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Abstract
We investigate the existence and non-existence of maximal green sequences for quivers
arising from weighted projective lines. Let Q be the Gabriel quiver of the endomorphism
algebra of a basic cluster-tilting object in the cluster category CX of a weighted projective
line X. It is proved that there exists a quiver Q′ in the mutation equivalence class Mut(Q) of
Q such that Q′ admits a maximal green sequence. Furthermore, there is a quiver in Mut(Q)

which does not admit a maximal green sequence if and only if X is of wild type.
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1 Introduction

Maximal green sequences were introduced by Keller [19] in the study of refined Donaldson-
Thomas invariants for quivers and implicitly by Gaiotto et al. in [14]. They are certain
sequences of quiver mutations satisfying a certain combinatorial condition. It is known that
not all quivers have maximal green sequences, but they do exist for important classes of
quivers. We refer to the survey [21] for examples and recent progress. Although there are a
lot of results on the existence of maximal green sequences, it is still a challenging problem
to characterize the class of quivers which have maximal green sequences.

The existence of maximal green sequences yields quantum dilogarithm identities in
the associated quantum torus and provides explicit formulas for Kontsevich-Soibelman’s
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refined Donaldson-Thomas invariants (cf. [19]). It also has important applications in the
theory of cluster algebras. In particular, Gross et al. [16] proved that the Fock-Goncharov
conjecture about the existence of a canonical basis for cluster algebras holds when a cluster
algebra has a quiver with a maximal green sequence and the cluster algebra is equal to its
upper cluster algebra. It is also a sufficient condition for the existence of a generic basis in
certain upper cluster algebras [27].

Cluster-tilting theory of hereditary abelian categories produces a large class of important
quivers, which we denote it byQct. LetK be an algebraically closed field andH a hereditary
abelian category over K with tilting objects. The cluster category C(H) [4] is defined as the
orbit category of the bounded derived categoryDb(H) with respect to the auto-equivalence
τ−1 ◦ �, where τ is the Auslander-Reiten translation and � is the suspension functor of
Db(H), respectively. The cluster category C(H) is a 2-Calabi-Yau triangulated category
with cluster-tilting objects (cf. [18]). For each basic cluster-tilting object T ∈ C(H), we
denote by QT the Gabriel quiver of the endomorphism algebra EndC(H)(T ). Then Qct

consists of quivers which are isomorphic to QT for some basic cluster-tilting object T and
hereditary abelian categoryH.

According to Happel’s classification theorem [17], each connected hereditary abelian K-
category with tilting objects is either derived equivalent to the path algebra KQ of a finite
acyclic quiver Q or to the category cohX of coherent sheaves over a weighted projective
line in the sense of Geigle-Lenzing [15]. Therefore, Qct can be written as the union of
two subclasses: Qpa consists of quivers arising from path algebras and Qwpl consists of
quivers arising from weighted projective lines. Cluster categories associated to path algebras
were extensively studied in their connection to cluster algebras (cf. [3–7] for instance), but
those associated to weighted projective lines were not well studied [1, 13]. The aim of this
note is to study the existence and non-existence of maximal green sequences for quivers
in Qwpl. Our main result is an existence and non-existence theorem (cf. Theorem 4.3) for
quivers arising from weighted projective lines. Surprisingly, the existence and non-existence
theorem is compatible with the classification of weighted projective lines.

The paper is structured as follows. In Section 2, we recall the definitions of quiver muta-
tion and maximal green sequence. Quivers of finite mutation type are also discussed. In
Section 3, we collect basic properties for weighted projective lines. It is proved that a quiver
arising from a weighted projective line X is of finite mutation type if and only if X is not of
wild type (Proposition 3.7). In Section 4, we present the proof of the main result (Theorem
4.3).

Conventions Letm ≥ n be positive integers. For an integer matrix B ∈ Mm×n(Z), we refer
to the submatrix formed by the first n rows of B the principal part of B and the submatrix
formed by the last m − n rows the coefficient part.

