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Abstract
Let p be a an odd prime and let G be a finite p-group with cyclic commutator subgroup
G′. We prove that the exponent and the abelianization of the centralizer of G′ in G are
determined by the group algebra of G over any field of characteristic p. If, additionally, G

is 2-generated then almost all the numerical invariants determining G up to isomorphism
are determined by the same group algebras; as a consequence the isomorphism type of the
centralizer of G′ is determined. These claims are known to be false for p = 2.

Keywords Finite p-groups · Modular group algebra · Invariants ·
Modular isomorphism problem

Mathematics Subject Classification (2010) 20D15

1 Introduction

Let G be a group, R a commutative ring and let RG denote the group ring of G with
coefficients in R. The problem of describing how much information about the group G is
carried by the group algebra RG has a long tradition in mathematics, with applications in
particular to the representation of groups and in general to group theory; cf. [7, 8, 10, 11,
18, 31–33, 39, 42, 43, 48]. The last question can be rewritten more compactly as:

Which group invariants of G are algebra invariants of RG?
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By a group invariant of G we understand a feature of G that is shared with any group iso-
morphic to G while an algebra invariant is a feature that is shared with any group H with
the property that RG and RH are isomorphic as R-algebras. For instance, the cardinality
of G can be expressed as the R-rank of RG and is thus an algebra invariant of RG. More-
over, the group G is abelian if and only if RG is a commutative ring, i.e. the property of
being abelian is an algebra invariant of RG. The ultimate version of the above question is
the Isomorphism Problem which asks for the determination of pairs (G,R) for which the
isomorphism type of G is an algebra invariant of RG:

Isomorphism Problem for group algebras: Given a commutative ring R and two
groups G and H , does RG and RH being isomorphic as R-algebras imply that the
groups G and H are isomorphic? In symbols,

RG ∼= RH =⇒ G ∼= H ?

The answer to this question is a function of the ring R: for instance, it is easily shown that
any two non-isomorphic finite abelian groups of the same order have isomorphic group rings
with complex coefficients. However, by a seminal result of G. Higman [18], if G and H are
non-isomorphic abelian groups then ZG′ and ZH are not isomorphic. More surprisingly,
there even exist two non-isomorphic finite metabelian groups G and H such that kG and kH

are isomorphic for every field k [12]. Nonetheless, the Isomorphism Problem has a positive
solution for R = Z and G and H metabelian [48]. This extends Higman’s result for abelian
groups [18] and has been followed by positive results for more families of groups, such as
nilpotent groups [35] and supersolvable groups [24]. These early results yielded to strong
expectations that the Isomorphism Problem for integral group rings (R = Z and G, H

finite) would have a positive solution until Hertweck’s construction of two non-isomorphic
finite groups with isomorphic integral group rings [17]. Among the classical variations of
the Isomorphism Problem, the one that remained unanswered the longest deals with the case
where R is a field of positive characteristic p and G and H are p-groups, formally:

Modular Isomorphism Problem: Given a field k of characteristic p > 0 and two
finite p-groups G and H , are kG and kH isomorphic as k-algebras if and only if G

and H are isomorphic as groups?

The contributions to this problem are numerous, including positive solutions for specific
families of p-groups and the uncovering of algebra invariants in this context; cf. [1–4, 6,
13–15, 19, 20, 22, 25, 27–30, 34, 36, 38, 40, 41, 45–47, 49]. The first negative solution to
the Modular Isomorphism Problem was given recently in the form of a series of pairs of non
isomorphic 2-groups Gm,n and Hm,n which are 2-generated and have cyclic commutator
subgroup satisfying kGm,n

∼= kHm,n for every n > m > 2 and every field k of characteristic
2 [16]. However, if p is odd then the Modular Isomorphism Problem is still open, even in
the class of 2-generated groups with cyclic commutator subgroup. The aim of this paper
is to investigate this class of groups from the point of view of algebra invariants and to
demonstrate a substantial difference between the cases p = 2 and p > 2 within this class.
For example, if G′ denotes the commutator subgroup of G, our first result shows that both
the exponent of CG(G′) and the isomorphism types of CG(G′)/G′ and CG(G′)/CG(G′)′
are algebra invariants of kG provided G′ is cyclic and p is odd; cf. Theorem A. Note that,
on the contrary, for every choice of n > m > 2, the groups Gm,n and Hm,n satisfy neither
of the points (1)-(2)-(3) from Theorem A.
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Theorem A Let k be a field of odd characteristic p and let G and H be finite p-groups. If
G′ is cyclic and kG ∼= kH then the following hold:

(1) CG(G′) and CH (H ′) have the same exponent.
(2) CG(G′)/G′ ∼= CH (H ′)/H ′.
(3) CG(G′)/CG(G′)′ ∼= CH (H ′)/CH (H ′)′.

Our next results concern 2-generated p-groups with cyclic commutator subgroup. In
order to present them we introduce some numerical invariants of these groups. Since the
Modular Isomorphism Problem has a positive solution for abelian groups [13] we only
consider non-abelian groups. To this end, let G be a 2-generated non-abelian p-group, that
is, G′ is non-trivial and G is generated by exactly 2 elements. A basis of G is then a pair
(b1, b2) of elements of G such that

G/G′ = 〈
b1G

′〉 × 〈
b2G

′〉 and |b2G
′| divides |b1G

′|.
Moreover, we define

O(G) = min lex{(|b1CG(G′)|, |b2CG(G′)|, −|b1|,−|b2|) : (b1, b2) is a basis of G},
where minlex refers to the minimum with respect to the lexicographic order. The following
result implies that if G′ is cyclic then so is H ′ and O(G) is an algebra invariant of kG.

Theorem B Let k be a field of odd characteristic p and let G and H be finite p-groups
with kG ∼= kH . If G is 2-generated and G′ is cyclic, then H is 2-generated, H ′ is cyclic
and O(G) = O(H).

Observe that the hypothesis that p is odd in Theorem B is necessary because

O(Gm,n) = (2, 2, −2n,−2m) �= (2, 1, −2n,−2m) = O(Hm,n).

This shows again a clear contrast between odd and even characteristic.
For any p-group G that is 2-generated and for which G′ is cyclic, the vector O(G) can

essentially be extended to a vector inv(G) = (p,m, n1, n2, σ1, σ2, o1, o2, o
′
1, o

′
2, u1, u2)

of numerical invariants characterizing the isomorphism class of G; cf. Section 3 and [5].
It is well known that the first four entries p,m, n1 and n2 of inv(G) are algebra invari-
ants of kG. However, the sixth entry is not determined by the modular group algebra
because inv(Gm,n) = (2, 2, n,m, −1, −1, 0, 0, 0, 0, 1, 1) is different from inv(Hm,n) =
(2, 2, n, m, −1, 1, 0, 0, 0, 0, 1, 1). Note that, for p > 2, one always has σ1 = σ2 = 1
and therefore the counterexample from [16] does not have a direct equivalent in odd
characteristic. We will see that Theorem B is actually equivalent to the following.

Theorem C Let k be a field of odd characteristic p and let G be a finite non-abelian p-
group. If G is 2-generated with G′ cyclic then all but the last 2 entries of inv(G) are algebra
invariants of kG.

In other words, Theorem C ensures that, for p > 2, the first 10 entries of inv(G) are
determined by the modular group algebra kG of G over any field k of characteristic p.
Unfortunately we have not been able to decide whether the last two entries of inv(G) are
algebra invariants of kG. The smallest groups for which Theorem C does not solve the
Modular Isomorphism Problem occur for (n1, n2, m, o1, o2, o

′
1, o

′
2) = (3, 2, 2, 0, 1, 1, 1),

in which case u2 = 1 and u1 ∈ {1, . . . , p − 1}. That is, the last parameters yield p − 1
non-isomorphic 2-generated p-groups with cyclic commutator subgroup. In a paper in
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preparation, we develop new techniques (different from those presented in this paper) to
prove that, for this special case and many others, u1 is actually also an algebra invariant
of kG. Theorem C enables us, however, to improve Theorem A in the 2-generated case by
showing that the isomorphism type of CG(G′) is an algebra invariant of kG:

Corollary D Let k be a field of odd characteristic p and let G be a finite 2-generated
p-group with G′ cyclic. Then the isomorphism type of CG(G′) is an algebra invariant of
kG.

The following corollary also follows from Theorem C (see Section 2 for the definition
of the type invariants of a p-group).

Corollary E Let k be a field of odd characteristic p and let G be a finite 2-generated
p-group with G′ cyclic. Then the type invariants of G are algebra invariants of kG.

The paper is organized as follows. In Section 2 we establish the notation, recall some
known facts about the Modular Isomorphism Problem and prove a key lemma which we
refer to as the Transfer Lemma (Lemma 2.6). In Section 3 we recall the classification of
finite 2-generated p-groups with cyclic commutator subgroup from [5] in the specific case
where p > 2. Additionally, we prove a series of results about these groups which will be
used in the next and final section to prove the main results of the paper.

2 Notation and Preliminaries

In this section, we introduce the notation that will be used throughout this paper. We also
collect some classical results on the Modular Isomorphism Problem that will be useful in
the coming sections, as well as a new criterion for the transfer of ideals between modular
group algebras; cf. Lemma 2.6.

Throughout the paper, p will denote a prime number, k a field of characteristic p and G

and H finite p-groups. The modular group algebra of G over k is denoted by kG and the
augmentation ideal of kG is denoted by I(G). It is a classical result that I(G) is also the
Jacobson ideal of kG. For every normal subgroup N of G, we write I(N;G) for the relative
augmentation ideal I(N)kG.

