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Abstract
Weshow that the small and large restricted injective dimensions coincide forCohen-Macaulay
rings of finite Krull dimension. Based on this, and inspired by the recent work of Sather-
Wagstaff and Totushek, we suggest a new definition of Cohen-Macaulay Hom injective
dimension. We show that the class of Cohen-Macaulay Hom injective modules is the right
constituent of a perfect cotorsion pair. Our approach relies on tilting theory, and in particular,
on the explicit construction of the tilting module inducing the minimal tilting class recently
obtained in (Hrbek et al. 2022).

Keywords Hom injective dimension · Cohen-Macaulay injective dimension ·
Cohen-Macaulay rings · Restricted injective dimension · Finite type · Tilting classes ·
Finitistic dimensions
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1 Introduction

While the global dimension of a commutative noetherian ring R is infinite unless R is regular,
Raynaud and Gruson [37] proved that the finitistic global dimension of R is equal to its Krull
dimension, which we shall assume to be finite for the rest of this introduction. Christensen,
Foxby, and Frankild [11] defined the (large) restricted injective dimension in terms of Ext-
orthogonality to the class P of modules of finite projective dimension, an invariant always
bounded by the finitistic global dimension of R. One cannot expect Baer’s criterion to hold for
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1374 M. Hrbek and G. Le Gros

the restricted injective dimension in general, and thus [11] also considers the small restricted
injective dimension defined using only those modules of finite projective dimension which
are finitely generated. The situation in which the small and the large restricted injective
dimensions coincide occurs precisely when the cotorsion pair (P,P⊥1) is of finite type (see
Sections 2.2 and 2.3).

Our first main result Theorem 3.14 shows that (P,P⊥1) is of finite type precisely when the
ring R is Cohen-Macaulay. In addition, in this case the two restricted injective dimensions
coincide in this case with the Chouinard invariant, a refinement of injective dimension intro-
duced in [12]. Our approach relies on tilting theory: The class of modules of small restricted
injective dimension at most zero is precisely the minimal tilting class in Mod-R. In the
recent work [27], the tilting module for this tilting class has been constructed explicitly as the
coproduct of local cohomology modules. Using this construction, we show in Theorem 3.8
that modules from T admit “canonical filtrations”, a deconstruction result established first for
Gorenstein injectives over Gorenstein rings by Enochs and Huang [17]. These filtrations then
allow us to prove that this tilting module is the unique product-complete tilting R-module up
to equivalence (Corollary 3.12 and Theorem 3.18), and in turn that the left constituent A of
the minimal tilting cotorsion pair (A,T) coincides with P.

The minimal tilting class T coincides with the class I0 of all injective R-modules if and
only if R is regular, and it coincides with the class GI0 of all Gorenstein injective R-modules
if and only if R is Gorenstein. The notion of CM-dimension for finitely generated modules,
extending the notion of G-dimension of Auslander and Bridger, was introduced by Gerko
[22]. Later, Holm and Jørgensen [24] developed notions ofCohen-Macaulay projective, injec-
tive, and flat dimensions in terms of trivial extensions over semidualizingmodules. Finiteness
of any of these dimensions characterizes Cohen-Macaulay rings admitting a dualizing mod-
ule. Recently, Sahandi, Sharif, and Yassemi [39] defined other notions of Cohen-Macaulay
injective and flat dimensions, whose finiteness characterizes general Cohen-Macaulay rings.
Inspired by the complete intersectionHom injective dimension recently introduced by Sather-
Wagstaff and Totushek [41], we define the Cohen-Macaulay Hom injective dimension and
prove that it yields a refinement of the notion of Cohen-Macaulay injective dimension of
Holm and Jørgensen. Applying our main result on restricted injective dimensions over a
Cohen-Macaulay ring, we show that the class CMI0 of Cohen-Macaulay Hom injective
modules enjoys similar properties as the class GI0 of Gorenstein injectives over a Gorenstein
ring:

Theorem 1.1 Let R be a Cohen-Macaulay ring of finite Krull dimension. Then the following
hold:

(i) [Corollary 4.14, Theorem 3.14] The minimal tilting cotorsion pair in Mod-R is of the
form (P,CMI0).

(ii) [Corollary 3.12, Proposition 5.1] The class CMI0 is definable and enveloping. The dual
definable class is CMF0 of Cohen-Macaulay flat modules.

(iii) [Theorem 3.8] Modules from CMI0 admit canonical filtrations.

In this paper, we only consider the finite type of the class P for a finite dimensional
Cohen-Macaulay ring, however, the more general question of whether the class modules
of projective dimension at most n for some n > 0 is of finite type has been investigated
also outside the realm of Cohen-Macaulay rings. In a more general setting which includes
commutative noetherian rings, Bazzoni and Herbera [7] provide a criterion for when the
modules of projective dimension at most one are of finite type. Furthermore, in a recent
preprint of the authors [26], a ring-theoretic characterisation of the commutative noetherian
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Restricted Injective Dimensions over Cohen-Macaulay Rings 1375

rings for which themodules of projective dimension of at most n are of finite type is provided.
In particular, the result Theorem 3.14 is recovered using entirely different techniques than
those which appear in the present work.

The structure of the paper is as follows. In Section 2 we gather preliminary facts about
restricted injective dimensions and their relation to tilting theory, first over general rings and
then specialize to the commutative noetherian situation. Themain result establishing the finite
type of P over a Cohen-Macaulay ring is proved in Section 3. In Section 4 we introduce our
definition of Cohen-Macaulay Hom injective dimension and show that the minimal tilting
class over a Cohen-Macaulay ring consists precisely of Cohen-Macaulay Hom injectives.
In the final Section 5, we explain that analogous, and in fact easier results hold on the dual
cotilting side and show that the Cohen-Macaulay flat modules form a dual definable class to
Cohen-Macaulay Hom injectives.

2 Preliminaries

Let R be an associative unital ring. We denote byMod-R the category of all right R-modules
and by mod R the (full, isomorphism-closed) subcategory consisting of those modules
which admit a resolution by finitely generated projective R-modules. For any module M , let
Add(M) denote the subcategory consisting of all modules which are isomorphic to a direct
summand of the coproduct M (X) for some set X . Similarly, Prod(M) is the subcategory
consisting of all modules which are isomorphic to a direct summand of the product MX

for some set X . We let D(R) denote the unbounded derived category of cochain complexes
of right R-modules. Given M ∈ D(R), we let inf M = inf{n ∈ Z | Hn(M) �= 0} and
supM = sup{n ∈ Z | Hn(M) �= 0} denote the cohomological infimum and supremum
of M . We call M cohomologically bounded if either M = 0 in D(R) or if both inf M

and supM are integers. We use the usual notation ExtiR(M, N ) = Hi RHomR(M, N ) for
any cochain complexes of right R-modules M and N . Analogously, we use the notation
TorRi (M, N ) = H−i (M ⊗L

R N ) for any cochain complex of right R-modules M and any
cochain complexes of left R-modules N .

2.1 For n ≥ 0, let Pn = {M ∈ Mod-R | pdRM ≤ n}, In = {M ∈ Mod-R | idRM ≤ n},
and Fn = {M ∈ Mod-R | fdRM ≤ n} denote the subcategories of Mod-R consisting of all
modules of projective, injective, or flat dimension bounded above by n. We use the notation
P = ⋃

n≥0 Pn for modules of finite projective dimension, similarly we put F = ⋃
n≥0 Fn

and I = ⋃
n≥0 In . Furthermore, we let P f

n = Pn ∩ mod R and P f = P ∩ mod R.

Christensen, Foxby, and Frankild introduced in [11] the notions of restricted homological
dimensions for a commutative noetherian ring. The following is one of the ways of extending
their definition to an arbitrary ring. Given an R-module or an R-complex M , we define the
small restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimensionsmall restricted injective dimension as

ridR(M) = sup{i | ExtiR(P f , M) �= 0}
and the (large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension(large) restricted injective dimension is defined as

RidR(M) = sup{i | ExtiR(P, M) �= 0}.
As with other notions of homological dimensions, the definition entails the convention
Rid(0) = −∞ = rid(0).

123



1376 M. Hrbek and G. Le Gros

2.2 Given a subcategory C of Mod-R we use the notation C⊥1 = {M ∈ Mod-R |
Ext1R(C, M) = 0 ∀C ∈ C} and C⊥ = {M ∈ Mod-R | ExtiR(C, M) = 0 ∀C ∈ C, ∀i > 0};
we also define ⊥1C and ⊥C analogously and we drop the curly brackets whenever C = {C}
for some module C . A cotorsion paircotorsion paircotorsion paircotorsion paircotorsion paircotorsion paircotorsion paircotorsion paircotorsion paircotorsion paircotorsion paircotorsion paircotorsion paircotorsion paircotorsion paircotorsion paircotorsion pair in Mod-R is a pair (X,Y) of subcategories of Mod-R
such that Y = X⊥1 and X = ⊥1Y. A cotorsion pair is completecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecomplete if for any M ∈ Mod-R there
are exact sequences 0 → M → Y M → XM → 0 and 0 → YM → XM → M → 0 with
XM , XM ∈ X and Y M , YM ∈ Y. It is hereditaryhereditaryhereditaryhereditaryhereditaryhereditaryhereditaryhereditaryhereditaryhereditaryhereditaryhereditaryhereditaryhereditaryhereditaryhereditaryhereditary if ExtiR(X , Y ) = 0 for all X ∈ X, Y ∈ Y,

and i > 0. Finally, it is of finite typeof finite typeof finite typeof finite typeof finite typeof finite typeof finite typeof finite typeof finite typeof finite typeof finite typeof finite typeof finite typeof finite typeof finite typeof finite typeof finite type if there is n ≥ 0 and a subset S of P f
n such that Y = S⊥ .