For any integer vectors α = [a1, · · · , an]T , β = [b1, · · · , bn]T ∈ Z
n, we denote by

α ≤ β if ai ≤ bi for 1 ≤ i ≤ n. This endows a partial order on Zn. For b ∈ Z, let sgn(b) be
1, 0, or −1, depending on whether b is positive, zero, or negative.

2 Preliminaries

2.1 Quivers andMutation

A quiver is an oriented graph, i.e., a quadruple Q = (Q0, Q1, s, t) formed by a set of
vertices Q0, a set of arrows Q1 and two maps s and t from Q1 to Q0 which send an arrow
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α respectively to its source s(α) and its target t (α). An arrow whose source and target
coincide is a loop; a 2-cycle is a pair of distinct arrows α and β such that s(α) = t (β)

and t (α) = s(β). By convention, in the sequel, by a quiver we always mean a finite quiver
without loops nor 2-cycles. An ice quiver is a pair (Q, F ), where Q is a quiver and F is a
subset of Q0 called frozen vertices, such that there are no arrows between frozen vertices.
The non-frozen vertices of (Q, F ) are mutable vertices. The mutable part of (Q, F ) is the
full subquiver of (Q, F ) consisting of mutable vertices.

Definition 2.1 Let (Q, F ) be an ice quiver and k a mutable vertex. The mutation μk(Q,F )

of (Q, F ) at vertex k is the ice quiver obtained from (Q, F ) as follows:

• for each subquiver i
β−→ k

α−→ j , we add a new arrow [αβ] : i → j ;
• we reverse all arrows with source or target k;
• we remove the arrows in a maximal set of pairwise disjoint 2-cycles and any arrows

that created between frozen vertices.

When F = ∅, we also write μk(Q) for μk(Q,∅).
Let (Q, F ) be an ice quiver with non frozen vertices {1, . . . , n} and frozen vertices {n +

1, . . . , m}. Up to an isomorphism fixing the vertices, such an ice quiver is given by an
m × n integer matrix B(Q,F) whose coefficient bij is the difference between the number
of arrows from j to i and the number of arrows from i to j . In particular, the principal
part of B(Q,F) is skew-symmetric. Conversely, each m × n integer matrix B with skew-
symmetric principal part comes from an ice quiver. Let B(Q,F) = (bij ) be the associated
matrix of (Q, F ). For any mutable vertex k, we denote by μk(B(Q,F)) = (b′

ij ) the matrix
associated to the ice quiver μk(Q, F ), then

b′
ij =

{
−bij if i = k or j = k;

bij + sgn(bik)max(0, bikbkj ) else.

This is the matrix mutation rule introduced by Fomin and Zelevinsky [11]. It is clear that
μk(B(Q,F)) = B(μk(Q,F )).

Mutation at a fixed vertex is an involution. Two ice quivers are mutation-equivalent if
they are linked by a finite sequence of mutations. We will denote by Mut(Q, F ) the set of
all quivers that can be obtained from (Q, F ) by a finite sequence of mutations. We write
Mut(Q) := Mut(Q,∅).

2.2 Maximal Green Sequence

Definition 2.2 Let Q be a quiver. The framed quiver Q̂ of Q is the ice quiver (Q̂,Q∗
0) such

that:

Q∗
0 = {i∗ | i ∈ Q0}, Q̂0 = Q0 	 Q∗

0, Q̂1 = Q1 	 {i → i∗ | i ∈ Q0}.
The coframed quiver Q̌ is the ice quiver (Q̌,Q∗

0) such that:

Q∗
0 = {i∗ | i ∈ Q0}, Q̌0 = Q0 	 Q∗

0, Q̌1 = Q1 	 {i ← i∗ | i ∈ Q0}.

Definition 2.3 Let R ∈ Mut(Q̂,Q∗
0). A mutable vertex k ∈ R0 is green if {j∗ ∈

Q∗
0 | ∃ j∗ → k ∈ R1} = ∅. It is red if {j∗ ∈ Q∗

0 | ∃ j∗ ← k ∈ R1} = ∅.

We have the following sign-coherence property.
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Theorem 2.4 [9, Theorem 1.7] Every mutable vertex of R ∈ Mut(Q̂,Q∗
0) is either green

or red.

