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Abstract
To every Hopf heap or quantum cotorsor of Grunspan a Hopf algebra of translations is
associated. This translation Hopf algebra acts on the Hopf heap making it a Hopf-Galois co-
object. Conversely, any Hopf-Galois co-object has the natural structure of a Hopf heap with
the translation Hopf algebra isomorphic to the acting Hopf algebra. It is then shown that this
assignment establishes an equivalence between categories of Hopf heaps and Hopf-Galois
co-objects.
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1 Introduction

Introduced in the 1920s by Prüfer [7] and Baer [1] heaps are simple algebraic systems
comprising a set X and a ternary operation [−,−,−] on X . The axioms (see Eq. 2.1 below)
ensure that any non-empty heap can be retracted to a family of isomorphic groups, one for
each element of X , and – conversely – any group can be given a heap operation by the
suitable combination of the group binary operation and the inverses. The latter assignment
constitutes a functor from the category of groups to that of heaps. In the opposite direction,
one can functorially assign to a non-empty heap a group of translations, denoted Tn(X), i.e.
all maps τ ba : X → X , c �→ [c, a, b], a, b ∈ X . The group Tn(X) acts on X freely and
transitively, thus making X into a Tn(X)-torsor. The functor (X , [−,−,−]) �→ (Tn(X), X)

establishes an equivalence between the category of heaps and torsors (see [2] for a recent
discussion).
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This note is concernedwith the linearisation of heaps proposed byGrunspan in [4], termed
quantum cotorsors there and referred to asHopf heaps in the present text. Adopting the results
of [10] and [4] (see also [12]) we assign to each Hopf heap C two Hopf algebras Tn(C) and
̂Tn(C) that act onC turning it into a bimodule coalgebra andmakeC into a bi-Galois co-object
(a notion dual to that of a bi-Galois object introduced in [8]). This assignment establishes an
equivalence between the categories of Hopf heaps and bi-Galois co-objects and also, dually
to [11] gives a construction and thus the proof of the existence of the Grunspan map, which
was assumed as a part of the original definition of a quantum cotorsor.

The main novelty of this paper does not reside in bringing the results of Grunspan [4]
and Schauenburg [10] and [11] to the dual situation, which rightly in our opinion might
be considered as a formulaic exercise, but rather in giving an alternative description of the
correspondence between bi-Galois co-objects and Hopf heaps which does not seem to be
available in the original setup of quantum torsors. This characterisation in terms of linear
endomorphisms of C is similar to the functor assigning the group of translations to a heap
evoked earlier, and thus closer to that encountered in the classical geometric or set-theoretic
set-up.

Wework over a fieldF. All coalgebras, typically denoted byC (or H if a Hopf algebra) are
over F, coassociative, counital and of dimension at least one. The coproduct in C is denoted
by � and counit by ε. We use the Sweedler notation to denote the coproducts in the form
�(c) = ∑

c
(1) ⊗ c

(2) , (�⊗id) ◦ �(c) = ∑

c(1)⊗c(2)⊗c(3), etc. The coalgebra co-opposite
toC , i.e. with the comultiplication c �→ ∑

c
(2) ⊗c

(1) is denoted byC
co. The set of group-like

elements ofC is recorded as G(C). All algebras are associative and with identity. The algebra
opposite to A is denoted by Aop. In any Hopf algebra S stands for the antipode.

2 Hopf Heaps and Translation Hopf Algebras

A heap is a set X together with a ternary operation [−,−,−] : X3 → X such that, for all
x1, . . . , x5 ∈ X ,

[x1, x2, [x3, x4, x5]] = [[x1, x2, x3], x4, x5], [x1, x1, x2] = x2, [x1, x2, x2] = x1. (2.1)

The category of sets is a monoidal category with the monoidal product given by the
Cartesian product and the singleton set as the monoidal unit. Every set is then a comonoid
(coalgebra) in the uniquewaywith the comultiplication givenby the diagonalmap x �→ (x, x)
and the counit the uniquemap from X to the (fixed) singleton set. Both thesemaps clearly fea-
ture in the second and third (2.1). Extending the definition of a heap to the monoidal category
of vector spaces one thus needs to consider a general coassociative and counital coalgebra
as the underlying object and use comultiplication and counit as appropriate replacements in
Eq. 2.1. This leads to the following definition which is dual to that of a quantum torsor in [4]
or quantum heap in [14].

Definition 2.1 A Hopf heap is a coalgebra C together with a coalgebra map χ : C ⊗ Cco ⊗
C → C, a ⊗ b ⊗ c �→ [a, b, c], such that, for all a, b, c, d, e ∈ C ,

[[a, b, c], d, e] = [a, b, [c, d, e]], (2.2a)

∑

[c(1), c(2), a] =
∑

[a, c(1), c(2)] = ε(c)a. (2.2b)
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AmorphismofHopf heaps (C, χC ) and (D, χD) is a coalgebramap f : C → D rendering
commutative the following diagram

C⊗Cco⊗C
χC

f ⊗ f ⊗ f

C

f

D⊗Dco⊗D
χD

D;

(2.3)

on elements,
f ([a, b, c]) = [ f (a), f (b), f (c)], for all a, b, c ∈ C . (2.4)

A Grunspan map for a Hopf heap (C, χC ) is a coalgebra homomorphism ϑ : C → C ,
such that, for all a, b, c, d, e ∈ C ,

[[a, b, ϑ(c)], d, e] = [a, [d, c, b], e]. (2.5)

The category of Hopf heaps (over the fixed field F) is denoted by HH.