Any cotorsion pair of finite type is automatically complete and hereditary, see [23, §6].

2.3 Recall that the finitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimensionfinitistic dimension of R is defined as

Findim(R) = sup{pdRM | M ∈ P},
while the small finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimensionsmall finitistic dimension of R is

findim(R) = sup{pdRM | M ∈ P f }.
We have Findim(R) ≤ n < ∞ if and only if P = Pn and findim(R) ≤ n < ∞ if and only
if P f = P

f
n . Clearly, we have RidR(M) ≤ Findim(R) and ridR(M) ≤ findim(R) for all

M ∈ Mod-R. If Findim(R) < ∞, then [2] implies that (P,P⊥1) is a complete hereditary
cotorsion pair. If findim(R) < ∞ then (⊥1(P f ⊥1),P f ⊥1) is a cotorsion pair of finite type.
Assuming Findim(R) < ∞ ( �⇒ findim(R) < ∞), it follows that both RidR and ridR

are relative cohomological dimensions induced by complete hereditary cotorsion pairs. In
particular, an R-module or a cohomologically bounded R-complex M satisfies RidR(M) ≤ k
(resp. ridR(M) ≤ k) if and only if it admits a P⊥1 -coresolution (resp., P f ⊥1 -coresolution)
of length k, that is, there is an exact sequence

0 → M → P0 → P1 → · · · → Pk → 0

with Pi ∈ P⊥1 (resp., Pi ∈ P f ⊥1 ) for all i = 0, 1, . . . , k.We have the following observation:

Lemma 2.1 Assume Findim(R) < ∞, then the following are equivalent:

(i) RidR(M) = ridR(M) for each cohomologically bounded complex M,
(ii) RidR(M) = ridR(M) for each R-module M,
(iii) the cotorsion pairs (P,P⊥1) and (⊥1(P f ⊥1),P f ⊥1) coincide,
(iv) the cotorsion pair (P,P⊥1) is of finite type.

Proof Since findim(R) ≤ Findim(R) < ∞, both (⊥1(P f ⊥1),P f ⊥1) and (P,P⊥1) are com-
plete hereditary cotorsion pairs.

(i) �⇒ (i i): Trivial.
(i i) �⇒ (i i i): This follows directly from P⊥1 = {M ∈ Mod-R | RidR(M) ≤ 0} and

P f ⊥1 = {M ∈ Mod-R | ridR(M) ≤ 0}.
(i i i) �⇒ (iv) : Trivial, as (⊥1(P f ⊥1),P f ⊥1) is of finite type.
(iv) �⇒ (i): The assumption (iv) implies that RidR(M) ≤ 0 if and only if ridR(M) ≤ 0.

As noted above, for a cohomologically bounded complex M , the dimensions RidR(M) and
ridR(M) can be computed by taking coresolutions by modules with the respective dimension
being equal to zero. ��

In a recent preprint of the authors [26], if R is a commutative noetherian ring then the
modules of projective dimension of at most n are of finite type exactly when R has Serre’s
condition (Sn). This generalises work of Bazzoni and Herbera [7] in the case that n = 1,
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Restricted Injective Dimensions over Cohen-Macaulay Rings 1377

[7, Theorem 8.6]. In addition, by the Eklof-Trlifaj theorem [23, 6.2, 6.14], the cotorsion pair
(P,P⊥1) is of finite type if and only if any module M ∈ P is a direct summand of a module
filtered (=obtained as a transfinite extension) by modules from P f .

2.4 A module T ∈ Mod-R is called a tilting moduletilting moduletilting moduletilting moduletilting moduletilting moduletilting moduletilting moduletilting moduletilting moduletilting moduletilting moduletilting moduletilting moduletilting moduletilting moduletilting module if the following three conditions are
satisfied:

(T1) T ∈ P,
(T2) Add(T ) ⊆ T⊥ ,
(T3) there is n ≥ 0 and a short exact sequence

0 → R → T0 → T1 → . . . → Tn → 0,

with Ti ∈ Add(T ) for each i = 0, 1, . . . , n.

Any tilting module T gives rise to a complete hereditary cotorsion pair (A,T) =
(⊥1(T⊥), T⊥) called a tilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pairtilting cotorsion pair, here T is called the tilting classtilting classtilting classtilting classtilting classtilting classtilting classtilting classtilting classtilting classtilting classtilting classtilting classtilting classtilting classtilting classtilting class. Two tilting
modules T , T ′ give rise to the same tilting cotorsion pair (or equivalently, the same tilting
class) precisely when Add(T ) = Add(T ′), and in this situation we call them equivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalent.
In fact, Add(T ) determines the tilting cotorsion pair in the sense that the class A consists
precisely of modules admitting a finiteAdd(T )-coresolution, T consists precisely of modules
admitting an Add(T )-resolution, and we have Add(T ) = A ∩ T. We refer to [23, §13] for
details.

2.5 A crucial result of Bazzoni-Herbera and Bazzoni-Šťovíček [6, 10] asserts that tilting
cotorsion pairs coincide preciselywith the cotorsion pairs of finite type.Assume findim(R) <

∞. Then the cotorsion pair (⊥1(P f ⊥1),P f ⊥1) of Section 2.3 is clearly the minimal cotorsion
pair of finite type, where the ordering is given by inclusion of the second constituents.
Therefore, Tmin = P f ⊥1 is the minimal tilting class with respect to inclusion. As discussed
in Section 2.3, we have Tmin = {M ∈ Mod-R | ridR(M) ≤ 0}.

Commutative Noetherian Rings

From now on, let R be a commutative noetherian ring. Let dim(R) denote its Krull dimension
and Spec(R) its Zariski spectrum.

2.6 Given a cochain complex M , we define depthR(p, M) = inf RHomR(R/p, M)

and widthR(p, M) = − sup(R/p ⊗L
R M). In the case (R,m, k) is local we simply let

depthR(M) = depthR(m, M) and widthR(M) = widthR(m, M), and as with all similar
invariants, we often omit the subscript if the ring is clear from context. We let gradeR(M) =
inf{i | ExtiR(M, R) �= 0} and by convention grade(p) := grade(R/p) = depth(p, R) for
p ∈ Spec(R).One always hasgrade(p) ≤ depth(Rp) ≤ height(p) := dim(Rp) andboth the
inequalities may fail to be equalities in general. The equality depth(Rp) = height(p) occurs
precisely when the local ring Rp is Cohen-Macaulay. The equality grade(p) = depth(Rp)

holds for all p ∈ Spec(R) if and only if R is an almost Cohen-Macaulay ring, see [11, Lemma
3.1].

2.7 Angeleri-Hügel, Pospíšil, Šťovíček, and Trlifaj [4, Theorem 4.2] gave a full classification
of tilting cotorsion pairs over a commutative noetherian ring. Here, we follow an exposition
explained in [27, Remark 5.10]. We call a function f : Spec(R) → Z characteristiccharacteristiccharacteristiccharacteristiccharacteristiccharacteristiccharacteristiccharacteristiccharacteristiccharacteristiccharacteristiccharacteristiccharacteristiccharacteristiccharacteristiccharacteristiccharacteristic if the
following hold:
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1378 M. Hrbek and G. Le Gros

(1) f is order-preserving, that is, f(p) ≤ f(q) whenever p ⊆ q in Spec(R),
(2) we have 0 ≤ f ≤ grade,
(3) there is an n ≥ 0 such that f ≤ n (this condition is superfluous if dim(R) < ∞).

Then there is a bijective correspondence between characteristic functions f on Spec(R) and
tilting cotorsion pairs (A,T) in Mod-R. Here, f is sent to (Af ,Tf) with the tilting class
Tf = {M ∈ Mod-R | widthR(p, M) ≥ f(p) ∀p ∈ Spec(R)}. This correspondence restricts
to one between tilting modules of projective dimension at most n (= n-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modulesn-tilting modules) and
characteristic functions f with f ≤ n.