We let ≤lex denote the lexicographic order on tuples of integers of the same length. Then
minlex and maxlex stand for minimum and maximum with respect to ≤lex. For a non-zero
integer n, let vp(n) denote the p-adic valuation of n, that is, the greatest integer t such
that pt divides n. Moreover, set vp(0) = +∞. For coprime integers m and n, write om(n)

for the multiplicative order of n modulo m, i.e. the smallest non-negative integer k with
nk ≡ 1 mod m. Given non-zero integers s, t and n with n ≥ 0 we set

S (s | n) =
n−1∑

i=0

si and T (s, t | n) =
∑

0≤i<j<n

si tj .

The last notation allows us, in some cases, to compactly express powering of products in
a group G. For instance, if g, h ∈ G and r, s, n are integers with n ≥ 0 then, writing
a = [h, g] = h−1g−1hg, we get the following identities:

if gh = h−1gh = gr then (hg)n = hngS(r|n), (2.1)
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if ag = ar and ah = as then (gh)n = gnhnaT (r,s|n). (2.2)

The next lemma describes elementary properties of the operators S and T that are collected
in Lemmas 8.2 and 8.3 of [5].

Lemma 2.1 Let p be an odd prime number and let n > 0 and s, t be integers satisfying
s ≡ t ≡ 1 mod p. Then the following hold:

(1) vp(sn−1) = vp(s−1)+vp(n), vp(S (s | n)) = vp(n) and opn(s) = pmax(0,n−vp(s−1)).
(2) if vp(s − 1) = a and pm−a divides n then S (s | n) ≡ n mod pm.
(3) T (s, t | pn) ≡ 0 mod pn.

Lemma 2.2 Let p be an odd prime number and m and r be integers with m > 0 and r ≡ 1
mod p. Then for every integer 0 ≤ x < pm there is a unique integer 0 ≤ y < pm such that
S (r | y) ≡ x mod pm.

Proof Let x and y be integers with 0 ≤ x ≤ y. Then S (r | y)−S (r | x) = rxS (r | y − x)

and hence from Lemma 2.1(1) it follows that S (r | x) ≡ S (r | y) mod pm if and only
if x ≡ y mod pm. This shows that S (r | ·) induces an injective, thus bijective, map
Z/pm

Z → Z/pm
Z. Then the result follows immediately.

The group theoretic notation we use is mostly standard. For an arbitrary group G, let
|G| denote its order, Z(G) its center, {γi(G)}i≥1 its lower central series, G′ = γ2(G), its
commutator subgroup, exp(G) its exponent and d(G) = min{|X| : X ⊆ G and G = 〈X〉},
its minimum number of generators. Moreover, if g ∈ G and X ⊆ G then |g| denotes the
order of g and CG(X) the centralizer of X in G. We write × both for internal and external
direct products of groups. For n ≥ 1, we denote by Cn the cyclic group of order n.

Let now G be a finite p-group and let pe = exp(G). For every 0 ≤ n ≤ e we define the
following subgroups of G:

�n(G) =
〈
g ∈ G : gpn = 1

〉
and �n(G) =

〈
gpn : g ∈ G

〉
.

If N is a normal subgroup of G, we also write

�n(G : N) =
〈
g ∈ G : gpn ∈ N

〉
,

that is, �n(G : N) is the only subgroup of G containing N such that

�n(G : N)/N = �n(G/N).

The group G is said to be regular if for every g, h ∈ G there exist c1, . . . , ck ∈ 〈g, h〉′ such
that (gh)p = gphpc

p

1 · · · cp
k , in other words

(gh)p ≡ gphp mod �1(〈g, h〉′).
It is well known that if p is odd and G′ is cyclic then G is regular, while this is not the
case for p = 2; cf. [21, Satz III.10.2, Satz III.10.3(a)]. Moreover, if G is regular, [21,
Hauptsatz III.10.5, Satz III.10.7] ensure that the following hold:

• �n(G) = {g ∈ G : gpn = 1} and �n(G) = {gpn : g ∈ G},
• |�n(G)| · |�n(G)| = |G| for every 0 ≤ n ≤ e.

For every n ≥ 1 and G regular we define wn by means of

pωn = |�n(G)/�n−1(G)| = |�n−1(G)/�n(G)|
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and remark that ω1 ≥ ω2 ≥ . . . ≥ ωe > 0. Following [21, § III.10] we set ω(G) = ω1 and,
for 1 ≤ i ≤ ω(G), we define

ei = |{1 ≤ n ≤ e : ωn ≥ i}|.
It follows that e = e1 ≥ e2 ≥ . . . ≥ eω(G) and the entries of the list (e1, . . . , eω(G)) are
called the type invariants of G.

The Jennings series (Dn(G))n≥1 of the p-group G is defined by

Dn(G) = {g ∈ G : g − 1 ∈ I(G)i} =
∏

ipj ≥n

�j (γi(G)) (2.3)

The Jennings series is also known as the Brauer-Jennings-Zassenhaus series or the Lazard
series or the dimension subgroup series of kG (see [32, Section 11.1] for details). A property
of these series that we will use is that, for abelian groups, the orders of the terms completely
determine the structure of the group. For more on the Jennings series, see for instance [43,
Section III.1], [26, Section 4] and [28, Section 2.3].

The next proposition and lemma collect some well-known results which will be used
throughout the paper.

Proposition 2.3 Let k be a field of positive characteristic p and let G be a finite p-group.
Then the following statements hold:

(1) If H is a finite p-group and φ : kG → kH is an isomorphism of k-algebras then

φ(I(G′;G)) = I(H ′; H) and φ(I(Z(G)G′; G)) = I(Z(H)H ′;H).

(2) The following group invariants of G are algebra invariants of kG:

(a) The isomorphism type of G/G′.
(b) The exponent of G.
(c) The isomorphism type of the consecutive quotients Di (G)/Di+1(G) and

Di (G
′)/Di+1(G

′) of the Jennings series of G and G′.
(d) The minimum number of generators d(G) of G and d(G′) of G′.
(e) The isomorphism types of Z(G) ∩ G′ and Z(G)/Z(G) ∩ G′.

(3) The Modular Isomorphism Problem has a positive solution in the following cases:

(a) G is abelian.
(b) G is metacyclic.
(c) G is 2-generated of class 2 and p is odd.

Lemma 2.4 Let k be a field of characteristic p > 0, let G and H be finite p-groups and
let LG and LH be normal subgroups of G and H , respectively. Assume that there is an
isomorphism φ : kG → kH such that φ (I(LG; G)) = I(LH ; H). Then, for each i ≥ 1,
there is an isomorphism of groups

Di (LG)/Di+1(LG) ∼= Di (LH )/Di+1(LH ).

Remark 2.5 Although all the statements of Proposition 2.3 are well known, some of them
appear in the literature with the assumption that k = Fp , the field with p elements, and the
proof of others is hidden inside proofs of other statements. We add a few words so that the
reader can track the results in the literature.
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The proof of (1) can be found inside the proof of [6, Theorem 2.(ii)]. Statements (a) and
(b) from (2) are proven in [42, 47], [39, 47] and [23], respectively. The statement in (2)(c)
for the Jenning series of G is proved in [32, Lemma 14.2.7(i)] while the statement for G′
is proved for k = Fp in [1, Lemma 2] and it can be generalized to arbitrary k using the
argument from [32, Lemma 14.2.7(i)]. Observe that the two statements in (2)(c) also follow
from Lemma 2.4 specialized to LG = G and LG = G′, respectively. Statement (2)(d) is
a consequence of (2)(c) because [D1(G) : D2(G)] = pd(G). In [39, Theorem 6.11] point
(2)(e) is stated for k = Fp, but its proof can be easily generalized to hold for any k.

Statement (3)(a) is proven in [13, Theorem 2] while statements (b) and (c) of (3) are
proven for k = Fp in [1, 41] and [4], respectively. The latter proofs generalize gracefully
for any k. Note that the analogue of (3)(c) for p = 2 appears in [4] for k = F2, but the proof
does not generalize to arbitrary k.

Finally, Lemma 2.4 is proven for k = Fp in [39, Lemma 6.26] and the proof can be
easily generalized to hold for any field of characteristic p.

We close this section with a lemma that we will make use of to obtain new group algebra
invariants from old ones. A version of this lemma, specialized for N� = �′ and with a
different proof, appears in [37].

Lemma 2.6 (Transfer Lemma) Let p be a prime number and G and H finite p-groups.
For � ∈ {G,H } let N� be a subgroup of � containing �′. If k is a field of characteristic
p and φ : kG → kH is a ring isomorphism such that φ(I(NG; G)) = I(NH ;H) then
φ(I (�t (G : NG);G)) = I (�t (H : NH ); H) for every positive integer t .

Proof Fix � ∈ {G,H }. As �/N� is abelian we have �t(� : N�) = {g ∈ � : gpt ∈ N�}.
Then, if t ≥ 2 we have �t(� : N�) = �1(� : �t−1(� : N�)) and hence we assume without
loss of generality that t = 1. For brevity write L� = �1(� : N�) and we will prove that
φ(I (LG; G)) = I (LH , H).

Let τ� : k� → k� be the ring homomorphism extending the identity on � and the Frobe-
nius map x → xp on k. Moreover, for a normal subgroup K of �, let πK : k� → k(�/K)

denote the natural projection with ker πK = I(K; �). As �/N� is abelian, the assignment
g �→ gp on � induces a ring homomorphism λ� : k(�/N�) → k(�1(�/N�)). We denote
by σ� the k-linear map extending the restriction of λ� to �/N� . By the definition of L�

and the hypothesis φ(I(NG; G)) = I(NH ; H), we have that σ� induces an isomorphism
σ̂� : k(�/L�) → k(�1(�/N�)) and φ induces an isomorphism φ̂ : k(G/NG) → k(H/NH )

making the following diagram commute:

k(G/LG)
σ̂G �� k(�1(G/NG))

τG

��
kG

φ

��

πNG ��

πLG

�����������
k(G/NG)

φ̂

��

λG ��

σG

�������������
k(�1(G/NG))

φ̂

��
kH

πNH ��
πLH

���
��

��
��

��
k(H/NH )

λH ��

σH

����
���

���
���

k(�1(H/NH ))

k(H/LH )
σ̂H �� k(�1(H/NH ))

τH

��
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As φ is a bijection, then so is φ̂. Moreover, each σ̂� is bijective and each τ� is injective, thus
we have

φ(I(LG; G)) = φ(ker πLG
) = φ(ker(τG ◦ σ̂G ◦ πLG

))

= φ(ker(λG ◦ πNG
)) = ker(λH ◦ πNH

)

= ker(τH ◦ σ̂H ◦ πLH
) = ker(πLH

) = I(LH ; H),

as desired.

