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Abstract
We investigate Conjecture 1.5 introduced by Barker and Gelvin (J. Gr. Theory 25, 973–995
2022), which says that any source algebra of a p-block (p is a prime) of a finite group has the
unit group containing a basis stabilized by the left and right actions of the defect group. We
will reduce this conjecture to a similar statement about the bases of the hyperfocal subalgebras
in the source algebras. We will also show that such unital bases of source algebras of two
p-blocks, stabilized by the left and right actions of the defect group, are transported through
basic Morita equivalences.
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1 Introduction

Let O be a complete local noetherian commutative ring with identity element and with an
algebraically closed residue field k of prime characteristic p. We understand any O-module
and any algebra over O to be finitely generated and free over O . Any O-algebra A which
we consider has an identity element 1A and the group of units is denoted by A×. A basis for
an algebra over O is an O-basis as an O-module. Such a basis is said to be unital if every
element is unital.
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204 T. Coconeţ, C.-C. Todea

In this paper we consider G to be a finite group such that p divides the order of G and
we assume familiarity with: the theory of G-algebras, Brauer maps, Brauer pairs, pointed
groups, (almost-)source algebras, as in [7], [8] and [15]. For notations and results with respect
to fusion systems we follow [1] or the algebraic approach given by David Craven in his
book [2].

Let b be a block idempotent of OG with defect group D (a p-subgroup of G) and l ∈
(OGb)D be a primitive idempotent such that BrOG

D (l) �= 0. We shall use the notation A :=
lOGl; it is an interior D-algebra called the source algebra of b. The source algebra A has
a D × D-stable basis on which D × 1 and 1 × D act freely. Following [3, Section 6] this
means that A is a bifree bipermutation D-algebra. In the same paper the authors explore the
following conjecture.

Conjecture 1.1 ([3, Conjecture 1.5]) For any block idempotent b of OG, any source algebra
A of OGb has a unital D × D-stable basis.

We will reduce this conjecture to a conjecture on hyperfocal subalgebras. For any subgroup
R of D there is a unique block eR of kCG(R) such that BrOG

R (l)eR �= 0. Fixing (D, eD), a
maximal (OG, b,G)-Brauer pair, we define a saturated fusion system which we denote by
F := F(D,eD)(OG, b,G), the saturated fusion system of A on D, associated with b and
given by the (OG, b,G)-Brauer pairs included in (D, eD).

The hyperfocal subgroup of a block was introduced by Puig [11] and, in the language of
fusion systems, is defined by

hyp(F ) :=< uϕ(u−1)|R ≤ D, u ∈ R, ϕ ∈ O p(AutF (R)) >

It is an important invariant of a block, since a block is nilpotent if and only if its hyperfocal
subgroup is trivial. Let D̃ be a normal subgroup of D containing hyp(F ). By [11, Theorem
1.8] there exists a unique (up to (AD)×-conjugacy) D-stable, unitary subalgebra Ã of A
(called the hyperfocal subalgebra with respect to D̃) such that A = Ã ⊗D̃ D, see 2 for the
general case. The hyperfocal subalgebra Ã is a D̃-interior D-algebra, satisfying Ã∩Dl = D̃l
and 1 Ã = 1A = l. Set D̄ := D/D̃ and consider the subgroup D ×D̄ D of D × D, which is
recalled in 2 and below Conjecture 1.2. According to [11, 4.1] the hyperfocal subalgebra Ã
is a direct summand of A as O[D ×D̄ D]-module, hence Ã has a D ×D̄ D-stable basis. With
the above notations we launch the following conjecture.

Conjecture 1.2 For any source algebra A = lOGl of any block b with defect group D there
is a normal subgroup D̃ in D containing hyp(F ), such that the hyperfocal subalgebra Ã with
respect to D̃ has a unital D ×D̄ D-stable basis.

In Section 2we extend some results of [3, Sections 2, 4] fromG-interior algebras to N -interior
G-algebras; in this section we consider N to be a normal subgroup of G, A is an N -interior
G-algebra (see [11, Section 2]), and Ḡ := G/N is the factor group. The elements of Ḡ are
denoted by x̄ = xN , x ∈ G. Then A⊗N G is the crossed product, which is also a G-interior
algebra, see 2.2 for more details. It follows that A ⊗N G is also an O[G × G]-module. The
subgroup

G × ḠG := {(u, v)|ū = v̄, u, v ∈ G}
of G × G is introduced in [11, 2.5.2] and is the pullback of the natural map G → Ḡ
with itself. The next proposition is an important technical result which is proved in
Proposition 2.2.
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Stable Unital Bases, Hyperfocal Subalgebras and Basic Morita Equivalences 205

Proposition 1.3 (Proposition 2.2) LetA be an N-interior G-algebra. IfA has a unital G×Ḡ

G-stable basis then A ⊗N G has a unital G × G-stable basis.

Since the source algebra A is a direct summand ofOG asO[D×D̄ D]-module, Ã inherits
a D ×D̄ D-stable basis on which D̃ × 1 and 1 × D̃ act freely. So Ã has a basis which we
call D̃-bifree, see 2. An immediate consequence of Proposition 1.3 (with A, N ,G replaced
by Ã, D̃, D, respectively) is the following theorem.

Theorem 1.4 With the above notations if b is a block of OG with source algebra A verifying
Conjecture 1.2 then A verifies Conjecture 1.1.