2.8 By classical results of Bass [5] and Raynaud-Gruson [37], Findim(R) = dim(R), [37,
Théorème 3.2.6]. Assume now that dim(R) < ∞. Then any flat R-module belongs toP [32],
[37, Corollaire 3.2.7], and therefore P coincides with the class F of all modules of finite flat
dimension. It follows that P can be described as the class of all modules of flat dimension
bounded by dim(R). In symbols, we have Pdim(R) = P = F = Fdim(R). Finally, R being
noetherian ensures that Fdim(R) is a definable classdefinable classdefinable classdefinable classdefinable classdefinable classdefinable classdefinable classdefinable classdefinable classdefinable classdefinable classdefinable classdefinable classdefinable classdefinable classdefinable class, that is, a subcategory of Mod-R closed
under direct limits, products, and pure submodules.

2.9 Let R be a commutative noetherian ring of finite Krull dimension. Among the charac-
teristic functions f : Spec(R) → Z there is always the maximal choice of the grade function
grade : p �→ gradeR(p). The corresponding tilting cotorsion pair (Agrade,Tgrade) with
Tgrade = {M ∈ Mod-R | widthR(p, M) ≥ grade(p) ∀p ∈ Spec(R)} is therefore precisely
theminimal tilting cotorsion pair (⊥1(P f ⊥1),P f ⊥1). In particular, we have using Section 2.5:

Tgrade = {M ∈ Mod-R | ridR(M) ≤ 0}. (†)

By [11, Proposition 5.3], we can compute the small restricted injective dimension via the
formula

ridR(M) = sup{gradeR(p) − width(p, M) | p ∈ Spec(R)},
which also implies (†) by comparing it directly with the classification Section 2.7.

3 TheMinimal Tilting Class over a Cohen-Macaulay Ring

The aim of this section is to study the minimal tilting class Tmin under the assumption that R
is Cohen-Macaulay of finite Krull dimension. As discussed in Section 2.6, this assumption
ensures gradeR = heightR , and so in view of Section 2.9 we have Tmin = Tgrade =
Theight = {M ∈ Mod-R | widthR(p, M) ≥ height(p) ∀p ∈ Spec(R)}.
3.1 Introduced in [12], the Chouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariantChouinard invariant is defined as

ChR(M) = sup{depthRp − widthRp(Mp) | p ∈ Spec(R)}.
Note that ChR(0) = −∞ and ChR(M) is always bounded above by dim(R) when M is
an R-module concentrated in cohomological degree 0. The Chouinard invariant refines the
injective dimension in the sense that one always has ChR(M) ≤ idR(M) and this becomes
an equality whenever M is cohomologically bounded and idR(M) < ∞, see [42].

Even for R Cohen-Macaulay, one cannot expect the equality width(p, M) = width(Mp)

to hold in general. Nevertheless, the two invariants we defined in terms of these values
coincide.
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Restricted Injective Dimensions over Cohen-Macaulay Rings 1379

Proposition 3.1 Let R be a commutative noetherian ring of finite Krull dimension. For any
cohomologically bounded complex M we have

sup{height(p) − width(Mp) | p ∈ Spec(R)} =
= sup{height(p) − width(p, M) | p ∈ Spec(R)}.

As a consequence, if R is in addition Cohen-Macaulay, then ChR(M) = ridR(M).

Proof We always have widthR(p, M) ≤ width(Mp) [11, Corollary 4.12] for any p ∈
Spec(R), and so the left-hand side is always smaller or equal to the right-hand side.
In order to show the other inequality, we will prove that TorRi (R/p, M) = 0 when-
ever TorRi (k(p), M) = 0 by induction on dim(R/p), which is finite by assumption. If
dim(R/p) = 0 then p is a maximal ideal, so R/p = k(p), and there is nothing to prove.
The short exact sequence 0 → R/p → k(p) → L → 0 induces a piece of the long exact
sequence:

TorRi+1(L, M) → TorRi (R/p, M) → TorRi (k(p), M).

For each q ∈ V (p) \ {p}, we have height(q) > height(p) and dim(R/q) < dim(R/p),
and so the induction hypothesis applies and yields TorRi+1(R/q, M) = 0. Since Supp(L) ⊆
V (p) \ {p}, we have TorRi+1(L, M) = 0. Since TorRi (k(p), M) = 0 by the assumption on M ,
we are done by the exact sequence above.

Now assume R is Cohen-Macaulay. Then we have grade(p) = depth(Rp) = height(p)
for all p ∈ Spec(R), and so the claim implies the left-hand side is equal to ChR(M) and the
right-hand side to ridR(M), see Section 2.9. ��
Remark 3.2 Proposition 3.1 can fail for a non-Cohen-Macaulay ring, and in fact there is no
inequality between ChR and ridR in general.

By [11, Corollary 5.9], if R is a local ring such that dim(R) > depthR + 1, then there is
a module M with idR(M) = dim(R) − 1, so idR(M) = ChR(M), but ridR(M) < idR(M).
On the other hand, it can also happen that ChR(M) < ridR(M). Indeed, let (R,m) be a 1-
dimensional local ring which is not Cohen-Macaulay, and let M be an R-module satisfying
Supp(M) = {m} and R/m⊗RM = 0.One can always takeM to be the first local cohomology
module H1

m(R) of R, see Section 3.3. Then ChR(M) = depth(R) + sup(R/m⊗L
R M) < 0,

while ridR(M) is always non-negative whenever M �= 0.
Similarly, it can happen that ChR(M) �= RidR(M), see [11, Remark 5.12].

Combining (†) with Proposition 3.1, the minimal tilting class Theight can be described using
the Chouinard invariant.

Corollary 3.3 Let R be a Cohen-Macaulay ring of finite Krull dimension. We have Theight =
{M ∈ Mod-R | ChR(M) ≤ 0}.
3.2 The tilting module inducing the minimal tilting class Theight has been explicitly con-
structed in [27]. Let R�p : D(R) → D(R) denote the local cohomology functor associated
to the support V (p) ⊆ Spec(R). For each prime ideal p let us fix the notation T (p) =
Hheight(p)
p (Rp); here we use the standard symbol Hi

p(M) = HiR�p(M) for the i-th local
cohomology at p. Recall that T (p) is isomorphic to R�pRp[height(p)] in D(R) when R is
Cohen-Macaulay, see e.g. [30, Theorem 10.35].

Theorem 3.4 [27, Corollary 4.9, Remark 2.7] Let R be a Cohen-Macaulay ring of finite Krull
dimension. The module Theight = ⊕

p∈Spec(R) T (p) is a tilting module inducing the minimal
tilting cotorsion pair (Aheight,Theight).
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1380 M. Hrbek and G. Le Gros

Remark 3.5 Let E(R/p) denote the indecomposable injective over p ∈ Spec(R). Then we
have T (p) ∼= E(R/p) if and only if Rp is a Gorenstein ring. Therefore, if R is (locally)
Gorenstein then Theight ∼= ⊕

p∈Spec(R) E(R/p), recovering [3, Example 5.7]. In this case,
it is known that Theight is precisely the class GI0 of Gorenstein injective R-modules and
Aheight = P [7, Example 9.3].

If R is not Gorenstein, then it is more difficult to check that
⊕

p∈Spec(R) T (p) is a tilting
module. The main problem is to check the self-orthogonality condition (T2) of Section 2.4
here, which is trivial in the Gorenstein case. This was done in a larger generality in [27,
Theorem 1.1], see [27, Remark 4.11] for the Cohen-Macaulay case relevant for us. We
remark that if R admits a dualizing module, then checking condition (T2) can be reduced
to Ext-orthogonality of injectives using the infinite completion of Grothendieck duality due
to Iyengar and Krause [29], this is explained in [27, §3]. In the absence of a dualizing
module, a more technical proof is required [27, §4], although the most difficult argument
using transfinite cofiltrations can be skipped under the assumption of dim(R) < ∞.

3.3 Canonical Filtration

Our first step is to prove a deconstruction result for modules in Theight which extends the
canonical filtrations of Gorenstein injectives over Gorenstein rings due to Enochs and Huang
[17]. Here, R is assumed to be a Cohen-Macaulay ring of finite Krull dimension.

Lemma 3.6 If M ∈ Theight then TorRi (T (p), M) = 0 whenever i �= height(p) for all p ∈
Spec(R).

Proof Since T (p) is an Rp-module supported on {pRp}, it is filtered by copies of k(p), and
thus we have the vanishing TorRi (T (p), M) = 0 for all i < height(p) by Corollary 3.3. Since
T (p) is an Rp-module of finite flat dimension, we have fdRpT (p) ≤ dim(Rp) = height(p),

see Section 2.8. As TorRi (T (p), M) = Tor
Rp

i (T (p), Mp), we obtain the vanishing for i >

height(p). ��
Lemma 3.7 For any M ∈ Theight, R�p(Mp) is isomorphic in D(R) to an R-module M(p) ∈
Theight.