3 Finite 2-generated p-groups with Cyclic Commutator and pOdd

In this section p is an odd prime number. We start by recalling the classification of non-
abelian 2-generated p-groups with cyclic commutator subgroup from [5]. Each such group
G is showed to be uniquely determined, up to isomorphism, by an integral vector1

inv(G) = (p,m, n1, n2, 1, 1, o1, o2, o
′
1, o

′
2, u1, u2)

of length 12 whose entries are determined as described below. The first four are straightfor-
ward and satisfy:

• |G| = pm,
• G/G′ ∼= Cpn1 × Cpn2 with n1 ≥ n2 ≥ 1.

To continue, we define a basis of G to be a pair (b1, b2) of elements of G such that G/G′ =〈
b1G

′〉 × 〈
b2G

′〉 and |biG
′| = pni . Let B denote the set of bases of G. Moreover, for every

g ∈ G, let o(g) ∈ Z≥0 be such that po(g) is the order of gCG(G′) in G/CG(G′), in symbols
po(g) = |gCG(G′)|. Equivalently, o(g) = m− vp(r(g)− 1), where r(g) denotes the unique
integer satisfying 2 ≤ r(g) ≤ pm + 1 and ag = ar(g) for each a ∈ G′. Define:

• (o1, o2) = minlex{(o(b1), o(b2)) : (b1, b2) ∈ B} and

r1 = 1 + pm−o1 and r2 =
{

1 + pm−o2 , if o2 > o1;
r
po1−o2

1 , otherwise.
(3.1)

Let now Br = Br (G) be the set consisting of all bases (b1, b2) of G with the property that,
for every a ∈ G′ and i = 1, 2, one has abi = ari , equivalently, r(bi) ≡ ri mod pm. The
set Br is not empty as proved in [5, Proposition 2.3(5)]. For every b = (b1, b2) ∈ B, let
o′(b) = (o′

1(b), o′
2(b)) and u(b) = (u2(b), u1(b)) be defined by

pni+o′
i (b) = |bi |, b

pni

i = [b2, b1]ui (b)p
m−o′

i
(b)

and 1 ≤ ui(b) < pm−o′
i (b). (3.2)

Define subsequently:

• (o′
1, o

′
2) = maxlex{o′(b) : b ∈ Br } and

• (u2, u1) = minlex{u(b) : b ∈ Br with o′(b) = (o′
1, o

′
2)}.

We have described how the entries of inv(G) are computed directly as structural invariants
of G. Conversely, for a list of non-negative integers I = (p,m, n1, n2,o1, o2, o

′
1, o

′
2,u1, u2),

1The classification in [5] is performed for all primes p and for p = 2 the fifth and sixth entries of inv(G)

may also be −1.
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defining r1 and r2 as in Eq. 3.1, the group GI is defined as

GI =
〈
b1, b2, a = [b2, b1] | apm = 1, abi = ari , b

pni

i = auip
m−o′

i
(i = 1, 2)

〉
.

Denoting by [G] the isomorphism class of a group G, the main result of [5] for p odd takes
the following form.

Theorem 3.1 The maps [G] �→ inv(G) and I �→ [GI ] define mutually inverse bijections
between the isomorphism classes of 2-generated non-abelian groups of odd prime-power
order and the set of lists of integers (p,m, n1, n2, o1, o2, o

′
1, o

′
2, u1, u2) satisfying the

following conditions.

(1) p is prime and n1 ≥ n2 ≥ 1.
(2) 0 ≤ oi < m, 0 ≤ o′

i ≤ m − oi and p � ui for i = 1, 2.
(3) One of the following conditions holds:

(a) o1 = 0 and o′
1 ≤ o′

2 ≤ o′
1 + o2 + n1 − n2.

(b) o2 = 0 < o1, n2 < n1 and o′
1 + min(0, n1 − n2 − o1) ≤ o′

2 ≤ o′
1 + n1 − n2.

(c) 0 < o2 < o1 < o2 + n1 − n2 and o′
1 ≤ o′

2 ≤ o′
1 + n1 − n2.

(4) o2 + o′
1 ≤ m ≤ n1 and one of the following conditions hold:

(a) o1 + o′
2 ≤ m ≤ n2.

(b) 2m − o1 − o′
2 = n2 < m and u2 ≡ 1 mod pm−n2 .

(5) 1 ≤ u1 ≤ pa1 , where a1 = min(o′
1, o2 + min(n1 − n2 + o′

1 − o′
2, 0)).

(6) One of the following conditions holds:

(a) 1 ≤ u2 ≤ pa2 .
(a) o1o2 �= 0, n1−n2+o′

1−o′
2 = 0 < a1, 1+pa2 ≤ u2 ≤ 2pa2 , and u1 ≡ 1 mod p;

where

a2 =

⎧
⎪⎨

⎪⎩

0, if o1 = 0;
min(o1, o

′
2, o

′
2 − o′

1 + max(0, o1 + n2 − n1)), if o2 = 0 < o1;
min(o1 − o2, o

′
2 − o′

1), otherwise.

In the remainder of the section, G denotes a finite non-abelian 2-generated p-group
with cyclic commutator subgroup, with invariant vector

inv(G) = (p,m, n1, n2, 1, 1, o1, o2, o
′
1, o

′
2, u1, u2).

and associated r1 and r2 as in Eq. 3.1.

Thanks to Theorem 3.1(2) and Lemma 2.1(1) we have

vp(ri − 1) = m − oi > 0 for i = 1, 2. (3.3)

The following two lemmas are Lemma 2.2 and Lemma 4.2 from [5].

Lemma 3.2 Let b = (b1, b2) be a basis of G. Then (o(b1), o(b2)) = (o1, o2) if and only if
one of the following conditions holds:

(1) o(b1) = 0.
(2) 0 = o(b2) < o(b1) and n2 < n1.
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(3) 0 < o(b2) < o(b1) < o(b2) + n1 − n2.

Lemma 3.3 Let b ∈ Br . Then o′(b) = (o′
1, o

′
2) if and only if the following conditions hold:

(1) If o1 = 0 then o′
1(b) ≤ o′

2(b) ≤ o′
1(b) + o2 + n1 − n2.

(2) If o2 = 0 < o1 then o′
1(b) + min(0, n1 − n2 − o1) ≤ o′

2(b) ≤ o′
1(b) + n1 − n2.

(3) If o1o2 �= 0 then o′
1(b) ≤ o′

2(b) ≤ o′
1(b) + n1 − n2.

For the following result, recall from the introduction that

O(G) = min
lex

{(|b1CG(G′)|, |b2CG(G′)|, −|b1|,−|b2|) | (b1, b2) ∈ B}.

Lemma 3.4 The following equality holds: O(G) = (po1 , po2 ,−pn1+o′
1 ,−pn2+o′

2).

Proof For every g ∈ G let r(g) be the unique integer 2 ≤ r(g) ≤ pm + 1 such that
ag = ar(g) for every a in G′. From Lemma 2.1(1) it follows that

po(g) = |gCG(G′)| = pm−vp(r(g)−1) = opm(r(g)) for all g ∈ G. (3.4)

In particular, if b ∈ Br and i = 1, 2, then o(bi) = oi . Thus the first two entries of O(G) are
po1 and po2 . To deal with the remaining two entries, fix two bases b = (b1, b2) and b′ =
(b′

1, b
′
2) of G with b′ ∈ Br and such that O(G) = (|b1CG(G′)|, |b2CG(G′)|, −|b1|, −|b2|)

and o′(b′) = (o′
1, o

′
2). In particular, we have |biCG(G′)| = |b′

iCG(G′)| = poi . Moreover,

|bi | = pni+o′
i (b) and |b′

i | = pni+o′
i . Thus (−pn1+o′

1(b),−pn2+o′
2(b)) = (−|b1|,−|b2|) ≤lex

(−pn1+o′
1 ,−pn2+o′

2) or equivalently o′(b) ≥lex (o′
1, o

′
2). On the other hand, the two auto-

morphisms of G′ given by a �→ abi and a �→ ab′
i have order poi . Since Aut(G′) is cyclic,

there exist integers x1 and x2, both coprime to p, such that b′′ = (b
x1
1 , b

x2
2 ) ∈ Br . Thus

pni+o′
i (b

′′) = |bxi

i | = |bi | = pni+o′
i (b) and hence o′(b) = o′(b′′) ≤lex (o′

1, o
′
2). We conclude

that o′(b) = (o′
1, o

′
2) and hence O(G) = (po1 , po2 , −pn1+o′

1 , −pn2+o′
2).

In the remainder of the section let b = (b1, b2) ∈ Br be a fixed basis of G such that
o′(b) = (o′

1, o
′
2) and denote a = [b2, b1].