Section 3 has two subsections and we start by recalling the concept of a category on a
p-group, see [6]. In Subsections 3.1 and 3.2 we introduce some subcategories on a p-group,
by considering morphisms which are the identity morphisms on factor groups. These results
are needed to give the next main result of our paper, where we obtain some cases of blocks
for which Conjecture 1.2 is true. If φ ∈ Mor(F ) then �(φ) is the twisted diagonal subgroup
of D × D with respect to φ, that is

�(φ) = {(φ(u), u)|u ∈ dom(φ)}.
Applying the results of Subsection 3.1 we define the subcategory FD×D̄ D of F , on the p-
group D, which has as objects all subgroups in D and as morphisms all maps φ ∈ Mor(F )

such that �(φ) ≤ D×D̄ D. In Subsection 3.2 we will define the categories NF
D×D̄ D

(R), on

the p-groups ND(R),where R is a subgroup of D. If R = D the subcategory NF
D×D̄ D

(D) of

FD×D̄ D has as objects all subgroups of D. For any R1, R2 ≤ D, a morphism φ : R1 → R2 in
NF

D×D̄ D
(D) is a morphism φ ∈ HomF

D×D̄ D
(R1, R2)which extends to some automorphism

φ′ ∈ AutF
D×D̄ D

(D). The following theorem extends [3, Proposition 1.6].

Theorem 1.5 Let b be block idempotentOG with defect group D,with A = lOGl the source
algebra of b, andF be the saturated fusion system of A on D. Let D̃ be a normal subgroup
of D such that hyp(F ) ≤ D̃ and Ã be the hyperfocal subalgebra with respect to D̃. If
FD×D̄ D = NF

D×D̄ D
(D) then Ã has a unital D ×D̄ D-stable basis.

As a consequence of Theorems 1.4, 1.5 and Proposition 3.2 (iv) we obtain the following
corollary.

Corollary 1.6 Let b be block idempotent OG having a defect group D, with source algebra
A and with saturated fusion system F of A on D.

(i) If all the assumptions of Theorem 1.5 are satisfied then the source algebra A verifies
Conjecture 1.1;

(ii) If we choose D̃ = D then Theorem 1.5 becomes [3, Proposition 1.6];
(iii) If b is a nilpotent block then its source algebra A verifies Conjecture 1.1.

Statement (iii) of the above corollary is straightforward, we just want to emphasize a
method which is based on the techniques in [3].

For the rest of the section, we consider another finite group H and a block idempotent
b′ of OH with defect group E . Let l ′ ∈ (OHb′)E be a primitive idempotent such that
BrO H

E (l ′) �= 0. Similar to the case of the block algebra b, we shall use the notations: A′ :=
l ′OHl ′ is the source algebra of b, for any subgroup Q in E the block e′

Q is the unique block

of kCH (Q) such that BrO H
Q (l ′)e′

Q �= 0, F ′ is the saturated fusion of A′ on E, etc. Basic

123



206 T. Coconeţ, C.-C. Todea

Morita equivalences between blocks were introduced by Puig in [13], see also [14, Corollary
3.6]. It is a Morita equivalence between the block algebras which respects the local structure
of the blocks and can be characterized by the existence of some algebra embedding between
interior algebras obtained using the source algebras of the blocks. In Section 5 we will recall
more details about basic Morita equivalences and we will prove the second main result of
this paper.

Theorem 1.7 Let b, b′ be block idempotents as above such that OGb is basic Morita equiv-
alent to OHb′. If A has a unital D× D-stable basis then A′ has a unital E × E-stable basis.
Inertial blocks were introduced by Puig in [12]. An inertial block is a block which is basic
Morita equivalent to its Brauer correspondent.

Corollary 1.8 Any inertial block verifies Conjecture 1.1.

It is known that eD is a nilpotent block of kCG(D) with defect group Z(D) and that
eD remains a block of kNG(D, eD) with the same maximal (NG(D, eD), eD, NG(D, eD))-
Brauer pair (D, eD). The fusion system of eD isF(D,eD)(kNG(D, eD), eD, NG(D, eD)). By
[1, Chapter IV, Proposition 3.8], if we use the language of fusion systems,we can verify that in
fact F(D,eD)(kNG(D, eD), eD, NG(D, eD)) is NF (D), the normalizer fusion subsystem of
D inF , see [2,Definition 4.26 (ii)]. In fact, if b is an inertial block then the block algebraOGb
is basicMorita equivalentwith the block algebraONG(D, eD)êD,where êD denotes the block
idempotent of ONG(D, eD) lifting the block idempotent eD of kNG(D, eD). Obviously,
Corollary 1.8 can be quickly obtained as a consequence of Corollary 1.6 (ii), more precisely
[3, Proposition 1.6], since basic Morita equivalences preserve the fusion systems.

In Section 4 we will give the proof of Theorem 1.5. Section 5 is devoted to the proof of
the fact that unital stable bases of source algebras are transported between blocks which are
basic Morita equivalent, Theorem 1.7.

If L1, L2 are two subgroups in some finite group L and x ∈ L we denote by cx : L1 → L2

the conjugation homomorphism induced by x , when x L1 ≤ L2 and x L1 := xL1x−1. If
h : M → N is a map between two sets and M1 is a subset of M we denote by h|M1

the
restriction map of h to M1. Sometimes, for the preciseness of our notations we introduce the
multiplication "·" in the interior of various relations, we omit this most of the time; "·" may
signify the multiplication in a group or the action of a group on a module.

