated simple module. Further, let
P(v) and I (v) be the projective cover and the injective envelope of S(v) respectively. Let
fv denote the composition P(v) � S(v) ↪→ I (v). Motivated by [2], Schröer [10, § 3]
introduced the hammock poset H(v) whose underlying set consists of (isomorphism classes

of) triples (N , g, h), where P(v)
g−→ N

h−→ I (v) is a factorization of fv through a string
module N . The order ≤ on H(v) is defined by (N , g, h) ≤ (N ′, g′, h′) if and only if g′
factors through g. Dropping the reference to the maps from (N , g, h) ∈ H(v), the element
N = M(x) ∼= M(x−1) of H(v) can be thought of as the pair (x1, x2) of strings, where
x1x2 ∈ {x, x−1}, s(x1) = t(x2) = v and ε(x2) = 1. The image of the left (resp. right)
projection map (x1, x2) �→ x1 (resp. (x1, x2) �→ x2) on H(v) is a linear order, denoted
(Hl(v),<l) (resp. (Hr (v),<r )). More generally, replacing S(v) := 1(v,1) by M(x0) for a
string x0 in the above discussion, we can define left and right hammocks of the string x0–these
are the central objects of study in this paper.
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Definition 4.1 The left and right hammock sets of the string x0 are defined as

Hl(x0) :={x ∈ St(�) | x=ux0 for some string u}, Hr (x0) :={x ∈ St(�) | x=x0u for some string u}.
The left hammock Hl(x0) can be equipped with a linear order <l , where for x, y ∈ Hl(x0)

we have x <l y if one of the following holds:

• y = uαx for some string u and α ∈ Q−
1 ;• x = vβy for some string v and β ∈ Q1;

• x = vβw and y = uαw for some α ∈ Q−
1 , β ∈ Q1 and strings u, v,w.

The ordering <r on Hr (x0) is defined as x <r y if and only if x−1 <l y
−1 in (Hl(x

−1
0 ),<l).

We will only study the left hammock in this paper–the dual results will hold for the right
hammock.

For x, y ∈ Hl(x0), denote by x �l y the maximal common left substring of x and y. If
x = w(x �l y) with |w| > 0 then define θ(x | y) := θ(w) and δ(x | y) := δ(w).

Almost all strings in the left hammock have an immediate successor as well as an imme-
diate predecessor.

Proposition 4.2 [9, § 2.5] The linear order (Hl(x0),<l) is a bounded discrete linear order.
Its minimum element, denoted m−1(x0), is the longest string in Hl(x0) satisfying either
δ(m−1(x0) | x0) = −1 or m−1(x0) = x0, whereas its maximum element is the longest
string, denotedM1(x0), satisfying either δ(M1(x0) | x0) = 1 orM1(x0) = x0.

For x ∈ Hl(x0), the notations l(x) and l̄(x) were introduced in [3, § 2.4] by comparing the
length of x with that of its immediate successor and predecessor. If the immediate successor
of x is longer than x then there exists an inverse syllable α such that αx is a string, and the
immediate successor of x is the string l(x) := wαx, where w is the longest string satisfying
either |w| = 0 or δ(w) = −1 such that wαx is a string. On the other hand, if the immediate
predecessor of x is longer than x then there exists a direct syllable β such that βx is a string,
and the immediate predecessor of x is the string l̄(x) := w′βx, where w′ is the longest string
satisfying either |w′| = 0 or δ(w′) = 1 such that w′βx is a string.

The next result shows that intervals in hammocks contain a unique “pivotal” string.

Proposition 4.3 Given a non-empty interval I in (Hl(x0),<l), there is a unique string u in
I with minimal length. Moreover, I ⊆ Hl(u).

Proof Since {|x| : x ∈ I } is a non-empty subset of N, it has a minimum, say m. If possible,
let u1 <l u2 be strings in I such that |u1| = |u2| = m. Then u1 <l u1 �l u2 <l u2 and
|u1 �l u2| < m. Since I is an interval, u1 �l u2 ∈ I , a contradiction to the minimality of m,
thus showing that I contains a unique string u with |u| = m.

For x ∈ I , the string x�l u lies between u and x, and hence in I . Therefore, m ≤ |x�l u| ≤
|u| = m. Since u is the unique string with minimal length in I , we conclude that x �l u = u,
i.e., u �l x. �

The hammock Hl(x0) can be expressed as Hl(x0) = H−1
l (x0) � H1

l (x0), where

Hi
l (x0) := {x ∈ Hl(x0) | either x = x0 or θ(x | x0) = i}

is a bounded discrete linear suborder of Hl(x0)with minimum elementmi (x0) and maximum
elementMi (x0). It is easily noted thatM−1(x0) = m1(x0) = x0.

Smaller left hammocks can be embedded in bigger hammocks as intervals.
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Remark 4.4 If y(�= x0) ∈ Hi
l (x0) then Hl(y) is an interval in Hi

l (x0).

The concept of H -equivalencewas introduced in [11, § 4] to identifywhen two left hammocks
are isomorphic. Say that two strings x and y are H -equivalent, denoted x ≡H y, if for every
string u, ux ∈ St(�) if and only if uy ∈ St(�). Indeed, if x ≡H y then (Hl(x),<l) ∼=
(Hl(y),<l). As a consequence of [11, Proposition 4.4], a criterion for testing H -equivalence,
we note a useful observation that we will use without mention.

Remark 4.5 If x, y are strings with δ(y) = 0 such that yx is a string then y ≡H yx. As a
consequence, if z is a string such that zy is a string then zyx is a string.

Some finiteness results are the key to the proof of the main theorem which states that
(Hi

l (x0),<l) ∈ dLO11
fd . Recall the definition of a prime band.

Definition 4.6 [3, Definition 3.1.1] A band b ∈ Ba(�) is called a prime band if none of its
cyclic permutations can be written bk · · · b2b1 for some k > 1 where each bi ∈ Cyc(�);
otherwise it is called composite.

It was shown in [3, Theorem 3.1.6] that there are only finitely many prime bands in
Ba(�). Also recall from [3, Proposition 3.1.7] that there are only finitely many band-free
strings in any string algebra, i.e., those which do not contain a cycle as a substring. Call a
string y = zx0 ∈ Hi

l (x0) band-free relative to (x0, i) if z is band-free. The following is an
immediate consequence of [3, Proposition 3.1.7].

Corollary 4.7 There are only finitely many band-free strings relative to (x0, i).

We end this section by mentioning a basic result about bands, which shows that a band
b has exactly |b| distinct cyclic permutations. If x = αn · · · α2α1 is a finite power of cyclic
permutation of a band, call 1 ≤ k ≤ n a period of x if k = n or x = αk · · · α1αn · · · αk+1.

Proposition 4.8 [4, Lemma 1] Let x be a finite power of a cyclic permutation of a band and
p and q be periods of x such that p + q ≤ |x| + gcd(p, q). Then gcd(p, q) is a period of x.

Corollary 4.9 If b ∈ Cyc(�) is such that b = αn ...α1 then αr · · · α1αn · · · αr+1 �= αn · · · α1

for any 1 ≤ r < n.

Proof If not, then r is a period of b. Since |b| is also a period of b, we have that gcd(|b|, r) =: t
is a period of b by Proposition 4.8. Therefore, we get that αn · · · α1 = (αt · · · α1)

|b|/t , a
contradiction to the fact that b is a primitive cyclic string. �

Recall from [3, § 2.1] that a left N-string is a sequence of syllables · · · α3α2α1 such that
each αn · · · α2α1 is a string. Call αi the i th syllable of x. Denote the set of left N-strings by
N-St(�). A left N-string of the form ∞bu for some cyclic string b and some finite string u is
called an almost periodic string.

Definition 4.10 Say a sequence (xn)n≥1 of strings in Hl(x0) is convergent if there is y ∈
N-St(�) such that

(1) |xn | → ∞ as n → ∞;
(2) there is a sequence {nk | k ∈ N

+} such that the kth syllables of y and xn are identical for
n ≥ nk .

Clearly the limit of a convergent sequence is unique, and we write limn→∞ xn := y.
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If Ĥl(x0) is the extension of Hl(x0) by all the left N-strings containing x0 as a left substring,
it is readily noted that the ordering <l can be extended to a linear order on Ĥl(x0).

Proposition 4.11 The linear order (Ĥl(x0),<l) is the completion of (Hl(x0),<l).

Proof Suppose z is a left N-string in Ĥl(x0). Set X := {x ∈ Hl(x0) | x <l z} and Y := {y ∈
Hl(x0) | z <l y}. Then clearly m−1(x0) ∈ X ,M1(x0) ∈ Y and Hl(x0) = X  Y . Moreover,
x <l y for each x ∈ X and y ∈ Y . Thus (X , Y ) is a Dedekind cut in Hl(x0). We show that
(X , Y ) is actually a gap in Hl(x0).

Since the set {v ∈ St(�) : δ(v) �= 0} is finite, there are infinitely many inverse as
well as direct syllables in z. Hence X1 := {x ∈ Hi

l (x0) | x �l z, θ(z | x) = 1} and
Y1 := {y ∈ Hi

l (x0) | y �l z, θ(z | y) = −1} are infinite subsets of X and Y respectively.
Let x ∈ X andw := x�l z. Since x <l z, we have x ≤l w <l z. Hence θ(z | w) = 1 which

implies w ∈ X1. This shows that X1 is an infinite cofinal subset of X , which implies that X
does not have a maximum. A dual argument shows that Y1 is a coinitial subset of Y , and thus
Y does not have a minimum. This completes the proof that (X , Y ) is a gap in Hl(x0).

Conversely, suppose (X , Y ) is a gap in Hl(x0). Since X �= ∅ and X is unbounded above,
[8, Theorem 3.36] guarantees the existence of a countably infinite monotone increasing
sequence (xn)n∈ω in X that is cofinal in X . Dually we can argue the existence of a countably
infinite monotone decreasing sequence (yn)n∈ω in Y that is coinitial in Y . Then [xn, yn] ⊇
[xn+1, yn+1] and

⋂
n∈ω[xn, yn] = ∅.

For each n ∈ ω, Proposition 4.3 guarantees the existence of the unique minimal length
string zn ∈ [xn, yn] such that zn �l zn+1. Since

⋂
n∈ω[xn, yn] = ∅, for each nk ∈ ω there

is a least nk+1 > nk such that znk /∈ [xnk+1
, ynk+1

]. Hence znk �l znk+1
. Thus |zn | → ∞ as

n → ∞, which together with zn �l zn+1 for each n ∈ ω ensures that (zn)n∈ω is a convergent
sequence with a left N-string, say z, as its limit. Clearly xn <l z <l yn for each n ∈ ω.

Let x ∈ X . Since
⋂

n∈ω[xn, yn] = ∅, there is some k ∈ ω such that x /∈ [xk, yk]. Thus
x <l xk <l z. Dually we can show that z <l y for each y ∈ Y .

If z′ <l z
′′ are two distinct left N-strings satisfying x <l z

′ <l y and x <l z
′′ <l y for

each x ∈ X and y ∈ Y , then z′ <l z
′ �l z

′′ <l z
′′, and hence z′ �l z

′′ ∈ Hl(x0) \ (X ∪ Y ), a
contradiction. Thus associated to each gap (X , Y ) in Hl(x0) there is a unique left N-string z

satisfying x <l z <l y for each x ∈ X and y ∈ Y . If (X1, Y1) and (X2, Y2) are distinct gaps
then it is routine to verify that the left N-strings associated to these gaps are distinct. �

5 A Finite Poset

A finite combinatorial gadget known as the bridge quiver was introduced in [3, § 3.2] for all
string algebras. The finite set of prime bands plays the role of the vertex set for the bridge
quiver.

Definition 5.1 [3, Definition 3.2.1] For prime bands b1, b2, say that a finite string u is a weak
bridge b1 → b2 if it is band-free and if the word b2ub1 is a string. Say that a weak bridge

b1
u−→ b2 is a bridge if there is no prime band b and weak bridges b1

u1−→ b and b
u2−→ b2

such that one of the following holds:

• u = u2u1, |u1| > 0, u2 > 0;
• u = u′

2u
′
1, |u′

1| > 0, u′
2 > 0, u2 = u′

2u
′′
2, u1 = u′′

1u
′
1 and b = u′′

1u
′′
2.

Denote byQBa
1 and Q̃Ba

1 the set of all bridges and weak bridges between prime bands inQBa
0

respectively. The quiver with vertex set consisting of only prime bands inQBa
0 and arrow set

QBa
1 (resp. Q̃Ba

1 ) is called the bridge quiver (resp. the weak bridge quiver).
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Recall from [3, Lemma 3.3.4] that all strings can be generated by paths in (an appropriate
extended) bridge quiver. The property which distinguishes a non-domestic string algebra
from a domestic string algebra is the existence of a meta-band, i.e., a directed cycle in its
bridge quiver [3, Proposition 3.4.2]. A generalised meta-band defined below captures the
complete essence of a building block of a string algebra.

Definition 5.2 A generalised meta-band (GMB, for short), denoted B, is a strongly connected
component of the bridge quiver.

Call a GMB B domestic if B has only one vertex and non-domestic otherwise. Note that
a string algebra � is non-domestic if and only if there is a non-domestic GMB in its bridge
quiver (cf. [3, Proposition 3.4.2]).

Recall the definition of generation of strings from paths in the bridge quiver from [3,
§ 3.3]. Call a string B-cycle if it lies in Cyc(�) and is generated by a path in B. Denote the
set of all B-cycles by Cyc(B) and set Ba(B) := QBa

0 ∩ Cyc(B). For B ∈ QBa, call a string y to
be band-free with respect to B if there does not exist b ∈ Cyc(B) and strings y1, y2 such that
y = y2by1.

Define a relation � on the set QBa
0 of bands by declaring b1 � b2 if there is a string u

such that b2ub1 is a string. This relation is clearly reflexive and transitive.

Proposition 5.3 The relation � defined above is anti-symmetric if and only if the string
algebra � is domestic.

Proof Suppose the relation � is anti-symmetric. If possible, let the string algebra be non-
domestic. By [3, Proposition 3.4.2], � contains a meta-band. There are two cases.