Then the following hold:

|a| = pm, |biG
′| = pni , |biCG(G′)| = poi |bi | = pni+o′

i and abi = ari . (3.5)

In particular, every element of G is of the form bx
1b

y

2az for some integers x, y, z. Moreover,
it follows from Eqs. 2.1 and 2.2 that, for every non-negative integer e, one has

(bx
1b

y

2az)p
e = b

xpe

1 b
ype

2 aS(r1|x)S(r2|y)T
(
rx
1 ,r

y
2 |pe

)+zS
(
rx
1 r

y
2 |pe

)
, (3.6)

[ae, bx
1b

y

2az] = ae(rx
1 r

y
2 −1), (3.7)

[bx
1b

y

2az, b1] = aS(r2|y)+z(r1−1), (3.8)

[bx
1b

y

2az, b2] = a−S(r1|x)r
y
2 +z(r2−1). (3.9)

The next lemma describes some characteristic features of G.

Lemma 3.5 The following statements hold:

(1) Z(G) ∩ G′ =
〈
apmax(o1,o2)

〉
.

(2) exp(G) = pmax(n1+o′
1,n2+o′

2).
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(3) If i ≥ 2 then γi(G) =
〈
ap(i−2)(m−max(o1,o2))

〉
and the class of G is 1 +

⌈
m

m−max(o1,o2)

⌉
.

Proof (1) Let w be a non-negative integer. As vp(ri − 1) = m − oi and abi = ari , we
have that apw ∈ Z(G) if and only if, for each i ∈ {1, 2}, one has w + m − oi ≥ m. Then

Z(G) ∩ G′ =
〈
apmax(o1,o2)

〉
.

(2) Let e = max(n1 + o′
1, n2 + o′

2). By Eq. 3.5, we have that exp(G) ≥ pe so we
show that �e(G) = 1. To this end, note that e ≥ m as a consequence of Theorem 3.13.1
and thus �e(G

′) = 1. Now regularity yields that pe-th powering induces a homomorphism
G/G′ → G and so, as a consequence of Eq. 3.5, we get �e(G) = 1.

(3) We work by induction on i and, as the base case i = 2 is clear, we assume that i > 2
and the claim holds for i − 1. In other words, write f = (i − 3)(m − max(o1, o2)) so that

γi−1(G) =
〈
apf

〉
. It follows then from Eq. 3.7 that

γi(G) =
〈
[apf

, b1], [apf

, b2]
〉
=

〈
apf (r1−1), apf (r2−1)

〉
=

〈
apf min(r1−1,r2−1)

〉
.

We conclude by computing

vp(pf min(r1 − 1, r2 − 1)) = f + m − max(o1, o2) = (i − 2)(m − max(o1, o2)).

Since each S (ri | −) induces a bijection Z/pm
Z → Z/pm

Z (see Lemma 2.2) there are
unique integers 1 ≤ δ1 ≤ po1 and 1 ≤ δ2 ≤ po2 satisfying the following congruences:

S
(
r2 | δ1p

m−o1
) ≡ 1 − r1 mod pm, (3.10)

S
(
r1 | δ2p

m−o2
)
r
δ1p

m−o1

2 ≡ r2 − 1 mod pm. (3.11)

Moreover, Eq. 3.1 and Lemma 2.1(1) yield that p does not divide δ1δ2.

Lemma 3.6 The following hold:
{

δ1 = δ2 = 1, if o1 = 0;
δ1 + δ2 ≡ 0 mod po2 , otherwise.

(3.12)

Proof Assume first that o1 = 0, implying that δ1 = 1, r1 = 1 + pm and r2 = 1 + pm−o2 .
Then Lemma 2.1(1)-(2) implies

δ2p
m−o2 ≡ S

(
r1 | δ2p

m−o2
)
r
pm−o1

2 ≡ r2 − 1 = pm−o2 mod pm

and hence δ2 = 1. Suppose now that o1 > 0, which ensures that o1 > o2 and r2 = r
po1−o2

1 .
As a consequence, we have vp(r2 − 1) = m− o2 > vp(r1 − 1) = m− o1. Moreover, by the
definition of the δi’s, there are integers λ and μ such that S

(
r2 | δ1p

m−o1
) = 1 − r1 + λpm

and S
(
r1 | δ2p

m−o2
)
r
δ1p

m−o1

2 = r2 − 1 + μpm. Then the following identities hold:

r
(δ1+δ2)p

m−o2

1 − 1 = r
δ2p

m−o2

1 r
δ1p

m−o1

2 − 1

= (r
δ2p

m−o2

1 − 1)r
δ1p

m−o1

2 + r
δ1p

m−o1

2 − 1

= (r1 − 1)S
(
r1 | δ2p

m−o2
)
r
δ1p

m−o1

2 + (r2 − 1)S
(
r2 | δ1p

m−o1
)

= pm(μ(r1 − 1) + λ(r2 − 1)) ≡ 0 mod p2m−o1 .

We have shown that pm = op2m−o1 (r1) divides (δ1 + δ2)p
m−o2 and hence δ1 + δ2 ≡ 0

mod po2 , as desired.
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Lemma 3.7 One has Z(G) =
⎧
⎨

⎩

〈
b

pm

1 , b
pm

2 , b
pm−o2

1 a
〉
, if o1 = 0;

〈
b

pm

1 , b
pm

2 , b
−δ1p

m−o2

1 b
δ1p

m−o1

2 a
〉
, otherwise.

Proof Let g = bx
1b

y

2az be an arbitrary element of G with x, y, z ∈ Z. We characterize when
g ∈ Z(G) in terms of conditions on the exponents x, y, z. For this, note that Eqs. 3.8 and
3.9 ensure that g = bx

1b
y

2az ∈ Z(G) if and only if the following congruences hold:

S (r2 | y) ≡ z(1 − r1) mod pm, (3.13)

S (r1 | x) r
y

2 ≡ z(r2 − 1) mod pm. (3.14)

In particular, the elements b
pm

1 , b
pm

2 and c = b
δ2p

m−o2

1 b
δ1p

m−o1

2 a are all central. Let

d =
{

b
pm−o2

1 a, if o1 = 0;
b

−δ1p
m−o2

1 b
δ1p

m−o1

2 a, otherwise.

By Eq. 3.12 we have
〈
b

pm

1 , b
pm

2 , d
〉
=

〈
b

pm

1 , b
pm

2 , c
〉
⊆ Z(G). If o1 = 0 and g = bx

1b
y

2az ∈
Z(G) then it follows from Eq. 3.1 that Eq. 3.13 is equivalent to y ≡ 0 mod pm and hence

Eq. 3.14 is equivalent to x ≡ zpm−o2 mod pm. Thus g ∈
〈
b

pm

1 , b
pm

2 , d
〉

and hence Z(G) =
〈
b

pm

1 , b
pm

2 , d
〉
, as desired.

Suppose otherwise that o1 > 0 and define B =
〈
b

pm−o1

2

〉
, N = b

pmin(m,n2)

2 and f :
Z(G) → B/N by f (bx

1b
y

2az) = b
y

2N . The map f is well defined because, on the one hand
if bx

1b
y

2az = bu
1bv

2aw then y ≡ v mod pn2 and hence b
y

2N = bv
2N ; and on the other hand

if bx
1b

y

2az ∈ Z(G) then Eq. 3.13 ensures that m − o1 = vp(r1 − 1) ≤ S (r2 | y) = vp(y)

and hence b
y

2 ∈ B.

We claim that ker f =
〈
b

pm

1 , b
pm

2 , apo1
〉
. The inclusion from right to left is clear. Assume

g = bx
1b

y

2az ∈ ker f . If m ≤ n2 this implies that pm divides y. Then from Eq. 3.13 and
Lemma 2.1(1) we have that vp(z) ≥ o1 and hence from Eq. 3.14 we deduce that vp(x) ≥
m − o2 + o1 > m. This shows that g ∈

〈
b

pm

1 , b
pm

2 , apo1
〉
, as desired. Suppose now that

m > n2. Then g = bx
1az for some integers x and z and hence again from Eq. 3.13 we

deduce that vp(z) ≥ o1 and from Eq. 3.14 we conclude that vp(x) ≥ m − o2 + o1 > m.

Therefore, again g ∈
〈
b

pm

1 , b
pm

2 , apo1
〉

and the claim is proven.

We finally show that Z(G) =
〈
b

pm

1 , b
pm

2 , c
〉
. To this end, observe that B/N is generated

by f (c), as p does not divide δ1. This together with the claim and the fact that f is a

group homomorphism implies that Z(G) = 〈c, ker f 〉 =
〈
b

pm

1 , b
pm

2 , apo1
, c

〉
. To complete

the proof we show that apo1 ∈
〈
b

pm

1 , b
pm

2 , c
〉
. To this end, observe that the group H =

〈
b

pm−o2

1 , b
pm−o1

2 , a
〉

is regular and that H ′ =
〈
ap2m−o1−o2

〉
. Indeed, [a, b

pm−o2

1 ] = ar
pm−o2
1 −1,

[a, b
pm−o1

2 ] = ar
pm−o1
2 −1 and [bpm−o1

2 , b
pm−o2

1 ] = aS(r1|pm−o2)S(r2|pm−o1), and these three

elements generate the same subgroup
〈
ap2m−o1−o2

〉
since

vp(r
pm−o2

1 − 1) = vp(r
pm−o1

2 − 1) = vp(S
(
r1 | pm−o2

)
S

(
r2 | pm−o1

)
) = 2m − o1 − o2.
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As (ap2m−o1−o2
)p

o1 = ap2m−o2 = 1, from the regularity of H it follows that cpo1 =
b

δ2p
m−o2+o1

1 b
δ1p

m

2 apo1 . Now o1 > 0 implies m − o2 + o1 > m and so the proof is
complete.

Lemma 3.8 Let t = m − max(o1, o2). Then the following hold:

(1) |Z(G)∩G′| = pt , Z(G)G′ =
〈
a, b

pm

i , b
−pm−o2

1 b
pm−o1

2

〉
and G/Z(G)G′ ∼= Cpm ×Cpt .