2 N-InteriorG-Algebras and Stable Unital Bases

In this section we consider N to be a normal subgroup ofG andA is an N -interiorG-algebra.
This means thatA is an O-algebra endowed with two group homomorphisms σA : N → A×
and τ : G → AutO (A), (where AutO (A) is the group of O-algebra automorphisms of A)
which satisfy

x (n · a) = xn · xa, na = n · a · n−1;
here we used the notations

xa = τ(x)(a), xn = xnx−1, n · a = σA(a)n, a · n = nσA(a),

for any x ∈ G, n ∈ N , a ∈ A;

2.1 We denote by A ⊗N G the corresponding crossed product considered as a G-interior
algebra, namely A ⊗N G := A ⊗O N OG endowed with the associative operation

(a ⊗ x)(a′ ⊗ x ′) = a(xa′) ⊗ xx ′,
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Stable Unital Bases, Hyperfocal Subalgebras and Basic Morita Equivalences 207

for any a, a′ ∈ A, x, x ′ ∈ G. The structural map of A⊗N G as a G-interior algebra is given
by

σA⊗NG : G → (A ⊗N G)×, σA⊗NG(x) = 1A ⊗ x,

for any x ∈ G. Note that if n ∈ N then

σA⊗NG(n) = 1A · n ⊗ 1G = σA(n) ⊗ 1G .

A ⊗N G is a Ḡ-graded algebra, with the identity component A 	 A ⊗ 1, see [4, 2.1].

2.2 Recall the next subgroup of G × G, which is introduced in [11, 2.5.2],

G × ḠG := {(u, v)|ū = v̄, u, v ∈ G}.
Denoting by �(G) the diagonal subgroup of G × G it is easy to verify that (N × N )�(G)

is a normal subgroup of G × ḠG. Moreover if N = 1 then G × ḠG = �(G).

Since A is an N -interior algebra, A has a structure of an O[N × N ]-module given by

(u, v)a = u · a · v−1,∀u, v ∈ N ,∀a ∈ A.

Moreover, A is an O[G ×Ḡ G]-module with the action

(u, v)a := (uv−1) · va = ua · (uv−1),

for any (u, v) ∈ G × ḠG, a ∈ A. Note that A ⊗N G is an O[G ×Ḡ G]-module and A is a
direct summand of A ⊗N G as O[G ×Ḡ G]-modules.

Remark 2.3 Let L be any finite group. Let B be anO[L× L]-module with� an L× L-stable
O-basis and ω ∈ �. We shall use the notation

NL×L(ω) := {(u, v)|(u, v)ω = ω, u, v ∈ B}.
The next theorem has the similar proof to [3, Theorem 2.4] adapted to N -interiorG-algebras.
We prefer to give some details of the proof, for explicitness, even though our proof is almost
a verbatim translation.

Theorem 2.1 Let A be an N-interior G-algebra. Then A has a unital G ×Ḡ G-stable basis
if and only if A has a G ×Ḡ G-stable basis � such that for any ω ∈ � the group NG×ḠG(ω)

fixes an element of A×.

Proof The implication from left to right is clear.
For the other implication, assume � is a G ×Ḡ G-stable basis such that, for any ω ∈ �,

the group NG×ḠG(ω) fixes an element of A×. Let T be a system of representatives of the

G ×Ḡ G-orbits in �. For any ω ∈ T , we choose f (ω) ∈ A× ∩ A
N
G×Ḡ G

(ω)
. We extend this

choice to a well-defined map, still denoted by

f : � → A×, f ((x, y)ω) := (x, y) f (ω),

for any (x, y) ∈ G ×Ḡ G, ω ∈ T .

For all ω′ ∈ � the following equality

NG×ḠG(ω′) = NG×ḠG( f (ω′)) (1)
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208 T. Coconeţ, C.-C. Todea

is true, since if ω′ = (x, y)ω ∈ �, with (x, y) ∈ G ×Ḡ G, ω ∈ T , then

NG×ḠG( f (ω′)) = NG×ḠG( f ((x, y)ω)) = (x,y)NG×ḠG( f (ω))

= (x,y)NG×ḠG(ω) = NG×ḠG(ω′).

Applying (1) and the arguments of [3, Lemma 2.2, Lemma 2.3], we are done. �� We will
show that stable unital bases are transported from A to A ⊗N G.

Proposition 2.2 Let A be an N-interior G-algebra. If A has a unital G ×Ḡ G-stable basis
then A ⊗N G has a unital G × G-stable basis.

Proof Let � be a unital G ×Ḡ G-stable basis of A and S ⊆ G be a system of representatives
of the left cosets of N in G. It is clear that

B :=
⋃

u∈S
� ⊗N u

is an O-basis of basis of A ⊗N G. If ω ⊗ u ∈ B then

(ω ⊗ u)(u
−1

(ω−1) ⊗ u−1) = 1A ⊗ 1G = (u
−1

(ω−1) ⊗ u−1)(ω ⊗ u).

For G × G-stability, we consider the elements

(x, y) ∈ G × G, ω ⊗ u ∈ B, ω ∈ �, u ∈ S.

Then, there is a unique u′ ∈ S such that xuy−1 = nu′, for some n ∈ N . It follows

(x, y)(ω ⊗ u) = (1A ⊗ x)(ω ⊗ u)(1A ⊗ y−1)

= xω ⊗ xuy−1 = xωn ⊗ u′ = ((x, n−1x)ω ⊗ u′),

which is inB, since (x, n−1x) ∈ G×Ḡ G. The first equality in the above identity is given by
the action of G ×G onA⊗N G, see 2. Thus,B is a unital G ×G-stable basis ofA⊗N G. ��

For the rest of the section we assume that G is a p-group.