If the length of the meta-band exceeds 1 then consider two distinct prime bands b1 and
b2 in that meta-band. The definition of a meta-band ensures the existence of strings u and v

such that b2ub1 and b1vb2 are strings. This violates that � is anti-symmetric.

On the other hand, if the meta-band is a non-trivial bridge b
u−→ b then, by [3, Proposi-

tion 3.4.1], we have that b is a vertex of a meta-band containing at least two prime bands.
The rest of the argument is similar to that in the previous paragraph.

Conversely, suppose � is not anti-symmetric. Then there are distinct bands b1 and b2
and strings u and v such that b2ub1 and b1vb2 are strings. Now the strings vb2ub

k
1 for

k ≥ 1 contain an infinite family of cyclic permutations of distinct bands, proving that � is
non-domestic. �

Say that b1 ≈ b2 if b1 � b2 and b2 � b1, and set QBa := QBa
0 / ≈. Note that b1 ≈ b2 if

and only if there is a GMB B such that b1, b2 ∈ Ba(B). Hence we will denote the elements
of QBa using B, possibly with decoration. Borrowing the adjectives for a GMB, if B ∈ QBa

and card(B) = 1, then say that B is domestic, otherwise say that it is non-domestic.
By appropriate manipulation of cyclic permutations, it is trivial to note the following. Let

b1, b2, b
′
1, b

′
2 ∈ Cyc(�) such that b′

1 and b
′
2 are cyclic permutations of b1 and b2 respectively.

If b2ub1 is a string for some string u then b′
2vb

′
1 is a string for some string v. Therefore we

can extend the relation � on the set Cyc(�) such that for any b1, b2 ∈ QBa
0 , we have b1 � b2

if and only if b′
1 � b′

2 where b
′
1 and b

′
2 are cyclic permutations of b1 and b2 respectively.

Call a string B-extendable if it is a substring of a power of a B-cycle. Denote the set of all
B-extendable strings by Ext(B). Any B-extendable string is reachable from another one–we
will use the next remark stating this without mention.

Remark 5.4 Let x1, x2 ∈ Ext(B). Then there exists a string u such that x2ux1 ∈ Ext(B). To
see this, note from the definition of a B-extendable string, there exist strings u1, u2 such that
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u1x1 = bm1 and u2x2 = bn2 for some B-cycles b1 and b2. Since b1 ≈ b2, there exist strings
v1, v2 such that bm1 v2b

n
2v1 = u1x1v2u2x2v1 is a power of a B-cycle.

Proposition 5.5 If b ∈ QBa
0 is composite then there is b1 ∈ QBa

0 with |b1| < |b| such that
b ≈ b1.

Proof If b ∈ QBa
0 is composite then there is a cyclic permutation b′ of b which can be

written as b′ = b′
k · · · b′

1 for some k > 1 and cyclic permutations b′
j of b j ∈ QBa

0 . It is then
straightforward to note that |b′

1| < |b′| = |b| and b1 ≈ b′
1 ≈ b′ ≈ b. �

This simple result has an immediate consequence.

Corollary 5.6 If B ∈ QBa then B contains a prime band.

Proof Let b ∈ Ba(B). If b is prime then we are done. Otherwise, by Proposition 5.5, there
exists b1 ∈ QBa

0 such that |b1| < |b| and b1 ≈ b. If b1 is a prime band then we are
done. Otherwise, we repeat the process on b1 to get b2 ∈ QBa

0 such that |b2| < |b1| and
b2 ≈ b1. Thus we get a sequence of bands b1, b2, · · · such that b ≈ b1 ≈ b2 ≈ · · · and
|b| > |b1| > |b2| > · · · . Since |b| is finite, this process has to terminate after finitely many
steps, thereby giving us a prime band in B. �

Since [3, Theorem 3.1.6] gives that there are only finitely many prime bands, the above
corollary yields the following finiteness result.

Proposition 5.7 The poset (QBa,�) is a finite poset.

For a fixed string x0 and parity i ∈ {1,−1}, say that a band b is reachable from (x0, i)
if there is a string u such that bux0 ∈ Hi

l (x0). If b1 ≈ b2 then b1 is reachable from (x0, i)
if and only if b2 is reachable from (x0, i). Hence the subset QBa

i (x0) of QBa of elements
reachable from (x0, i) is also finite. Say that B ∈ QBa is minimal for (x0, i) if it is a minimal
element of (QBa

i (x0),�). Since every finite poset contains a minimal element, the existence
of a minimal B for the pair (x0, i) is guaranteed.

Example 5.8 Consider the string algebra �0 in Fig. 1. There are four elements in QBa
1 (a0),

namelyB1 = {b1B4b3B2},B2 containing bands d1D2 and d3D4,B3 containing bands e3E2E1,
g4G3g2G1 and k1K2, and B4 = {m1M2}. Here B1 and B4 are domestic; whereas B2 and B3
are non-domestic. We have B1 ≺ B2 and B3 ≺ B4 as the only order relations in (QBa

1 (a0),≺).
Only B1 and B3 are minimal for (a0, 1).

6 Some Finiteness Results

We introduce some sets of strings in a hammock that are close to an element ofQBa
i (x0) and

show under a suitable condition that some subsets of those sets are finite.
Given B ∈ QBa and j ∈ {−1, 1}, the following set captures the strings which “touch” B

with sign j .

St j (B) := {x ∈ St(�) | bx is a string for some b ∈ Cyc(B) such that θ(b) = j}.
Further set

St(B) :=St1(B) ∪ St−1(B), St±1(B) :=St1(B) ∩ St−1(B).
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Fig. 1 �0 with ρ = {a3a2, a4a5, b4a4, a5b1, cb4, d2c, d4d1, d3d2, a2e3, e3 f , f g4, g2h1, k2h2, qg3,m2q,

pk2, e1 p}

If B∈QBa
i (x0) then set

St j (x0, i; B) :=St j (B)∩Hi
l (x0), St(x0, i; B) :=St(B)∩Hi

l (x0) and St±1(x0, i; B) :=St±1(B)∩Hi
l (x0).

Now we close the above sets of strings under left substrings. For j ∈ {1,−1}, define
St j (B) := {x ∈ St(�) | ux ∈ St(B) for some string u with θ(u) = j},

St(B) := St1(B) ∪ St−1(B) and St±1(B) := St1(B) ∩ St−1(B).

Further if B ∈ QBa
i (x0) then set

St1(x0, i; B) := {x ∈ Hi
l (x0) | ux ∈ St(B) ∪ {Mi (x0)} for some string u with θ(u) = 1} ∪ {Mi (x0)},

St−1(x0, i; B) := {x ∈ Hi
l (x0) | ux ∈ St(B) ∪ {mi (x0)} for some string u with θ(u) = −1} ∪ {mi (x0)},

St(x0, i; B) := St1(x0, i; B) ∪ St−1(x0, i; B) and St±1(x0, i; B) :=St1(x0, i; B) ∩ St−1(x0, i; B).

When we use the notations St j (x0, i; B) and St j (x0, i; B) then we implicitly assume that
B ∈ QBa

i (x0).
It is trivial to note that St j (B) ⊆ St j (B) for any j ∈ {−1, 1}. The following remarks are

straightforward yet useful.

Remark 6.1 For any x ∈ Hi
l (x0), x ∈ St1(x0, i; B) if and only if x ∈ St1(B) or x �l Mi (x0).

Dually, for any x ∈ Hi
l (x0), x ∈ St−1(x0, i; B) if and only if x ∈ St−1(B) or x �l mi (x0).

Remark 6.2 If x ∈ St(B) and y �l x then y ∈ Stθ(x|y)(B).

Remark 6.3 If x ∈ St(x0, i; B), y �l x and y ∈ Hi
l (x0) then y ∈ Stθ(x|y)(x0, i; B).

Proposition 6.4 If x ∈ St1(x0, i; B), y ∈ St−1(x0, i; B) and x <l y then x ∈ St1(B) and
y ∈ St−1(B).
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Proof If possible, let x /∈ St1(B). Then Remark 6.1 implies x �l Mi (x0).
If x0 = Mi (x0) then i = −1 and x = x0 = Mi (x0), which contradicts the existence of

y >l x.
Therefore assume that x0 �l Mi (x0). This together with x <l y implies that y = wvx for

some strings w, v with δ(v) = 1. Since y ∈ St−1(x0, i; B) and x �l y, Remark 6.3 implies
that x ∈ Stθ(y|x)(x0, i; B) = St1(x0, i; B). Since x0 = mi (x0) �l y, we have y ∈ St(B) by
Remark 6.1. Now x �l y together with Remark 6.2 implies that x ∈ Stθ(y|x)(B) = St1(B),
a contradiction to our assumption. Therefore x ∈ St1(B). Similarly, we can show that y ∈
St−1(B). �

In general, St(x0, i; B) could be very large compared to St(x0, i; B), but it is possible to
control this difference when B is minimal for (x0, i).

Proposition 6.5 For B ∈ QBa and j ∈ {−1, 1}, if x ∈ St j (B) \ St j (B) then x is band-free with
respect to B.

Proof If possible, let x = x2bx1 for some strings x1, x2 and b ∈ Cyc(B). Since x ∈ St j (B),
there exist a string u and b1 ∈ Cyc(B) with θ(b1u) = j such that b1ux2bx1 is a string. Now
b, b1 ∈ Cyc(B) implies that there is a string v such that bvb1 is a string. Since δ(b) = δ(b1) =
0, we have that bvb1ux2b is a string implying that x2bvb1u is a power of a B-cycle. This gives
x = x2bx1 ∈ St j (B), which is a contradiction. �

Corollary 6.6 IfB ∈ QBa isminimal for (x0, i), j ∈ {−1, 1}and x ∈ St j (x0, i; B)\St j (x0, i; B)

then x is band-free relative to (x0, i).

Proof Let x ∈ St j (x0, i; B) \ St j (x0, i; B). In view of Remark 6.1, there are three cases. Since
δ(Mi (x0) | x0) �= 0, if x �l Mi (x0) then x is band-free relative to (x0, i). A dual argument
works when x �l mi (x0).

Finally, if x ∈ St j (B) then there exist a string u and b1 ∈ Cyc(B) with θ(b1u) = j such
that b1ux is a string. If possible, let x = x2bx1 for some strings x1, x2 and b ∈ Cyc(�) such
that x0 �l x1. Then b1ux2bx1 is a string, which gives b � b1. Since B is minimal for (x0, i),
we get b ≈ b1, a contradiction to Proposition 6.5. �

Recall fromCorollary 4.7 that there are finitelymany strings in Hi
l (x0)which are band-free

relative to (x0, i). A simple set theoretic manipulation yields

St(x0, i; B) \ St(x0, i; B) ⊆ (St1(x0, i; B) \ St1(x0, i; B)) ∪ (St−1(x0, i; B) \ St−1(x0, i; B)).

Therefore we get the following consequence of Corollary 6.6.

Corollary 6.7 If B ∈ QBa is minimal for (x0, i) then the set St(x0, i; B) \ St(x0, i; B) is finite.

Example 6.8 Continuing with Example 5.8, recall that B1 and B3 are minimal for (a0, 1). We
have St(a0, 1; B1) \ St(a0, 1; B1) = {a0, A1a0, a3A1a0} and St(a0, 1; B3) \ St(a0, 1; B3) =
{a0, A1a0}.

We prove yet one more conditional finiteness result.

Proposition 6.9 Suppose B ∈ QBa is domestic and minimal for (x0, i). If x ∈ St±1(x0, i; B)

then x is band-free relative to (x0, i).
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Proof SinceMi (x0) and mi (x0) are band-free relative to (x0, i), in view of Remark 6.1, it is
enough to assume that x ∈ St±1(B) ∩ Hi

l (x0).
If possible, let x = x2bx1 for b ∈ Cyc(�) and strings x1, x2 such that x0 �l x1. Since

x ∈ St±1(B), there exist strings u and v with θ(b1u) = −θ(b1v) such that b1ux2bx1 and
b1vx2bx1 are strings, where b1 is the unique element in B since B is domestic. This gives
b � b1, which further implies that b ≈ b1 since B is minimal for (x0, i). Moreover, B is
domestic implies that b is a cyclic permutation of b1. Then ∞b1ux2b = ∞b = ∞b2vx2b,
which implies θ(b1u) = θ(b1v), a contradiction. �

Again by the finiteness of the set of band-free strings, we have the following corollary.

Corollary 6.10 If B ∈ QBa is domestic and minimal for (x0, i) then the set St±1(x0, i; B) is
finite.

Example 6.11 Continuing with Example 5.8, recall that B1 is domestic and minimal for
(a0, 1). The string a3A1a0 is the only element in St±1(a0, 1; B1). On the other hand, B3 is non-
domestic and minimal for (a0, 1), and we have E2E1(e3E2E1)

n A2A1a0 ∈ St±1(a0, 1; B3)
for every n ∈ N.

Proposition 6.12 Let B ∈ QBa be minimal for (x0, i). Then St±1(x0, i; B) is bounded as a
suborder of (Hi

l (x0),<l).

Proof First note that x0 ∈ {Mi (x0),mi (x0)}.Without loss of generality, assume thatmi (x0) <l

Mi (x0). Then x0 = Mi (x0) if and only if i = −1.
If i = −1 then clearly x0 = Mi (x0) ∈ St1(x0, i; B). On the other hand, since B is minimal

for (x0, i), there is b ∈ Ba(B) and a string u such that bux0 ∈ Hi
l (x0), which gives x0 ∈

St−1(x0, i; B). Hence x0 ∈ St±1(x0, i; B). On the other hand, we have θ(bux0 | mi (x0)) = 1.
Hence there is a left substring ofmi (x0) that lies in St±1(x0, i; B). Since δ(mi (x0) | x0) = −1,
the longest such left substring will be the least element of St±1(x0, i; B).

If i = 1 then x0 = mi (x0) is the lower bound. An argument dual to the above paragraph
provides the upper bound. �

7 The Condensation Operator cB

Recall the concept of condensation from § 2. In this section, we define a specific condensation
operator cB on a hammock which helps in breaking it into smaller hammocks.

Note that x0 ∈ {mi (x0),Mi (x0)} ⊆ St(x0, i; B) and x0 appears as a left substring of every
string in Hi

l (x0). Therefore every string in Hi
l (x0) has a left substring in St(x0, i; B). Now we

use this observation to define the localization/condensation of a string in a hammock with
respect to B.