(2) CG(G′) = �t(G : Z(G)G′) =
⎧
⎨

⎩

〈
a, b1, b

po2

2

〉
, if o1 = 0;

〈
a, b

po1

1 , b
po1−o2

1 b−1
2

〉
, otherwise.

(3) CG(G′)′ = �m−t (G
′).

(4) If o1 = 0 then exp(CG(G′)) = pn1+o′
1 .

(5) If o2 = 0 then exp(CG(G′)) = pmax(n1+o′
1−o1,n2+o′

2).

Proof (1) This is a direct consequence of Lemma 3.5(1) and Lemma 3.7.
(2) Let g = bx

1b
y

2az be an arbitrary element of G. Then Eq. 3.7 yields that g ∈ CG(G′) if

and only if arx
1 r

y
2 −1 = 1. If o1 = 0 then the last equality holds if and only if (1 +pm−o2)y −

1 ≡ 0 mod pm, equivalently if po2 divides y. So

o1 = 0 implies CG(G′) =
〈
a, b1, b

po2

2

〉
. (3.15)

Suppose now that o1 > 0. Then r1 = 1 + pm−o1 and r2 = r
po1−o2

1 yielding that [a, g] =
a(1+pm−o1 )x+ypo1−o2 −1. As opm(1 + pm−o1) = po1 , we have that g ∈ CG(G′) if and only if
x + ypo1−o2 ≡ 0 mod po1 , that is there exists an integer v with x = −ypo1−o2 + vpo1 . We
have proven that

o1 > 0 implies CG(G′) =
〈
a, b

po1

1 , b
po1−o2

1 b−1
2

〉
. (3.16)

To conclude, let L = �t (G : Z(G)G′). By (1), Eqs. 3.15 and 3.16 we have that CG(G′) ⊆ L

and G/CG(G′) ∼= G/L ∼= Cpm−t and therefore CG(G′) = L.
(3) The group G′ being cyclic, �m−t (G

′) = �t(G
′) and so (2) and the regularity of G

yield that �t (L
′) = [L,�t (L)] ⊆ [L, Z(G)G′] = 1, that is L′ ⊆ �t(G

′) = �m−t (G
′). For

the other inclusion, it suffices to observe that

�m−t (G
′) =

〈
apm−t

〉
=

⎧
⎨

⎩

〈
[b1, b

po2

2 ]
〉
, if o1 = 0;

〈
[bpo1

1 , (b
po1−o2

1 b−1
2 )]

〉
, otherwise.

(4)-(5) Assume that o1 = 0. Then we have b1 ∈ CG(G′) and |b1| = pn1+o′
1 , from which

we derive exp(G) ≥ pn1+o′
1 . Let now e = n1 + o′

1. Then Theorem 3.1(3)-(4) yields that
m ≤ e and n2 + o′

2 − o2 ≤ e. It follows from Eqs. 3.5, 3.6 and Lemma 2.1(1)-(3) that

(bx
1b

ypo2

2 az)p
e = 1 for every x, y, z ∈ Z. We have shown that exp(CG(G′)) = pn1+o′

1 . A
similar argument works when o2 = 0 < o1.

In the following lemma, Soc(G′) denotes the socle of G′. We remark that Soc(G′) =〈
apm−1

〉
, because G′ is cyclic of order pm and m ≥ 1.
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Lemma 3.9 Write G = G/Soc(G′) and assume that m ≥ 2. Then G is a non-abelian group
and one has inv(G) = (p,m − 1, n1, n2, 1, 1, o1, o2, o

′
1, o

′
2, u1, u2) where:

oi = max(0, oi − 1), for i = 1, 2;

o′
1 =

{
o′

1, if o1 = 0, 0 < min(o′
1, o2) and o′

2 = o′
1 + o2 + n1 − n2;

max(0, o′
1 − 1), otherwise;

o′
2 =

{
o′

2, if o2 = 0, n1 − n2 < o1 and 0 < o′
2 = o′

1 + n1 − n2 − o1;
max(0, o′

2 − 1), otherwise.

Proof That the first four entries of inv(G) are p,m − 1, n1 and n2 is obvious. Since we are
dealing with two groups G and G, in this proof we distinguish Br = Br (G) and Br (G).

Let g denote the natural image in G of an element g ∈ G. Then r(g) is the unique integer
in the interval [2, pm−1 + 1] that is congruent to r(g) modulo pm−1. By Eq. 3.4 we have

m − 1 − o(bi) = vp(r(bi) − 1) = m − max(1, oi).

Hence o(bi) = max(0, oi − 1) and thus Lemma 3.2 yields that oi = max(0, oi − 1).
Moreover, b = (b1, b2) is an element of Br (G). Note that the following hold:

b
p

ni+o′
i

i = 1; b
p

ni+o′
i
−1

i =
{

apm−1 = 1, if o′
i �= 0;

b
pni−1

i �= 1 if o′
i = 0;

and b
p

ni+o′
i
−2

i =
{

apm−2 �= 1, if o′
i > 1;

b
pni−1

i �= 1, if o′
1 = 1.

Therefore we derive that o′
i (b) = logp |bi | − ni = max(0, o′

i − 1).
To finish the proof we distinguish three cases according to Lemma 3.3 and search for

some b̂ ∈ Br (G) satisfying the corresponding conditions in the lemma. Then Lemma 3.3
will guarantee that o′

i = o′
i (b̂i ) for i = 1, 2. In most cases b already satisfies the desired

conditions and hence, in such cases, we take b̂ = b and hence o′
i = o′

i (b) = max(0, o′
i − 1).

Otherwise we modify slightly b to obtain the desired b̂.
Case 1. Suppose first that o1 = 0. By Theorem 3.1(3) we have

o′
1 ≤ o′

2 ≤ o′
1 + o2 + n1 − n2

and hence o′
1(b) = max(0, o′

1 − 1) ≤ max(0, o′
2 − 1) ≤ o′

2(b). Moreover, unless 0 <

min(o′
1, o2) and o′

2 = o′
1 + o2 + n1 − n2, we also have o′

2(b) ≤ o′
1(b) + o2 + n1 − n2.

As o1 = 0, the conditions in Lemma 3.3 hold for b̂ = b and hence we have o′
i = o′

i (b) =
max(0, o′

i − 1), as desired. Assume now that 0 < min(o′
1, o2) and o′

2 = o′
1 + o2 + n1 − n2.

Then o′
1(b) = o′

1 −1, o′
2(b) = o′

2 −1 and o2 = o2(b) = o2 −1 and hence b does not satisfy

the hypotheses of Lemma 3.3. Then we take b̂ = (b1b
po2

2 , b2), which belongs to Br (G)

because [b2
po2

, a] = 1. Using Eq. 3.6, the regularity of G and m ≤ n1 we compute

b̂
pn1

1 = b
pn1

1 b
pn1+o2

2 = ap
m−o′

1
b

pn1+o2−1

2 = ap
m−o′

1
b

p
n2+o′

2−o′
1−1

2 = ap
m−o′

1 +p
m−o′

1−1

and hence |b̂1| = pn1+o′
1 so that o′

1(b̂) = o′
1, o′

2(b̂) = o′
2 − 1 and we conclude from Lemma

3.3 that o′
1 = o′

1 and o′
2 = o′

2 − 1. This yields the desired conclusion because in this case
n1 − n2 ≥ 0 = o1 and o′

2 ≥ o′
1 > 0.

Case 2. Suppose that o2 = 0 < o1 so that Theorem 3.1(3) ensures

o′
1 + min(0, n1 − n2 − o1) ≤ o′

2 ≤ o′
1 + n1 − n2.
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Assume first that n1 −n2 ≥ o1. Then we have n1 −n2 ≥ o1 and o′
1 ≤ o′

2 ≤ o′
1 +n1 −n2

and consequently also o′
1(b) ≤ o′

2(b) ≤ o′
1(b)+n1−n2. Hence o′

i = o′
i (b) = max(0, o′

i−1).
Suppose now that n1 − n2 < o1. Then by Theorem 3.1(3) we have 0 < n1 − n2.

If o′
2 = 0 or o′

2 > o′
1 + n1 − n2 − o1 then we also have o′

1(b) + min(0, n1 − n2 −
o1) ≤ o′

2(b) ≤ o′
1(b) + n1 − n2 and again we have oi = o′

i (b) = max(0, o′
i − 1).

Assume now that 0 < o′
2 = o′

1 + n1 − n2 − o1. It follows that o′
1 > 0 and hence

o′
1(b) + min(0, n1 − n2 − o1(b)) = o′

1 + min(0, n1 − n2 − o1) > o′
2(b) − 1 = o′

2(b).

Therefore Lemma 3.3 yields o′(b) �= o′. In this case we take the basis b̂ = (b1, b
po1

1 b2),

which again belongs to the set Br (G) because [bpo1

1 , a] = 1. Then o′
1(b) = o′

1 − 1 and

if k = S
(
r1 | po1−1

)
S (r2 | 1)T

(
r
po1−1

1 , r2 | pn2

)
+ S

(
r
po1−1

1 r2 | pn2

)
then Lemma 2.1

and Theorem 3.1(4) imply vp(k) ≥ n2 ≥ m + o′
2. Using Eq. 3.6 we get

(b
po1−1

1 b2)
pn2 = ap

m−1−o′
2 +p

m−o′
2 +k .

Therefore |bpo1−1

1 b2| = pn2+o′
2 and we conclude that o′

1(b̂) = o′
1 −1, o′

2(b̂) = o′
2 and hence

o′
1 = o′

1 − 1 and o′
2 = o′

2.
Case 3. Finally, suppose that o1o2 �= 0. Then o1 = o1 − 1 > o2 − 1 = o2 ≥ 0 and

Theorem 3.1(3) guarantees o′
1 ≤ o′

2 ≤ o′
1 +n1 −n2. Hence o′

1(b)+min(0, n1 −n1 −o1) ≤
o′

1(b) ≤ o′
2(b) ≤ o′

1(b) + n1 − n2 and we get o′
i = o′

i (b) = max(0, o′
i − 1).