Remark 2.2 One can easily calculate that, if it exists, the Grunspan map for a Hopf heap
(C, χC ) is given by the formula

ϑ : C → C, c �→
∑

[c(1), [c(4), c(3), c(2)], c(5)], (2.6)

and thus necessarily is unique.
In fact, parallel to the situation described in [11], the forthcoming results will show that

a Hopf heap always admits the (unique) Grunspan map (see Corollary 3.9).
The formula Eq. 2.6 together with the coalgebra map property of homomorphisms of

Hopf heaps and Eq. 2.4 ensure that homomorphisms commute with Grunspan maps, that is,
if f : C → D is a homomorphism of Hopf heaps with respective Grunspan maps ϑC and
ϑD , then

f ◦ ϑC = ϑD ◦ f . (2.7)

Example 2.3 If H is a Hopf algebra, then H is a Hopf heap with the operation [a, b, c] =
aS(b)c. The Grunspan map is then the square of the antipode, i.e. ϑ = S ◦ S.

Conversely, given a Hopf heap (C, χ), for any x ∈ G(C), the coalgebra C is made into a
Hopf algebra with identity x , and multiplication and antipode,

ab = [a, x, b], S(a) = [x, a, x].
This Hopf algebra is denoted by Hx (C). One easily checks that the Hopf heap associated

to the Hopf algebra Hx (C) is equal to C .
These examples mimic the standard correspondence between groups and heaps.

The key object analysed in this paper is introduced in the following definition.

Definition 2.4 Let (C, χ) be a Hopf heap. For all a, b ∈ C , the linear map

τ ba : C → C, c �→ χ(c⊗a⊗b) = [c, a, b],
is called a right (a, b)-translation. The space spanned by all right (a, b)-translations is
denoted by Tn(C), that is,

Tn(C) := F〈τ ba | a, b ∈ C〉.
Symmetrically, linear maps

σ a
b : C → C, c �→ χ(a⊗b⊗c) = [a, b, c],
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are called left (a, b)-translations and the space spanned by all of them is denoted by ̂Tn(C).

In what follows we will concentrate on right translations, the corresponding results for left
translations (of which wemention briefly in summary) are obtained by symmetric arguments.
The following lemma gathers basic properties of (a, b)-translations.

Lemma 2.5 Let (C, χ) be a Hopf heap. Then, for all a, b, c, d ∈ C,

�(τ ba (c)) =
∑

τ
b(1)
a(2) (c(1))⊗τ

b(2)
a(1) (c(2)), (2.8a)

∑

τ
[a(2),b,c]
a(1) = ε(a)τ cb , (2.8b)

∑

τ
a(2)
a(1) = ε(a)id, (2.8c)

τ dc ◦ τ ba = τ [b,c,d]
a . (2.8d)

In addition if the Grunspan map ϑ exists, then
∑

τ
[ϑ(a(1)),b,c]
a(2) = ε(a)τ cb , (2.9a)

∑

τ
ϑ(a(1))
a(2) = ε(a)id, (2.9b)

τ dc ◦ τϑ(b)
a = τ d[c,b,a]. (2.9c)

Proof Equation 2.8a follows immediately from the fact that χ is a coalgebra map. To prove
(2.8b), compute

∑

τ
[a(2),b,c]
a(1) (d) =

∑

[d, a(1), [a(2), b, c]]
=

∑

[[d, a(1), a(2)], b, c] = ε(a)[d, b, c] = ε(a)τ cb (d),

by Eq. 2.2. In addition adopting (2.5) we find
∑

τ
[ϑ(a(1)),b,c]
a(2) (d) =

∑

[d, a(2), [ϑ(a(1)), b, c]] =
∑

[[d, a(2), ϑ(a(1))], b, c]
=

∑

[d, [b, a(1), a(2)], c] = ε(a)[d, b, c] = ε(a)τ cb (d),

which proves (2.9a).
Equations 2.8c and 2.9b follow from Eqs. 2.8b and 2.9a, since, first by Eq. 2.2b

∑

τ
a(2)
a(1) = ε(a)id,

and thus, second,

ε(a)id =
∑

τ
a(2)
a(1) =

∑

τ
[a(2),a(3),a(4)]
a(1) =

∑

τ
[ϑ(a(1)),a(3),a(4)]
a(2) =

∑

τ
ϑ(a(1))
a(2) ,

by Eqs. 2.8b and 2.9a, and 2.2b again.
Finally, Eqs. 2.8d and 2.9c follow by Eqs. 2.2a and 2.5. 	

Equation 2.8d in Lemma 2.5 implies in particular that Tn(C) is closed under the compo-

sition. Furthermore, since any non-zero coalgebra over a field has at least one element with
a non-zero counit, Eq. 2.8c shows that id ∈ Tn(C).
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Theorem 2.6 Let (C, χ) be a Hopf heap.