Remark 2.5 A non-zero integer vector c ∈ Z
n is sign-coherent if c ≤ 0 or 0 ≤ c. Let

Q be a quiver with vertex set {1, . . . , n}. For R ∈ Mut(Q̂,Q∗
0), recall that B(R,Q∗

0) is
the associated 2n × n integer matrix. Theorem 2.4 can be restated as follows: each column
vector of the coefficient part of B(R,Q∗

0) is sign-coherent.

Definition 2.6 A green sequence for a quiver Q is a sequence i = (i1, . . . , il) of vertices
of Q such that for any 1 ≤ k ≤ l, the vertex ik is green in μik−1 ◦ · · · ◦ μi1(Q̂, Q∗

0). The

green sequence i is maximal if every mutable vertex in μil ◦ · · · ◦μi1(Q̂, Q∗
0) is red. We will

simply denote the composition μil ◦ · · · ◦ μi1 by μi. A green-to-red sequence is a sequence
i of vertices of Q such that every mutable vertex in μi(Q̂, Q∗

0) is red.

Proposition 2.7 [2, Proposition 2.10] Suppose that Q admits a green-to-red sequence i.

Then there is a unique isomorphism μi(Q̂, Q∗
0)

∼−→ Q̌ fixing the frozen vertices and sending
a non frozen vertex i to σ(i) for a unique permutation σ of the vertices of Q.

Remark 2.8 By definition and Proposition 2.7, it is known that a sequence i is a green-
to-red sequence of Q if and only if the coefficient part of the matrix B(μi(Q̂, Q∗

0)) =
μi(B(Q̂, Q∗

0)) is a permutation of −In. A sequence i = (i1, . . . , il) is a maximal green
sequence if and only if

• the ik-th column vector of the coefficient part of B(μik−1 ◦ · · · ◦μi1(Q̂,Q∗
0)) is positive

for 1 ≤ k ≤ l;
• the coefficient part of the matrix B(μi(Q̂,Q∗

0)) = μi(B(Q̂,Q∗
0)) is a permutation of

−In.

By definition, all maximal green sequences are green-to-red sequences. There are quiv-
ers for which a maximal green sequence does not exist, but a green-to-red sequence does.
Furthermore, there are quivers for which no green-to-red sequence exists.

Example 2.9 Let a, b, c be non negative integers, denote by Qa,b,c the quiver with three
vertices 1, 2, 3 and a arrows from 1 to 2, b arrows from 2 to 3 and c arrows from 3 to 1. It is
known that Q2,2,2 does not admit a green-to-red sequence. Furthermore, Muller [24, The-
orem 12] proved that Qa,b,c does not admit maximal green sequences whenever a, b, c ≥
2.

Lemma 2.10 [24, Corollary 19] If a quiver Q admits a green-to-red sequence, then any
quiver mutation-equivalent to Q also admits a green-to-red sequence.

Muller [24] also proved that the property of having a maximal green sequence is not
invariant under mutation. The following is useful to show the non-existence of maximal
green sequence for a given quiver.

Lemma 2.11 [24, Theorem 9 and 17] If a quiver Q admits a green-to-red sequence (resp.
maximal green sequence), then any full subquiver of Q also admits a green-to-red sequence
(resp. maximal green sequence). In particular, ifQ has a full subquiverQa,b,c with a, b, c ≥
2, then Q does not admit a maximal green sequence.
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Definition 2.12 LetQ be a quiver andQ′,Q′′ full subquivers. We say thatQ is a triangular
extension of Q′ by Q′′ if the set of vertices of Q is the disjoint union of the sets of vertices
of Q′ and Q′′ and there are no arrows from vertices of Q′′ to vertices of Q′.

The following result was proved in [8, Theorem 4.5] using Lemma 2.11.

Lemma 2.13 [8, Theorem 4.5] If Q is a triangular extension of Q′ by Q′′, then Q has a
maximal green sequence if and only if Q′ and Q′′ have maximal green sequences.