Proof By Lemma 3.6, R�p(Mp) ∼= T (p)[−height(p)] ⊗L
R M is isomorphic in D(R) to

an R-module M(p) in D(R), it remains to show that M(p) ∈ Theight. This follows from
Corollary 3.3, because M(p) ⊗L

R k(q) ∼= M ⊗L
R R�pRp ⊗L

R k(q) is equal to zero if q �= p

or to M ⊗L
R k(p) if q = p, and so TorRi (k(p), M(p)) = 0 for any i < height(p) using

M ∈ Theight. ��
LetW ⊆ Spec(R) be a specialization closed subset, then the local cohomology with support
on W is the right derived functor R�W (X) : D(R) → D(R) of the torsion functor �W :
Mod-R → Mod-R with respect to the hereditary torsion class {M ∈ Mod-R | Supp(M) ⊆
W }. It follows that R�W is the Bousfield localization functor away from the localizing
subcategory {X ∈ D(R) | supp(M) ⊆ W }, where supp(M) = {p ∈ Spec(R) | k(p) ⊗L

R
M �= 0} is the cohomological support. If W1 ⊆ W0 are two specialization closed subsets

then there is a canonical triangle for any X ∈ D(R): R�W1X → R�W0 X → X ′ +−→, where
supp(X ′) ⊆ W0 \ W1. Now assume that dim(W0 \ W1) ≤ 0, or in other words, there are no
p, q ∈ W0 \ W1 such that p � q. Then it follows that the object X ′ from the triangle above is
of the form X ′ = ⊕

p∈W0\W1
R�pXp. For details, see e.g. [27, Remark 4.2].
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Theorem 3.8 Let R be a Cohen-Macaulay ring of finite Krull dimension d. Any module
M ∈ Theight admits a filtration 0 = Md+1 ⊆ Md ⊆ Md−1 ⊆ Md−2 ⊆ · · · ⊆ M0 = M
such that Mi/Mi+1 is isomorphic to a direct sum

⊕
height(p)=i M(p), where M(p) are the

p-torsion and p-local modules belonging to Theight of Lemma 3.7.

Proof Let Wk = {p ∈ Spec(R) | height(p) ≥ k}. We prove by a backward induction on
k = d, d − 1, . . . , 0 that R�Wk M is (quasi-isomorphic to) a module admitting a filtration
0 = Md+1 ⊆ Md ⊆ Md−1 ⊆ Md−2 ⊆ · · · ⊆ Mk = R�Wk M such that Mi/Mi+1 is
isomorphic to a direct sum

⊕
p∈Spec(R),height(p)=i M(p).

If k = d , then R�Wd M is supported only on maximal ideals and thus already
R�Wk M = ⊕

p∈Spec(R),height(p)=d M(p). In the induction step, consider the triangle

R�Wk+1M → R�Wk M → M ′ +−→. As explained in the paragraph above, we have
M ′ = ⊕

p,height(p)=k R�pMp
∼= ⊕

p,height(p)=k M(p). Then all three components of the
triangle are modules, thus the triangle is in fact induced by a short exact sequence of mod-
ules, which finishes the induction. ��
Remark 3.9 If R is a Gorenstein ring then Theorem 3.8 recovers the canonical filtration of
Gorenstein injectives result of Enochs and Huang [17, Theorem 3.1].

3.4 Product-completeness of T

Proposition 3.10 We have Aheight ∩ Theight = Add(T ) is equal to P ∩ Theight.

Proof Since Add(Theight) = Aheight ∩ Theight (see Section 2.4) and Aheight ⊆ P, clearly
Add(Theight) ⊆ P ∩ Theight. For the other inclusion, let M ∈ P ∩ Theight, and we need
to show that M ∈ Aheight. Recall that Aheight is closed under coproducts and extensions.
Since M ∈ P, also M(p) ∈ P because M(p) ∼= M ⊗L

R R�pRp and R�pRp is isomorphic
in D(R) to a bounded complex of flat modules. Then M(p) ∈ P ∩ Theight by Lemma 3.7.
By the existence of the canonical filtration of Theorem 3.8 and the above discussed closure
properties of Aheight, we can without loss of generality assume that M = M(p) for some
p ∈ Spec(R), or in other words, M ∼= R�pMp in D(R).

Since M ∈ P, M is of finite projective dimension also as an Rp-module, and there is a
resolution 0 → P−height(p) → P−height(p)+1 → · · · → P0 → M → 0 of length height(p)
where Pi is a projective Rp-module for each i = −height(p),−height(p) + 1, · · · , 0.
Applying − ⊗R T (p) to the truncated resolution, we obtain a complex N−height(p) →
N−height(p)+1 → · · · → N 0 where Ni = Pi ⊗R T (p) ∈ Add(Theight). By Lemma 3.6,
this complex is exact in all degrees i apart from i = −height(p), and the cohomology in
degree −height(p) is isomorphic to

TorRheight(p)(T (p), M) = H−height(p)(T (p) ⊗L
R M) ∼= H0(R�p(Mp)) = M(p) = M .

We showed that M has a finite coresolution by modules from Add(Theight), and therefore M
belongs to Aheight by [23, Proposition 13.13]. ��
3.5 For a reference about concepts from the theory of purity used in what follows, we refer
the reader to [36] or [23]. A module M is called product-completeproduct-completeproduct-completeproduct-completeproduct-completeproduct-completeproduct-completeproduct-completeproduct-completeproduct-completeproduct-completeproduct-completeproduct-completeproduct-completeproduct-completeproduct-completeproduct-complete if Add(M) is closed under
products.

Proposition 3.11 Let M be a product-complete module. Then:

(i) M is �-pure-injective, that is, any module in Add(M) is pure-injective,
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(ii) Add(M) = Prod(M).

If T is a tilting module inducing a cotorsion pair (A,T) then the following are equivalent:

(1) T is product-complete,
(2) A is definable,
(3) Add(T ) is definable.

Proof (i): Follows directly from [23, Lemma 2.32(c)].
(i i) : By the definition, Prod(M) ⊆ Add(M). For any set X consider the natural map

M (X) → MX . This is a pure monomorphism, and so this map splits by (i). This shows
Add(M) ⊆ Prod(M).

The equivalence of (1) and (2) for a tilting module T is proved in [23, Proposition 13.56].
Since Add(T ) = A∩T and T is definable [23, Corollary 13.42], (2) �⇒ (3). On the other
hand, (3) implies that Add(T ) is closed under products, which amounts to (1). ��
Corollary 3.12 The module Theight is product-complete, and thus both Add(Theight) and
Aheight are definable subcategories of Mod-R. As a consequence, Theight is an enveloping
class (see [23, §5]).

Proof By Proposition 3.10, Add(Theight) is an intersection of two definable subcategories P
and Theight, and thus it is itself definable. The rest follows from Proposition 3.11 and [23,
Theorem 7.2.6]. ��

3.6 Finite type ofP

Lemma 3.13 Let (X,Y) be a complete hereditary cotorsion pair and Z a class of modules
closed under extensions such that X ⊆ Z and X ∩ Y = Z ∩ Y. Then X = Z.

Proof Let Z ∈ Z and consider the exact sequence 0 → Z → Y Z → X Z → 0 which exists
by completeness of the cotorsion pair. Then Y Z ∈ Y, and by the assumptions, also Y Z ∈ Z.
It follows that Y Z ∈ X. Since the cotorsion pair is hereditary, X is closed under kernels of
epimorphisms and so Z ∈ X. ��
Theorem 3.14 Let R be a commutative noetherian ring of finite Krull dimension. The fol-
lowing are equivalent:

(i) R is Cohen-Macaulay,
(ii) the cotorsion pair (P,P⊥1) is of finite type.

Proof (i) �⇒ (i i) : This follows directly from Proposition 3.10 and Lemma 3.13 applied
to the cotorsion pair (Aheight,Theight) and P.

(i i) �⇒ (i) : Notice first that if (i i) is true for R, then the same also applies to each
local ring Rp. Indeed, any Rp-module of finite projective dimension is of the form M ⊗R Rp

for some M ∈ P, this is because any Rp-module of finite projective dimension is necessarily
of finite projective dimension also as an R-module, see Section 2.8. Recall from Section 2.3
that (i i) is equivalent to any M ∈ P being a direct summand in aP f -filtered module. Assume
first that M = ⋃

α≤λ Mα is an expression of M as a filtration of modules from P f , that is:
(Mα | α ≤ λ) is a continuous chain of submodules of M such that Mα+1/Mα ∈ P f for
each ordinal α < λ, M0 = 0, and Mλ = M . Then tensoring this chain with Rp yields the
desired filtration of M ⊗R Rp by modules from mod Rp of finite projective dimension. It
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follows that any Rp-module of finite projective dimension is a direct summand in a module
admitting such a filtration.

By the previous paragraph, we may assume that R is a local ring. Then we have
findim(R) = depth(R) by the Auslander-Buchsbaum formula [30, Theorem 8.13]. By
definition, R not being Cohen-Macaulay amounts to depth(R) < dim(R), and so any
module which is a direct summand of a P f -filtered module is of projective dimension
strictly smaller then dim(R). On the other hand, by [5, Proposition 5.4] there is M ∈ P

with pdR(M) = dim(R), which yields a contradiction with (i i). ��
Remark 3.15 Apart from the Gorenstein case, the implication (i) �⇒ (i i) of Theorem 3.14
was also known to hold for Cohen-Macaulay rings of Krull dimension one. This is a particular
case of results about the finite type of modules of projective dimension at most one studied
in [7] by Bazzoni and Herbera; see [7, Theorem 8.4] in particular.