4 Proofs of theMain Results

In this section we prove Theorem A, Theorem B and Theorem C. The first one will be
included in Lemma 4.2, which relies on Lemma 4.1. Theorem B is proven shortly after
Lemma 4.2, while Theorem C is a consequence of Lemma 4.3 and 4.4. We conclude
the section by proving Corollary D and Corollary E, here presented as Corollary 4.5 and
Corollary 4.6, respectively.

Lemma 4.1 Let p be an odd prime and let G be a finite p-group with cyclic commutator
subgroup. Write, moreover, |G′| = pm and |G′ ∩ Z(G)| = pt . Then the following hold:

CG(G′) = {g ∈ G : gpt ∈ Z(G)G′} and CG(G′)′ = �m−t (G
′).

Moreover, for every subgroup N of G contained in CG(G′) one has

exp(N) = pmin{n : Dpn (N)=1}.

Proof The abelian case is straightforward so we assume that G′ �= 1. By a Theorem of
Cheng [9] the group G can be expressed as a central product

G = H ∗ G1 ∗ · · · ∗ Gs ∗ A,

where each Gi is a 2-generated group of nipotency class 2, the group H is 2-generated with
H ′ = G′ and A is abelian. For each i = 1, . . . , s, write Gi = 〈xi, yi〉 and |G′

i | = pmi .
Set K = G1 ∗ · · · ∗ Gs ∗ A. As G′ = H ′ and [H, Gi] = [H, A] = 1 it follows that
Z(H) ∩ H ′ = Z(G) ∩ G′ and CG(G′) = CG(H ′) = CH (H ′)K . Let L = {g ∈ G :
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gpt ∈ Z(G)G′} and note that A ⊆ L. Moreover, since each Gi is of class 2, we have that

Z(Gi) =
〈
G′

i , x
pmi

i , y
pmi

i

〉
and hence

Z(G) =
〈
Z(H),A, x

pmi

i , y
pmi

i : i = 1, . . . , s
〉

.

For each i, observe that mi ≤ t ≤ m because G′
1 ∗ · · · ∗ G′

s is contained in Z(G) ∩ G′.
Therefore, for each choice of i, one has �t (Gi) ⊆ Z(G) and we derive that K ⊆ L.
Moreover, it follows from [H, K] = 1 that Z(H)H ′ ⊆ Z(G)G′. Since |Z(H) ∩ H ′| = pt ,
Lemma 3.8(2) yields CG(G′) = CH (H ′)K = {h ∈ H : hpt ∈ Z(H)H ′}K ⊆ L. For the
other inclusion take g = hk ∈ L with h ∈ H and k ∈ K and note that h ∈ H ∩L ⊆ CH (H ′)
by Lemma 3.8(2). This shows that CG(G′) = L.

We now show that CG(G′)′ = �m−t (G
′). For this, let g, h ∈ CG(G′). Then hpt ∈

G′Z(G) and, as CG(G′) has nilpotency class 2, we have that [g, h]pt = [g, hpt ] = 1.
We have proven that CG(G′)′ ⊆ �m−t (G

′) while Lemma 3.8(3) ensures that �m−t (G
′) =

�m−t (H
′) = CH (H ′)′ ⊆ CG(G′)′.

Finally let N be a subgroup of G such that N ⊆ CG(G′). Then N has nilpotency class 2,
so that Eq. 2.3 yields Dpn(N) = �n(N) and the result follows.

The following result is a stronger version of Theorem A.

Theorem 4.2 Let k be a field of odd characteristic p and let G be a finite p-group with
cyclic commutator subgroup. If H is another group with kG and kH isomorphic as k-
algebras then

(a) For every algebra isomorphism φ : kG → kH preserving augmentation one has that

φ(I(CG(G′);G)) = I(CH (H ′); H);
(b) Di (CG(G′))/Di+1(CG(G′)) ∼= Di (CH (G′))/Di+1(CH (H ′)) for every i ≥ 1;
(c) exp(CG(G′)) = exp(CH (H ′));
(d) CG(G′)/G′ ∼= CH (H ′)/H ′;
(e) CG(G′)/CG(G′)′ ∼= CH (H ′)/CH (H ′)′.

Proof Let H be a group such that kG ∼= kH and let � ∈ {G,H }. It is well known that there
exists an isomorphism kG → kH preserving augmentation (see e.g. the remark on page 63
of [43]). Then H ′ is also cyclic as a consequence of Proposition 2.3(2)(d). Moreover, the
number |Z(G)∩G′| = pt is an algebra invariant of kG by Proposition 2.3(2)(e). By Lemma
4.1 and Proposition 2.3(1), the hypotheses of Lemma 2.6 hold for L� = C�(�′) and N� =
Z(�)�′. Therefore, if φ : kG → kH is an algebra isomorphism then φ(I(CG(G′); G)) =
I(CH (H ′);H) and hence Di (CG(G′))/Di+1(CG(G′)) ∼= Di (CH (G′))/Di (CH (H ′)) by
Lemma 2.4. This implies that the lists of orders of the terms of the Jennings series of
CG(G′) and CH (H ′) are equal and, by Lemma 4.1, these groups have the same expo-
nent. Finally, observe that since I(CG(G′); G)/I(G′; G) ∼= I(CG(G′)/G′; G/G′), if φ̂ :
k(G/G′) → k(H/H ′) is the isomorphism induced by φ then φ̂(I(CG(G′)/G′; G/G′)) =
I(CH (H ′)/H ′; H/H ′). This and the fact that the groups CG(G′)/G′ and CH (H ′)/H ′ are
both abelian yield, by using the argument in [32, Lemma 14.2.7(ii)], that they are isomor-
phic. Writing pm = |G′|, Lemma 4.1 ensures that I(CG(G′)′; G) = I(G′;G)p

m−t
and

so φ induces another isomorphism φ̃ : k(G/CG(G′)′) → k(H/CH (H ′)′), and the same
argument yields that CG(G′)/CG(G′)′ ∼= CH (H ′)/CH (H ′)′.
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In the remainder of the section we prove Theorem B, Theorem C, Corollary D and Corol-
lary E. For that we fix a field k of odd characteristic p, a finite 2-generated p-group G

with cyclic commutator subgroup and a group H such that kG ∼= kH . Then, by Proposition
2.3(2)(d), the group H is also 2-generated with a cyclic commutator subgroup. Moreover,
Proposition 2.3(2)(a) yields that, if one of the two groups is abelian, then G ∼= H . We
assume hence without loss of generality that G and H are non-abelian. Now, by Proposition
2.3(2)(a), the first six entries of inv(G) and inv(H) coincide. Thus we set

inv(�) = (p,m, n1, n2, 1, 1, o�
1 , o�

2 , o′�
1 , o′�

2 , u�
1 , u�

2 ) for � ∈ {G,H } (4.1)

and observe that m ≥ 1. To simplify the notation we denote o� = (o�
1 , o�

2 ) and o′� =
(o′�

1 , o′�
2 ). We will prove that oG = oH and o′G = o′H in Lemma 4.3 and Lemma 4.4,

respectively. These results will imply Theorem C. Combining Theorem C with Lemma 3.4,
we will obtain Theorem B.

For the proofs of Lemma 4.3 and 4.4, we argue by induction on m. The induction base
case is covered by Proposition 2.3(3)(c), as well as the case where G has nilpotency class 2.
Because of this, we assume without loss of generality that both G and H are of nilpotency
class greater than 2 and so m ≥ 2: Lemma 3.5(3) implies that oG �= (0, 0) and oH �= (0, 0).
Additionally we assume that, if G̃ is a 2-generated finite p-group with cyclic commutator
subgroup of cardinality |G̃′| < pm, then (oG̃, o′G̃) is an algebra invariant of kG̃. Denote
now

� = �/Soc(�′), inv(�) = (p, m − 1, n1, n2, 1, 1, o�
1 , o�

2 , o′�
1 , o′�

2 , u�
1 , u�

2 ), o� = (o�
1 , o�

2 ), o′� = (o′�
1 , o′�

2 ).

By Proposition 2.3(1), if φ : kG → kH is an isomorphism of algebras, then
φ(I(G′; G)) = I(H ′; H) and, as I(G′; G)p

m−1 = I(G′)pm−1
kG = I(Soc(G′))kG =

I(Soc(G′); G), it follows that φ(I(Soc(G′);G)) = I(Soc(H ′); G). We derive that

kG ∼= kG

I(Soc(G′); G)
∼= kH

I(Soc(H ′); H)
∼= kH

and the induction hypothesis yields that

oG = oH and o′G = o′H . (4.2)

As in the previous section, fix b = (b1, b2) ∈ Br (�) with o′(b) = o′� for � ∈ {G,H }. Thus
b1, b2 and a = [b2, b1] have different meanings depending on whether they are considered
as elements in G or H . The context, however, shall always be clear and any confusion
avoided.

Lemma 4.3 One has oG = oH .

Proof By means of contradiction assume oG �= oH and without loss of generality suppose
oG <lex oH . Recall that Z(G)∩G′ ∼= Z(H)∩H ′, by Proposition 2.3(2)(e), so Lemma 3.5(1)
implies max{oG

1 , oG
2 } = max{oH

1 , oH
2 }. Combining this with Theorem 3.1(3) it follows that

n2 < n1, for otherwise oG
1 = oH

1 = 0 and the previous maximum equals oG
2 = oH

2 . As a
consequence of Lemma 3.9 and Eq. 4.2 we get that

max(0, oG
i − 1) = oG

i = oH
i = max(0, oH

i − 1).