(1) The space Tn(C) is a bialgebra with multiplication given by the opposite composition,
and comultiplication � and counit ε:

�(τ ba ) =
∑

τ
b(1)
a(2) ⊗τ

b(2)
a(1) , ε(τ ba ) = ε(a)ε(b), (2.10)

for all a, b ∈ C.
(2) If (C, χ) admits the Grunspan map ϑ , then Tn(C) is a Hopf algebra with the antipode

S(τ ba ) = τ
ϑ(a)
b , (2.11)

for all a, b ∈ C.
(3) If f : C → D is a morphism of Hopf heaps, then the function

Tn( f ) : Tn(C) → Tn(D), τ ba �→ τ
f (b)
f (a) , (2.12)

is a bialgebra map, hence a Hopf algebra homomorphism whenever the Grunspan map
exists.

(4) The assignment C �→ Tn(C), f �→ Tn( f ) defines a functor from the category of Hopf
heaps (with Grunspan maps) to the category of bialgebras (resp. Hopf algebras).

Proof (1) In view of the composition property (2.8d), the multiplication in Tn(C), denoted
by juxtaposition comes out as

τ ba τ dc = τ [b,c,d]
a , for all a, b, c, d ∈ C . (2.13)

Note that τ ba = 0 if and only if, for all c ∈ C , [c, a, b] = 0. Hence in this case, for all
c, d ∈ C ,

�(τ ba )(d ⊗ c) =
∑

[d, a(2), b(1)] ⊗ [c, a(1), b(2)]
=

∑

[dε(c(1)), a(2), b(1)] ⊗ [c(2), a(1), b(2)]
=

∑

[[d, c(1), c(2)], a(2), b(1)] ⊗ [c(3), a(1), b(2)]
=

∑

[d, c(1), [c(2), a(2), b(1)]] ⊗ [c(3), a(1), b(2)]
=

∑

[d, c(1), [c(2), a, b](1)] ⊗ [c(2), a, b](2) = 0,

where the third equality follows by Eq. 2.2a, the fourth one by Eq. 2.2b and the penultimate
equality by the coalgebra map property of the Hopf heap structure map χ . Combined with
the linearity of all maps involved, this implies that if

∑

i τ
bi
ai = 0, then�(

∑

i τ
bi
ai ) = 0, hence

� is a well-defined linear map.
The coassociativity and comultiplicativity of� and the counit property follow immediately

from Eq. 2.10 and the fact that χ is a counital coalgebra homomorphism. The unitality of �

is a consequence of Eq. 2.8c.
(2) Assume that the Grunspan map ϑ exists. Note that if τ ba (c) = 0, for all c ∈ C , then,

using (2.2b) and (2.5),

τ
ϑ(a)
b (c) = [c, b, ϑ(a)] =

∑

[[c(1), b, ϑ(a)], c(2), c(3)]
=

∑

[c(1), [c(2), a, b], c(3)] =
∑

[c(1), τ
b
a (c(2)), c(3)] = 0.

By linearity, if
∑

i τ
bi
ai = 0 also S(

∑

i τ
bi
ai ) = 0, and hence S is a well-defined linear map.
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Next we can use (2.9c) and (2.9b) to obtain
∑

S(τ
b(1)
a(2) )τ

b(2)
a(1) =

∑

τ
b(2)
a(1) ◦ τ

ϑ(a(2))

b(1)
=

∑

τ
b(2)
[a(1),a(2),b(1)] = ε(a)ε(b)id

and
∑

τ
b(1)
a(2) S(τ

b(2)
a(1) ) =

∑

τ
ϑ(a(1))

b(2)
◦ τ

b(1)
a(2) =

∑

τ
[b(1),b(2),ϑ(a(1))]
a(2) = ε(a)ε(b)id.

Therefore, S is the antipode and Tn(C) is a Hopf algebra as stated.
(3) Since f is a coalgebra map,

�
(

Tn( f )(τ ba )
)

=
∑

τ
f (b)(1)
f (a)(2)

⊗τ
f (b)(2)
f (a)(1)

=
∑

τ
f (b(1))

f (a(2))
⊗τ

f (b(2))

f (a(1))
= (Tn( f )⊗Tn( f )) ◦ �

(

τ ba

)

,

and
ε(Tn( f )(τ ba )) = ε( f (a))ε( f (b)) = ε(a)ε(b) = ε(τ ba ).

Hence Tn( f ) is a coalgebra map. Again, by the coalgebra map property of f , for all a ∈ C ,

Tn( f )(ε(a)id) =
∑

Tn( f )
(

τ
a(2)
a(1)

)

= ε(a)id,

so, Tn( f )(id) = id. Combination of Eqs. 2.13 with 2.4 yields the multiplicativity of Tn( f ).
Explicitly,

Tn( f )(τ ba τ dc ) = Tn( f )(τ [b,c,d]
a ) = τ

f ([b,c,d])
f (a)

= τ
[ f (b), f (c), f (d)]
f (a) = τ

f (b)
f (a) τ

f (d)

f (c) = Tn( f )(τ ba )Tn( f )(τ dc ).