The following is the injective counterpart of an analogous statement proved in [11, Theorem
5.22] for the notions of restricted projective dimensions.

Corollary 3.16 Let R be a commutative noetherian ring of finite Krull dimension. The fol-
lowing are equivalent:

(i) RidR(M) = ridR(M) for any cohomologically bounded R-complex M,
(ii) RidR(M) = ridR(M) for any R-module M,
(iii) R is Cohen-Macaulay.

Proof Follows directly from Theorem 3.14 and Lemma 2.1. ��

3.7 Existence and Uniqueness of Product-complete TiltingModules

Wewill show that the tiltingmodule Theight is, up to equivalence, the unique product-complete
tilting module.

Lemma 3.17 Let T be a product-complete tilting module and q ∈ Spec(R) a prime ideal.
Then Tq is a product-complete tilting module in Mod-Rq.

Proof By Proposition 3.11, Add(T ) is a definable subcategory of Mod-R, and therefore
it is closed under direct limits. It follows that Add(Tq) is a full subcategory of Add(T ).
In fact, Add(Tq) = Add(T ) ∩ Mod-Rq. Indeed, if M is an Rq-module in Add(T ), then
M ∼= M ⊗R Rq belongs to Add(Tq). Since both Add(T ) and Mod-Rq are closed under
products in Mod-R, it follows that Add(Tq) is closed under products in Mod-R, and thus in
Mod-Rq as well.

Theorem 3.18 Let R be a commutative noetherian ring. The following are equivalent:

(i) R is Cohen-Macaulay of finite Krull dimension,
(ii) there is a product-complete tilting module T in Mod-R.

Furthermore, if these conditions are satisfied, then T is equivalent to the height tilting module
Theight as tilting modules.

Proof The implication (i) �⇒ (i i) is Corollary 3.12.
Let f : Spec(R) → Z be the characteristic function corresponding to the tilting class T⊥

as in Section 2.7. Then 0 ≤ f ≤ grade. We claim that f = height. Note that this already
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implies that R is Cohen-Macaulay, because then height = f ≤ grade ≤ height and so
height = grade.

To show this, letm be the minimal among prime ideals such that f restricted to Spec(Rm)

is not the height function on Spec(Rm). Using Lemma 3.17, this reduces the question to
(R,m) being a local ring and f(p) = height(p) for all prime ideals p apart from the maximal
idealm. The claim is trivial if dim(R) = 0. If dim(R) = 1 then f(p) = 0 for all p ∈ Spec(R),
and so T is a projective generator. Since T is product-complete, R is artinian, a contradiction.
If dim(R) = 2, then f(p) = 0 for any minimal prime p ∈ Spec(R) and f(p) = 1 otherwise.
Therefore, T is a 1-tilting module, that is, pdRT = 1 (see Section 2.7). Since T is product-
complete, its induced tilting class is enveloping in Mod-R (see Corollary 3.12). Therefore,
[9, Theorem 8.7] implies that R/p is artinian for any p non-minimal. This is a contradiction
with dim(R) = 2.

Assumefinally that dim(R) > 2 and put k = dim(R)−2. Let I be any ideal of R generated
by a regular sequence of length k. Then any prime ideal in V (I ) has height at least k. By the
description Section 2.7, we have TorRi (R/I , T ) = 0 for all i < k. Since pdR(R/I ) = k and
height(I ) = k, it follows that the cohomology of T ⊗L

R R/I vanishes outside of degree −k.
By [8, Theorem 4.2], T ⊗L

R R/I is a silting objectsilting objectsilting objectsilting objectsilting objectsilting objectsilting objectsilting objectsilting objectsilting objectsilting objectsilting objectsilting objectsilting objectsilting objectsilting objectsilting object in D(R/I ), and therefore T ⊗L
R R/I [−k]

is isomorphic in D(R/I ) to a tilting R/I -module T = TorRk (R/I , T ), see [27, Remark 2.7].
Since R/I is a finitely generated R-module, the functor TorRk (R/I ,−) preserves products

and restricts to a functor Add(T ) → Add(T ). Let us show that T is product-complete. For

that, it is enough to show that for any collection of cardinals λi , i ∈ I , the product
∏

i∈I T
(λi )

belongs to Add(T ). Since T is product-complete, the R-module
∏

i∈I T (λi ) belongs to

Add(T ). But since TorRk (R/I ,
∏

i∈I T (λi )) ∼= ∏
i∈I TorRk (R/I , T )(λi ) = ∏

i∈I T
(λi ), the

claim follows. The characteristic function f corresponding to the tilting R/I -module T can
be computed as f(q) = f(q) − k for any q ∈ Spec(R/I ), where q ∈ Spec(R) is the unique
prime such that q ∈ V (I ) and q/I = q, see [8, Theorem 5.7]. It follows that f values to 1
on every non-minimal prime ideal of Spec(R/I ). The same proof as above applied to the
1-tilting R/I -module T shows that dim(R/I ) ≤ 1, but at the same time dim(R/I ) = 2 by
the choice of I (see [40, Lemma 10.60.14]), a contradiction.

We proved that f = height. Since f is characteristic, it is bounded above, and therefore
dim(R) < ∞. Finally, T is equivalent to Theight by Section 2.7. ��

4 Cohen-Macaulay Hom Injective Dimension

A module over R is said to be Gorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injectiveGorenstein injective if it is a cocycle in an acyclic complex
of injective modules Q such that HomR(E, Q) is acyclic for any injective module E . A
module is Gorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flatGorenstein flat if it is a cocycle in an acyclic complex F of flat modules such that
I ⊗R F is acyclic for any injective module I . We denote by GidR and GfdR the Gorenstein
injective and flat dimension of R-modules or R-complexes, see e.g. [15]. For n ≥ 0, we let
GIn = {M ∈ Mod-R | GidR(M) ≤ n}, and GFn = {M ∈ Mod-R | GfdR(M) ≤ n}. A local
ring (R,m, k) is Gorenstein if and only if GidR(k) < ∞ if and only if Mod-R = GIdim(R),
and the same is true for the Gorenstein flat dimension. This extends the classical fact that a
local ring R is regular if and only if idR(k) < ∞ if and only if Mod-R = Idim(R). See [13,
§5, §6] for details about Gorenstein injective and flat dimensions.

There are notions ofCohen-Macaulay injective dimensions available in the literaturewhich
aim to extend the above situation to Cohen-Macaulay rings. Holm-Jørgensen in [24] intro-
duced the following version of Cohen-Macaulay injective dimension. Recall that a finitely
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generated module C is called semidualizingsemidualizingsemidualizingsemidualizingsemidualizingsemidualizingsemidualizingsemidualizingsemidualizingsemidualizingsemidualizingsemidualizingsemidualizingsemidualizingsemidualizingsemidualizingsemidualizing if the homothety map R → RHomR(C,C) is
an isomorphism. If in addition idRC < ∞, we call C a dualizing moduledualizing moduledualizing moduledualizing moduledualizing moduledualizing moduledualizing moduledualizing moduledualizing moduledualizing moduledualizing moduledualizing moduledualizing moduledualizing moduledualizing moduledualizing moduledualizing module. Recall that if R
admits a dualizing module then it is Cohen-Macaulay of finite Krull dimension [40, 0AWS],
but the converse is not true, e.g. [20, Proposition 3.1] or [35, Example 6.1]. We denote by
R � C the trivial extension of R by C , which is a module-finite commutative R-algebra.
Then the Cohen-Macaulay injective dimension in the sense of [24] is defined as

CMidR(M) = inf{GidR�C (M) | C a semidualizing R-module}.
This notion satisfies several desiderata. By [39, Corollary 4.10, 4.15], we always have the

inequalitiesChR(M) ≤ CMidR(M) ≤ GidR(M) ≤ idR(M) for anymoduleM . Furthermore,
if any of these values is finite, then it is equal to all of the values to its left [12, 16, 39, Lemma
4.14]. The valueCMidR(M) is finite for all R-modulesM if and only if R (is Cohen-Macaulay
and) admits a dualizing module [24, Theorem 5.1]. Combined with Corollary 3.3 this yields
immediately that the minimal tilting class consists precisely of the Cohen-Macaulay injective
R-modules in this case.

Corollary 4.1 Let R be aCohen-Macaulay ring admitting a dualizingmodule. ThenTheight =
{M ∈ Mod-R | CMidR(M) ≤ 0}.