Definition 7.1 If B ∈ QBa
i (x0) then define the B-condensation map

cB : Hi
l (x0) → St(x0, i; B)

by associating to each x ∈ Hi
l (x0) its longest left substring in St(x0, i; B).

Remark 7.2 Note that if x, y ∈ St(x0, i; B) then {x, y} ⊆ cB([x, y]) = [x, y] ∩ St(x0, i; B). As
a consequence, the map cB is surjective. Also for any x ∈ Hi

l (x0), we have cB(x) = x if and
only if x ∈ St(x0, i; B).
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Now define a function ϕB : Hi
l (x0) → {−1, 0, 1} by

ϕB(x) :=

⎧
⎪⎨

⎪⎩

0 if cB(x) ∈ St±1(x0, i; B),

1 if cB(x) ∈ St1(x0, i; B) \ St−1(x0, i; B),

−1 if cB(x) ∈ St−1(x0, i; B) \ St1(x0, i; B).

Remark 7.3 For each x ∈ Hi
l (x0) \ St(x0, i; B), we have cB(x) �l x. If ϕB(x) = 0 and

αcB(x) �l x for some syllable α then αcB(x) ∈ St(x0, i; B) since cB(x) ∈ Stθ(α)(x0, i; B). This
is a contradiction to the definition of cB(x), and hence ϕB(x) �= 0.

Take the convention H0
l (y) := {y}.

If y ∈ St(x0, i; B) then y ∈ H
−ϕB(y)

l (y). On the other hand, if x ∈ Hi
l (x0) \ St(x0, i; B)

and j := θ(x | cB(x)) then the definition of cB(x) ensures that cB(x) /∈ St j (x0, i; B). Thus
ϕB(x) = ϕB(cB(x)) = − j . We document this observation in the following result.

Proposition 7.4 If x ∈ Hi
l (x0) then x ∈ H

−ϕB(x)
l (cB(x)).

The function ϕB is defined in such a way that the following statement is true. This will be
the key to showing that the algorithm to compute the order type of a hammock terminates
after finitely many steps.

Remark 7.5 For each y ∈ St(x0, i; B), we have H
−ϕB(y)

l (y) ∩ St(x0, i; B) = {y}.

Proposition 7.6 If x, y ∈ St(x0, i; B) and x <l y then for each x′ ∈ H
−ϕB(x)
l (x) and y′ ∈

H
−ϕB(y)

l (y) we have x′ <l y
′.

Proof If x �l y then x �l y �l y
′ for each y′ ∈ H

−ϕB(y)

l (y). Hence θ(y′ | x) = θ(y | x) = 1.
Moreover, since x �l y ∈ St(x0, i; B), we conclude that ϕB(x) �= −1. If ϕB(x) = 0 then
the conclusion holds. On the other hand, if ϕB(x) = 1 then θ(x′ | x) = −1 for each x′ ∈
H

−ϕB(x)
l (x) \ {x}. Hence θ(y′ | x′) = θ(y′ | x) = 1, and hence the conclusion.
A dual argument can be given when x �l y.
Finally when x and y are incomparable then x�l y ∈ St±1(B). The arguments in the above

two paragraphs then give that x′ <l x�ly <l y
′ for each x′ ∈ H

−ϕB(x)
l (x) and y′ ∈ H

−ϕB(y)

l (y),
and thus the conclusion follows. �
As a consequence, we get that certain hammocks are disjoint.

Corollary 7.7 If x, y ∈ St(x0, i; B) and x <l y then H
−ϕB(x)
l (x) ∩ H

−ϕB(y)

l (y) = ∅.
The following is the main result of this section which serves as an ingredient for the main

theorem of this paper (Theorem 11.9). Loosely speaking, this result states that any hammock
can be broken down into smaller hammocks when we localize/condense the hammock away
from B ∈ QBa

i (x0). This result gives a recursive algorithm to compute the order type of a
hammock.

Lemma 7.8 Suppose B ∈ QBa
i (x0). Then

(Hi
l (x0),<l) ∼=

∑

x∈cB(Hi
l (x0))

(H
−ϕB(x)
l (x),<l).
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Proof Recall from Remark 7.2 that cB(Hi
l (x0)) = St(x0, i; B). For any x ∈ Hi

l (x0) and

j ∈ {1, 0,−1}, Remark 4.4 gives that H j
l (x) is an interval in Hi

l (x0). Hence

Hi
l (x0) ⊇

⋃

x∈cB(Hi
l (x0))

H
−ϕB(x)
l (x).

The inclusion in the other direction is provided by Proposition 7.4while Corollary 7.7 ensures
that the union on the right-hand side is disjoint. Finally, Proposition 7.6 ensures that the above
bijection is indeed an order isomorphism. �

8 Neighbours of Strings in B-condensation

This section is devoted to defining operators �B and �B on St(B), which when restricted to
St(x0, i; B) help us to find the immediate neighbours of strings in it. En route, we define two
subsets Bal(B) and Bal̄(B) of the set of prime bands in B and see that the limit of the sequence
of such iterated immediate successors (resp. predecessors) are almost periodic strings of the
form ∞bux0, where b ∈ Bal(B) (resp. Bal̄(B)).

Recall from [3, § 3] that a syllable α is an exit syllable of a band b if there is a cyclic
permutation b′ of b such that αb′ is a string but α is distinct from the first syllable of b′. Also
recall that exit of a bridge b1

u−→ b2 is the first syllable in ∞b2ub1 from the right where the
strings ∞b2ub1 and ∞b1 differ. Slightly modifying the former, we introduce an exit of a
band below.

Definition 8.1 Given a band b, say that a pair (β, b′) is an exit of b if β is a syllable and b′
is a cyclic permutation of b such that βb′ is a string but βb′ ��l b

′2.

It is trivial to note that if (β, b′) is an exit of a band b then β is an exit syllable of b. There
are some exits of a B-band for a non-domestic B ∈ QBa; the signs of the corresponding exit
syllables are important in the computation of the order type of hammocks.

Definition 8.2 If B ∈ QBa and b ∈ Ba(B), say that an exit (β, b′) of b is a non-domestic exit
if βb′ ∈ Ext(B).

Remark 8.3 For non-domestic B ∈ QBa and b ∈ Ba(B) there is b′ ∈ Ba(B) such that b �= b′.
Let u be a string such that b′ub ∈ Ext(B). Then ∞b′ub �= ∞b, and hence b has a non-domestic
exit.

Definition 8.4 Denote by Bal(B) the set of all B-bands having no non-domestic exit (β, b′)
with β ∈ Q1. Dually, denote by Bal̄(B) the set of all B-bands having no non-domestic exits
(β, b′) with β ∈ Q−

1 .

Example 8.5 Continuing from Example 5.8, we have Bal(B3) = {e3e2E1, g4G3g2G1} and
Bal̄(B3) = {k1K2}.

In viewofRemark 8.3, it is trivial to note that ifB is non-domestic thenBal(B)∩Bal̄(B) = ∅.
We show in Corollary 8.26 and Corollary 8.28 that the sets Bal(B) and Bal̄(B) are non-empty
and finite.

The following proposition is key to defining the operator �B.

Proposition 8.6 If x ∈ St1(B) then there exists y ∈ St1(B) such that x �l y �l l(x).
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Proof If possible, assume that for each x �l y �l l(x) we have y /∈ St1(B). Let b ∈ Cyc(B)

such that bx is a string and θ(b) = 1. Let z := bx�l l(x). As θ(b) = 1, we get x �l z �l l(x).
Thus by our assumption z /∈ St1(B). This implies that z �= bx. Since x �l z �l bx, for
an appropriate cyclic permutation b′ of b, b′z is a string. Moreover, z /∈ St1(B) implies that
θ(b′) = −1. Therefore αz �l bx, where α ∈ Q1 is the first syllable of b′. Since x �l z �l l(x)
we get αz �l l(x), which contradicts that z = bx �l l(x). �
Definition 8.7 Define �B : St1(B) → St1(B) by choosing �B(x) to be the maximal (possibly
equal) left substring of l(x) such that �B(x) ∈ St1(B).

Remark 8.8 For any x ∈ St1(B), we have �B(x) /∈ St−1(B).

For x ∈ St1(B) we inductively define the powers of the function �B by �0B(x) := x and
�n+1
B (x) := �B(�

n
B(x)) for n ∈ N. Since �nB(x) �l �n+1

B (x) for each n we get that limn→∞ �nB(x)

is a left N-string. Denote this limit by 〈1, �B〉(x).
The following remark notes that if |x| > 0 then �B(x) depends only on the last syllable of x.

As a consequence, the image of the function �B restricted to St1(x0, i; B) lies in St1(x0, i; B).

Remark 8.9 If αx, αy ∈ St1(B) for some α ∈ Q1 ∪ Q−
1 , then �nB(αx) = uαx if and only

if �nB(αy) = uαy. Furthermore, if �nB(α) exists then �nB(1(t(α),ε(α))) exists and �nB(α) =
�nB(1(t(α),ε(α)))α.

Proposition 8.10 For x ∈ St1(B), we have 〈1, �B〉(x) = ∞bux for some band b and string u.

Proof Define a function f : N
+ → Q1 ∪ Q−

1 such that f (k) is the last syllable of �kB(x). As
Q1 ∪ Q−

1 is finite, there exist m, n ∈ N
+ such that f (m) = f (m + n). In view of the fact

that �kB(w) �l �k+1
B (w) for any w ∈ St1(B), let yx := �nB(x) and zyx := �m+n

B (x), where z is a
string with |z| > 0. As �nB(x) and �m+n

B (x) have the same last syllable, Remark 8.9 together
with induction yields that �m+kn

B (x) = zkyx for every k ∈ N. Since zk is a string for every
k ∈ N, z is a finite power of cyclic permutation of a band, say b. Since 〈1, �B〉(x) = ∞zyx,
we get 〈1, �B〉(x) = ∞by′x for some string y′. �
Example 8.11 Recall from Example 5.8 that e3E2E1 is a band that lies in B3. For A2A1a0 ∈
St(B3), a routine computation yields 〈1, �B3〉(A2A1a0) = ∞(e3E2E1)A2A1a0.

The conclusion of Proposition 8.10 is similar to the hypothesis of [3, Proposition 3.4.5],whose
proof used the concept of l-strings. However, a statement about l-strings [3, Remark 3.4.4]
that was used in the proof is erroneous as demonstrated by Example 8.12. Nevertheless, it
does not render [3, Proposition 3.4.5] false, as it can still be proven using techniques similar
to those in the proof of Proposition 8.21.

Example 8.12 Consider the string algebra � from Fig. 2. For appropriate j ∈ {1,−1}, we
have

〈1, l〉(1(v, j)) = ∞(cbaEba f cbD).

Here Eba f cb, DcbaEb and f cbDcb are l-strings with the same first syllable and same
length.

Motivated by the concept of l-strings introduced in [3, § 3.4], now we define �B-strings to
prove similar results where l is replaced with �B.

Definition 8.13 A string u is an �B-string if δ(u) = 0 and u � 〈1, �B〉(1(v,i)) for some
1(v,i) ∈ St1(B).
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Fig. 2 � with ρ = {ce, da, e f , f d, cba f , f cba}

Remark 8.14 If �nB(x) = uyx, where y and u are strings with |u| > 0, then θ(u) = 1 if and
only if there exists 0 ≤ k < n such that �kB(x) = yx.

Proposition 8.15 Let x ∈ St1(B) and �nB(x) = ux for some string u and n ∈ N. Then there
exist b ∈ Cyc(B), m ∈ N

+ and α ∈ Q−
1 such that αu �l b

m and bmx is a string.

Proof For each n ∈ N, let unx := �nB(x). Let αn ∈ Q−
1 satisfy αnunx �l �n+1

B (x). We will
prove the result by induction on n.

For n = 0, we have �nB(x) = x. Since x ∈ St1(B), there is b ∈ Cyc(B) with θ(b) = 1 such
that bx is a string. Taking α to be the first syllable of b proves the statement.

For n > 0, by induction hypothesis, there exists b ∈ Cyc(B) and m ∈ N
+ such that

αn−1un−1 �l bm and bmx is a string. Let un := yαn−1un−1 such that if |y| > 0 then
δ(y) = −1. There are two cases.

• Suppose |y| > 0. Let b1 be a cyclic permutation of b such that αn−1un−1 �r bm1 . Since
unx ∈ St1(B), there is b2 ∈ Cyc(B) such that θ(b2) = 1 and b2unx = b2yαn−1un−1x

is a string. Since δ(y) = −1 and αn−1 ∈ Q−
1 we get that b2ybm1 is a string. Since

b1, b2 ∈ Cyc(B) we get that b1wb2 is a string for some string w. Thus wb2yb
m
1 is a

power of a B-cycle and αnun � wb2yb
m
1 . Let b

′ be a B-cycle such that for some k, b′k

is a cyclic permutation of wb2yb
m
1 and αnun = αnyαn−1un−1 �l b

′k . Since δ(y) = −1

and θ(αn) = 1 we get δ(αnun) = δ(αnyαn−1un) = 0. Thus αnun �l b
′k and b′kx is a

string.
• If |y| = 0 then un �l b

m . Let wun := bm for some string w. Let α be the first syllable
of bw. By Remark 8.8, we have unx /∈ St−1(B). Therefore α ∈ Q−

1 and bm+1 satisfy the
conditions of the conclusion.

This completes the proof. �
Corollary 8.16 If x ∈ St1(B) and uyx �l 〈1, �B〉(x) for some strings u and y then there exists
b ∈ Cyc(B) such that byx is a string and u �l b

m for some m ∈ N
+.

Corollary 8.17 If u is an �B-string then u ∈ Ext(B).

Proposition 8.18 If x and αx are �B-strings for some α ∈ Q1 ∪ Q−1 then x ∈ St−1(B) if and
only if α ∈ Q1.