2.3 Tropical Dualities Between c-vectors and g-vectors

LetQ be a quiver with vertex set {1, 2, . . . , n}. Denote by Tn the n-regular treewhose edges
are labeled by the numbers 1, . . . , n such that the n edges emanating from each vertex have

different labels. We write t
k

t ′ to indicate that vertices t and t ′ are linked by an edge
labeled by k.

A quiver pattern of (Q̂, Q∗
0) is an assignment of an ice quiver Rt ∈ Mut(Q̂,Q∗

0) to each
vertex t ∈ Tn such that

(1) there is a vertex t0 ∈ Tn such that Rt0 = (Q̂, Q∗
0);

(2) if t
k

t ′, then Rt ′ = μk(Rt ).

Clearly, a quiver pattern of (Q̂,Q∗
0) is uniquely determined by assigning (Q̂,Q∗

0) to the
vertex t0 ∈ Tn and t0 is called the root vertex of the quiver pattern.

We relabel the vertex i∗ as n + i for each i ∈ Q0 and fix a quiver pattern of (Q̂,Q∗
0). In

particular, for each vertex t ∈ Tn, we have a 2n × n integer matrix B(Rt ) := (bij ;t ). The
coefficient part Ct of B(Rt ) is the C-matrix at t . Its column vectors are c-vectors.

Let e1, . . . , en be the standard basis of Zn. For 1 ≤ j ≤ n, denote by βj the j th column
of the principal part of B(Rt0). For each vertex t ∈ Tn, we also assign an integer matrix
Gt := (g1;t , . . . , gn;t ) by the following recursion:

(1) for any 1 ≤ i ≤ n, gi;t0 = ei ;

(2) suppose that Gt is defined and let t
k

t ′ be an edge of Tn, then

gi;t ′ =
{

gi;t i = k;
−gk;t + ∑n

j=1[bjk;t ]+gj ;t − ∑n
j=1[b(n+j)k;t ]+βj i = k.

We call Gt the G-matrix at t and its column vectors are g-vectors.

Proposition 2.14 [9, Theorem 1.7] For each vertex t ∈ Tn, every row vector of Gt is
sign-coherent.

The following is known as the tropical duality between c-vectors and g-vectors (cf. [20,
25, 26]).

Theorem 2.15 [25, Theorem 4.1] For each vertex t ∈ Tn, we have

GT
t Ct = In.
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2.4 Finite Mutation Type

A quiver Q is of finite mutation type if Mut(Q) is a finite set. Quivers of finite mutation
type have been classified in [10]. Here, we only recall the following.

Lemma 2.16 (1) Every quiver with two vertices is of finite mutation type.
(2) If Q is acyclic with at least three vertices, then Q is of finite mutation type if and only

if Q is of Dynkin type or extended Dynkin type.
(3) Each quiver in Fig. 1 is of finite mutation type.

Proof The statement (1) is obvious, (2) is proved by [3, Theorem 3.6]. For (3), one can
verify the finiteness by the MutationApp of Keller [22] directly (cf. also [10, Theorem
6.1 ]).

Lemma 2.17 Let 2 ≤ c ≤ b ≤ a be integers. If a ≥ 3, then the quiver Qa,b,c is not of finite
mutation type.

Proof For a non negative integer t , we set Qt := (μ2μ1)
t (Q(a,b,c)) and a pair of integers

(bt , ct ) by the following recursion:

b0 = b, c0 = c, bt = act−1 − bt−1, ct = abt − ct−1.

We claim that 0 < b1 < c1 · · · < bt < ct < · · · . Indeed, it is straightforward to see that
0 < b1 < c1. For t ≥ 2, we have

bt − ct−1 = act−1 − bt−1 − ct−1 = (a − 1)ct−1 − bt−1 ≥ 2ct−1 − bt−1 > 0

and

ct − bt = (a − 1)bt − ct−1 > 0

by induction. As a consequence, Qt = Q(a,bt ,ct ) and Q(a,b,c) is not of finite mutation
type.