To be able to cover cases in which a dualizing module is absent, a different definition of
Cohen-Macaulay dimensions is necessary. The following is recently due to Sahandi, Sharif,
andYassemi [39], advancing the original approachofGerko [22] forCM-dimensionoffinitely
generated modules. A CM-deformationCM-deformationCM-deformationCM-deformationCM-deformationCM-deformationCM-deformationCM-deformationCM-deformationCM-deformationCM-deformationCM-deformationCM-deformationCM-deformationCM-deformationCM-deformationCM-deformation is a surjective local ring morphism Q → S such that
gradeQ(S) = GfdQ(S). Note that we always havegradeQ(S) ≤ GfdQ(S) ([22, p. 1168]) and
that gradeQ(S) is always a finite value. A CM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformationCM-quasi-deformation is a diagram R → S ← Q
of local ring morphisms such that R → S is flat and Q → S is a CM-deformation. A typical
example of such a diagram if R is local Cohen-Macaulay is R → R̂ ← R̂ � ωR̂ , where
R → R̂ is the completion map and ωR̂ is a dualizing module over R̂, which always exists
by the Cohen structure theorem [34, Theorem 29.4(ii)]. Note that for this particular CM-
quasi-deformation, gradeR̂�ωR̂

(R̂) = 0, [22, Lemma 3.6]. The Cohen-Macaulay injective
dimension in the sense of [39] is defined as

CM∗idR(M) =
= inf{GidQ(M ⊗R S) − GfdQ(S) | R → S ← Q is a CM-quasi-deformation}.

This notion always satisfies CM∗idR(M) ≤ GidR(M) and indeed, that CM∗idR(M) is finite
for all modules if and only if R is Cohen-Macaulay [39, Theorem 3.4]. However, other
desiderata are shown in [39] only for M with finitely generated cohomology. In an attempt
to remedy this, we suggest the following definition.

Definition 4.2 For a local ring R and any R-complex M the Cohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay HomCohen-Macaulay Hom injec-injec-injec-injec-injec-injec-injec-injec-injec-injec-injec-injec-injec-injec-injec-injec-injec-
tive dimensiontive dimensiontive dimensiontive dimensiontive dimensiontive dimensiontive dimensiontive dimensiontive dimensiontive dimensiontive dimensiontive dimensiontive dimensiontive dimensiontive dimensiontive dimensiontive dimension is defined as follows:

CMHomidR(M) =

= inf

{

GidQ(RHomR(S, M)) − GfdQ(S)

∣
∣
∣
∣

R → S ← Q is a
CM-quasi-deformation

}

.

When R is not local, we extend the definition by setting

CMHomidR(M) = sup{CMHomidRm
(Mm) | m maximal ideal}.
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Remark 4.3 OurmodifiedDefinition 4.2 takes the sameapproach as the recentworkofSather-
Wagstaff and Totushek [41] on complete intersection Hom injective dimension: We replaced
the coefficient extension − ⊗R S with respect to the flat morphism R → S by the derived
coefficient coextension functor RHomR(S,−). The intuition here is rather straightforward:
While − ⊗R S does not preserve even the ordinary injective dimension, RHomR(S,−)

preserves and reflects both injective [14] and Gorenstein injective dimensions [16], see also
Remarks 4.16.

Similarly as the Cohen-Macaulay flat dimension in [39, Proposition 3.13], our definition
stays the same when we restrict to a special type of CM-quasi-deformations. Note that unlike
in the case of CM∗idR in [39, Proposition 3.12], we do not need to restrict to finitely generated
modules here. Recall that if (R,m, k) is a local ring, the closed fibreclosed fibreclosed fibreclosed fibreclosed fibreclosed fibreclosed fibreclosed fibreclosed fibreclosed fibreclosed fibreclosed fibreclosed fibreclosed fibreclosed fibreclosed fibreclosed fibre of a local morphism
R → S is the ring S ⊗R k.

Lemma 4.4 Let (R,m) be a local ring. For any cohomologically bounded complex M, we
have:

CMHomidR(M) =

= inf

⎧
⎪⎪⎨

⎪⎪⎩
GidQ(RHomR(S, M)) − GfdQ(S)

∣
∣
∣
∣
∣
∣
∣
∣

R → S ← Q is a
CM-quasi-deformation

such that the closed fibre of
R → S is artinian

⎫
⎪⎪⎬

⎪⎪⎭
.

Proof Let R → S ← Q be a CM-quasi-deformation such that CMHomidR(M) =
GidQ(RHomR(S, M)) −GfdQ(S). LetP ∈ Spec(S) be minimal such thatP∩ R = m, and
let P ∈ Spec(Q) be the unique prime lying over P ∈ Spec(S). Now R → SP ← QP is
a CM-quasi-deformation with R → SP. Indeed, observe that SP = S ⊗Q QP implies
GfdQP SP ≤ GfdQ(S) and gradeQP

(SP) ≥ gradeQ(S). Since Q → S is a CM-
deformation, we have

GfdQP SP ≤ GfdQ(S) = gradeQ(S) ≤ gradeQP
(SP) ≤ GfdQP SP. (4.1)

Similarly, it follows that RHomR(SP, M) ∼= RHomQ(QP,RHomR(S, M)), and
thus we get GidQP RHomR(SP, M) ≤ GidQ(RHomR(S, M)) using [16, Theorem 1.7].
Together with the previous paragraph, we haveGidQP RHomR(SP, M)−gradeQP

(SP) ≤
GidQ(RHomR(S, M))−gradeQ(S) = CMHomidR(M), and thereforeCMHomidR(M) attains
its value also when computed using the CM-quasi-deformation R → SP ← QP. By the

choice of P, R → SP has an artinian closed fibre. ��
Remark 4.5 Let R → S be a flat local morphism with an artinian closed fibre (in fact,
Cohen-Macaulay closed fibre is enough). Then R is Cohen-Macaulay if and only if S is
Cohen-Macaulay, see [34, p. 181, Corollary].

Let us check that our definition still characterizes Cohen-Macaulay rings.

Proposition 4.6 The following are equivalent for a commutative noetherian ring:

(i) R is Cohen-Macaulay,
(ii) CMHomidRm

(Mm) < ∞ for all maximal ideals m and all cohomologically bounded
R-complexes M,

(iii) CMHomidRm
(Mm) < ∞ for all maximal ideals m and all R-modules M,

(iv) CMHomidRm
(k(m)) < ∞ for all maximal ideals m.
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Proof Since Cohen-Macaulay-ness is checked on the stalks Rm for maximal ideals m, the
statement reduces to the case of a local ring (R,m, k).

(i) → (i i): Since R is Cohen-Macaulay, so is R̂, and therefore there is a CM-
quasi-deformation of the form R → R̂ ← Q with Q regular (see [22, Theorem
3.9]). We have pdR R̂ < ∞ (Section 2.8), and so for any cohomologically bounded M ,
RHomR(R̂, M) has bounded cohomology. Since Q is regular, we have thatCMHomidR(M) ≤
GidQ RHomR(R̂, M) = idQ RHomR(R̂, M) < ∞.

(i i) → (i i i): Trivial.
(i i i) → (iv): Trivial.
(iv) → (i): By the assumption, there is a CM-quasi-deformation R → S ← Q with R →

S such that GidQ(RHomR(S, k)) < ∞. If E(k) denotes the minimal injective cogenerator
of Mod-R, we have k ∼= HomR(k, E(k)). It follows that RHomR(S, k) = HomR(S, k) ∼=
HomR(S ⊗R k, E(k)). Using [28, Theorem 3.6], we get GfdQ(S ⊗R k) < ∞. Let K be the
residue field of S, and note that K ∼= k(X) as R-modules for some set X . Then we also have
GfdQ(S ⊗R K ) = GfdQ((S ⊗R k)(X)) < ∞.

Consider the canonical map i : K → S ⊗R K obtained as i = (R → S) ⊗R K . Since
R → S is a pure monomorphism inMod-R (see [40, Lemma 35.4.8]), i is a monomorphism
inMod-K , and thus it splits. Therefore, we have GfdQ(K ) < ∞. Since K is also the residue
field of Q, it follows that Q is a Gorenstein ring by [33, Theorem 17], and then R is Cohen-
Macaulay by the same argument as in [39, Theorem 3.4]. ��
Lemma 4.7 Let Q → S be a CM-deformation. For any cohomologically bounded S-complex
M we have ChQ(M) − GfdQ(S) = ChS(M).

Proof The inequality ChQ(M) − GfdQ(S) ≥ ChS(M) is proven in [39, Proposition 4.8].
The other inequality actually also follows from the same proof. Indeed, let q ∈ Spec(Q) be
such that ChQ(M) = depth(Qq)−widthQq(Mq). Clearly, we can choose q ∈ Supp(M) ⊆
Supp(S), and let q ∈ Spec(S) be the unique prime whose inverse image is q. The same
computation as in the proof of [39, Proposition 4.8] shows that

ChQ(M) = depth(Qq) − widthQq(Mq) =
= depthQq

(Sq) + GfdQq(Sq) − widthQq(Mq) =
= depth(Sq) − widthSq(Mq) + GfdQq(Sq) =
= depth(Sq) − widthSq(Mq) + GfdQ(S) ≤ ChS(M) + GfdQ(S).