2.4 We adopt the following notations, see [3]. The set J(G) is the set of all group isomor-
phisms φ such that dom(φ) and cod(φ) are subgroups in G. For φ ∈ J(G) recall that �(φ),
the twisted diagonal subgroup with respect to φ, is the subgroup of G × G formed by the
pairs (φ(u), u) when u runs in dom(φ). Moreover

JG×ḠG(G) := {φ|φ ∈ J(G),�(φ) ≤ G ×Ḡ G},

L := {L|L ≤ G ×Ḡ G, L ∩ (N × 1) = (1, 1) = L ∩ (1 × N )}.
Let φ ∈ JG×ḠG(G).We denote byA(φ) := A�(φ)/Ker(BrA�(φ)) the Brauer quotient with

respect to �(φ). Recall that

A�(φ) = {a ∈ A|(φ(u), u)a = a, for any u ∈ dom(φ)}
and that

BrA�(φ) : A�(φ) → A�(φ)/

⎛

⎝
∑

L≤�(φ)

A�(φ)
L + J (O)A�(φ)

⎞

⎠

is the canonical surjective map, called the Brauer map, see [7, Definition 5.4.10 ]. The next
lemma is straightforward and for its proof we introduce the following notations for the first
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and second projection of a direct product of groups. For any finite groups L1, L2 we denote
the first and second projection by

π : L1 × L2 → L1, π(x, y) = x, π ′ : L1 × L2 → L2, π
′(x, y) = y,

for any (x, y) ∈ L1 × L2.

Lemma 2.3 There is a bijection F : JG×ḠG(G) → L given by F(φ) = �(φ), for any
φ ∈ JG×ḠG(G).

Proof The above correspondence F is a well-defined map since

�(φ) ∩ (G × 1) = (1 × G) ∩ �(φ) = (1, 1).

Let
F0 : L → JG×ḠG(G), F0(L) = φL ,

with φL : π ′(L) → π(L) defined by φL(u) = v, where if u ∈ π ′(L) there is (v, u) ∈ L
such that π ′(v, u) = u.

(F ◦ F0)(L) = F(φL) = �(φL) = {(φL(u), u)|u ∈ dom(φL)} = π(L) × π ′(L) = L.

(F0 ◦ F)(φ) = F0(�(φ)) = φ�(φ) = φ.

��
Remark 2.5 Note that the above lemma is true in amore general context. Let K be a subgroup
of G × G. We consider the following notations:

JK (G) := {φ|φ ∈ J(G),�(φ) ≤ K },
LK := {L|L ≤ K , L ∩ (G × 1) = (1, 1) = L ∩ (1 × G)}.

Then, similar arguments as above give a bijection between JK (G) andLK . If K = G ×Ḡ G
then JK (G) = JG×ḠG(G), K ∩ (G × 1) = N × 1 and LK is L .

2.6 Let � be a G ×Ḡ G-set. We say that � is N -bifree if N × 1 and 1 × N (which are
subgroups of G ×Ḡ G) act freely on �.

Lemma 2.4 Let � be a G ×Ḡ G-set. Then � is N-bifree if and only if for any ω ∈ � there
is φ ∈ JG×ḠG(G) such that NG×ḠG(ω) = �(φ).

Proof Fix ω ∈ �. For the left to right implication, since � is N -bifree it follows

NG×ḠG(ω) ∩ (N × 1) = (1 × N ) ∩ NG×ḠG(ω) = (1, 1),

hence NG×ḠG(ω) ∈ L . By Lemma 2.3, there is φ ∈ JG×ḠG(G) such that NG×ḠG(ω) =
�(φ).

For the right to left implication, let (u1, 1), (u2, 1) ∈ N × 1 be such that (u1, 1)ω =
(u2, 1)ω. It follows that (u−1

2 u1, 1) ∈ NG×ḠG(ω), hence there is φ ∈ JG×ḠG(G) such that

(u−1
2 u1, 1) ∈ �(φ). ��

Theorem 2.5 LetA be an N-interior G-algebra, admitting an N-bifree G×Ḡ G-stable basis.
The following statements are equivalent:
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210 T. Coconeţ, C.-C. Todea

(a) given φ ∈ JG×ḠG(G) such that A(φ) �= 0 then A× ∩ A�(φ) �= ∅;
(b) A has a unital G ×Ḡ G-stable basis.

Proof Let � be G ×Ḡ G-stable basis.
First we assume (a) is true and that � is also N -bifree, with ω0 ∈ �. Using Theorem 2.1,

we will show that NG×ḠG(ω0) fixes a unit of A. By Lemma 2.4, there is φ ∈ JG×ḠG(G)

such that NG×ḠG(ω0) = �(φ), hence

��(φ) = �
N
G×Ḡ G

(ω0) �= ∅.

By [15, Proposition 27.6 (a)] we obtain that A(φ) has as k-basis the set

{BrA�(φ)(ω)|ω ∈ ��(φ)}.

It follows that A(φ) �= 0 and then using statement (a), we obtain A× ∩ A
N
G×Ḡ G

(ω0) �= ∅,

which is what we need.
Now, we assume the validity of statement (b) and let φ ∈ JG×ḠG(G) satisfy A(φ) �= 0.

We assume � is also unital. It follows

∅ �= ��(φ) = �× ∩ ��(φ) ⊂ A× ∩ A�(φ).

��
If we take N = G in the next proposition we recover [3, Lemma 4.1].

Proposition 2.6 Let A be an N-interior G-algebra. Let Uμ, Vν be pointed groups on A,

where U , V ≤ G. Let φ ∈ JG×ḠG(G) be such that dom(φ) = V , cod(φ) = U and choose
i ∈ μ, j ∈ ν. The following statements are equivalent:

(a) there exists r ∈ A× such that (φ(v)v−1) · v(ir) = r j, for any v ∈ V ;
(b) there exist s ∈ iA�(φ) j and s′ ∈ jA�(φ−1)i such that i = ss′ and j = s′s.