Hence Tn( f ) is a bialgebra homomorphism (and hence also a Hopf algebra homomprphism
in the case in which the Grunspan map exists).

(4) The fact that Tn(id) = id and the preservation of composition of morphisms are
obvious. Hence Tn is a functor as claimed. 	

Remark 2.7 By symmetric arguments, the space ̂Tn(C) of left (a, b)-translations of a Hopf
heap C with the Grunspan map ϑ is a Hopf algebra with operations, for all σ a

b , σ c
d ∈ ̂Tn(C),

σ a
b σ c

d = σ a
b ◦ σ c

d = σ
[a,b,c]
d , (2.14a)

�(σ a
b ) =

∑

σ
a(1)
b(2)

⊗σ
a(2)
b(1)

, ε(σ a
b ) = ε(a)ε(b), S(σ a

b ) = σϑ(b)
a . (2.14b)

The obvious coalgebra isomorphism ̂Tn(C) → Tn(C), σ a
b �→ τ ab is an isomorphism of

Hopf algebras ̂Tn(C)
op ∼= Tn(C) in the abelian Hopf heap case only, that is if and only if,

for all a, b, c ∈ C , [a, b, c] = [c, b, a]. Notwithstanding, similarly to the right translations
case, the assignment

̂Tn(−) : C �→ ̂Tn(C),

(

C
f

D

)

�→
(

̂Tn(C)
̂Tn( f )

̂Tn(D) σ a
b �→ σ

f (a)

f (b)

)

,

is a functor from the category of Hopf heaps (with Grunspan maps) to the category of
bialgebras (resp. Hopf algebras).

Definition 2.8 For a Hopf heap (C, χ), Tn(C) is called the right translation Hopf algebra
and ̂Tn(C) is called the left translation Hopf algebra.
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Remark 2.9 A priori Tn(C) and ̂Tn(C) are simply bialgebras, however, in view of the forth-
coming Corollary 3.4, a posteriori both are Hopf algebras, thus justifying the terminology.

Proposition 2.10 Let (C, χ) be a Hopf heap. Then, for all x ∈ G(C),

Hx (C) ∼= Tn(C) ∼= ̂Tn(C),

as bialgebras. Consequently Tn(C) and ̂Tn(C) are Hopf algebras.

Proof Let us consider the map

ϕ : Hx (C) → Tn(C), a �→ τ ax . (2.15)

The map is a coalgebra homomorphism, since x is a group-like element. Using Eqs. 2.13 and
2.8c one immediately concludes that ϕ is an algebra homomorphism. Equation 2.8b together
with the definitions of the antipode in Hx (C) and the right translation Hopf algebra Tn(C)

allow one to verify, for all a ∈ C

ϕ(S(a)) = τ S(a)
x = τ [x,a,x]

x = τ x
a .

In the opposite direction we define the map

ϕ−1 : Tn(C) → Hx (C), τ ba �→ [x, a, b].
Then, for all a, b ∈ C ,

ϕ ◦ ϕ−1(τ ba ) = τ [x,a,b]
x = τ x

x τ ba = ε(x)τ ba = τ ba ,

and
ϕ−1 ◦ ϕ(a) = [x, x, a] = ε(x)a = a.

Therefore, ϕ−1 is the inverse of the bialgebra algebra map ϕ.
The isomorphism Hx (C) ∼= ̂Tn(C) is given by a �→ σ a

x .
For the last assertion, since Hx (C) is a Hopf algebra, its antipode S can be exported to

Tn(C) and ̂Tn(C) via the respective bialgebra isomorphism. For example the antipode of
Tn(C) comes out as

S(τ ba ) = ϕ ◦ S ◦ ϕ−1(τ ba ) = τ x
[x,a,b],

for all a, b ∈ C . 	


3 Hopf Heaps and Hopf-Galois Co-objects

Let H be a Hopf algebra. Recall that a coalgebra C is a right H-module coalgebra if C is a
right H -module, such that, for all h ∈ H , c ∈ C ,

�(c · h) =
∑

c(1) · h(1)⊗c(2) · h(2), ε(c · h) = ε(c)ε(h), (3.1)

where the dot in-between elements denotes the action of H onC . A left H -module coalgebra
is defined symmetrically. Similarly to Hopf-Galois objects and bi-Galois objects defined as
Hopf-Galois extensions [5], respectively bi-Galois extensions [8], with trivial coinvariants
Hopf-Galois co-objects are defined as Hopf-Galois co-extensions [13, Section 4] with trivial
invariants.
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Definition 3.1 A right H -module coalgebra C is a right Hopf-Galois co-object if

(a) ker ε = F〈c · h − cε(h) | c ∈ C, h ∈ H〉,
(b) the canonical map

can : C⊗H → C⊗C, c⊗h �→
∑

c(1)⊗c(2) · h, (3.2)

is an isomorphism.

A left Hopf-Galois co-object is defined symmetrically. A coalgebra C that is both a right and
left Hopf-Galois co-object of Hopf algebras whose actions on C commute (that is, C is a
bimodule coalgebra) is called a bi-Galois co-object.