Proof Suppose x ∈ St−1(B). Since αx is an �B-string, there exist a string y, n ∈ N
+, v ∈ Q0

and j ∈ {1,−1} such that αxy �l �n+1
B (1(v, j)) and �n−1

B (1(v, j)) �l xy �l �nB(1(v, j)). Let
u := �n−1

B (1(v, j)). Hence xy �l �B(u). Since xy ∈ St−1(B), there exists b ∈ Cyc(B) with
θ(b) = −1 such that bxy is a string. Let β be the first syllable of b. Then β ∈ Q1 gives
βxy �l �B(u). Let z := �B(u) �l bxy. Since u �l βxy �l z �l bxy and u <l �B(u) <l bxy,
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we get that xy �l γ z �l bxy for some γ ∈ Q−
1 . This shows that z ∈ St1(B). Since βxy �l z

we get βxy �l �B(u). Thus βxy �l �n+1
B (1(v, j)), which gives α = β ∈ Q1.

Conversely if αx is an �B-string for α ∈ Q1, Corollary 8.17 yields b ∈ Cyc(B) such that
αx �l b. Thus x ∈ St−1(B). �
Corollary 8.19 For strings x, u, v, if x, ux and vx are �B-strings then ux and vx do not fork.

Proof Suppose, if possible, ux and vx fork. Let zx := ux �l vx with θ(vx | zx) = 1 and
θ(ux | zx) = −1. Since x � zx � ux, we have that zx is an �B-string. By Proposition 8.18, we
have that zx ∈ St±1(B), a contradiction to the combination of Remarks 8.8 and 8.14. �
Remark 8.20 If x is an �B-string then there exist b ∈ Ba(B) and a string y such that byu is a
string.

Proposition 8.21 If every cyclic permutation of a band b is an �B-string, then b is a prime
band.

Proof Suppose, if possible, b is a composite band. Then there exist n > 1, a1, · · · , an ∈ N
+,

b1, ..., bn ∈ Cyc(�) satisfying bn �= b1 as well as b j �= b j+1 for any j ∈ {1, · · · , n − 1},
and a cyclic permutation b′ of b such that b′ = bann · · · ba22 b

a1
1 . The hypothesis implies that

b′ is an �B-string. Note that for v = s(b′) and appropriate j ∈ {1,−1}, b1, b2, · · · , bn ∈
(Hl(1(v, j)),<l). By Corollary 8.17, b1, b2, · · · , bn ∈ Cyc(B).
Claim. If j �= k and b jbk is an �B-string then b j <l bk in (Hl(1(v, j)),<l).
Proof of the claim. Let y := bk �l b j . If δ(y) = 0 then y is an �B-string. In view of Corollary
4.9, the strings b

a j−1
j−1 · · · ba11 bann · · · ba j

j and b
ak−1
k−1 · · · ba11 bann · · · bakk fork, which contradicts

Corollary 8.19. Hence δ(y) �= 0 and, in particular, as δ(bi ) = δ(b j ) = 0 but δ(y) �= 0, we
get that bi and b j fork.

Assume, if possible, that we have bk <l b j . Let x := b jbk �l b
2
k , so that x is an �B-string.

Then αx �l b jbk and βx �l b
2
k for some α ∈ Q−

1 and β ∈ Q1. As b2k ∈ Ext(B) and βx �l b
2
k ,

we have x ∈ St−1(B). Further since αx is an �B-string, Proposition 8.18 gives that α ∈ Q1, a
contradiction. This completes the proof of the claim. �

Since b j+1b j is an �B-string, it follows from the claim that b j+1 <l b j for every j ∈
{1, 2, · · · , n−1}. Using transitivity of <l , we get bn <l b1. However b1bn being a substring
of a cyclic permutation of b is also an �B-string, and hence the claim gives that b1 <l bn ,
which is a contradiction. Therefore n = 1 and a1 = 1, which shows that b is prime. �
Corollary 8.22 If x ∈ St1(B) then 〈1, �B〉(x) = ∞bux for some prime B-band b.

Proof By Proposition 8.10, 〈1, �B〉(x) = ∞bux for some band b. By Remark 8.9, we have
〈1, �B〉(1(t(x),ε(x))) = ∞bu. Thus every cyclic permutation of b is an �B-string. But then
Proposition 8.21 gives that b is a prime band. Finally, Corollary 8.17 yields b ∈ Ba(B). �

In fact, the band appearing in Corollary 8.22 is more than just a prime band.We now show
that it lies in Bal(B).

Proposition 8.23 If x ∈ St1(B) and 〈1, �B〉(x) = ∞bux for some band b and a string u then
b ∈ Bal(B).

Proof The existence of b and u is guaranteed by Proposition 8.10, whereas Corollary 8.22
gives that b ∈ Ba(B). Suppose, if possible, b /∈ Bal(B). Then there exists an exit (β, b′)
of b such that θ(β) = −1. Rewrite ∞bux as ∞b′vx for some string v. Since θ(b′) = 1,
Remark 8.14 yields n ∈ N such that �nB(x) = b′vx. Since βb′vx ∈ Ext(B) ⊆ St(B), we have
b′vx ∈ St−1(B), a contradiction to Remark 8.8. �
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Example 8.24 Continuing from Example 8.11, indeed e3E2E1 ∈ Bal(B3) and e3E2E1 is a
prime band.

Combining Propositions 8.10, 8.23 and Corollary 8.22, we have the following result.

Corollary 8.25 If x ∈ St1(B) then 〈1, �B〉(x) = ∞bux for some string u and b ∈ Bal(B).

Since St1(B) �= ∅, the above result guarantees the existence of a band in Bal(B).

Corollary 8.26 If B ∈ QBa then Bal(B) �= ∅.
In fact, we can guarantee that each b ∈ Bal(B) occurs in the conclusion of Proposition

8.23 for some x.

Proposition 8.27 Ifb ∈ Bal(B) then there exist x ∈ St1(B)anda stringu such that 〈1, �B〉(x) =
∞bux.

Proof Since b ∈ Ba(B), we have θ(b) = 1 and b ∈ St1(B). Thus by Proposition 8.23,
there exist b1 ∈ Bal(B) and a string u such that 〈1, �B〉(b) = ∞b1ub. Suppose, if possible,∞b1ub �= ∞b. Since b ∈ Bal(B), we get that θ( ∞b1ub | ∞b) = 1. Let zb := ∞b1ub�l

∞b.
By Remark 8.14, there exists n ≥ 0 such that �nB(b) = zb. Since θ( ∞b1ub) = θ(b) = 1, we
get that |z| > 0. Hence n > 0 and, in particular, zb ∈ St−1(B), a contradiction to Remark
8.8. �

The finiteness of the set Bal(B) can be concluded from the next result which is obtained
by combining Propositions 8.23 and 8.27.

Corollary 8.28 If B ∈ QBa and b ∈ Bal(B) then b is prime.

Remark 8.29 If B ∈ QBa is non-domestic then Bal(B) ∩ Bal̄(B) = ∅ in view of Remark 8.3.
On the other hand, if B is domestic then Bal(B) = Bal̄(B) = B.

9 Extending the B-neighbour Operators

In Section 6, we defined sets St j (x0, i; B) for j ∈ {−1, 1} containing strings which eventually
reach B ∈ QBa

i (x0). We would like to extend the function �B on this bigger set, St1(x0, i; B),
and obtain a result similar to Corollary 8.25.

Proposition 9.1 If x ∈ St1(x0, i; B) \ {Mi (x0)} then there exists z ∈ St1(x0, i; B) such that
x �l z �l l(x).

Proof If x �l Mi (x0) then the result holds trivially. So assume x ��l Mi (x0). Then Remark
6.1 yields x ∈ St1(B). If possible, suppose that y /∈ St1(B) for each x �l y �l l(x).

Since x ∈ St1(B), there are b ∈ Cyc(B) and u ∈ St(�) such that bux ∈ St(�) and
θ(bu) = 1. Let z := b2ux �l l(x). Clearly z �l b

2ux. As θ(bu) = 1, we have x �l z �l l(x).
By our assumption, z /∈ St1(B). Hence θ(b2ux | z) = −1. Letα ∈ Q1 be such thatαz �l b

2ux.
Since x �l z �l l(x), we get αz �l l(x), which contradicts that z = bux �l l(x). �

It immediately follows from Proposition 9.1 that x �l cB(l(x)), which motivates the
following definition.

Definition 9.2 Define lB : St1(x0, i; B) \ {Mi (x0)} → St1(x0, i; B) by lB(x) := cB(l(x)),
i.e, by choosing lB(x) to be the maximal (possibly equal) left substring of l(x) such that
lB(x) ∈ St1(x0, i; B).

Similarly, define lB : St−1(x0, i; B) \ {mi (x0)} → St−1(x0, i; B) by lB(x) := cB(l(x)).
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Proposition 9.3 If x ∈ St1(x0, i; B) \ {Mi (x0)} then x <l lB(x), ϕB(lB(x)) = 1 and
H−1
l (lB(x)) = (x, lB(x)].

Proof By the definition of lB(x), it is clear that x <l lB(x), lB(x) /∈ St−1(x0, i; B), and hence
ϕB(lB(x)) = 1.

Let z ∈ (x, lB(x)). If x ��l z then z �l x = z �l lB(x). This implies that both x and lB(x) lie
on the same side of z in the hammock, a contradiction. Hence x �l z. Since θ(z | x) = 1,
we get a ∈ Q1 such that Ax �l z. By definition, Ax �l lB(x). Hence Ax �l lB(x) �l z and
θ(lB(x) | z) = 1. If lB(x) = x′Ax then either |x′| = 0 or δ(x′) = −1. Therefore we conclude
that lB(x) �l z, which together with θ(z | lB(x)) = −1 gives z ∈ H−1

l (lB(x)) as required. �
Combining the above with Remark 7.5, we conclude that lB(x) is the immediate successor

of x in St(x0, i; B).

Corollary 9.4 If x ∈ St1(x0, i; B) \ {Mi (x0)} then (x, lB(x)) ∩ St(x0, i; B) = ∅.
Now we show that the function lB is indeed an extension of the function �B on a larger

domain.

Proposition 9.5 If x ∈ St1(x0, i; B) then �B(x) = lB(x).

Proof Let �B(x) =: z′x and lB(x) =: zx. Since �B(x) ∈ St1(x0, i; B) ⊆ St1(x0, i; B), we have
�B(x) �l zx �l l(x). If z = z′ then there is nothing to prove. Therefore assume that z′ �l z.
By Remark 8.9, 1(t(x),ε(x)) ∈ St1(B) and �B(1(t(x),ε(x))) = z′. Then Corollary 8.17 yields
b ∈ Cyc(B) such that z′ �l b

n for some n ∈ N
+.

Since z′b is a string, θ(z′) = 1 and θ(z | z′) = −1, we get that zb is a string. Since
z′ �l z �l l(1(t(x),ε(x))) we get δ(z) = 0. As zx ∈ St1(x0, i; B), there is b′ ∈ Cyc(B) and a
string u such that b′uzx ∈ St(�) and θ(b′u) = 1. Furthermore, δ(z) = 0 gives that b′uzb is a
string. Thus zbuzb′u is a power of a B-cycle, θ(zbyb′u) = 1 and (zbyb′u)z is a string. Hence
z ∈ St1(B). Since δ(z) = 0, we have zx ∈ St1(B). Since zx �l l(x), we get a contradiction to
the definition of �B(x). �

For x ∈ St1(x0, i; B) we inductively define the powers of the function lB by l0B(x) := x and
ln+1
B (x) := lB(lnB(x)) for n ∈ N, if lnB(x) �= Mi (x0). Note that l

n
B(x) exists for each n if and

only if x ∈ St1(B). Whenever this happens, using lnB(x) �l l
n+1
B (x) we get that limn→∞ lnB(x)

is a left N-string; denote this limit by 〈1, lB〉(x).
Remark 9.6 If lnB(x) = uyx, where y and u are strings with |u| > 0, then θ(u) = 1 if and only
if there exists 0 ≤ k < n such that lkB(x) = yx.

The proof of the following result is along similar lines as the proof of Proposition 8.10.

Proposition 9.7 If x ∈ St1(x0, i; B) ∩ St1(B) then 〈1, lB〉(x) = ∞bux for some band b and
some string u.

However the band b obtained abovemight not be a B-band as is evident from the following
example.

Example 9.8 Continuing from Example 5.8, for a0 ∈ St1(a0, 1; B2) ∩ St1(B2), we have
〈1, lB2〉(a0) = ∞(b1B4b3B2)b1a4a3A1a0, but b1B4b3B2 /∈ B2.

This issue is resolved if B is minimal for (x0, i).

123



V. Sinha et al.

Proposition 9.9 Suppose B is minimal for (x0, i). If x ∈ St1(x0, i; B)∩St1(B) then 〈1, lB〉(x) =
∞bux for some b ∈ Bal(B) and some string u.

Proof By Corollary 6.7, we have that lnB(x) ∈ St1(x0, i; B) for some n ∈ N. Therefore
〈1, lB〉(x) = 〈1, lB〉(lnB(x)) = 〈1, �B〉(lnB(x)), where the last equality follows from Proposition
9.5. The conclusion is then immediate from Corollary 8.25.

We end this section with a useful result that will be used to prove the density of some special
strings called B-centers in Proposition 10.12.

Proposition 9.10 Suppose B ∈ QBa
i (x0) is non-domestic and minimal for (x0, i). If x ∈

St1(x0, i; B) and y ∈ St−1(x0, i; B) such that x <l y then 〈1, lB〉(x) <l 〈1, lB〉(y).
Proof Proposition 6.4 gives x ∈ St1(B) and y ∈ St−1(B). In view of Proposition 9.9, let
〈1, lB〉(x) =: ∞b1u1x and 〈1, lB〉(y) =: ∞b2u2y, where b1 ∈ Bal(B), b2 ∈ Bal̄(B) and u1, u2
are strings. Since Bal(B) ∩ Bal̄(B) = ∅, we get that b1 is not a cyclic permutation of b2,
which implies ∞b1u1x �= ∞b2u2y. Let w := ∞b1u1x �l

∞b2u2y so that w ∈ St±1(B). If
θ( ∞b1u1x | w) = 1 then Remark 9.6 yields n ∈ N

+ such that lnB(x) = w, a contradiction to
Proposition 9.3. Hence θ( ∞b1u1x | w) = −1, which completes the proof. �

10 B-centers

Given B ∈ QBa, the presence of some special strings in St±1(x0, i; B), which we shall
call B-centers, characterizes non-domesticity of B. The suborder of such strings is a dense
linear order, and it is responsible for the shuffle structure (see clause (4) of Definition 2.3)
in the hammocks for non-domestic string algebras. The absence of B-centers in domestic
string algebras (Proposition 10.11) thus prohibits domestic string algebras to have a shuffle
structure.