Moreover, the above equivalent conditions do not depend on the choices of i and j .

Proof Assume (a) holds and let s = ir j, s′ = jr−1i . Since r j = i is equivalent to r j = ir
and to jr−1 = r−1i, we get

s = ir j = r j = ir , s′ = jr−1i = jr−1 = r−1i

and, moreover
ss′ = (ir j)( jr−1i) = i · (r j) · i = i

s′s = ( jr−1i)(ir j) = j · (r
−1
i) · j = j .

The relation given in (a)
(φ(v)v−1) · v(ir) = r j, (2)

for any v ∈ V , is equivalent to s ∈ iA�(φ) j . We shall prove that relation (2) is equivalent to
s′ ∈ jA�(φ−1)i, that is

(φ−1(u)u−1) · u( jr−1) = r−1i,

for all u ∈ U . Indeed, when v runs through V , the element u = φ(v) runs through U and,
we have

(φ(v)v−1) · v(ir) = r j ⇐⇒ (r−1i) · φ(v)r · (φ(v)v−1) = j ⇐⇒
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(r−1i)·φ(v)r = jvφ(v−1) ⇐⇒ r−1i= jvφ(v−1)·φ(v)r−1 ⇐⇒ r−1i= j ·(vr−1)·vφ(v−1)

⇐⇒ r−1i=v( jr−1) · vφ(v−1) ⇐⇒ r−1i = vφ(v−1) · φ(v)( jr−1)

⇐⇒ r−1i = φ−1(u)u−1 · u( jr−1).

Assume (b) and since
i = ss′, j = s′s,

by [15, Exercise 3.2] there is q ∈ A× such that i = q jq−1. Then

r := s + (1A − i)q(1A − j), r ′ := s′ + (1A − j)q−1(1A − i)

verifies rr ′ = 1A and 1A = r ′r . Furthermore, for any v ∈ V relation (2) is verified, because

ir = s, s = r j, (φ(v), v)s = s,

by our assumptions. ��

3 Subcategories of Fusion Systems Induced by Factor Groups

We need the concept of a category F on a p-group introduced by Linckelmann in [6, Defi-
nition 1.1]; that is,F is a category on the p-group D if it is a category whose objects are the
subgroups of D and whose morphisms are the injective group homomorphisms satisfying:

• the inclusions are morphisms of F ;
• for any φ ∈ HomF (R1, R2), R1, R2 ≤ D, the induced isomorphism R1 ∼= φ(R1) and
its inverse are morphisms in F ;

• the composition of morphisms inF is the usual composition of group homomorphisms.

A subcategory E of F on the p-subgroup D1 of D is a subcategory which is itself a
category on the p-group D1. In this section, if otherwise not stated, we denote byF a fusion
system on a p-group D. It is a category on the p-group D, in which the set of objects consists
of the subgroups of D and the morphisms are given by the set of certain injective group
homomorphisms, such that FD(D) ⊆ F and other axioms are satisfied, see [2, Definition
1.34].HereFD(D) is the subcategory ofF with the same objects asF andwhosemorphisms
are the group homomorphisms induced by conjugation in D. Any fusion system like F is
called saturated [2, Definition 1.37] if other two axioms are satisfied.

Let D̃ be a normal subgroupof D and as in the Introductionweuse the notation D̄ := D/D̃.

The subgroup D′ is the commutator subgroup of D.

3.1 Subcategories

In Proposition 3.1 (i) we will show that our next definition makes sense.

Definition 3.1 We define a subcategory FD×D̄ D of F by:

(i) Ob(FD×D̄ D) := Ob(F );
(ii) for any R1, R2 ≤ D, the morphisms set is

HomF
D×D̄ D

(R1, R2) := {φ ∈ HomF (R1, R2)|�(φ) ≤ D ×D̄ D}.
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In the above definition, the subset of isomorphisms in FD×D̄ D , with domain R1 and codo-
main R2, is clearly

{φ ∈ HomF (R1, R2)|φ ∈ JD×D̄ D(D)}.
Recall that the focal subgroup of a fusion system F is

foc(F ) :=< uϕ(u−1)|R ≤ D, u ∈ R, ϕ ∈ AutF (R) > .

Proposition 3.1 (i) FD×D̄ D is a subcategory of F on the p-group D;
(ii) If the commutator subgroup D′ of D is included in D̃ thenFD×D̄ D is a fusion subsystem

of F ;
(iii) Assume F is saturated. If foc(F ) ≤ D̃ then FD×D̄ D = F ;
(iv) If D̃ = 1 thenFD×D̄ D = F�(D),whereF�(D) is the subcategory ofF on the p-group

D, whose morphisms consist of inclusion maps.

Proof (i) It is clear that FD×D̄ D is included in F and that the inclusions are in FD×D̄ D .
The second axiom of the definition of a category on a p-group, which is reminded
at the beginning of this section, is straightforward. We only verify that if we take
φ ∈ HomF

D×D̄ D
(R2, R3), ψ ∈ HomF

D×D̄ D
(R1, R2) with R1, R2, R3 ≤ D, then

φ ◦ ψ ∈ HomF
D×D̄ D

(R1, R3). Clearly, φ ◦ ψ ∈ HomF (R1, R3) and, for any u ∈ R1,

we have
u−1φ(ψ(u)) = (u−1ψ(u)) · ((ψ(u))−1φ(ψ(u))) ∈ D̃,

which is what we need.
(ii) Since (i) holds, we only verify that if cx : R1 → R2, where x R1 ≤ R2 ≤ D, x ∈ D, is

the conjugation map, then cx ∈ HomF
D×D̄ D

(R1, R2). Let x be an element of D such

that x R1 ≤ R2 ≤ D. For any u ∈ R1 the following equality holds

u−1cx (u) = u−1xux−1 = [u−1, x] ∈ D′ ≤ D̃,

hence cx ∈ HomF
D×D̄ D

(R1, R2).