Fig. 1 Quivers of tubular type D
(1,1)
4 , E(1,1)

6 , E(1,1)
7 and E

(1,1)
8
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3 Quivers Arising fromWeighted Projective Lines

3.1 Weighted Projective Lines

Fix a positive integer t ≥ 2. A weighted projective line X = X(p, λ) over K is given
by a weight sequence p = (p1, . . . , pt ) of positive integers, and a parameter sequence
λ = (λ1 . . . , λt ) of pairwise distinct points of the projective line ¶1(K). Let L be the rank
one abelian group generated by �x1, . . . , �xt with the relations

p1 �x1 = p2 �x2 = · · · = pt �xt =: �c,
where the element �c is called the canonical element of L. Denote by

�ω := (t − 2)�c −
t∑

i=1

�xi ∈ L,

which is called the dualizing element of L. Each element �x ∈ L can be uniquely written
into the normal form

�x =
t∑

i=1

li �xi + l�c, where 0 ≤ li < pi and l ∈ Z.

Let �x = ∑t
i=1 li �xi + l�c and �y = ∑t

i=1 mi �xi + m�c ∈ L be in normal form, denote by �x ≤ �y
if li ≤ mi for i = 1, . . . , t and l ≤ m. This defines a partial order on L. It is known that
each �x ∈ L satisfies exactly one of the two possibilities:

0 ≤ �x or �x ≤ �c + �ω.

3.2 The Category cohX of Coherent Sheaves

Let
S := S(p, λ) = K[X1, · · · , Xt ]/I

be the quotient of the polynomial ring K[X1, · · · , Xt ] by the ideal I generated by fi =
X

pi

i − X
p2
2 + λiX

p1
1 for 3 ≤ i ≤ t . The algebra S is L-graded by setting degXi = �xi for

i = 1, . . . , t and we have the decomposition of S into K-subspace

S =
⊕
�x∈L

S�x .

The category cohX of coherent sheaves over X is defined to be the quotient category

cohX := mod LS/ mod L

0 S,

where mod LS is the category of finitely generated L-graded S-modules, while mod L

0 S

is the Serre subcategory of L-graded S-modules of finite length. For each sheaf E and
�x ∈ L, denote by E(�x) the grading shift of E with �x. The free module S gives the structure
sheafO, and each line bundle is given by the grading shiftO(�x) for a unique element �x ∈ L.
Moreover, we have

HomX(O(�x),O(�y)) = S�y−�x for any �x, �y ∈ L. (1)

In [15], Geigle and Lenzing proved that cohX is a connected hereditary abelian category
with tilting objects and has Serre duality of the form

DExt1
X
(E, F ) = HomX(F,E( �ω)) (2)
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for all E,F ∈ cohX, where D = HomK(−,K) is the standard duality. In particular, cohX
admits almost split sequences with the Auslander-Reiten translation τ given by the grading
shift with �ω. Recall that an object T ∈ cohX is a tilting object if Ext1

X
(T , T ) = 0 and for

X ∈ cohX with HomX(T ,X) = 0 = Ext1
X
(T ,X), we have that X = 0.

Denote by vectX the full subcategory of cohX consisting of vector bundles, i.e., torsion-
free sheaves, and by coh0 X the full subcategory consisting of sheaves of finite length, i.e.,
torsion sheaves. Each coherent sheaf is the direct sum of a vector bundle and a finite length
sheaf. Each vector bundle has a finite filtration by line bundles and there is no nonzero
morphism from coh0 X to vectX. We remark that cohX does not contain nonzero projective
objects. Denote by

pλ : P1(k) → N, pλ(μ) =
{

pi if μ = λi for some i,

1 else.

the weight function associated with X.

Proposition 3.1 [15, Proposition 2.5] The category coh0 X is an exact abelian, uniserial
subcategory of cohX which is stable under Auslander-Reiten translation. The components
of the Auslander-Reiten quiver of coh0 X form a family of pairwise orthogonal standard
tubes (Tμ)μ∈P1(k), where each tube Tμ has rank pλ(μ).