To define B-centers, we need a notion called B-equivalence which guarantees that the
maximal scattered intervals in St(x0, i; B) around B-centers are canonically isomorphic.

Definition 10.1 Let B ∈ QBa
i (x0). Two strings x and y in St±1(x0, i; B) are said to be B-

equivalent, denoted x ≡B y, if there exist distinct syllables α and β such that αx, βx, αy and
βy are strings.

It is trivial to note that ≡B is an equivalence relation on St±1(x0, i; B). The following remark
notes that there are finitely many ≡B-classes.

Remark 10.2 Associated to each string x of a B-equivalence class there is a unique pair
(α, β) ∈ Q1 × Q−

1 for which αx and βx are strings. Therefore the assignment of each B-
equivalence class to its corresponding pair in Q1 × Q−

1 is injective. Since Q1 × Q−
1 is finite

in every string algebra, we have that there are finitely many B-equivalence classes.

Example 10.3 Recall from Example 5.8 that B3 ∈ QBa
1 (a0) is non-domestic. There are three

B3-equivalence classes in St±1(a0, 1; B) with strings E1A2A1a0, G1FE2E1A2A1a0, k1h2
H1G1FE2E1A2A1a0 as their representatives.

The notion of B-equivalence is strictly weaker than H -equivalence as demonstrated in
Example 10.4. However, these notions coincide in the case of gentle string algebras.
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Example 10.4 Consider the string algebra �′ from Fig. 3. Choose j ∈ {1,−1} such that
f 1(v5, j) is a string. There is only one non-domestic B ∈ QBa−1(1(v5, j)). Consider the strings
f , f eD f ∈ St±1(1(v5, j),−1; B). Since c f , c f eD f , Df , Df eD f are strings, we have f ≡B
f eD f . On the other hand, f �≡H f eD f since ac f is a string but ac f eD f is not.

Proposition 10.5 Let B ∈ QBa
i (x0). The following statements are equivalent for a string

x ∈ St±1(x0, i; B).

(1) There exists b′ ∈ Cyc(B) such that b′x ∈ St±1(x0, i; B) and b′x ≡B x.
(2) There exist strings x1, x2 and b′ ∈ Cyc(B) such that x = x2x1, x2b

′x1 ∈ St±1(x0, i; B),
x2b

′x1 ≡B x and x2b
′ ∈ Ext(B).

(3) There exist strings z, u such that δ(z) = 0, z ∈ Ext(B), zu ∈ St±1(x0, i; B) and zu ≡B x.
(4) There exists a syllable γ ∈ St±1(B) such that 1(t(x),ε(x))γ is a string, αγ, βγ ∈ Ext(B)

for distinct syllables α, β such that αx, βx ∈ St(�).

Proof (1) �⇒ (2): This is immediate as we can take x1 = x and x2 = 1(v, j) for appropriate
(v, j) such that 1(v, j)x1 is a string.

(2) �⇒ (3): Take z = x2b
′ and u = x1. Since b′ is a cyclic permutation of a band and

b′ �l z, we have δ(z) = 0. Moreover, zu = x2b
′x1 ≡B x.

(3) �⇒ (4): Since δ(z) = 0, we have |z| > 0. Take γ to be the last syllable of z. Since
zu ∈ St±1(x0, i; B), there exist b′

1, b
′
2 ∈ Cyc(B)with θ(b′

1) = 1 = −θ(b′
2) such that b

′
1zu and

b′
2zu are strings. Let the first syllables of b

′
1 and b

′
2 be α and β respectively. Since z ∈ Ext(B),

there exists b′ ∈ Cyc(B) such that b′n = wz for some string w and n ∈ N. Let v be a string
such that b′vb′

1 is a string. Since δ(z) = 0 and zb′ and b′
1z are strings, we conclude that zb

′vb′
1

is a power of a cyclic permutation of a B-band. Since the last syllable of z is γ and the first
syllable of b′

1 is α, it follows that αγ ∈ Ext(B). Similarly we can show that βγ ∈ Ext(B).
(4) �⇒ (1): Without loss of generality, let θ(γ ) = θ(α) = −θ(β). There are two cases.
Case 1: Either |x| = 0 or θ(γ ′) = θ(γ ), where γ ′ is the last syllable of x.

Since βγ ∈ Ext(B), there is b′ ∈ Cyc(B) and n ∈ N
+ such that γwβ = b′n for some string

w. Further, since αγ ∈ Ext(B), there exists a stringw′ such that αγw′b′ is a string. Since the
first syllable of b′ is β and θ(b′) = −θ(γ ), we get that γw′b′ is a power of a B-cycle, say b′′,
such that αb′′x and βb′′x are strings.

Case 2: θ(γ ′) = −θ(γ ), where γ ′ is the last syllable of x.
Since αγ ∈ Ext(B), there exists b′ ∈ Cyc(B) and n ∈ N

+ such that γwα = b′n for some
string w. Since the first syllable of b′ is α, and thus θ(b′) = −θ(γ ′), we get that b′x is a
string. Further since the last syllable of b′ is γ , and θ(γ ) = −θ(β) we get that βb′ is a string.
Since δ(b′) = 0, it follows that βb′x is a string too, thus completing the proof. �

Fig. 3 �′ with ρ = {b f , cd, ge, ag, ac f e}
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Definition 10.6 Say that x ∈ St±1(x0, i; B) is a B-center if it satisfies one of the equivalent
conditions of Proposition 10.5. Denote the set of all B-centers by Cent(x0, i; B).

The following example shows that Cent(x0, i; B) can be a proper subset of St±1(x0, i; B).

Example 10.7 Consider the string algebra �′′ from Fig. 4. There is a unique non-domestic
B ∈ QBa−1(a1) with a2a1 ∈ St±1(a1,−1; B) \ Cent(a1,−1; B).

Remark 10.8 In view of Remark 8.9, if x ≡B y and 〈1, lB〉(x) = ∞bux for some b ∈ Bal(B)

and string u then 〈1, lB〉(y) = ∞buy.

Given x ∈ Cent(x0, i; B), we say that x is the center of the interval I(x0,i;B)(x) :=
(〈1, lB〉(x), 〈1, lB〉(x)) in the hammock (Hi

l (x0),<l). The following result shows that two
intervals of the above form are canonically isomorphic if and only if their centers are B-
equivalent.

Proposition 10.9 Suppose x, y ∈ Cent(x0, i; B). If x ≡B y then for any string u, ux ∈
I(x0,i;B)(x) if and only if uy ∈ I(x0,i;B)(y).

Proof Since x ∈ St1(B), Corollary 8.25 and Proposition 9.5 together give 〈1, lB〉(x) = ∞bu1x

for some string u1 and b ∈ Bal(B). Then Remark 10.8 gives 〈1, lB〉(y) = ∞bu1y. Suppose
ux ∈ I(x0,i;B)(x). Without loss of generality, we can assume that |u| > 0 and θ(u) = 1
so that ux ∈ (x, ∞bu1x). If uy is a string then ux ∈ (x, ∞bu1x) immediately implies uy ∈
(y, ∞bu1y). Hence it remains to show that uy is a string. There are two possibilities.

Since ∞bu1y is a left N-string, if u �l
∞bu1 then uy is a string.

If u and ∞bu1 fork then let z := u�l
∞bu1. Since θ( ∞bu1) = θ(u) = 1, we have |z| > 0.

Thus by the above paragraph, zy is a string. As u <l
∞bu1, we get that αz �l u for some

α ∈ Q1. Since θ(z) = 1, zy is a string and δ(αz) = 0, we get that uy is a string. �
Now we show the existence of B-centers when B is non-domestic using Remark 8.3.

Proposition 10.10 Let x ∈ Hi
l (x0), b ∈ Ba(B) and (β, b′) be a non-domestic exit of b with

θ(β) = 1. If βb′x ∈ Hi
l (x0) then b

′x ∈ Cent(x0, i; B).

Proof Since θ(β) = 1 we have θ((b′)2x | b′x) = −1. Since βb′ ∈ Ext(B), there exists
b′′ ∈ Cyc(B) such that βb′ �l b

′′. So for an appropriate cyclic permutation b′′′ of b′′, we have
that b′′′b′x is a string with θ(b′′′) = θ(β) = 1 thus showing b′x ∈ St1(x0, i; B). Also b′b′x is
a string with θ(b′) = −1 which gives b′x ∈ St−1(x0, i; B). Finally, since δ(b′) = 0 we have
b′b′x ≡B b′x. In view of Proposition 10.5(1), we conclude that b′x ∈ Cent(x0, i; B). �

Fig. 4 �′′ with ρ = { f a2, db, ge, hd, bg, ch, da2a1c, e f b}
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Contrary to the above result, there are no B-centers for any domestic B ∈ QBa.

Proposition 10.11 If B ∈ QBa
i (x0) is domestic then Cent(x0, i; B) = ∅.

Proof If possible, let y ∈ Cent(x0, i; B). Then Proposition 10.5(1) yields b′ ∈ Cyc(B) such
that b′y ∈ St±1(x0, i; B) and b′y ≡B y. Since b′y ∈ St±1(x0, i; B) there exists b′′ ∈ Cyc(B)

with θ(b′) = −θ(b′′) such that b′′b′y is a string. Since b′, b′′ ∈ Ext(B), b′ub′′ is a string for
some string u. Since B is domestic and ub′′b′ is a mixed cyclic string, we get ub′′b′ = bn1 for
some n ∈ N

+ and a cyclic permutation b1 of b′. In view of Corollary 4.9, we get b′ = b1,
which gives a contradiction to θ(b′) = −θ(b′′). �

We end this section with the following proposition, which is the key to investigating the
order type of the set of B-centers.

Proposition 10.12 Suppose B ∈ QBa
i (x0) is non-domestic and minimal for (x0, i), and x <l y

for some x ∈ St1(x0, i; B) and y ∈ St−1(x0, i; B). Then for any z ∈ Cent(x0, i; B) there exists
z′ ∈ Cent(x0, i; B) such that z′ ≡B z and 〈1, lB〉(x) <l z

′ <l 〈1, lB〉(y).
Proof Proposition 9.10 gives 〈1, lB〉(x) <l 〈1, lB〉(y). Let w := 〈1, lB〉(x) �l 〈1, lB〉(y).
Proposition 10.5(3) gives the existence of strings z1, z2 such that δ(z2) = 0, z2 ∈ Ext(B),
z2z1 ∈ St±1(x0, i; B) and z2z1 ≡B z.

In view of Proposition 9.9, let 〈1, lB〉(x) = ∞bu1x for some b ∈ Bal(B) and some string
u1. Since θ( ∞bu1x | w) = −1, there exists n ∈ N

+ such that θ(bnu1x | w) = −1. As
b ∈ Bal(B), consider an exit (β, b′) of b. There exists a string u �l b such that βb′ub is
a string. Since βb′, z2 ∈ Ext(B), there exists a string v such that z2vβb

′ is a string. Now
δ(b′) = 0 implies z′ := z2vβb

′ubnu1x is a string, z′ ∈ St±1(x0, i; B) and z′ ≡B z. Since
θ(bnu1x | w) = −1, we get θ(z′ | w) = −1. Also θ(β) = 1 implies θ( ∞bu1x | z′) = −1.
Therefore we have 〈1, lB〉(x) <l z

′ <l w <l 〈1, lB〉(y) to complete the proof. �

11 Computation of the Order Type of Hammocks

So far we have collected most of the ingredients to prove the main result (Theorem 11.9),
whose proof we finish in this section. Furthermore, we prove a partial converse followed by
a discussion about the potential impossibility of the converse in its full generality.

Since there are finitely many strings that are band-free relative to (x0, i), recall from
Corollary 6.6 that if B ∈ QBa is minimal for (x0, i) then there are finitely many strings in
St j (x0, i; B) \ St j (x0, i; B) for each j ∈ {−1, 1}. A simple set theoretic manipulation yields

St±1(x0, i; B)\St±1(x0, i; B) ⊆ (St1(x0, i; B)\St1(x0, i; B))∪(St−1(x0, i; B)\St−1(x0, i; B)),

and thus St±1(x0, i; B) \ St±1(x0, i; B) is finite. The following proposition shows that the set
St±1(x0, i; B) \ Cent(x0, i; B) is also finite when B is minimal for (x0, i).

Proposition 11.1 If B ∈ QBa is minimal for (x0, i) and x ∈ St±1(x0, i; B)\Cent(x0, i; B) then
x is band-free relative to (x0, i).

Proof If x ∈ St±1(x0, i; B) \Cent(x0, i; B) such that x = x2bx1 for some b ∈ Cyc(B), then we
have x ≡B x2b

2x1, which implies x ∈ Cent(x0, i; B) by Proposition 10.5(2), a contradiction.
This proves that x is band-free with respect to B. As a consequence, if B ∈ QBa is minimal
for (x0, i) then x is band-free relative to (x0, i). �
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Since

St±1(x0, i; B) \ Cent(x0, i; B) = (St±1(x0, i; B) \ St±1(x0, i; B)) ∪ (St±1(x0, i; B) \ Cent(x0, i; B)),

we get that there are finitely many strings in St±1(x0, i; B) \Cent(x0, i; B). This observation
helps us to break the linear order (St(x0, i; B),<l) into finitely many “irreducible” intervals.

Definition 11.2 Let B ∈ QBa beminimal for (x0, i). Call an interval [x, y] in Hi
l (x0) a B-beam

if x, y ∈ St±1(x0, i; B) \ Cent(x0, i; B), x <l y and (x, y) ∩ St±1(x0, i; B) ⊆ Cent(x0, i; B).

Since the set St±1(x0, i; B) \ Cent(x0, i; B) is finite when B ∈ QBa is minimal for (x0, i), we
get that there are finitely many B-beams. Let nB denote the number of B-beams.