We note in passing that the notion of a bi-Galois co-object is secondary to that of a
Hopf-Galois co-object, since, as shown in the dual set-up in [8], every (right) Hopf-Galois
co-object yields aHopf algebramaking it into a bi-Galois co-object. This construction follows
the Ehresmann association of a structural group or gauge groupoid to a principal bundle (see
[6] for overview, historic background and references), and hence the resulting Hopf algebra
is termed an Ehresmann-Schauneburg Hopf algebra. We outline this construction presently.

Let C be a right H -Hopf-Galois co-object with the canonical isomorphism can. The
cotranslation map τ : C⊗C → H is defined by the formula

τ = (ε⊗id) ◦ can−1. (3.3)

The following properties of the cotranslation map (3.3) (see e.g. [3, Section 34.17]) play a
key role in what follows. For all a, b ∈ C , h ∈ H ,

ε(τ (a⊗b)) = ε(a)ε(b), (3.4a)
∑

τ(a(1)⊗a(2)) = ε(a)1H , (3.4b)

τ(a⊗b · h) = τ(a⊗b)h, (3.4c)
∑

a(1) · τ(a(2)⊗b) = ε(a)b, (3.4d)

∑

τ(a⊗b)(1)⊗τ(a⊗b)(2) =
∑

τ(a(2)⊗b(1))⊗
∑

τ(a(1)⊗b(2)). (3.4e)

Put together (3.4a) and (3.4e) mean that τ is a coalgebra homomorphism from Cco⊗C to H .
The subspace

I = F〈a⊗bε(c) −
∑

a · τ(b⊗c(1))⊗c(2) | a, b, c ∈ C〉 ⊆ C⊗C, (3.5)

is a coideal in C⊗Cco. The coalgebra E(C, H) := C⊗Cco/I is a Hopf algebra with identity,
multiplication, and antipode

1 =
∑

e(1)⊗e(2), a⊗b c⊗d = a · τ(b⊗c)⊗d, S(a⊗b) =
∑

e(1)⊗a · τ(b⊗e(2)),

(3.6)
where e ∈ C is any element such that ε(e) = 1 and a⊗b indicates the class of a⊗b ∈ C⊗C
in E(C, H).

Similarly to [9] one obtains

Lemma 3.2 Let H be a bialgebra and C a right H-module colagebra satisfying conditions
(a) and (b) of Definition 3.1. Then H is a Hopf algebra.
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Proof The proof dualises arguments of [9]. Let e ∈ C be such that ε(e) = 1. Define

S : H → H , h �→
∑

τ(e(1) · h ⊗ e(2)), (3.7)

where τ is the cotranslation map. Then,
∑

S(h(1))h(2) =
∑

τ(e(1) · h(1) ⊗ e(2))h(2) =
∑

τ(e(1) · h(1) ⊗ e(2) · h(2)) = ε(h)1H ,

by Eqs. 3.4c and 3.4b combined with Eq. 3.1.
The equality

∑

h(1)S(h(2)) = ε(h)1H is obtained by observing that the application of
the isomorphism 	 : Hom(C ⊗ H , H) → Hom(C ⊗ H ,C), 	( f )(c⊗h) = ∑

c(1) ·
f (c(2)⊗h), to the maps

f (c⊗h) = ε(c)ε(h)1H & g(c⊗h) =
∑

h(1)τ (c(1) · h(2)⊗c(2)),

yields an equality. We only note in passing that the inverse of 	 is given by

	−1( f )(c⊗h) =
∑

τ(c(1)⊗ f (c(2)⊗h)),

for all f ∈ Hom(C ⊗ H ,C). 	

Theorem 3.3 Let (C, χ) be a Hopf heap. Then:

(1) C is a right Hopf-Galois co-object over the right translation Hopf algebra Tn(C) with
the action, for all τ ba ∈ Tn(C) and c ∈ C,

c · τ ba = τ ba (c) = [c, a, b].
Furthermore, E(C,Tn(C)) ∼= ̂Tn(C).

(2) C is a left Hopf-Galois co-object over the left translation Hopf algebra ̂Tn(C) with the
action, for all σ a

b ∈ ̂Tn(C) and c ∈ C,

σ a
b · c = σ a

b (c) = [a, b, c].
(3) C is a (̂Tn(C),Tn(C))-bi-Galois co-object.

Proof Since the action of Tn(C) on C is given by evaluation and the multiplication in Tn(C)

is given by the opposite composition C is a right Tn(C)-module. Conditions (3.1) follow by
the fact that the heap operation is a coalgebra map. Specifically and in particular, the first of
Eq. 3.1 is an immediate consequence of Eq. 2.8a and the definition of the comultiplication
in Tn(C).