(iii) Clearly FD×D̄ D ⊆ F . By Alperin’s Fusion Theorem [8, Theorem 8.2.8] it is enough
to show that AutF (R) ⊆ AutF

D×D̄ D
(R), where R ≤ D; for this let φ ∈ AutF (R) and

u ∈ R. It is clear that
u−1φ(u) ∈ foc(F ) ≤ D̃,

hence the conclusion.
(iv) Since D̃ = 1 we know that D ×D̄ D = �(D).

��

3.2 Normalizer Subcategories

Let R be a subgroup of D. Statement (i) of Propostion 3.2 assures us that the following
definition makes sense.

Definition 3.2 The normalizer subcategory NF
D×D̄ D

(R) is the subcategory of FD×D̄ D
defined by:

(i) Ob(NF
D×D̄ D

(R)) := {R1|R1 ≤ ND(R)};
(ii) for any R1, R2 ≤ ND(R), a morphism φ : R1 → R2 in NF

D×D̄ D
(R) is a morphism

φ ∈ HomF
D×D̄ D

(R1, R2) which extends to some φ′ ∈ HomF
D×D̄ D

(RR1, RR2) such

that φ′|R(R) = R.

123



Stable Unital Bases, Hyperfocal Subalgebras and Basic Morita Equivalences 213

As a consequence of Definitions 3.1, 3.2 and Proposition 3.1 we obtain the next proposition.

Proposition 3.2 (i) NF
D×D̄ D

(R) is a subcategory of FD×D̄ D on the p-group ND(R);
(ii) If If the commutator subgroup D′ of D is included in D̃ then NF

D×D̄ D
(R) is a fusion

subsystem of F ;
(iii) Assume F is saturated. If foc(F ) ≤ D̃ then NF

D×D̄ D
(R) = NF (R), the usual nor-

malizer fusion system of R in F , see [2, Definition 4.26 (ii)];
(iv) If D̃ = 1 and R = D then NF�(D)

(D) = F�(D).

4 Proof of Theorem 1.5

For the proof of Theorem 1.5 we need to recall in the following remark what is Puig’s notion
of "isofusion" between pointed groups.

Remark 4.1 Let A be an N -interior G-algebra, where N is a normal subgroup of G. Let
Uμ, Vν bepointedgroups onA,whereU , V ≤ G and let i ∈ μ, j ∈ ν.Amapφ ∈ JG×ḠG(G)

(with dom(φ) = V , cod(φ) = U ) forwhich there is r ∈ A× such that (φ(v)v−1)·v(ir) = r j,
for any v ∈ V , is called and A-isofusion. The set of A-isofusions is denoted by FA(Vν,Uμ),

see [11, 2.2.1].WhenUμ = Vν, the notation FA(Vν) := FA(Vν,Uμ) is used. In the particular
case in which N = G and A is a G-interior algebra we have that φ ∈ FA(Vν) if and only if
φ : V → V is a group isomorphism for which there is r ∈ A× such that φ(v) j = r (v j), for
any v ∈ V .

Recall that in the statement of Theorem 1.5 we considered: b to be block idempotent OG
with defect group D; the idempotent l ∈ (OGb)D to be a primitive idempotent such that
BrOG

D (l) �= 0; A = lOGl denotes the source algebra of b andF the saturated fusion system
of A on D. Let D̃ be a normal subgroup of D such that hyp(F ) ≤ D̃ and Ã be the hyperfocal
subalgebra with respect to D̃. Let λD be the point {ala−1|a ∈ ((OGb)D)×}, which is the
unique point of D on OGb associated with (D, eD). Applying Remark 4.1 to the D-interior
algebra OGb we obtain the set of isofusions FOGb(DλD ).

Proof We will show that if FD×D̄ D = NF
D×D̄ D

(D) then Ã has a D ×D̄ D-stable basis. We

already know that, since Ã is a direct summand of OG as an O[D ×D̄ D]-module, Ã has a
D ×D̄ D-stable basis which is D̃-bifree, see 2. By Theorem 2.5 (with A, N ,G replaced by
Ã, D̃, D, respectively) we need to verify that, given φ ∈ JD×D̄ D(D) such that Ã(φ) �= 0,

then Ã× ∩ Ã�(φ) �= ∅.

Let φ : R1 → R2, φ ∈ JD×D̄ D(D) such that Ã(φ) �= 0. Now Ã is a direct summand of

A as O[D ×D̄ D]-modules, hence Ã(φ) is a direct summand of A(φ). It follows A(φ) �= 0,
hence ��(φ) �= ∅, for some D × D-stable basis of A. Applying [3, Theorem 7.2] we obtain
φ ∈ HomF

D×D̄ D
(R1, R2). Next, since FD×D̄ D = NF

D×D̄ D
(D), it follows that there is

ψ : R1D → R2D in FD×D̄ D such that

ψ(D) = D, ψ|R1 = φ.

So there is ψ ∈ AutF (D) such that

ψ|R1 = φ, u−1ψ(u) ∈ D̃,
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for any u ∈ D.

Since D is a defect group of b, we know that NG(D, eD) = NG(DλD ), hence there is
g ∈ NG(DλD ) such thatψ = cg.Thenψ ∈ FOGb(DλD ) (see [9, Theorem3.1]); equivalently,

we say that ψ : DλD → DλD is an OGb-isofusion, which also verifies �(ψ) ≤ D ×D̄ D.