If B ∈ QBa is minimal for (x0, i) and y0 <l y1 <l · · · <l ynB is the complete list of
elements in St±1(x0, i; B) \ Cent(x0, i; B) then

(Hi
l (x0),<l) = [mi (x0), y0] � [y0, y1] � · · · � [ynB−1, ynB ] � [ynB ,Mi (x0)], (11.1)

where each [y j , y j+1] is a B-beam.
In view of Remark 7.2, we have

(cB(H
i
l (x0)),<l)=cB([mi (x0), y0])�cB([y0, y1])�· · ·�cB([ynB−1, ynB ])�cB([ynB ,Mi (x0)]).

(11.2)

Example 11.3 Continuing Example 5.8, since B1 is minimal for (a0, 1), Equation (11.1) takes
the form

H1
l (a0) = [a0, a0] � [a0, a3A1a0] � [a3A1a0, A1a0] � [A1a0, H1G1FE2E1A2A1a0].

(11.3)
and Equation (11.2) takes the form

cB1(H
1
l (a0))=cB1([a0, a3A1a0])�cB1([a3A1a0, A1a0])�cB1([A1a0, H1G1FE2E1A2A1a0]).

(11.4)

Proposition 11.4 The sets cB([mi (x0), y0]) and cB([ynB ,Mi (x0)]) are finite.

Proof Without loss of generality, assume that i = −1. Recall from the proof of Proposition
6.12 that ynB = x0 = Mi (x0), and hence card([ynB ,Mi (x0)]) = 1. On the other hand, the
same proof describes y0 as the longest left substring of mi (x0) that lies in St±1(x0, i; B).
Hence z ∈ cB([mi (x0), y0]) if and only if y0 �l z �l mi (x0). Since there are only finitely left
substrings of mi (x0), the proof is complete. �

Recall from Remark 10.2 that the set St±1(x0, i; B)/≡B is finite. Let kB := card
(Cent(x0, i; B)/≡B). Propositions 10.10 and 10.11 together imply that kB = 0 if and only if
B is domestic.

The next result is a consequence of Proposition 10.12, which computes the order type of
the suborder of B-centers inside a B-beam.

Corollary 11.5 If B ∈ QBa is minimal for (x0, i) and [x, y] be a B-beam then

(Cent(x0, i; B) ∩ [x, y],<l) ∼= 	(1, 1, · · · , 1
︸ ︷︷ ︸

kB times

).
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Proof Since Hi
l (x0) is countable, the set Cent(x0, i; B) ∩ [x, y] is also countable. If B is

domestic then Proposition 10.11 implies that both sides are empty linear orders. On the other
hand, if B is non-domestic then Proposition 10.10 implies that Cent(x0, i; B) �= ∅. Therefore
it suffices to prove that each B-equivalence class of B-centers intersects the beam [x, y] in a
non-empty, unbounded, and dense fashion. Let w ∈ Cent(x0, i; B).

Non-empty: Since x ∈ St1(x0, i; B) and y ∈ St−1(x0, i; B), Proposition 10.12 applied on
x <l y yields z ∈ Cent(x0, i; B) ∩ (x, y) such that z ≡B w.

Unbounded: Let z ∈ Cent(x0, i; B) ∩ (x, y). Since z ∈ St±1(x0, i; B), Proposition 10.12
applied on x <l z and z <l y guarantees the existence of z1 ∈ Cent(x0, i; B) ∩
(z, y) and z2 ∈ Cent(x0, i; B) ∩ (x, z) respectively such that z1 ≡B z2 ≡B w.

Dense: If z1, z2 ∈ Cent(x0, i; B) ∩ (x, y) then Proposition 10.12 applied on z1 <l z2
yields z3 ∈ Cent(x0, i; B) ∩ (z1, z2) such that z3 ≡B w. �

Proposition 11.6 Let B ∈ QBa be minimal for (x0, i). If x ∈ St1(x0, i; B) then there exists
y ∈ St±1(x0, i; B) and n ∈ N such that lnB(y) = x.

Proof In view of Proposition 9.9, let 〈1, lB〉(x) =: ∞bux for some string u and b ∈ Bal(B).
Consider the shortest string y ∈ St1(x0, i; B) such that 〈1, lB〉(y) = ∞bux. We claim that
y ∈ St−1(x0, i; B).

If y ∈ St−1(B) then we are done. Otherwise, in view of Remark 6.1, we need to show that
y �l mi (x0).

If possible, let x0 �l z �l y be a string such that θ(y | z) = 1. Without loss, take z to
be the longest such string. Then y = wαz, where α ∈ Q−

1 and w satisfies either |w| = 0 or
δ(w) = −1. Clearly z ∈ St1(x0, i; B) and y �l lB(z).

If y �l lB(z) then there exists β ∈ Q1 such that lB(z) �l βy ∈ St1(x0, i; B). Thus
y ∈ St−1(x0, i; B). Since δ(lB(z)) = 0, in view of Remark 6.1, we get lB(z) ∈ St1(B)

implying that y ∈ St−1(B), a contradiction to our assumption. On the other hand, if y = lB(z)
then 〈1, lB〉(y) = 〈1, lB〉(z), a contradiction to the minimality of |y|.

Therefore there does not exist any string z with x0 �l z �l y and θ(y | z) = 1, which
gives y �l mi (x0).

Finally, since y �l x and θ(〈1, lB〉(y) | x) = 1, we have lnB(y) = x by Remark 8.9. This
completes the proof. �

The proof of Proposition 11.6 and of its dual can be used to define a further condensation
operator

CB : St(x0, i; B) → St±1(x0, i; B).

The next result shows that CB is compatible with the partition given by (11.2).

Proposition 11.7 If B ∈ QBa is minimal for (x0, i), [x, y] is a B-beam and z ∈ cB([x, y]) then
CB(z) ∈ [x, y].
Proof Without loss of generality, assume that z ∈ St1(x0, i; B). Then Proposition 11.6 gives
some n ∈ N such that lnB(CB(z)) = z. Let w := CB(z) for brevity so that w ≤l z. We claim
that w ∈ [x, y].

Now ϕB(z) = 0 if and only if w = z. On the other hand, if ϕB(z) = 1, then assume the
claim fails, i.e., assume w <l x <l z. Then clearly w �l z. Let v := w �l x. There are two
cases.

If v �l w then w �l z gives θ(z | x) = θ(z | v) = −1, a contradiction to x <l z.
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On the other hand, if v = w then we have w �l x and w �l z. Thus w �l x �l z.
If x �l z = x then Remark 9.6 yields lkB(w) = x for some k ∈ N

+, a contradiction to
Proposition 9.3 as x ∈ St−1(x0, i; B). Thus x �l z �l x. If x �l z = z then z �l x together with
θ(x | z) = −1 implies that z ∈ St−1(x0, i; B) by Remark 6.3, a contradiction to ϕB(z) = 1.
On the other hand, if x �l z �l z then w �l x �l z together with θ(z | x �l z) = 1 implies
lkB(w) = x�l z ∈ St±1(x0, i; B) for some k ∈ N

+ byRemark 9.6, a contradiction to Proposition
9.3.

The definition of a B-beam gives w ∈ St±1(x0, i; B) ∩ [x, y] = (Cent(x0, i; B) ∪ {x, y}) ∩
[x, y].

Dually, we can show that if z ∈ St−1(x0, i; B) we get w ∈ St±1(x0, i; B) ∩ [x, y] =
(Cent(x0, i; B) ∪ {x, y}) ∩ [x, y] such that l

n
B(w) = z for some n ∈ N. �

Now let us analyze different summands/intervals on the right hand side of Equation (11.2).
The first and the last intervals are finite thanks to Proposition 11.4. Since cB([y j , y j+1]) is
the condensation of a B-beam, the minimality of B for (x0, i) allows us to use Propositions
11.6 and 11.7 to conclude that given z ∈ cB([y j , y j+1]) exactly one of the following is
true: card([z, z0] ∪ [z0, z]) is finite for a unique B-center z0, card([cB(y j ), z]) is finite or
card([z, cB(y j+1)]) is finite. Finally, Corollary 11.5 describes the order type of B-centers in
a B-beam–such centers are fixed under cB. Combining this discussion with the results in § 9
about the discreteness of B-condensation of the hammock, we compute its order type in the
next result.

Corollary 11.8 Suppose B ∈ QBa is minimal for (x0, i). If [x, y] is a B-beam then

(cB([x, y]),<l) ∼= ω + 	(ζ, ζ, · · · , ζ
︸ ︷︷ ︸

kB times

) + ω∗.

As a consequence,

(cB(H
i
l (x0)),<l) ∼= (ω + 	(ζ, ζ, · · · , ζ

︸ ︷︷ ︸
kB times

) + ω∗) · nB.

Recall the definition of I(x0,i;B)(x) for x ∈ Cent(x0, i; B). If B is minimal for (x0, i), we

can extend this definition to all x ∈ St±1(x0, i; B) as follows:

I(x0,i;B)(yk) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[mi (x0),Mi (x0)] if 0 = k = nB,

[mi (x0), 〈1, �B〉(y0)) if 0 = k < nB,

(〈1, �B〉(y0),Mi (x0)] if 0 < k = nB,

(〈1, �B〉(yk), 〈1, �B〉(yk)) if 0 < k < nB.

Let cB := CB ◦ cB. It is straightforward to verify that c−1
B (x) = I(x0,i;B)(x) for each

x ∈ St±1(x0, i; B). Thus

Hi
l (x0)

∼=
∑

x∈St±1(x0,i;B)

c−1
B (x) ∼=

∑

x∈St±1(x0,i;B)

I(x0,i;B)(x). (11.5)

Now we have all the tools necessary for proving the main result of this paper.

Theorem 11.9 Given a string x0 and a parity i ∈ {1,−1}, we have (Hi
l (x0),<l) ∈ dLO11

fd .
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Proof The proof is by induction on the size ofQBa
i (x0), which is a finite poset by Proposition

5.7.
Base Step. If QBa

i (x0) = ∅ then the strings in Hi
l (x0) are band-free relative to (x0, i),

implying that Hi
l (x0) is finite in view of Corollary 4.7. Thus Hi

l (x0) ∈ dLO11
fd .

Inductive Step. Assume that QBa
i (x0) �= ∅ and for any x ∈ St(�) and j ∈ {1,−1} with

card(QBa
j (x)) < card(QBa

i (x0)), we have H j
l (x) ∈ dLO11

fd .

Since QBa
i (x0) �= ∅, choose B ∈ QBa that is minimal for (x0, i). Then Lemma 7.8 gives

(Hi
l (x0),<l) ∼=

∑

x∈cB(Hi
l (x0))

(H
−ϕB(x)
l (x),<l).

If x ∈ cB(Hi
l (x0)) ⊆ Hi

l (x0) then QBa
−ϕB(x)(x) ⊆ QBa

i (x0). Moreover, for any such x, we

have B /∈ QBa
−ϕB(x)(x) thanks to Remark 7.5, and hence QBa

−ϕB(x)(x) � QBa
i (x0). Therefore by

the induction hypothesis, we get H−ϕB(x)
l (x) ∈ dLO11

fd for each x ∈ cB(Hi
l (x0)).

In view of Equation (11.2), Proposition 7.6 and the fact that H
−ϕB(yp)

l (yp) = H0
l (yp) =

{yp} for each 0 ≤ p ≤ nB, we can write

Hi
l (x0) = L̃0 � L̃1 � · · · � L̃nB+1,

where

L̃k :=

⎧
⎪⎪⎨

⎪⎪⎩

∑
x∈[mi (x0),y0](H

−ϕB(x)
l (x),<l) if k = 0,

∑
x∈[yk−1,yk ](H

−ϕB(x)
l (x),<l) if 1 ≤ k ≤ nB,

∑
x∈[ynB ,Mi (x0)](H

−ϕB(x)
l (x),<l) if k = nB + 1.

Since a finite order sum of linear orders in dLO11
fd lies in dLO11

fd , using the induction
hypothesis and Proposition 11.4, we see that L̃0, L̃nB+1 ∈ dLO11

fd . We will use Lemma 2.4
to show that L̃k ∈ dLO11

fd for 1 ≤ k ≤ nB.
Proposition 11.7 showed cB([y0, y1]) = [y0, y1] ∩ St(x0, i; B) ∼= (ω + 	(ζ, ζ, · · · , ζ

︸ ︷︷ ︸
kB times

) +

ω∗). Its proof together with Equation (11.5) helps us to write

L̃1 = L1 + L2 + L3,

where

L1 := I(x0,i;B)(y0) ∩ [y0, y1] =
∑

n∈ω

H
−ϕB(l

n
B (y0))

l (lnB(y0)),

L2 :=
∑

x∈Cent(x0,i;B)∩[y0,y1]
I(x0,i;B)(x)

=
∑

x∈Cent(x0,i;B)∩[y0,y1]

⎛

⎝
∑

n∈ω∗, n �=0

H
−ϕB(l

n
B(x))

l (l
n
B(x)) +

∑

n∈ω

H
−ϕB(l

n
B (x))

l (lnB(x))

⎞

⎠ ,

L3 := I(x0,i;B)(y1) ∩ [y0, y1] =
∑

n∈ω∗
H

−ϕB(l
n
B(y1))

l (l
n
B(y1)).

Let {x1, · · · , xkB} be a set of representatives of distinct B-equivalence classes of
Cent(x0, i; B)∩[y0, y1]. Proposition 10.9 states that the order type of the interval I(x0,i;B)(x j )
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in Hi
l (x0) is independent of the choice of the representative x j for each j ∈ {1, · · · , kB}. Thus

if L j denotes the order type of I(x0,i;B)(x j ), then

L2 ∼= 	(L1, · · · , LkB).