It is obvious that F〈c · τ ba − cε(τ ba ) | a, b, c ∈ C〉 ⊆ ker ε. Conversely, if x ∈ ker ε, then,
for all a ∈ C such that ε(a) = 1,

x = ε(a)x − ε(x)a =
∑

(

ε(x (2))ε(a)x (1) − [x (1), x (2), a])

=
∑

(

ε(τ ax (2)
)x (1) − x (1) · τ ax (2)

)

,

which proves the opposite inclusion.
The canonical map (3.2) is a linear isomorphism with the inverse

can−1 : C⊗C → C⊗Tn(C), a⊗b �→
∑

a(1)⊗τ ba(2)
. (3.8)

Indeed, in one direction

can ◦ can−1(a⊗b) =
∑

a(1)⊗τ ba(3)
(a(2)) =

∑

a(1)⊗[a(2), a(3), b] = a⊗b,
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by Eq. 2.2b, while in the other

can−1 ◦ can(c⊗τ ba ) =
∑

c(1)⊗τ
τ ba (c(3))
c(2) =

∑

c(1)⊗τ
[c(3),a,b]
c(2)

=
∑

c(1)⊗ε(c(2))τ
b
a = c⊗τ ba ,

where the penultimate equality follows by Eq. 2.8b. Therefore, C is a right Hopf-Galois
co-object over Tn(C).

In view of the form of the inverse of the canonical map (3.8), the cotranslation map comes
out as

τ : C⊗C → Tn(C), a⊗b �→ τ ba . (3.9)

Thus the coideal I generating the Ehresmann-Schauenburg Hopf algebra E(C,Tn(C)) is

I = F〈a⊗bε(c) −
∑

[a, b, c(1)]⊗c(2) | a, b, c ∈ C〉.
Consider the linear map

ϕ : E(C,Tn(C)) → ̂Tn(C), a⊗b �→ σ a
b . (3.10)

The map ϕ is well-defined, since, similarly to Eq. 2.8b one easily checks that, for all a, b, c ∈
C ,

∑

σ
[a,b,c(1)]
c(2) = ε(c)σ a

b , (3.11)

which immediately implies that for all
∑

i ai⊗bi ∈ I ,
∑

i σ
ai
bi

= 0.

Clearly, ϕ is a coalgebra map. By Eq. 3.11, for all a ∈ C ,
∑

σ
a(1)
a(2) = ε(a)id, hence ϕ is

unital. It is also multiplicative, since

ϕ
(

a⊗b c⊗d
) = σ

[a,b,c]
d = σ a

b σ c
d = ϕ

(

a⊗b
)

ϕ
(

c⊗d
)

,

by Eqs. 2.14a, 3.6 and 3.9.
By construction, ϕ is onto. It is also a monomorphism since

∑

i ai⊗bi ∈ ker ϕ if and only
if, for all c ∈ C ,

∑

i [ai , bi , c] = 0. In particular, for any c ∈ ε−1(1),
∑

i

ai⊗bi =
∑

i

ai⊗biε(c) =
∑

i

[ai , bi , c(1)]⊗c(2) = 0,

as required.
In conclusion, ϕ is an isomorphism of bialgebras as required.
Statement (2) is proven by symmetric arguments or by invoking the fact that any right

H -Hopf-Galois co-object C is an (E(C, H), H) bi-Galois co-object and using assertion (1).
By the same token the statement (3) follows.We note only that the (̂Tn(C),Tn(C))-bimodule
property follows by Eq. 2.2a, as for all a, b, c, d, x ∈ C

(σ a
b · x) · τ dc = [[a, b, x], c, d] = [a, b, [x, c, d]] = σ a

b · (x · τ dc ).

This completes the proof of the theorem. 	

Corollary 3.4 Both Tn(C) and ̂Tn(C) are Hopf algebras.

Proof This follows immediately from Theorem 3.3 and Lemma 3.2. We only note that in
view of Eq. 3.7, the antipode in Tn(C) comes out as

S(τ ba ) =
∑

τ
e(2)
[e(1),a,b], (3.12)
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for all a, b ∈ C , and e ∈ C such that ε(e) = 1.
Since the bialgebra ̂Tn(C) is isomorphic to the Hopf algebra E(C,Tn(C)), it inherits an

antipode via the isomorphism, thus becoming a Hopf algebra. 	

Theorem 3.5 Let H be a Hopf algebra and C be a right H-Hopf-Galois co-object. Then C
is a Hopf heap with the Grunspan map by the operation

χ(C,H) : C⊗Cco⊗C → C, a⊗b⊗c �→ a · τ(b⊗c), (3.13)

where τ is the cotranslation map (3.3). Furthermore, H ∼= Tn(C) as Hopf algebras.

Proof The theorem is a consequence of Theorem 3.3 and the results of Grunspan [4] and
Schauenburg [10, 11], but it can also be proven directly.

Property (3.4c) ensures that the condition (2.2a) for the operation (3.13) holds.
Equations 3.4b and 3.4d yield the satisfaction of Eq. 2.2b. The map χ(C,H) is counital by
Eq. 3.4a. That it is also comultiplicative follows by the equality, for all a, b ∈ C ,

�(τ(a⊗b)) =
∑

τ(a(2)⊗b(1))⊗τ(a(1)⊗b(2)). (3.14)

The proof of Eq. 3.14 requires a bit of algebraic gymnastics. First, let us define the
following map, which is a right C-coaction because C is a right H -module coalgebra,


 : C⊗H → C⊗H⊗C, a⊗h �→
∑

a(1)⊗h(1)⊗a(2) · h(2).