Since l = 1 Ã is a primitive idempotent of Ã then λ̃D = {l} is a point of D on Ã such that

λ̃D = λ′
D ⊆ λD,

where λ′
D = {l} is considered as a point of D on A. We now apply [9, Proposition 2.14] and

[11, Proposition 4.2] to obtain

FÃ(Dλ̃D
) = FA(Dλ′

D
) = FOGb(DλD ),

where FÃ(Dλ̃D
) and FA(Dλ′

D
) are obtained using Remark 4.1; since Ã is D̃-interior

D-algebra and A is a D-interior algebra. It follows that ψ : Dλ̃D
→ Dλ̃D

is an Ã-isofusion.
This means that ψ is an isomorphism lying in JD×D̄ D(D) and satisfying a statement

similar to statement (b) of Proposition 2.6. That is, there are elements

s ∈ l( Ã�(ψ))l = Ã�(ψ), s′ ∈ l( Ã�(ψ−1))l = Ã�(ψ−1),

such that
l = ss′ = s′s,

thus s ∈ Ã×. Since �(φ) ⊆ �(ψ), we conclude that s ∈ Ã× ∩ Ã�(φ). ��

5 Stable Unital Bases Under Basic Morita Equivalences

Recall that we denoted by b a block idempotent of OG with defect group D and by
l ∈ (OGb)D a primitive idempotent such that BrOG

D (l) �= 0. We shall keep the nota-
tion A := lOGl. For any subgroup R of D there is a unique block eR of kCG(R) such
that BrOG

R (l)eR �= 0. Fixing (D, eD), a maximal (OG, b,G)-Brauer pair, we denoted by
F := F(D,eD)(OG, b,G), the saturated fusion system of A on D, associated with b. Also
recall that we considered in the Introduction another finite group H and a block idempo-
tent b′ of OH with defect group E . Let l ′ ∈ (OHb′)E be a primitive idempotent such that
BrO H

E (l ′) �= 0. Similar to the case of the block idempotent b, we shall use the notations:
A′ := l ′OHl ′ is the source algebra of b′, for any subgroup Q in E the block e′

Q is the unique

block of kCH (Q) such that BrO H
Q (l ′)e′

Q �= 0, F ′ is the saturated fusion of A′ on E, etc. Let

γ := {ala−1|a ∈ ((OGb)D)×} be the point of D on OGb which contains l, similarly we
introduce γ ′. It follows that Dγ is a defect pointed group of G{b} and Eγ ′ is a defect pointed
group of H{b′}. We denoted by π, π ′ the first and second projection of a direct product of
groups, see the paragraph before Lemma 2.3.

5.1 Basic Morita equivalences. We recall the characterization of Morita equivalences
between Brauer blocks, see [14, 3.2.1, Theorem 3.2]. If OGb is Morita equivalent to
OHb′ through an OGb − OHb′-bimodule M (which can be viewed as an indecompos-
able O[G × H ]-module, such that bMb′ = M) then there is a suitable p-subgroup � in
G × H such that

π(�) = D, π ′(�) = E
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and, there is a suitable indecomposable O�-module N such that the restriction modules
Res��∩(G×1)N and Res��∩(1×H)N are projective. We shall use the following notations for the
surjective homomorphisms of p-groups

σ : � → D, σ := π|�, σ ′ : � → E, σ ′ := π ′|�.

We say that OGb is basic Morita equivalent to OHb′, see [14, Corollary 3.6], if OGb is
Morita equivalent to OHb′ through a OGb−OHb′-bimodule M (with the above notations)
and σ (or σ ′) is bijective.

We collect, from various references, the following properties, which will be useful for the
next proofs.

5.2 Properties of basicMorita equivalences.We assume in this Subsection thatOGb is basic
Morita equivalent to OHb′, through the OGb − OHb′-bimodule M, as in 5.

1) The map σ : � → D is an isomorphism if and only if σ ′ : � → E is an isomorphism.
We denote by

λ : E → D, λ := σ ◦ (σ ′)−1, λ′ : D → E, λ′ := σ ′ ◦ σ−1

the induced isomorphisms between the defect groups.
2) There is an embedding of D-interior algebras

f : A → S ⊗O A′ (3)

and an embedding of E-interior algebras

f ′ : A′ → Sop ⊗O A, (4)

where S is the O-simple, permutation D-interior algebra EndO (N ) with the property
S(D) �= 0.

3) For any R, a subgroup of D, we denote the isomorphic subgroups of E by Q := λ′(R).

We denote by LP A(R) the set of local points of R on A and similarly for LP A′(Q).

By [13, 7.6.2] there is a bijection between these two sets of local points

LP A(R) �→ LP A′(Q) (5)

Moreover, for any R1, R2 ≤ D, if δ′ ∈ LP A′(Q1) corresponds uniquely to δ ∈
LP A(R1) (respectively, ε′ ∈ LP A′(Q2) corresponds uniquely to ε ∈ LP A(R2))
through the bijection in (5) then, there is also a bijection induced by (3) and (4) between
the set of isofusions

FA((R1)δ, (R2)ε) �→ FA′((Q1)δ′ , (Q2)ε′), (6)

see [9, Proposition 2.14] and [5, Lemma 1.17]
4) By [13, Theorem 19.7] we know that if b is basic Morita (hence Rickard) equivalent to

b′ then λ′ induces an equivalence between the Brauer categories of b and b′. In our case
λ′ : D → E induces an isomorphism of saturated fusion systems

F ∼= F ′ (R, eR) �→ (Q, e′
Q), Q = λ′(R) (7)

Given a pointed group Uμ on any G-algebra B, we define the multiplicity of Uμ, denoted
mB(Uμ), to be the number of elements of μ appearing in a primitive idempotent decom-
position of the identity element of B in the subalgebra BU of U -fixed elements. Given a
second pointed group Tτ on B with Tτ ≤ Uμ, we denote the relative multiplicity of Tτ inUμ,
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denotedmB(Tτ ,Uμ), to be the number of elements of τ that appear in a primitive idempotent
decomposition of i in the algebra BT , where i is any element of μ.