For λi with weight pi ≥ 2, there is exactly one simple object Si in Tλi
satisfy-

ing HomX(O, Si) = 0. Moreover, there exists a sequence of exceptional objects and
epimorphims

S
[pi−1]
i � S

[pi−2]
i � · · · � S

[1]
i = Si,

where S
[j ]
i has length j and top Si .

The following is well-known (cf. [15]).

Proposition 3.2 Both

Tcan(X) :=
⊕

0≤�x≤�c
O(�x) and Tsq(X) := O ⊕ O(�c) ⊕

t⊕
i=1

⎛
⎝pi−1⊕

k=1

S
[pi−k]
i

⎞
⎠

are tilting objects of cohX.

3.3 Quivers Associated with Tcan(X) and Tsq(X)

Denote by Db(cohX) the bounded derived category of cohX with suspension functor �.
Let τ : Db(cohX) → Db(cohX) be the Auslander-Reiten (AR) translation functor, which
restricts to the AR translation of cohX.

Definition 3.3 The cluster category CX associated with X is defined as the orbit category
Db(cohX)/〈τ−1 ◦�〉; it has the same objects asDb(cohX), morphism spaces are given by⊕

i∈Z HomDb(cohX)(X, (τ−1 ◦ �)iY ) with obvious composition.

The cluster category CX admits a canonical triangle structure such that the projection πX :
Db(cohX) → CX is a triangle functor (cf. [18]). The suspension functor � (resp. the AR
translation τ ) ofDb(cohX) induces the suspension functor (resp. the AR translation) of CX,
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Fig. 2 Quiver QTsq(X) with weight sequence (p1, . . . , pt )

which will be denoted by � (resp. τ ) as well. It was shown in [18] that CX is a 2-Calabi-Yau
triangulated category, i.e., for any X, Y ∈ CX, we have bifunctorially isomorphisms

HomCX(X,�2Y ) ∼= DHomCX(Y,X).

By the 2-Calabi-Yau property, we clearly have τ = � in CX.

Definition 3.4 An object T ∈ CX is a cluster-tilting object if Ext1CX(T , T ) = 0 and

Ext1CX(T ,X) = 0 implies that X ∈ add T , where add T is the full subcategory of CX
consisting of direct summands of direct sum of finite copies of T .

Since cohX has no nonzero projective objects, the composition of the embedding of
cohX into Db(cohX) with the projection functor πX yields a bijection between the set of
isomorphism classes of indecomposable objects of cohX and the set of isomorphism classes
of indecomposable objects of CX. We may identify the objects of cohX with the ones of CX
by the bijection.

Lemma 3.5 [4, Section 3] An object T ∈ cohX is a tilting object if and only if T is a
cluster-tilting object of CX.

In particular, Tcan(X) and Tsq(X) are basic cluster-tilting objects of CX. We denote by
QTcan(X) (resp. QTsq(X)) the Gabriel quiver of the endomorphism algebra EndCX(Tcan(X))

(resp. EndCX(Tsq(X))). The quivers have been listed in Figs. 2 and 3 respectively. We remark
that the relation of the corresponding algebra is quite complicated in general and we do not
need in the sequel.

Fig. 3 Quiver QTcan(X) with
weight sequence (p1, . . . , pt ),
where the label t − 2 means that
there are t − 2 arrows from O(�c)
to O
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The following is a direct consequence of [12, Theorem 1.2].

Proposition 3.6 Let T be a basic cluster-tilting object of CX and QT the Gabriel quiver of
the endomorphism algebra of T . Then

(1) QT is mutation-equivalent to QTsq(X). In particular, the quiver QTcan(X) is mutation-
equivalent to QTsq(X).

(2) QT admits a green-to-red sequence.

3.4 The Classification

Denote by p = lcm(p1, . . . , pt ) the least common multiple of p1, . . . , pt . The genus gX of
X is defined as

gX = 1 + 1

2

(
(t − 2)p −

t∑
i=1

p

pi

)
.