Then either {oG
1 , oH

1 } = {0, 1} or {oG
2 , oH

2 } = {0, 1}, equivalently either (oG
1 , oH

1 ) = (0, 1)

or oG
1 = oH

1 and (oG
2 , oH

2 ) = (0, 1). Moreover, by Theorem 3.1(3), we have that for each
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� ∈ {G,H } either o�
1 = 0, or o�

2 = 0 < o�
1 or 0 < o�

1 − o�
2 < n1 − n2. Hence one of the

following conditions holds:

(1) oG = (0, 1) and oH = (1, 0);
(2) oG = (o1, 0) and oH = (o1, 1) with 1 < o1 < 1 + n1 − n2.

We will prove in both cases that Z(G)G′/G′ and Z(H)H ′/H ′ have different exponent
which, in view of Proposition 2.3(2) (e), is not compatible with kG ∼= kH .

(1) First assume oG = (0, 1) and oH = (1, 0). Then, applying Lemma 3.7, we have

Z(G) =
〈
b

pm

1 , b
pm

2 , b
pm−1

1 a
〉

and Z(H) =
〈
b

pm

1 , b
pm

2 , b
−pm−1

2 a
〉

.

It follows in particular that

Z(G)/Z(G) ∩ G′ ∼= Z(G)G′/G′ =
〈
b

pm−1

1 G′
〉
×

〈
b

pm

2 G′
〉 ∼= Cpn1−m+1 × Cpn2−m,

Z(H)/Z(H) ∩ H ′ ∼= Z(H)H ′/H ′ =
〈
b

pm

1 G′
〉
× 〈

b2p
m−1G′〉 ∼= Cpn1−m × Cpn2−m+1 ,

and, as n2 < n1, the exponent of Z(G)/Z(G) ∩ G′ is pn1−m+1 while the exponent of
Z(H)/Z(H) ∩ H ′ is pn1−m.

(2) Assume oG = (o1, 0) and oH = (o1, 1) with 1 < o1 < 1 + n1 − n2. It follows from
Lemma 3.7 that

Z(G) =
〈
b

pm

1 , b
pm

2 , b
−pm−o1

2 a
〉

and Z(H) =
〈
b

pm

1 , b
pm

2 , b
pm−1

1 b
−pm−o1

2 a
〉

and therefore we also have

Z(G)/Z(G) ∩ G′ ∼= Z(G)G′/G′ =
〈
b

pm

1 G′〉 ×
〈
b

pm−o1

2 G′〉 ∼= Cpn1−m × Cpn2−m+o1 ,

Z(H)/Z(H) ∩ H ′ ∼= Z(H)H ′/H ′ =
〈
b

pm−1

1 b
pm−o1

2 G′〉 ×
〈
b

pm−o1+1

2 G′〉 ∼= Cpn1−m+1 × Cpn2−m+o1−1 .

As o1 ≤ n1 − n2, the exponent of Z(G)/Z(G) ∩ G′ is n1 − m, and the exponent of
Z(H)/Z(H) ∩ H ′ is n1 − m + 1. This concludes the proof.

In light of Lemma 4.3, until the end of the section we write oG = oH = (o1, o2).

Lemma 4.4 One has o′G = o′H .

Proof By means of contradiction we assume that o′G �= o′H and without loss of generality
we also assume that o′G <lex o′H . In particular G �∼= H and hence Proposition 2.3(3)(b)
yields that G and H are not metacyclic. It follows that max(o′G

1 , o′G
2 , o′H

1 , o′H
2 ) < m and,

as a consequence of Lemma 3.9 and Eq. 4.2, one of the following holds:

(1) o′H
2 = o′G

2 + 1 and exactly one of the following holds:

(a) o′G
2 = 0, (b) o2 = 0, n1 − n2 < o1 and o′G

2 = o′G
1 + n1 − n2 − o1.

(2) o′H
1 = o′G

1 + 1 and exactly one of the following holds:

(a) o′G
1 = 0, (b) o1 = 0, 0 < min(o′G

1 , o2) and o′G
2 = o′G

1 + o2 + n1 − n2.

Claim: We can write {i, j} = {1, 2} with 0 = oi < oj , o′
j = o′G

j = o′H
j and o′G

i + 1 =
o′H
i . Moreover, if i = 2, we have that n1 − n2 < o1.
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We prove the claim separately for cases (1) and (2). More precisely, in case (1) we will
prove the claim with i = 2 and j = 1 and in case (2) we prove the claim with i = 1 and
j = 2.

We first show that o′G
1 = o′H

1 . By Proposition 2.3(2)(b) we have exp(G) = exp(H) and
so Lemma 3.5(2) yields that

max(n1 + o′G
1 , n2 + o′G

2 ) = max(n1 + o′H
1 , n2 + o′H

2 ) = max(n1 + o′H
1 , n2 + o′G

2 + 1).

This implies that such maximum is n1 + o′G
1 = max(n1 + o′H

1 , n2 + o′G
2 + 1) ≥ n1 + o′H

1 .
As o′G <lex o′H , it follows that o′G

1 = o′H
1 . Thus, if the claim fails, one necessarily has

o′G
2 = 0 and hence 2m − o1 + o′G

2 = 2m − o1 > m. From Theorem 3.1(4) we thus derive
m ≤ n2. If o′G

1 > 0 then Theorem 3.1(3) yields 0 = o2 < o1 and n1 − n2 − o1 < 0.
So, when o′G

1 > 0, the claim follows. Otherwise, that is if o′G
1 = o′G

2 = 0, we have
pn2 ≤ pn1 = exp(G) = exp(H) = max(pn1 , pn2+1) and therefore n1 ≥ n2 + 1. Hence,
using Lemma 3.5(3) and the fact that (pk − 2)(m − max(o1, o2)) + n2 − k ≥ n2 ≥ m for
k ≥ 1, we have

Dpn2 (G) =
〈
b

pn2

1

〉
,

Dpn2 +1(G) =
〈
b

pn2+1

1

〉
,

Dpn2 (H) =
〈
b

pn2

1 , apm−1
〉
,

Dpn2 +1(H) =
〈
b

pn2+1

1

〉
.

We obtain the following contradiction to Proposition 2.3(2)(c):

Cp
∼= Dpn2 (G)

Dpn2 +1(G)
∼= Dpn2 (H)

Dpn2 +1(H)
∼= Cp × Cp .

Suppose now that (2) holds. If o′G
2 �= o′H

2 then, by Lemma 3.9, the hypotheses in (1) are
satisfied and from the claim we obtain the contradiction o′G

1 = o′H
1 = o′G

1 + 1. Hence we
have o′G

2 = o′H
2 . Therefore, if the claim fails, we necessarily have o′G = (0, o′

2) and o′H =
(1, o′

2) and hence pmax(n1+1,n2+o′
2) = exp(H) = exp(G) = pmax(n1,n2+o′

2). Therefore n1 +
o′G

1 = n1 < n2 + o′
2 = n2 + o′G

2 and Theorem 3.1(3) yields o1 = 0. It follows from
oG �= (0, 0) that o2 �= 0. This finishes the proof of the claim.

Combining the claim with Theorem 3.1(3) we deduce that ni + o′G
i ≥ nj + o′

j − oj and
hence, applying (4) and (5) of Lemma 3.8 we have

exp(C�(�′)) =
{

pni+o′G
i , if � = G;

pni+o′G
i +1, if � = H .

(4.3)

This yields a contradiction to Lemma 4.2.

This completes the proof Theorem C. As a consequence, we set o′G = o′H = (o′
1, o

′
2)

until the end of this section. The following is the same as Corollary D.

Corollary 4.5 One has CG(G′) ∼= CH (H ′).

Proof By Theorem 4.2(b) we have |Di (CG(G′))/Di+1(CG(G′))| = |Di (CG(H ′))
/Di+1(CH (H ′))| for each i ≥ 1, hence also |Di (CG(G′))| = |Di (CH (H ′))| for each
i ≥ 1. In order to prove the lemma we will write a presentation for a group � depending
only on p,m, n1, n2, o1, o2, o

′
1, o

′
2 and e, where pe = |Dpn1−o1+o2 (C�(�′))|, and show that

C�(�′) ∼= � for � ∈ {G,H }. We rely on the description of C�(�′) given in Lemma 3.8(2)
and analyze the different cases listed in Theorem 3.1(3).
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Assume first that o1 = 0. Then C�(�′) =
〈
b1, b

po2

2 , a
〉
, and by Eq. 3.8 and Lemma

2.1(2) we have [bu�
1 po2

2 , b1] = au�
1 po2 . Defining

� =
〈
x, y, z | [y, x] = zpo2

, [z, x] = [z, y] = 1, xpn1 = zp
m−o′

1
, ypn2−o2 = zp

m−o′
2
, zpm = 1

〉
,

the assignment (x, y, z) �→ (b
u�

2
1 , b

u�
1 po2

2 , au�
1 u�

2 ) extend to an isomorphism � → C�(�′).
Next assume that o2 = 0 < o1, so that C�(�′) =

〈
b

po1

1 , b2, a
〉

. Set

� =
〈
x, y, z | [y, x] = zpo1

, [z, x] = [z, y] = 1, xpn1−o1 = zp
m−o′

1
, ypn2 = zp

m−o′
2
, zpm = 1

〉
.

Then the assignment (x, y, z) �→ (b
u�

2 po1

1 , b
u�

1
2 , au�

1 u�
2 ) induces an isomorphism � →

C�(�′).
Finally assume that o1o2 > 0. Then o2 < o1 < o2 +n1 −n2 and o′

1 ≤ o′
2 ≤ o′

1 +n1 −n2,
and we also have

C�(�′) =
〈
b

po1

1 , b
po1−o2

1 b−1
2 , a

〉
=

〈
b

po1−o2

1 b−1
2 , b

po2

2 , a
〉

.