For any string z ∈ cB([y0, y1]) with ϕB(z) �= −1, Proposition 9.9 ensures the existence
of a string u and b ∈ Bal(B) such that 〈1, lB〉(z) = ∞buz. Since θ(b) = 1, Remark 9.6 yields

s′ ∈ N and p ∈ N
+ such that ls

′
B (z) = buz and ls

′+p
B (z) = b2uz = bls

′
B (z). Since δ(b) = 0,

we have ls
′+p

B (z) ≡H ls
′

B (z). Since b ∈ St1(B), Remark 8.9 and Proposition 9.5 together

imply ls
′+p+k

B (z) ≡H ls
′+k

B (z) for each k ∈ N. Since ϕB(l
q
B (z)) = 1 for each q ∈ N

+, we

get H
−ϕB(l

s′+p+k
B (z))

l (ls
′+p+k

B (z)) ∼= H
−ϕB(l

s′+k
B (z))

l (ls
′+k

B (z)). A dual result can be shown for
z ∈ cB([y0, y1]) with ϕB(z) �= 1. Thus we have shown that all the hypotheses of Lemma 2.4
are satisfied, and hence we get that L̃1 = L1 + L2 + L3 ∈ dLO11

fd . A similar argument shows
that L̃k ∈ dLO11

fd for each 1 ≤ k ≤ nB, and this completes the proof. �
Example 11.10 We compute the order type of H1

l (a0) from Example 5.8. Continuing from
Example 11.3, recall that B1 is minimal and domestic for (a0, 1). By domesticity of B1, we
have kB1 = 0, and thus by Corollary 11.8 we have

cB1([a0, a3A1a0]) =
∑

k∈ω

{lkB1(a0)} +
∑

k∈ω∗
{l̄kB1(a3A1a0)} ∼= ω + ω∗. (11.6)

Using Lemma 7.8, we obtain

[a0, a3A1a0]=H0
l (a0)+

∑

k∈ω, k �=0

H−1
l (lkB1(a0))+

∑

k∈ω∗, k �=0

H1
l (l̄kB1(a3A1a0))+H0

l (a3A1a0).

(11.7)
Note that l2k+r

B1
(a0) ≡H l2+r

B1
(a0) for every k ≥ 0 and 0 ≤ r ≤ 1 with (k, r) �= (0, 0).

Moreover, H1
l (l̄kB1(a3A1a0)) = {l̄kB1(a3A1a0)} for every k ∈ ω∗, k �= 0, and H−1

l (lB1(a0)) =
{lB1(a0)}. Plugging these in Equation (11.7), we get

[a0, a3A1a0] ∼= 1 + (1 + H−1
l (l2B1(a0))) · ω + ω∗. (11.8)

To compute H−1
l (l2B1(a0)), note that non-domestic B2 is the unique element ofQBa−1(l

2
B1

(a0)),

and thusminimal for (l2B1(a0),−1). Since kB2 = 1, applyingLemma7.8 toCorollary 11.8with

the help of the base case of the proof of Theorem11.9, we get H−1
l (l2B1(a0))

∼= ω+	(ζ)+ω∗,
so that Equation (11.7) takes the form

[a0, a3A1a0] ∼= 1 + (1 + ω + 	(ζ) + ω∗) · ω + ω∗ ∼= (ω + 	(ζ) + ω∗) · ω + ω∗. (11.9)

Similarly we can obtain

[a3A1a0, A1a0] ∼= (ω + 	(ζ) + ω∗) · ω + ω∗. (11.10)

Again applying Lemma 7.8 to the last term of the right-hand side of Equation (11.4), we
obtain

[A1a0, H1G1FE2E1A2A1a0]={A1a0}+{A2A1a0}+{E1A2A1a0}+H−1
l (E2E1A2A1a0)

+{FE2E1A2A1a0}+H−1
l (G1FE2E1A2A1a0)+H−1

l (H1G1FE2E1A2A1a0).
(11.11)
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To compute H−1
l (E2E1A2A1a0), note that B3 is non-domestic and minimal for (E2E1A2A1

a0,−1). Recall from Example 10.3 that kB3 = 3. It is easy to verify that

I(E2E1A2A1a0,−1;B3)(G1FE2E1A2A1a0)∼=I(E2E1A2A1a0,−1;B3)(k1h2H1G1FE2E1A2A1a0)∼=ζ,

I(E2E1A2A1a0,−1;B3)(E2E1e3E2E1A2A1a0) ∼= (ω∗ + (ω + ω∗) · ω).

(11.12)

Using Equations (11.12), Corollary 11.8, and Lemma 7.8, we obtain

H−1
l (E2E1A2A1a0) ∼= ω + 	(ζ, ζ, ω∗ + (ω + ω∗) · ω) + ω∗,

H−1
l (G1FE2E1A2A1a0) ∼= (ω + ω∗) · ω + 	(ζ, ζ, ω∗ + (ω + ω∗) · ω) + ω∗,

H−1
l (H1G1FE2E1A2A1a0) ∼= ω + 	(ζ, ζ, ω∗ + (ω + ω∗) · ω) + ω∗.

(11.13)

Plugging Equations (11.13) in Equation (11.11) while using Equation (2.1) we get

[A1a0, H1G1FE2E1A2A1a0] ∼= 3 + ω + 	(ζ, ζ, ω∗ + (ω + ω∗) · ω) + ω∗

+ 1 + (ω + ω∗) · ω + 	(ζ, ζ, ω∗ + (ω + ω∗) · ω) + ω∗

+ ω + 	(ζ, ζ, ω∗ + (ω + ω∗) · ω) + ω∗
∼= ω + 	(ζ, ζ, ω∗ + (ω + ω∗) · ω) + ω∗.

(11.14)

Plugging Equations (11.9), (11.10) and (11.14) in Equation (11.3), we obtain

H1
l (a0) ∼= ((ω +	(ζ)+ω∗) ·ω +ω∗) · 2+ω +	(ζ, ζ, ω∗ + (ω +ω∗) ·ω)+ω∗. (11.15)

Since Theorem 11.9 generalizes the backward direction [11, Theorem 12.15] and the latter
has a converse for linear orders in dLO11

fp , it is natural to ask if the converse to the former
is true. Proposition 11.12 proves a special case of the converse for which the next result is
essential.

Proposition 11.11 Suppose L(�= 0) ∈ dLOfp. Then

• if L ∈ dLO01
fp , then there exist L1 ∈ dLO11

fp and L2 ∈ dLO11
fp ∪ {0} such that L ∼=

L1 · ω∗ + L2;
• if L ∈ dLO10

fp , then there exist L2 ∈ dLO11
fp and L1 ∈ dLO11

fp ∪ {0} such that L ∼=
L1 + L2 · ω; and

• if L ∈ dLO00
fp , then there are L1, L3 ∈ dLO11

fp and L2 ∈ dLO11
fp ∪ {0} such that L ∼=

L1 · ω∗ + L2 + L3 · ω.

Proof We use the notations and results from [1] to prove the first result; the proofs of the rest
are similar.

Recall from [1, Proposition 5.6] that for any L ∈ LOfp there is (T , sT ) ∈ 3STω such that
LIN(T , sT ) ∼= L . Suppose for n ∈ N

+ the notation 0n denotes 00 · · · 0︸ ︷︷ ︸
n times

. It is easy to note that

L has a minimum if and only if whenever 0n ∈ T for some n ∈ N
+ then sT (0n) �= −.

Now if L ∈ dLO01
fp then choose the least N (T ) ∈ N

+ such that 0N (T ) ∈ T and sT (0N (T )) =
−. We use induction on N (T ) to obtain required L1 and L2.
Base step (N (T ) = 1): Let w be the width of (T , sT ). Then L ∼= L ′

1 · ω∗ + L ′
2, where

L ′
1 := LIN(T̂0, sT̂0) and L ′

2 := ∑
1≤k<w LIN(Tk, sTk ). If L

′
2 �= 0 then it has a maximum.
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If L ′
1 has a maximum then by discreteness of L , it also has a minimum. Furthermore, if

L ′
2 �= 0 then it also has a minimum. Thus irrespective of whether L ′

2 = 0 or not, we can
choose L1 := L ′

1 and L2 := L ′
2.

On the other hand, if L ′
2 �= 0 and L ′

1 does not have a maximum then let x ∈ L ′
1 be

any element. Since L ′
1 · ω∗ is discrete, x has an immediate successor, say y. Thus we can

write L ′
1 = L ′

11 + L ′
12, where x is the maximum of L ′

11 and y is the minimum of L ′
12.

Then L ∼= L ′
1 · ω∗ + L2 ∼= (L ′

12 + L ′
11) · ω∗ + (L ′

12 + L ′
2), so that L1 := L ′

12 + L ′
11 and

L2 := L ′
12 + L ′

2 are as required.
Inductive step (N (T ) > 1): Here sT (0N (T )−1)=+. Note that N (EXUDE((T , sT ); 0N (T )−1))

< N (T ). Moreover, recall from [1, Proposition 6.5] that LIN(EXUDE((T , sT ); 0N (T )−1)) ∼=
L . Thus the induction hypothesis applied to EXUDE((T , sT ); 0N (T )−1) produces the required
orders L1 and L2. �

Proposition 11.12 If L0 ∈ dLO10
fp , L1 ∈ dLO00

fp and L2 ∈ dLO01
fp then there is a non-

domestic string algebra �, a string x0 for � and a parity i ∈ {1,−1} such that (Hi
l (x0),<l)∼= L0 + 	(L1) + L2.

Proof Proposition 11.11 yields L00, L01, L10, L11, L12, L20, L21 ∈ dLO11
fp such that

L0 = L00 + L01 · ω, L1 = L11 · ω∗ + L10 + L12 · ω, and L2 = L21 · ω∗ + L20.

Consider the string algebra �′′′ from Fig. 5, where the forward direction of [11, Theo-
rem 12.15] allows us to choose quivers with relations (Q00, ρ00), (Q01, ρ01), (Q20, ρ20),
(Q21, ρ21), (Q10, ρ10), (Q10, ρ10), (Q11, ρ11) and (Q12, ρ12) for domestic gentle algebras
such that

H−1
l (a) ∼= L00, H−1

l (l1) ∼= L01,

H−1
l (q) ∼= L10, H1

l (R) ∼= L11, H−1
l (y) ∼= L12,

H1
l (B) ∼= L20, and H1

l ( j2) ∼= L21.

(11.16)

Since the algebras presented by (Qmn, ρmn) are gentle and ρ for �′′′ consists only of paths
of length 2, we conclude that �′′′ is a gentle algebra.

We will show for an appropriate j ∈ {−1, 1} that H−1
l (1(v0, j))

∼= L0 + 	(L1) + L2.
Since �′′′ is gentle, for any string u ∈ H−1

l (1(v0, j)) with |u| > 0, we have u ≡H α, where
α is the last syllable of u. Consequently, Hl(u) ∼= Hl(α).

Fig. 5 �′′′ with ρ = {db, ce, f1 f2, j1 f1, l1n1, n1n2,m1 j1, k2h2, l2m2, n2k2, tp, x1r , sx2, wt, vs, x3z}
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We have that B1 = {l1k1 J1} and B2 = {k2 J2L2} are minimal for (1(v0, j),−1). Choosing
B1 as minimal for (1(v0, j),−1), we have

H−1
l (1(v0, j))=[m−1(1(v0, j)), a]�[a, (1(v0, j))]∼=H−1

l (a)�[a, (1(v0, j))]∼= L00�[a, (1(v0, j))].
(11.17)

Since B1 is domestic, using Corollary 11.8, we have

cB1([a, 1(v0, j)]) =
∑

k∈ω

{lkB1(a)} +
∑

k∈ω∗
{l̄kB1(1v0, j )} ∼= ω + ω∗. (11.18)

Applying Lemma 7.8 to the above equation,

[a, 1(v0, j)] ∼=
∑

k∈ω,k �=0

H−1
l (lkB1(a)) +

∑

k∈ω∗,k �=0

H1
l (l̄kB1(1v0, j )). (11.19)

Using appropriate H -equivalences, we obtain

[a, 1(v0, j)] ∼= { j1 f1cBa} + H−1
l (l1) · ω + H1

l (k1) · ω∗ + H1
l (c) + H1

l (B) + {a}
∼= L01 · ω + Hl(N1) · ω∗ + H1

l (c) + L20 + 1.
(11.20)

To compute H1
l (c), note that B2 is minimal for (c, 1). Using appropriate H -equivalences, we

have

H1
l (c) ∼= {cBa} + H−1

l (l2) · ω + H1
l ( j2) · ω∗ ∼= 1 + Hl(n2) · ω + L21 · ω∗. (11.21)

Note that N1 ≡H n1 and therefore Hl(N1) ∼= Hl(n2) ∼= H−1
l (N1), which we now compute.

Let B ∈ QBa−1(1(v0, j)) be the only non-domestic element with Bal(B) = {ywV Z} and
Bal̄(B) = {qT sR}. Since B ∈ QBa is minimal for (N1,−1) and kB = 1 with z := sRqpN1

as a representative for the unique B-equivalence class, it is easy to verify that

I(N1,−1;B)(z) ∼= H1
l (R) · ω∗ + H−1

l (q) + H−1
l (y) · ω ∼= L11 · ω∗ + L10 + L12 · ω. (11.22)

Using Corollary 11.8 and Lemma 7.8, we get

Hl(N1) ∼= H−1
l (q) + H−1

l (y) · ω + 	(I(N1,−1;B)(z)) + H1
l (r) · ω∗

∼= L10 + L12 · ω + 	(L11 · ω∗ + L10 + L12 · ω) + L11 · ω∗.
(11.23)

Using the isomorphism Hl(N1) ∼= Hl(n1) and Equation 2.2 while plugging Equations
(11.20), (11.21) and (11.23) in Equation (11.17), we get

Hl(1(v0, j))
∼= L00 + L01 · ω + Hl(N1) · ω∗ + 1 + Hl(n2) · ω + L21 · ω∗ + L20 + 1
∼= L00 + L01 · ω + Hl(N1) · (ω∗ + ω) + L21 · ω∗ + L20

∼= L0+(L10+L12 · ω+	(L11 · ω∗+L10+L12 · ω)+L11 · ω∗) · (ω∗+ω)+L2

∼= L0 + 	(L11 · ω∗ + L10 + L12 · ω) + L2

∼= L0 + 	(L1) + L2.

(11.24)

This completes the proof. �
Question 11.13 Does there exist a non-domestic string algebra�, a string x0 for� and a parity
i ∈ {1,−1} such that (Hi

l (x0),<l) ∼= ω + 	((ω + ω∗) · ω∗ + ω,ω∗ + (ω + ω∗) · ω) + ω∗?