A weighted projective line of genus gX < 1(gX = 1, resp. gX > 1) is of domestic (tubular,
resp. wild) type. The domestic types are, up to permutation, (1, p) with p ≥ 1, (p, q) with
p, q ≥ 2, (2, 2, n) with n ≥ 2, (2, 3, 3), (2, 3, 4) and (2, 3, 5), whereas the tubular types
are, up to permutation, (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) and (2, 3, 6). It is worth pointing out
that a weighted projective line of domestic type is derived equivalent to a finite dimensional
hereditary algebra of tame type.

Proposition 3.7 LetX be a weighted projective line. The quiverQTsq(X) is of finite mutation
type if and only if X is of domestic type or of tubular type.

Proof The “if” part follows from Lemma 2.16. More precisely, if X is of domestic type,
then cohX is derived equivalent to a finite dimensional hereditary algebra of tame type. As
a consequence, the quiver QTsq(X) is mutation-equivalent to an acyclic quiver of extended
Dynkin type. If X is of tubular type, then the quiver QTsq(X) is as in Fig. 1.

For the “only if” part, it suffices to prove that QTsq(X) is not of finite mutation type
provided that X is of wild type. According to Lemma 2.17, it suffices to show that there is
a quiver Q in Mut(QTsq(X)) such that Q admits a full subquiver Qa,b,c for some 2 ≤ c ≤
b ≤ a and a ≥ 3.

Let X be a wild weighted projective line. According to the classification of weighted
projective lines, the quiver QTsq(X) admits one of the following quivers as a subquiver

(1) QTsq(X′) with weight sequence (2, 3, 7);
(2) QTsq(X′) with weight sequence (2, 4, 5);
(3) QTsq(X′) with weight sequence (3, 3, 4);
(4) QTsq(X′) with weight sequence (2, 2, 2, 3);
(5) QTsq(X′) with weight sequence (2, 2, 2, 2, 2).

Let p be one of the weight sequences in (1)–(5). According to Proposition 3.6, there is a
quiver Qp in Mut(QTsq(X)) such that Qp admits QTcan(X′) as a full subquiver, where X′ has
the weight sequence p. It suffices to show that there is a quiver in Mut(QTcan(X′)) which
admits a subquiver Qa,b,c for 2 ≤ c ≤ b ≤ a and 3 ≤ a. Let us label the vertices of
QTcan(X′) as in Fig. 3. For p = (2, 3, 7), let

i = (O,O(6�x3),O(�c),O(2�x3),O(�x3),O(2�x2),O(6�x3),O(5�x3),
O(�x2),O(2�x3),O(3�x3),O(2�x2),O(�x3),O(�c)).
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For p = (2, 4, 5), let

i = (O,O(�c),O(�x3),O(2�x3),O(3�x3),O(3�x2),
O(�c),O(3�x3),O(4�x3),O(�x2),O(2�x3)).

For p = (3, 3, 4), let i = (O,O(�x1),O(�x2),O(�x3),O(�c),O). For p = (2, 2, 2, 3), let
i = (O(�c),O). It is straightforward to check that Q2,2,3 is a subquiver of μi(QTcan(X′)) in
each case. Finally, for p = (2, 2, 2, 2, 2), denote by i = (O(�c),O). We find that Q2,3,5 is a
subquiver of μOμO(�c)(QTcan(X′)) in this case. This completes the proof.

4 The Existence and Non-existence of Maximal Green Sequence

This section is devoted to proving the main result of this note. We begin with the hyper-
bolic case. Recall that a weighted projective line X with weight sequence (p1, . . . , pt ) is of
hyperbolic type if p1 = p2 = · · · = pt = 2.

Let X be of hyperbolic type. We denote by Qt the quiver QTsq(X) in this case and
relabel the vertices of Qt as in Fig. 4. We will always identify Qt with a full sub-
quiver of Qt+1 such that the vertex t + 1 is the unique vertex which does not belong
to Qt .

Lemma 4.1 Let it be a maximal green sequence of Qt . Denote by • ⇒ ◦ the unique
multiple arrows in μit(Qt ). If it+1 := (it, t + 1, ◦, •) is a maximal green sequence of Qt+1,
then ◦ ⇒ t + 1 is the unique multiple arrows inμit+1(Qt+1) and it+2 := (it+1, t+2, t+1, ◦)

is a maximal green sequence of Qt+2.