Then,
(id⊗�) ◦ can = (can⊗id) ◦ 
,

and so we obtain
(can−1⊗id) ◦ (id⊗�) = 
 ◦ can−1. (3.15)

Next, observe that, for all a, b ∈ C ,

can−1(a⊗b) =
∑

a(1)⊗τ(a(2)⊗b). (3.16)

Combining Eqs. 3.15 with 3.16 we arrive at
∑

τ(a(2)⊗b(1))⊗a(1)⊗b(2) =
∑

τ(a(3)⊗b)(1)⊗a(1)⊗a(2) · τ(a(3)⊗b)(2)

=
∑

τ(a(2)⊗b)(1)⊗can
(

a(1)⊗τ(a(2)⊗b)(2)
)

.

Equation 3.14 now follows by appying id⊗τ to this equality.
Let us define the linear map

ϕ(C,H) : Tn(C) → H , τ ba �→ τ(a⊗b).

Note that thismap is well-defined, since τ ba (c) = 0, for all c ∈ C if and only if 0 = [c, a, b] =
c · τ(a⊗b), for all c ∈ C . In particular, for all c ∈ C ,

0 =
∑

c(1)⊗c(2) · τ(a⊗b) = can(c⊗τ(a⊗b)),

which implies that τ(a⊗b) = 0 for the canonical map is an isomorphism.
The map ϕ(C,H) has the inverse,

ϕ−1
(C,H) : H → Tn(C), h �→ τ

e(2)·h
e(1) ,
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where e is any element of C such that ε(e) = 1. Indeed, that ϕ(C,H) ◦ ϕ−1
(C,H) = id follows

by Eqs. 3.4c and 3.4b, while the other identity ϕ−1
(C,H) ◦ ϕ(C,H) = id is a consequence of

Eq. 2.8b in Lemma 2.5.
The multiplicativity of ϕ(C,H) follows by Eq. 3.4c, since

ϕ(C,H)

(

τ ba τ dc

)

= ϕ(C,H)

(

τ [b,c,d]
a

)

= τ(a⊗b · τ(c⊗d)) = τ(a⊗b)τ (c⊗d).

The unitality of ϕ is a consequence of Eq. 2.8c in Lemma 2.5 and Eq. 3.4b. Finally, ϕ(C,H) is
a coalgebra map by Eqs. 3.14 (comultiplicativity) and (3.4a) (counitality). Therefore, ϕ(C,H)

is an isomorphism of Hopf algebras as required.
It remains to prove the existence of the Grunspan map. Before we work out the necessary

form of this map from Eq. 2.6, we prove the following equality, satisfied by the cotranslation
map:

τ(a · τ(b⊗c)⊗d) = Sτ(b⊗c)τ (a⊗d), (3.17)

for all a, b, c, d ∈ C . First compute, for all a ∈ C and g, h ∈ H ,
∑

can(a · g(1)⊗S(g(2))h) =
∑

a(1) · g(1)⊗a(2) · g(2)S(g(3))h =
∑

a(1) · g⊗a(2) · h.

Applying τ to both sides of this we obtain

ε(a)S(g)h =
∑

τ(a(1) · g⊗a(2) · h).

Setting g = τ(b⊗c) yields

ε(a)Sτ(b⊗c)h =
∑

τ(a(1) · τ(b⊗c)⊗a(2) · h).

Therefore, aplying this equality to
∑

a(1)⊗τ(a(2)⊗d) instead of a ⊗ h, we conclude

Sτ(b⊗c)τ (a⊗d) =
∑

ε(a(1))Sτ(b⊗c)τ (a(2)⊗d)

=
∑

τ(a(1) · τ(b⊗c)⊗a(2) · τ(a(3)⊗d))

= τ(a · τ(b⊗c)⊗d),

where the last equality follows by Eq. 3.4d.
With Eqs. 3.17, 2.6 and 3.13 at hand we can expect the following form for the Grunspan

map:
ϑ : C → C, c �→

∑

c(1) · Sτ(c(3)⊗c(2)). (3.18)

Now it remains to check whether the property Eq. 2.5 holds.
We start by proving yet another property of the cotranslation map, namely that, for all

b, c ∈ C ,
∑

τ(b⊗c(1))Sτ(c(3)⊗c(2)) = Sτ(c⊗b). (3.19)

To this end, let us consider the map

ψ : C⊗C⊗C → H , b⊗c⊗a �→
∑

τ(b⊗a(1))Sτ(c⊗a(2)). (3.20)

Then, for all h ∈ H ,

ψ(b⊗c⊗a · h) =
∑

τ(b⊗a(1))h(1)Sh(2)Sτ(c⊗a(2)) = ε(h)ψ(b⊗c⊗a),
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by the fact thatC is a right H -module coalgebra and the property (3.4c). In view of condition
(a) in Definition 3.1, there exists map ψ̄ : C⊗C → H , such that, for all a, b, c ∈ C ,

ψ̄(b⊗cε(a)) = ψ(b⊗c⊗a) =
∑

τ(b⊗a(1))Sτ(c⊗a(2)).