We remark that, as in the proof of loc. cit., the second equality follows from the Auslander-
Bridger formula [1, Theorem 4.13], the third equality follows from surjectivity of Qq → Sq
and [31, Proposition 5.2(1)] (and its version for width, cf. [19, §4]), while the fourth equality
is (4.1). ��
Lemma 4.8 Let R be a local ring and M a cohomologically bounded R-complex. Then:

CMHomidR(M) = inf

{

ChS(RHomR(S, M))

∣
∣
∣
∣

R → S ← Q a CM-quasi-deformation
with GidQ(RHomR(S, M)) < ∞

}

.

If CMHomidR(M) < ∞, the infimum is attained at any CM-quasi-deformation R → S ← Q
such that CMHomidR(M) = GidQ(RHomR(S, M)) − GfdQ(S).

Proof Let R → S ← Q be a CM-quasi-deformation with GidQ(RHomR(S, M)) < ∞.
Then GidQ(RHomR(S, M)) = ChQ(RHomR(S, M)) by [16, Theorem C]. By 4.7, we have
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1388 M. Hrbek and G. Le Gros

ChQ(RHomR(S, M))−GfdQ(S) = ChS(RHomR(S, M)). It follows that CMHomidR(M) ≤
ChS(RHomR(S, M)).

The second claim follows since for such a CM-quasi-deformation R → S ← Q we have
CMHomidR(M) = ChS(RHomR(S, M)) by the previous computation. ��
Lemma 4.9 Let R be a local ring. For any cohomologically bounded R-complex M, we
have the inequality CMHomidR(M) ≤ CMidR(M). Furthermore, if CMidR(M) < ∞ then
ChR(M) = CMHomidR(M) = CMidR(M).

Proof Let C be a semidualizing module such that CMidR(M) = GidR�CM . By [22, Lemma
3.6], R

=−→ R ← R � C is a CM-quasi-deformation. By the definition, we thus have
CMHomidR(M) ≤ GidR�CM = CMidR(M).

Now assume that GidR�C (M) < ∞. By [39, Lemma 4.14], we get CMidR(M) =
GidR�C (M) = ChR(M). Let R → S be a flat local morphism. Then C ⊗R S is a semidual-
izing S-module [21, Theorem 4.5] and R � C → (R � C) ⊗R S ∼= S � (C ⊗R S) is a flat
local morphism. Since

RHomR(S, M) ∼= RHomR�C ((R � C) ⊗R S, M),

it follows by [16, Theorem 1.7] that

GidR�CM = Gid(R�C)⊗R S RHomR(S, M).

Using [39, Lemma 4.14] again, we get

Gid(R�C)⊗R S RHomR(S, M) = GidS�(C⊗R S) RHomR(S, M) = ChS(RHomR(S, M)).

In conclusion, ChR(M) = ChS(RHomR(S, M)) for all flat local morphisms R → S. Choose
a CM-quasi-deformation R → S ← Q such that CMHomidR(M) = ChS(RHomR(S, M))

using Lemma 4.8 and that CMHomidR(M) ≤ CMidR(M) < ∞, and then we obtain
CMidR(M) = ChR(M) = CMHomidR(M). ��
Remark 4.10 It is not clear to us whether Lemma 4.9 generalizes for non-local rings. The
problem is that we do not know if the Holm-Jørgensen dimension CMid always satisfies the
local-global principle.

Question 4.11 Does the refinement property

CMHomidR(M) < ∞ �⇒ CMHomidR(M) = ChR(M)

hold for any commutative noetherian ring R? In what follows, we are able to show this holds
if R is Cohen-Macaulay.

Lemma 4.12 Let R be a commutative noetherian ring of finite Krull dimension. Let
R → S be a faithfully flat ring homomorphism. Then for any cohomologically bounded
R-complex M, we get an equality RidS(RHomR(S, M)) = RidR(M) and an inequality
ridS(RHomR(S, M)) ≥ ridR(M).

If R is Cohen-Macaulay then we have ridS(RHomR(S, M)) = ridR(M).
If both R and S are Cohen-Macaulay then we have ChS(RHomR(S, M)) = ChR(M).

Proof By the projective descent of Raynaud and Gruson [37, Second partie], we have
pdRN < ∞ if and only if pdSN ⊗R S < ∞ for any R-module N . Since pdRS < ∞,
we also have pdS(L) < ∞ if and only if pdR(L) < ∞ for any S-module L . The latter prop-
erty together with the adjunction formula RHomS(L,RHomR(S, M)) ∼= RHomR(L, M))

yields RidS(RHomR(S, M)) ≤ RidR(M).

123



Restricted Injective Dimensions over Cohen-Macaulay Rings 1389

For the other inequality, let N ∈ P be an R-module such that we have n =
supRHomR(N , M) = RidR(M). We first claim that supRHomR(N ⊗R S, M) = RidR(M).
Recall e.g. from [40, Lemma 35.4.8] that the exact sequence

0 → R → S → S/R → 0 (4.2)

is pure, and then all of its components are flat R-modules. Applying HomD(R)(N ⊗L
R −, M)

to (4.2), we obtain an exact sequence ExtnR(N ⊗R S, M) → ExtnR(N , M) → Extn+1
R (N ⊗R

S/R, M). Since S/R is flat, N⊗R S/R ∈ P (seeSection 2.8), and soExtn+1
R (N⊗R S/R, M) =

0 by the assumption. Therefore ExtnR(N ⊗R S, M) �= 0 and the claim follows. Next, by
adjunction we have RHomR(N ⊗R S, M) ∼= RHomS(N ⊗R S,RHomR(S, M)), and thus
it follows that RidS(RHomR(S, M)) ≥ RidR(M).

The argument of the previous paragraph applied for N ∈ P f shows also the inequality
ridS(RHomR(S, M)) ≥ ridR(M). If R is Cohen-Macaulay, we have using Corollary 3.16
and the above that ridR(M) = RidR(M) = RidS(RHomR(S, M)) ≥ ridS(RHomR(S, M)).
The final claim follows from the previous one and Proposition 3.1. ��
Proposition 4.13 Let R be a Cohen-Macaulay ring. For any cohomologically bounded R-
complex we have ChR(M) = CMHomidR(M) = ridR(M) = RidR(M).

Proof The claim ChR(M) = CMHomidR(M) clearly reduces to R local. We have
CMHomidR(M) < ∞ by Proposition 4.6. In view of Lemmas 4.4 and 4.8, there is a CM-
quasi-deformation R → S ← Q with R → S having artinian closed fibre and such
that CMHomidR(M) = ChS(RHomR(S, M)). Since both R and S are Cohen-Macaulay
by Remark 4.5, we further have ChS(RHomR(S, M)) = ChR(M) by Lemma 4.12. Finally,
ChR(M) = ridR(M) = RidR(M) by Proposition 3.1, and Corollary 3.16. ��

For convenience, let us denote CMI0 = {M ∈ Mod-R | CMHomidR(M) ≤ 0}.
Corollary 4.14 If R is Cohen-Macaulay of finite Krull dimension then Theight = CMI0.
In particular, there is a cotorsion pair (P,CMI0) and the class CMI0 is definable and
enveloping.

Proof Combine Proposition 4.13 andCorollary 3.3. The second claim follows fromCorollary
3.12 and Theorem 3.14. ��

In the following proposition, we gather some further good properties of CMHomid over a
Cohen-Macaulay ring analogous to those enjoyed by Gid over a Gorenstein ring.

Proposition 4.15 Let R be a Cohen-Macaulay ring. Then:

(i) CMHomidR(M) ≤ dim(R) for any R-module M,
(ii) We have CMHomidR(Mp) = CMHomidRp

(Mp) ≤ CMHomidR(M) for any cohomologi-
cally bounded complex M and any p ∈ Spec(R).

(iii) Let R → S be a flat local morphism with a Cohen-Macaulay closed fibre. Then
CMHomidR(M) = CMHomidS(RHomR(S, M)) for any cohomologically bounded com-
plex M.

(iv) Let R bea localCohen-Macaulay ring. ThenwehaveCMHomidR(M) = CMidR̂(RHomR

(R̂, M)) for any cohomologically bounded R-complex M.
(v) If R is local and M �= 0 is finitely generated R-module then CMHomidR(M) =

depth(R).
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(vi) If R is local, we have CMHomidR(M) = CMidR(M) for any R-module M or any
cohomologically bounded R-complex if and only if R admits a dualizing module.

Proof (i): By Proposition 4.13, we have CMHomidR(M) = ChR(M) ≤ dim(R).
(i i): Observe that Theight ∩ Mod-Rp is the minimal tilting class in Mod-Rp, and so

Theight∩Mod-Rp = {M ∈ Mod-Rp | CMHomidRp
(M) ≤ 0}. It follows directly from the fact

that Theight is a definable subcategory that CMHomidR(M) ≤ 0 �⇒ CMHomidRp
(Mp) ≤

0 ⇐⇒ CMHomidR(Mp) ≤ 0. Since CMHomid = rid for both R and Rp by Proposition 4.13,
it can be computed by taking Theight-coresolutions (see Section 2.3), and the claim follows.