We believe that the answer to the above question is negative; however, currently, we do not
have any methods to show this. In fact, it is an interesting problem to determine the subclass
of dLO11

fd which consists only of the order types of hammocks for string algebras.
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12 Locating left N-strings in the Completion of a Hammock

This last section is devoted to computing the order type of the completion of the B-
condensation of a hammock and describing the location of some left N-strings therein. As a
consequence, we characterize (Proposition 12.7) some almost periodic leftN-strings in terms
of scattered subintervals of the condensations.

Given B ∈ QBa we identify two subsets of N-St(�) associated to B.

N-St(B) := {x ∈ N-St(�) | all but finitely many left substrings of x are in St(B)}.
N-St(B) := {x ∈ N-St(�) | all proper left substrings are in St(B)}.

Further set N-St(x0, i; B) := N-St(B) ∩ Ĥ i
l (x0) and N-St(x0, i; B) := N-St(B) ∩ Ĥ i

l (x0).
The following remarks are straightforward.

Remark 12.1 Note that N-St(B) ⊆ N-St(B), and therefore N-St(x0, i; B) ⊆ N-St(x0, i; B).
Moreover, it follows from Corollary 6.7 that N-St(x0, i; B) = N-St(x0, i; B) if and only if B
is minimal for (x0, i).

Remark 12.2 If x ∈ Hi
l (x0) \ {x0} and B ∈ QBa

j (x) then for any j ∈ {−1, 1}, we have

N-St(x, j; B) ⊆ N-St(x0, i; B) and N-St(x, j; B) ⊆ N-St(x0, i; B).

Nowwe show that every leftN-string in Ĥ i
l (x0) lies inN-St(x0, i; B) for someB ∈ QBa

i (x0).

Proposition 12.3 Given x ∈ Ĥ i
l (x0) \ Hi

l (x0), there exists z ∈ Hi
l (x0) with z �l x and

B ∈ QBa
i (x0) minimal for (z, θ(x | z)) such that x ∈ N-St(z, θ(x | z); B).

Proof Since x0 �l x and x is a left N-string, there are infinitely many strings v such that vx0
is a string. Therefore by the observation in the base case of the proof of Theorem 11.9, we
have QBa

i (x0) �= ∅.
It is trivial to note that if v �l v′ then QBa

j (v′) ⊆ QBa
θ(v′|v)

(v) for each j ∈ {−1, 1}.
For each n ∈ N, let xn �l x satisfy |xn | = |x0| + n. Therefore the sequence of sets Bn :=
QBa

θ(x|xn)(xn) satisfies Bn+1 ⊆ Bn for every n ∈ N. Since B0 is finite, thanks to Proposition
5.7, we get that there is N ∈ N such that Bn = BN for every n ≥ N . Choose a minimal
element B of BN with respect to �. This implies that B is minimal for (xN , θ(x | xN )) and
xn ∈ St(xN , θ(x | xN ); B) for every n ≥ N . Thus x ∈ N-St(xN , θ(x | xN ); B). Finally, since B
is minimal for (xN , θ(x | xN )), it follows from Remark 12.1 that x ∈ N-St(xN , θ(x | xN ); B).
�

Recall fromProposition 4.11 thatG(Hi
l (x0))

∼= Ĥ i
l (x0)\Hi

l (x0). Proposition 12.3 together
with Remark 12.2 allows us to describe the latter set in two possible ways.

Ĥ i
l (x0) \ Hi

l (x0) =
⋃

x∈Hi
l (x0)\{x0}, j∈{−1,1},

B is minimal for (x, j)
j=i if x=x0

N-St(x, j; B), (12.1)

Ĥ i
l (x0) \ Hi

l (x0) =
⊔

B∈QBa
i (x0)

N-St(x0, i; B). (12.2)

Equation (12.1) will be used to locate the position of a leftN-string in the extended hammock
Ĥ i
l (x0), whereas Equation (12.2) is a generalization of [7, Proposition 2] which states that

every left N-string in a domestic string algebra is almost periodic.
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As a consequence of Proposition 12.3, we show that each gap in the hammock Hi
l (x0)

corresponds to a gap in St(x, j; B) for some x ∈ Hi
l (x0), a parity j ∈ {−1, 1} and B ∈ QBa

minimal for (x, j).

Proposition 12.4 If (X , Y ) is a gap in Hi
l (x0) then there is a string x ∈ Hi

l (x0), a parity
j ∈ {−1, 1} and B ∈ QBa minimal for (x, j) such that (X ∩ St(x, j; B), Y ∩ St(x, j; B)) is a
gap in St(x, j; B).

Proof The gap (X , Y ) in Hi
l (x0) corresponds to a unique y ∈ Ĥ i

l (x0)\Hi
l (x0) by Proposition

4.11. Further Proposition 12.3 yields x ∈ Hi
l (x0) such that x �l y and Bminimal for (x, θ(y |

x)) and x ∈ N-St(x, θ(y | x); B).
Let y =: zx and j := θ(y | x). Since the set {v ∈ St(�) : δ(v) �= 0} is finite, there are

infinitelymany inverse aswell as direct syllables in z. It is easy to see that the set {vx ∈ St(�) :
vx �l y, θ(y | vx) = 1} is a cofinal subset of X ∩ St(x, j; B) having no maximum element
and the set {vx ∈ St(�) : vx �l y, θ(y | vx) = −1} is a coinitial subset of Y ∩ St(x, j; B)

having no minimum element. Therefore we conclude that (X ∩ St(x, j; B), Y ∩ St(x, j; B))

is a gap in St(x, j; B). �
Conversely we show that each gap of St(x, j; B) corresponds to a gap in Hi

l (x0), where
x ∈ Hi

l (x0), j ∈ {−1, 1} and B ∈ QBa
j (x), with the restriction that j = i if x = x0. Note that

we do not require B to be minimal for (x, j).

Proposition 12.5 Let x ∈ Hi
l (x0), j ∈ {−1, 1} and B ∈ QBa

i (x0). If (X , Y ) is a gap in
St(x, j; B) then there exists a unique X ′ ⊇ X and a unique Y ′ ⊇ Y such that (X ′, Y ′) is a
gap in Hi

l (x0).

Proof In view of Proposition 4.11, it suffices to show that there is a unique left N-string y

such that X ⊆ {v ∈ Hi
l (x0) | v <l y} and Y ⊆ {v ∈ Hi

l (x0) | y <l v}.
The technique to get a left N-string y by “filling up” the gap (X , Y ) in St(x0, i; B) is

similar to the proof of the converse part of Proposition 4.11, keeping in mind that St(x, j; B)

is closed under substrings in H j
l (x), thanks to Remark 6.3. The construction of y ensures that

y ∈ N-St(x, j; B).
If y1 and y2 are two distinct leftN-strings inN-St(x, j; B) then the string y3 := y1�l y2 lies

in St(x, j; B) and between y1 and y2 in (Ĥ i
l (x0),<l). Therefore y1 and y2 cannot correspond

to the same gap in St(x, j; B), thus proving the uniqueness of y. �
Note that the left N-string produced in Proposition 12.5 corresponding to a gap in

St(x0, i; B) lies in N-St(x0, i; B). Conversely, given x ∈ N-St(x0, i; B), the technique used
in Proposition 12.4 produces a gap in St(x0, i; B).

Corollary 12.6 Suppose B ∈ QBa
i (x0). Then C(St(x0, i; B)) ∼= N-St(x0, i; B)  St(x0, i; B). In

particular, if B is minimal for (x0, i) then C(St(x0, i; B)) ∼= N-St(x0, i; B)St(x0, i; B) thanks
to Remark 12.1.

As a consequence of the above corollary, the map cB : Hi
l (x0) → St(x0, i; B) can be extended

to a map Ĥ i
l (x0) → N-St(x0, i; B)  St(x0, i; B), which we again denote by cB, where cB(x)

is the longest left (possibly left N-) substring of x that lies in N-St(x0, i; B)  St(x0, i; B). As
a consequence, C(St(x0, i; B)) is a condensation of C(Hi

l (x0)) via the composition

C(Hi
l (x0))

∼=−→ Ĥ i
l (x0)

cB−→ N-St(x0, i; B)  St(x0, i; B)
∼=−→ C(St(x0, i; B)).
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Propositions 12.4 and 12.5 yield bijections

C(Hi
l (x0))

∼=
⋃

x∈Hi
l (x0), j∈{−1,1},
B∈QBa

j (x),
j=i if x=x0

C(St(x, j; B)) ∼=
⋃

x∈Hi
l (x0), j∈{−1,1},

B is minimal for (x, j),
j=i if x=x0

C(St(x, j; B)). (12.3)

Equation (12.3) shows that it is sufficient to study the order type of C(St(x, j; B)), where
B ∈ QBa minimal for (x, j) to understand the position of left N-strings (or equivalently
gaps in Hi

l (x0)) in the extended hammock Ĥ i
l (x0). Henceforth we study the order type of

C(St(x0, i; B)), where B ∈ QBa is minimal for (x0, i), and subsequently the positions of the
left N-strings in it.

The following result is useful in determining the position of an almost periodic leftN-string
of a certain form in the extended hammock Ĥ i

l (x0).

Proposition 12.7 SupposeB ∈ QBa
i (x0)andy ∈ N-St(x0, i; B). Then the following statements

are equivalent.

(1) There exists b ∈ Bal(B) and a string u such that y = ∞bux0.
(2) There exists x ∈ Hi

l (x0) with x <l y such that cB([x, y)) ∼= ω.

Proof By Proposition 12.3, there exists y �l w ∈ Hi
l (x0) such that B is minimal for (w, θ(y |

w)) and y ∈ N-St(w, θ(y | w); B).
(1) ⇒ (2). Since y = ∞bux0, there exists N ∈ N

+ such that w �l bNux0 �l y.
Since θ(b) = 1, Remark 9.6 along with the fact that b ∈ Bal(B) implies that for each
n ≥ N , lknB (bNux0) = bnux0 for some kn ∈ N. Recall the definition of CB stated before
Proposition 11.7. The preceding arguments in this proof imply CB(b

Nux0) = CB(b
nux0)

for every n ≥ N . Consequently, 〈1, lB〉(CB(b
Nux0)) = ∞bux0. Remark 7.5 gives that the

interval cB([CB(b
Nux0),

∞bux0))
∼= ω.

(2) ⇒ (1). Since x <l y, we have θ(y | x) = 1. Both w and x �l y are left substrings of y.
Choose z �l ywith θ(y | z) = 1 such that x�l y �l z andw �l z. Clearly, x <l z <l y. Since
y ∈ N-St(w, θ(y | w); B), we have z ∈ St(w, θ(y | w); B). Therefore the interval cB([z, y))
being an infinite suborder of cB([x, y)) is also isomorphic to ω. Note that lnB(z) <l y for every
n ∈ N, and therefore 〈1, lB〉(z) ≤l y. If 〈1, lB〉(z) �= y then the string z′ := 〈1, lB〉(z) �l y

satisfies 〈1, lB〉(z) <l z′ <l y, which is a contradiction to cB([z, y)) ∼= ω. Therefore y =
〈1, lB〉(z), which implies y = ∞bvz for some b ∈ Bal(B) and a string v by Proposition 9.9.
Since z ∈ Hi

l (x0), we have y = ∞bux0 for some string u. �
Now we compute C(St(x0, i; B)) when B ∈ QBa is minimal for (x0, i) and understand the

position of gaps and the form of the left N-strings corresponding to them.
When B is non-domestic and minimal for (x0, i), the order type of St(x0, i; B) was com-

puted in Corollary 11.8 to be O := ω + ζ · η + ω∗. Recall from Corollary 3.5 that

C(O) ∼= ω + 1 +
(

∑

r∈λ

Tr

)

+ 1 + ω∗, where Tr :=
{
1 + ζ + 1 if r ∈ η,

1 otherwise.

Recall from the end of § 3 that we partitioned the set G(O) as G(O) = G+(O)  G−(O) 
G0(O). Along similar lines, we partition the set N-St(x0, i; B) into three classes as follows.

N-Stl(x0, i; B) := {x ∈ N-St(x0, i; B) | x = ∞bux0 for some b ∈ Bal(B) and some string u},
N-Stl̄(x0, i; B) := {x ∈ N-St(x0, i; B) | x = ∞bux0 for some b ∈ Bal̄(B) and some string u},
N-St0(x0, i; B) := N-St(x0, i; B) \ (N-Stl(x0, i; B) ∪ N-Stl̄(x0, i; B)).
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The following is a straightforward consequence of Corollary 3.5, Proposition 12.7 and its
dual, and describes the positions of all left N-strings in C(St(x0, i; B)).

Proposition 12.8 Let B be non-domestic and minimal for (x0, i). Then using the notations
described above, the order isomorphism N-St(x0, i; B) ∪ St(x0, i; B) ∼= C(St(x0, i; B)) ∼=
C(O) restricts to the following order isomorphisms:

N-Stl(x0, i; B) ∼= G+(O), N-Stl̄(x0, i; B) ∼= G−(O) and N-St0(x0, i; B) ∼= G0(O).

Remark 12.9 When B ∈ QBa
i (x0) is domestic and b is the unique element of B, then y ∈

N-St(x0, i; B) if and only if there exists a string u such that y = ∞bux0.
Furthermore, if B is minimal for (x0, i), Proposition 6.7 gives that the set N-St(x0, i; B)

is finite. Corollary 12.6 gives that C(St(x0, i; B)) = N-St(x0, i; B)  St(x0, i; B), and hence
G(St(x0, i; B)) ∼= N-St(x0, i; B). In order to understand the location of finitely many elements
ofN-St(x0, i; B) in C(St(x0, i; B)), recall fromCorollary 11.8 that St(x0, i; B) ∼= (ω+ω∗)·nB.
The completion of the latter is (ω + 1+ ω∗) · nB (Example 3.2), which contains only finitely
many extra points than in St(x0, i; B).

Finally, Proposition 12.7 and its dual applied to the explicit form of the order type of
C(St(x0, i; B)) gives that each element y ∈ N-St(x0, i; B) is of the form 〈1, lB〉(z) for some
z ∈ St±1(x0, i; B) as well as of the form 〈1, lB〉(z′) for some z′ ∈ St±1(x0, i; B), which is in
agreement with the fact that Bal(B) = Bal̄(B) = {b} since B is domestic.
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