Let r ′ be an integer such that r2r
′ ≡ 1 mod pm. By the definition of r2 in Eq. 3.1

we have r ′ ≡ 1 mod pm−o2 and, as o1 > o2, we also have r ′ ≡ 1 mod pm−o1 .

Applying Eq. 3.9 we get [b2, b
po1−o2

1 b−1
2 ] = ar ′S(r1|po1−o2) and, as a consequence,

that [bpo2

2 , b
po1−o2

1 b−1
2 ] = ar ′S(r1|po1−o2)S(r2|po2 ). From Lemma 2.1(1)-(2) and r ′ ≡ 1

mod pm−o1 we derive r ′S
(
r1 | po1−o2

)
S (r2 | po2) ≡ r ′po1 ≡ po1 mod pm, from which

it follows that [bpo2

2 , b
po1−o2

1 b−1
2 ] = apo1 . As CG(G′) is of class at most 2, we have moreover

that

[bdpo2

2 , (b
po1−o2

1 b−1
2 )e] = apo1 de, for every d, e ∈ Z. (4.4)

We construct different �’s depending on whether s = n1 +o′
1 −n2 −o′

2 −o1 +o2 is positive,
negative or zero.

Suppose s > 0 and take α� = u�
1 − u�

2 ps and

� =
〈
x, y, z | [y, x] = zpo1

, [z, x] = [z, y] = 1, xpn1−o1+o2 = zp
m−o′

1
, ypn2−o2 = zp

m−o′
2
, zpm = 1

〉
.

Define additionally We claim that the homomorphism f� : � → C�(�′) that is defined
by

x �→ x1 := (b
po1−o2

1 b−1
2 )u

�
2 , y �→ y1 := b

α�po2

2 , z �→ z1 := aα�u�
2

is in fact an isomorphism. Indeed, both a and z have order pm and C�(�′)/ 〈a〉 ∼= �/ 〈z〉 ∼=
Cpn1−o1+o2 × Cpn2−o2 , so to prove that f� is an isomorphism we check that x1, y1 and z1
satisfy the relations of �. It is clear that [z1, x1] = [z1, y1] = 1 and regularity grants that

x
pn1−o1+o2

1 = z
p

m−o′
1

1 and y
pn2−o2

1 = z
p

m−o′
2

1 . The last relation follows from Eq. 4.4.
In case s < 0 we take α� = u�

1 ps − u�
2 ,

� =
〈
x, y, z | [y, x] = zpo1

, [z, x] = [z, y] = 1, xpn1−o1+o2 = zp
m−o′

1+s

, ypn2−o2 = zp
m−o′

2
, zpm = 1

〉
,
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and f� defined as in the previous paragraph. The same argument shows that f� is a group
isomorphism.

Finally suppose that s = 0 and factorize u�
1 − u�

2 = w�p��
with w� coprime to p.

Observe that (wG, �G) and (wH , �H ) might be different, nonetheless the following hold:

pe = |Dpn1−o1+o2 (C�(�′))| = |�n1−o1+o2(C�(�′))| =
∣∣∣∣

〈
ap

min{m−o′
1+��,m−o′

1+o2,n1−o1+o2}
〉∣∣∣∣ .

As a result, e = max{o′
1 − ��, o′

1 − o2,m − n1 + o1 − o2, 0} is independent of � ∈ {G,H }.
We now give contructions of � depending on the value of e.

Assume that e = max{o′
1 − o2,m − n1 + o1 − o2, 0}. We set

� =
〈
x, y, z | [y, x] = zpo1

, [z, x] = [z, y] = 1, xpn1−o1+o2 = 1, ypn2−o2 = zp
m−o′

2
, zpm = 1

〉

and select an integer v such that vu�
2 ≡ 1 mod pm. Then we obtain an isomorphism � →

C�(�′) by assigning y �→ b
u�

1 po2

2 , z �→ au�
1 u�

2 and

x �→

⎧
⎪⎪⎨

⎪⎪⎩

(b
po1−o2

1 b−1
2 )u

�
2 , if e = 0;

(b
po1−o2

1 b−1
2 a−w�p

m−o′
1−n1+��+o1−o2

)u
�
2 , if e = m − n1 + o1 − o2;

(b
po1−o2

1 b
−1+(u�

2 −u�
1 )v

2 )u
�
2 , if e = o′

1 − o2.

Otherwise assume e = o′
1 − �� > max{o′

1 − o2, m − n1 + o1 − o2, 0} and we take

� =
〈
x, y, z | [y, x] = zpo1

, [z, x] = [z, y] = 1, xpn1−o1+o2 = zpm−e

, ypn2−o2 = zp
m−o′

2
, zpm = 1

〉
.

Slightly modifying the arguments from the previous paragraph, one easily shows that

x �→ (b
po1−o2

1 b−1
2 )u

�
2 , y �→ b

w�po2

2 , and z �→ aw�u�
2

determines an isomorphism � → C�(�′).

The following result is the same as Corollary E.

Corollary 4.6 The groups G and H have the same type invariants.

Proof We will express the type invariants solely in terms of (p,m, n1, n2, o1, o2, o
′
1, o

′
2).

The corollary then will follow from Theorem C. The discussion after [44, Theorem 3.1]
guarantees, for � ∈ {G,H }, that ω(�) ∈ {2, 3} and, moreover, ω(�) = 2 if and only if � is
metacyclic, that is if max{o′

1, o
′
2} = m. In view of Proposition 2.3(3)(b) we assume without

loss of generality that ω(�) = 3. In this situation, as indicated in [44], the type invariants
satisfy the following properties:

exp(�) = pe�
1 , |�| = pe�

1 +e�
2 +e�

3 and pe�
3 = min{|g| : g ∈ �(�) \ �1(�)}. (4.5)
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where �(�) = 〈
b

p

1 , b
p

2 , a
〉
is the Frattini subgroup of � and e�

i denotes the i-th type invariant
of �. We claim that the type invariants are given by the following formulae:

e�
1 = max(n1 + o′

1, n2 + o′
2),

e�
2 = n1 + n2 + max(o′

1, o
′
2) − max(n1 + o′

1, n2 + o′
2),

e�
3 = m − max(o′

1, o
′
2).

(4.6)

Indeed, by Lemma 3.5(2) the exponent of G is pmax(n1+o′
1,n2+o′

2), so Eq. 4.5 yields the first
equality. Moreover the order of G is both pe�

1 +e�
2 +e�

3 and pm+n1+n2 . Therefore it is enough
to prove that e�

3 = m−max(o′
1, o

′
2). For this, let g in �(�)\�1(�). Then g = b

xps1

1 b
yps2

2 az,
with 1 ≤ min{s1, s2} and p does not divide zxy. Conversely, every element of such form
belongs to �(�) \ �1(�). Thanks to Eq. 3.6, if pN ≥ |g| then

1 = (b
xps1

1 b
yps2

2 az)p
N = b

xps1+N

1 b
yps2+N

2 a
S(r1|xps1 )S(r2|yps2 )T

(
r
xps1
1 ,r

yps2
2 |pN

)
+zS

(
r
xps1
1 r

yps2
2 |pN

)

.
(4.7)

Then si + N ≥ ni for i = 1, 2 and, as n1 ≥ m, Lemma 2.1(1)-(3) yields

vp

(
S

(
r1 | xps1

)
T

(
r
xps1

1 , r
yps2

2 | pN
))

≥ s1 + N ≥ n1 ≥ m and vp

(
zS

(
r
xps1

1 r
yps2

2 | pN
))

= N .

So S
(
r
xps1

1 r
yps2

2 | pN
)

= ApN , for some integer A = A(x, y, s1, s2), with p not

dividing A. Hence Eq. 4.7 can be rewritten as

1 = axu�
1 p

s1+N−n1+m−o′
1 +yu�

2 p
s2+N−n2+m−o′

2 +zApN

and e�
3 is the minimum value of N such that there are integers x, y, z, s1 and s2 satisfying

p � xyz, 1 ≤ si si + N ≥ ni, and
xu�

1 ps1+N−n1+m−o′
1 + yu�

2 ps2+N−n2+m−o′
2 + zApN ≡ 0 mod pm.

(4.8)

If N ≥ m then the conditions hold trivially taking s1 and s2 large enough, so we look for
values N < m. Then zApN �≡ 0 mod pm and hence s1 and s2 should be taken satisfying
one of the following conditions:

(1) s1 = n1 + o′
1 − m, (2) s2 = n2 + o′

2 − m, (3) m < n1 + o′
1 − s1 = n2 + o′

2 − s2.

In the three cases ni ≤ si + N ≤ ni + o′
i − m + N and hence N ≥ m − o′

i . This shows that

N ≥ min(m − o′
1,m − o′

2) = m − max(o′
1, o

′
2)

and hence, in view of the above we assume that max(o′
1, o

′
2) > 0. It now suffices to prove

that, for N = m − max(o′
1, o

′
2), there exists integers x, y, z, s1 and s2 satisfying Eq. 4.8.

From N < m we conclude that max(o′
1, o

′
2) > 0. We note, moreover that ni + o′

i ≥ m.
Indeed, if this weren’t the case, we would have ni < m and, applying Theorem 3.1(2)-(4),
that i = 2 and n2 = 2m − o1 − o′

2 > m − o′
2. If o′

1 ≥ o′
2 then the following integers satisfy

Eq. 4.8:

N = m−o′
1, s1 = n1+o′

1−m = ni−N > 0, s2 = n2+o′
2 ≥ m, x = −1, y = 1, z = Bu1

with B an integer such that AB ≡ 1 mod pm. Otherwise o′
2 > o′

1 and a symmetric
argument shows that for N = m − o′

2 the integers

x = 1, y = −1, s1 = n1 + o′
1 ≥ m, s2 = n2 − m + o′

2 = n2 − N > 0, z = Bu2
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satisfy Eq. 4.8. This finishes the proof of Eq. 4.6 and hence also of the corollary.
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