In particular,

ψ̄(b⊗c) =
∑

ψ̄(b⊗c(2)ε(c(1))) =
∑

τ(b⊗c(1))Sτ(c(3)⊗c(2))

and

ψ̄(b⊗c) =
∑

ψ̄(b(1)⊗cε(b(2))) =
∑

τ(b(1)⊗b(2))Sτ(c⊗b(3)) = Sτ(c⊗b),

by Eq. 2.10, and hence (3.19) follows.
Finally, we can compute

[[a, b, ϑ(c)], d, e] =
∑

a · τ(b⊗c(1))Sτ(c(3)⊗c(2))τ (d⊗e)

= a · Sτ(c⊗b)τ (d⊗e) = [a, [d, c, b], e],
where the the first equality follows byEq. 3.19 and the second one byEq. 3.17. This completes
the proof of the theorem. 	


Definition 3.6 Let (C, H) denote a right Hopf-Galois co-object C over H and (D, K ) a
right Hopf-Galois co-object D over K . A morphism from (C, H) to (D, K ) is a pair of maps
( f , g) such that

(a) f : C → D is a homomorphism of coalgebras,
(b) g : H → K is a homomorphism of Hopf algebras,
(c) for all c ∈ C and h ∈ H ,

f (c · h) = f (c) · g(h). (3.21)

The category of right Hopf-Galois co-objects is denoted by HG

Lemma 3.7 If ( f , g) is a morphism of Hopf-Galois co-objects (C, H) to (D, K ), then

τD ◦ ( f ⊗ f ) = g ◦ τC , (3.22)

where τC is the cotranslation map for (C, H) and τD is the cotranslation map for (D, K ).

Proof For all c ∈ C and h ∈ H ,

τD ◦ ( f ⊗ f ) ◦ canC (c⊗h) = τD

(
∑

f (c(1))⊗ f (c(2) · h)
)

= τD

(
∑

f (c)(1)⊗ f (c)(2) · g(h)
)

= τD ◦ canD( f (c)⊗g(h))

= ε(c)g(h) = g ◦ τC ◦ canC (c⊗h),

since f is a coalgebra map, by Eq. 3.21 and by the definition of the cotranslation map (3.3).
The assertion follows by the bijectivity of the canonical map canC . 	


In summary we obtain the following:
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Theorem 3.8 The functors

Ga :HH → HG, (C, χ) �→ (C,Tn(C)), f �→ ( f ,Tn( f )),

He :HG → HH, (C, H) �→ (C, χ(C,H)), ( f , g) �→ f ,

are a pair of inverse equivalences between categories of Hopf heaps and right Hopf-Galois
co-objects.

Proof Lemma 3.7 ensures that He is a functor, specifically, if ( f , g) is a morphism of Hopf-
Galois co-objects from (C, H) → (D, K ), then f ◦ χ(C,H) = χ(D,K ) ◦ ( f ⊗ f ⊗ f ). One
easily checks that χ(C,Tn(C)) = χ , and hence He ◦ Ga = id. By Theorem 3.5,

Ga ◦ He(C, H) = (C,Tn(C)) ∼= (C, H),

and so the required isomorphism of objects inHH is provided by the pair (id, ϕ(C,H)). This
is a morphism in HH indeed, since, for all a, b, c ∈ C ,

a · τ cb = [a, b, c] = a · τ(b⊗c) = a · ϕ(C,H)

(

τ cb
)

.

The naturality of this isomorphism, that is, the commutativity of the following diagram in
HH

(C,Tn(C))
(id,ϕ(C,H))

( f ,Tn( f ))

(C, H)

( f ,g)

(D,Tn(D))
(id,ϕ(D,K ))

(D, K ),

is equivalent to
g ◦ ϕ(C,H) = ϕ(D,K ) ◦ Tn( f ).

Again, this follows by Lemma 3.7. Explicitly, for all a, b ∈ C ,

g ◦ ϕ(C,H)

(

τ ba

)

= g (τC (a⊗b)) = τD( f (a)⊗ f (b))

= ϕ(D,K )

(

τ
f (a)

f (b)

)

= ϕ(D,K ) ◦ Tn( f )
(

τ ba

)

.

This completes the proof of the theorem. 	


Combining the discussion of the whole of the paper we obtain the following dual version
of the main result of [11].

Corollary 3.9 Every Hopf heap admits the Grunspan map.

Proof By Theorem 2.6 to any Hopf heap (C, χ) one can associate a bialgebra Tn(C). Since
it admits a Hopf-Galois co-object by Theorem 3.3, it is a Hopf algebra (see Corollary 3.4).
Theorem3.5 ensures that the correspondingHopf heap (C, χ(C,Tn(C))) has theGrunspanmap,
and since χ(C,Tn(C)) = χ by (the proof of) Theorem 3.8, the assertion follows. Explicitly,
the Grunspan map is given by

ϑ : C → C, c �→
∑

[c(1), [e(1), c(3), c(2)], e(2)],
where e ∈ C is any element such that ε(e) = 1. 	
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