(i i i) : By Proposition 4.13, Lemma 4.12, and Remark 4.5, we have CMHomidR(M) =
ChR(M) = ChS(RHomR(S, M)) = CMHomidS(RHomR(S, M)).

(iv) : By (iii), we have CMHomidR(M) = CMHomidR̂(RHomR(R̂, M)). The equality
of CMidR̂(RHomR(R̂, M)) with CMHomidR̂(RHomR(R̂, M)) follows from (vi), because R̂
admits a dualizing module.

(v) : By Proposition 4.13, CMHomidR(M) = ridR(M), and then ridR(M) = depth(R)

by [11, Corollary 5.5].
(vi): Recall from Proposition 4.6 that CMHomidR(M) < ∞ for any M . By [24, Theorem

5.1], CMidR(M) < ∞ for every M if and only if R admits a dualizing module. Finally by
Lemma 4.9, CMHomidR(M) = CMidR(M) if and only if CMidR(M) < ∞. ��
Remark 4.16 Proposition 4.15(vi) gives a formula for computing CMHomidR(M) over
a local Cohen-Macaulay ring. Indeed, combined with [39, Lemma 4.14], we see that
CMHomidR(M) = CMidR̂(RHomR(R̂, M)) = GidR̂�ωR̂

(RHomR(R̂, M)).
An analogous formula fails to hold for the notion CM∗id of Cohen-Macaulay injective

dimension from [39]. Let R be a local Cohen-Macaulay ring such that there is a formal
fibre R̂ ⊗R k(p) for some p ∈ Spec(R) with Krull dimension dim(R̂ ⊗R k(p)) > 0; such
examples are abundant, see e.g. [38]. We consider Spec(R̂ ⊗R k(p)) naturally embedded
into Spec(R̂) and for a P ∈ Spec(R̂ ⊗R k(p)), the residue field k(P) = R̂P/PR̂P is a
k(p)-module, so that as an R-module we have k(P) is isomorphic to a coproduct of copies of
k(p). It follows thatwidthR̂P

(T (p)⊗R R̂) = − sup(k(P)⊗L
R̂
T (p)⊗R R̂) = − sup(k(P)⊗L

R

T (p)) = − sup(k(p)⊗L
R T (p)) = widthRp(T (p)). ChoosingP as any non-minimal element

of Spec(R̂ ⊗R k(p)), we get ChR̂(T (p)) ⊗R R̂ ≥ depth(R̂P) − widthR̂P
(T (p) ⊗R R̂) =

depth(R̂P) − widthRp(T (p)) ≥ height(P) − height(p) > 0.
Since R̂ is Cohen-Macaulay with a dualizing module, we have ChR̂(T (p) ⊗R R̂) =

CM∗idR̂(T (p) ⊗R R̂) = CMHomidR̂(T (p) ⊗R R̂) > 0, [39, 4.9, 4.13, 4.14]. On the other
hand CMHomidR(T (p)) = 0, since T (p) ∈ Theight. If R itself admits a dualizing module
then CM∗idR(T (p)) = CMidR(T (p)) = CMHomidR(T (p)) = 0 by Proposition 4.15 and [39,
Corollary 4.15].

4.1 We conclude the section by a generalization of the fact [17, Theorem 4.1] that Gorenstein
injective modules over Gorenstein rings are closed under taking tensor products.

Corollary 4.17 Let R be a Cohen-Macaulay ring. For any M, N ∈ CMI0 we have M⊗R N ∈
CMI0.

Proof We can assume that R is local. LetW = {p ∈ Spec(R) | height(p) > 0}, and consider
the exact sequence 0 → �W (N ) → N → N ′ → 0, where �W is the W -torsion functor.
Since M ∈ Theight, we have R/I ⊗R M = 0 for any ideal I such that V (I ) ⊆ W . Because
Supp(�W (N )) ⊆ W , �W (N ) ⊗R M = 0. It follows that N ⊗R M ∼= N ′ ⊗R M , so we can
without loss of generality assume �W (N ) = 0.
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Now recall that since any module from CMI0 = Theight admits a canonical filtration
by Theorem 3.8, we have N ∼= ⊕

q∈Spec(R)\W Nq, and therefore we can without loss of
generality assume that N ∼= Nq for some minimal prime q. But then M ⊗R N ∼= (M ⊗R N )q
is an Rq-module. It follows directly from the description of the minimal tilting class Theight
of Corollary 3.3 that any Rq-module belongs to Theight. ��

5 TheMinimal Cotilting Class and Cohen-Macaulay Flats

In this section, we gather some dual results about the minimal cotilting class. It turns out that
in this dual setting these are considerably easier to obtain. The definition of a cotilting modulecotilting modulecotilting modulecotilting modulecotilting modulecotilting modulecotilting modulecotilting modulecotilting modulecotilting modulecotilting modulecotilting modulecotilting modulecotilting modulecotilting modulecotilting modulecotilting module
is dual to that of a tilting module. Namely, if R is an associative unital ring, a left R-module
C is cotilting if C ∈ I, Prod(C) ⊆ ⊥C , and there is a short exact sequence 0 → Cn →
· · · → C1 → C0 → W → 0 where all Ci ’s belong to Prod(C) and W is an injective
cogenerator in the category R-Mod of left R-modules. Any cotilting module C induces
the cotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion paircotilting cotorsion pair (⊥C, (⊥C)⊥). Two cotilting modules C and C ′ are equivalent
if they induce the same cotilting cotorsion pair, or equivalently, if Prod(C) = Prod(C ′).
Let (−)+ = HomZ(−, Q/Z) : Mod-R → R-Mod denote the character duality functor. If
R is commutative noetherian then T �→ T+ induces a bijection between the equivalence
classes of tilting and cotilting R-modules [4, Theorem 4.2]. In this situation, let T = T⊥
and C = ⊥(T+) be the induced tilting and cotilting class. Then T and C are dual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definable
classes. This means by definition that they are both definable classes and that we have the
relations for any M ∈ Mod-R: M ∈ T if and only if M+ ∈ C, and analogously, M ∈ C if
and only if M+ ∈ T. For more details, see [23, §15, §16].

5.1 The restricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimensionrestricted flat dimension of an R-module or R-complex M was also introduced
in [11] and is defined as RfdR(M) = sup{i | TorRi (F, M) �= 0}. Unlike in the case of
the restricted injective dimensions, one can always compute Rfd via a dual analog of the
Chouinard invariant. That is, over any commutative noetherian ring R, we have the equal-
ity RfdR(M) = sup{depth(Rp) − depthRp

(Mp) | p ∈ Spec(R)} for a cohomologically
bounded R-complex M , see [11, Theorem 2.4].

5.2 Following [39], the Cohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimensionCohen-Macaulay flat dimension over a local ring R is defined as

CM∗fdR(M) =
= inf{GfdQ(M ⊗R S) − GfdQ(S) | R → S ← Q is a CM-quasi-deformation}.

As with Cohen-Macaulay injectives, one has CM∗fdR(M) < ∞ for all R-modules M if and
only if R is Cohen-Macaulay [39, Theorem 3.3]. For an arbitrary commutative noetherian
ring R, we put CMF0 = {M ∈ Mod-R | CM∗fdRm

(Mm) ≤ 0 ∀m maximal ideal}.
5.3 Let R be a Cohen-Macaulay ring of finite Krull dimension. Denote by Cheight the
minimal cotilting class in Mod-R, that is, Cheight = {M ∈ Mod-R | depthR(p, M) ≥
height(p) ∀p ∈ Spec(R)}, see [4, Theorem 4.2]. It follows directly from the general descrip-
tion of cosilting t-structures in D(R) [27, 2.15, 2.16] that Cheight = {M ∈ Mod-R |
depthRp

(Mp) ≥ height(p) ∀p ∈ Spec(R)}. Recalling that the Cohen-Macaulay-ness
of R ensures depthR(p, R) = depth(Rp) = height(p) for all p ∈ Spec(R), we have
Cheight = {M ∈ Mod-R | RfdR(M) ≤ 0}.

Recall that if R is a commutative noetherian ringwith a dualizing complex then it is known
that the classes GI0 and GF0 of Gorenstein injective and flat modules are dual definable, GF0

is covering, and GI0 is enveloping [25, (2.6,3.3)], [18].
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1392 M. Hrbek and G. Le Gros

Proposition 5.1 Let R be a Cohen-Macaulay ring, then Cheight = CMF0. Therefore, CMF0

is a covering class. In addition, the classes CMF0 and CMI0 are dual definable.

Proof The first claim follows from the equality RfdR ≡ CM∗fdR which is proved in [39,
Corollary 4.2, Theorem 3.3]. The rest follows from Corollary 4.14, [23, Theorem 15.9], and
the discussion above. ��
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