Proposition 5.1 Let b, b′ be basic Morita equivalent blocks admitting defect pointed groups
groups Dγ and Eγ ′ , respectively. Let Rδ ≤ Dγ , Qδ′ ≤ Eγ ′ be local pointed groups deter-
mined by the bijection (5). If mδ := mOG(Rδ, Dγ ) = mA(Rδ) and mδ′ := mO H (Qδ′ , Eγ ′)
= mA′(Qδ′) then mδ = mδ′ .

Proof For any subgroup R ≤ D, a decomposition of the idempotent l in (OGb)R is a
decomposition in AR . We fix

l = i1 + . . . + imδ + . . . + ir

a primitive idempotent decomposition of l in AR (of length r ). Denote by l1 the sum i1 +
. . . + imδ , which is an idempotent in AR; with the terms of l1 belonging to δ. Using the
embedding of D-interior algebras given in (3), it follows f (δ) ⊆ δ̄, where δ̄ is a point of Q
on S⊗O A′ and Qδ′ is the unique pointed group on (A′)Q which corresponds to Q δ̄ , see [10,
Theorem 5.3].

We also fix
l ′ = i ′1 + . . . + i ′mδ′ + . . . + i ′r ′

a primitive idempotent decomposition of l ′ in (A′)Q (of length r ′). Denote by l ′1 the sum
i ′1 + . . . + i ′mδ′ , which is an idempotent in (A′)Q; with the terms of l ′1 belonging to δ′.

The map
g : A′ → S ⊗O A′, g(a′) = 1S ⊗ a′

is an injective homomorphism (of Q-algebras), verifying g|
(A′)Q ((A′)Q) ⊆ (S ⊗O A′)Q . It

follows that we can identify A′ with a unital subalgebra of S ⊗O A′, (A′)Q with a unital
subalgebra of (S ⊗O A′)Q, hence g(l ′) = 1 ⊗ l ′. This means that the idempotent l ′ can be
identified with 1 ⊗ l ′ through g. In (S ⊗O A′)Q we have

1S⊗O A′ = 1 ⊗ l ′ = 1 ⊗ l ′1 + . . . + 1 ⊗ i ′r ′ = g(l ′1) + . . . + g(i ′r ′)

and
f (l1)(1 ⊗ l ′) = f (l1) = (1 ⊗ l ′) f (l1) (8)

But f (l1) = f (i1)+ . . .+ f (imδ ) is a primitive idempotent decomposition in (S⊗O A′)Q,

with f (i1) ∈ δ̄, . . . , f (imδ ) ∈ δ̄. It follows that the correspondence between Q δ̄ and Qδ′
forces, using (8), to obtain

f (l1)g(l
′
1) = g(l ′1) f (l1) = f (l1).

Then f (l1) is an idempotent which appears in the primitive idempotent decomposition of
g(l ′1) in (S ⊗O A′)Q, which forces mδ ≤ mδ′ .

Analogously, using the embedding (4), see [13, 7.3.3], we obtain mδ′ ≤ mδ. ��
Finally, we prove that stable unital bases are preserved by basic Morita equivalences.

Proof (of Theorem 1.7) We will show that statement (a) of [3, Theorem 1.2] is true for A′.
Let φ′ : Q1 → Q2 be an F ′-isomorphism. Since OGb is basic Morita equivalent to

OHb′ then there is φ : R1 → R2 an F -isomorphism, which corresponds to φ′ through (7),
where

R1 = λ(Q1), R2 = λ(Q2).
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Applying [3, Theorem 1.2, (a)] to φ we obtain a bijective correspondence between the local
points ε of R2 on OG satisfying (R2)ε ≤ Dγ and the local points δ of R1 on OG satisfying
(R1)δ ≤ Dγ , hence a bijection

LP A(R2) �→ LP A(R1)

The correspondence is such that ε ↔ δ if and only if φ : (R1)δ → (R2)ε is an A-isofusion.
Furthermore, in the above case

mOG((R2)ε, Dγ ) = mOG((R1)δ, Dγ ),

equality that is equivalent to
mA((R2)ε) = mA((R1)δ) (9)

Applying (5) to R1 and R2 we get

LP A(R1) �→ LP A′(Q1), LP A(R2) �→ LP A′(Q2),

hence there is a bijective correspondence between LP A′(Q1) and LP A′(Q2), which is
whatwe need: a bijective correspondence between the local points ε′ of Q2 onOH , satisfying
(Q2)ε′ ≤ Eγ ′ and the local points δ′ of Q1 on OH , satisfying (Q1)δ′ ≤ Eγ ′ . Recall that, by
(6), we have a bijection between the sets of isofusions

FA((R1)δ, (R2)ε) �→ FA′((Q1)δ′ , (Q2)ε′),

hence φ′ : (Q1)δ′ → (Q2)ε′ is an isofusion.
Finally, applying Proposition 5.1, we obtain

mA((R1)δ) = mA′((Q1)δ′) and mA((R2)ε) = mA′((Q2)ε′),

which, using (9), give

mA′((Q2)ε′) = mA′((Q1)δ′).
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