Proof We apply μit to the quiver Qt+2. Since it is a sequence of vertices of Qt , μit(Qt )

is a full subquiver of μit(Qt+2). In particular, the vertex set of μit(Qt ) is a subset of the
vertex set of μit(Qt+2). Since μit(Qt ) ∼= Qt , we will denote the vertex set of μit(Qt ) by
{•, ◦, 1, . . . , t} and the vertex set of μit(Qt+2) by {•, ◦, 1, . . . , t, t + 1, t + 2}.

Fig. 4 Quiver Qt = QTsq(X) with
weight sequence (2, 2, . . . , 2)
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Let B̂ = (bij ) ∈ M2(t+4)(Z) be the skew-symmetric matrix associated to the framed
quiver Q̂t+2 and B̂◦ the submatrix of B̂ consisting of the first t + 4 columns. We index the
columns of B̂◦ by •, ◦, 1, . . . , t + 2.

Claim 1: The principal part of μit(B̂
◦) is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −2 1 · · · 1 1 1
2 0 −1 · · · −1 −1 −1

−1 1 0 · · · 0 0 0
...

...
...

−1 1 0 · · · 0 0 0
−1 1 0 · · · 0 0 0
−1 1 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Mt+4(Z).

The proof of this claim will be separated into three steps. Here we work on the quivers.

Step 1: The full subquiver of μit(Qt+2) consisting of vertices •, ◦, t + 1 and t + 2 has the
following form:

• ◦

t + 1

t + 2

Suppose that there are a arrows from vertex t + 1 to vertex • and b arrows from vertex
◦ to vertex t + 1 and denote by Q(a, b) the full subquiver consisting of vertices •, ◦ and
t + 1. Since there is a symmetry between t + 1 and t + 2 in Qt+2, it suffices to prove that
a = b = 1.

Denote by B =
⎡
⎣ 0 −2 a

2 0 −b

−a b 0

⎤
⎦ the associated skew-symmetric matrix of Q(a, b).

Denote by

c12 = −2 + sgn(a)[ab]+, c13 = a − sgn(c12)[bc12]+, c23 = −b + sgn(c12)[−c12c13]+.
By Fomin-Zelevinsky’s matrix mutation formula, we obtain

C := μ•(μ◦(μt+1(B))) =
⎡
⎣ 0 c12 c13

−c12 0 c23
−c13 −c23 0

⎤
⎦ .

Note that the associated skew-symmetric matrix of μ•(μ◦(μt+1(Q(a, b)))) is the matrix C.
By the assumption that it+1 is a maximal green sequence of Qt+1, we have μit+1(Qt+1) ∼=
Qt+1. In particular, the quiver μ•(μ◦(μt+1(Q(a, b)))) is a full subquiver of Qt+1 via the
isomorphism μit+1(Qt+1) ∼= Qt+1. The remaining proof is a discussion of the values of a

and b, from which we can deduce that a = 1 = b. We will denote by Q(C) the associated
quiver of the skew-symmetric matrix C.
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Case 1: a < 0, b > 0. A direct computation shows that c12 = −2, c13 = a and c23 = −b.
Consequently, the associate quiver Q(C) is not a full subquiver of Qt+1.

Case 2: a > 0, b < 0. We have c12 = −2, c13 = a − 2b ≥ 3, which implies that the
associated quiver Q(C) is not a full subquiver of Qt+1.

Case 3: a ≤ 0, b ≤ 0. We have c12 = −2 − ab ≤ −2. Since Q(C) is a full subquiver of
Qt+1, we have c12 = −2. Hence ab = 0, i.e., a = 0 or b = 0. In each case, one can show
that Q(C) is not a full subquiver of Qt+1.

Case 4: a ≥ 0, b ≥ 0. Similar to the Case 3, we obtain −2 ≤ c12 = −2 + ab ≤ 2. In
particular, 0 ≤ ab ≤ 4. A direct computation shows that a = 1 = b is the unique value such
that Q(C) is a full subquiver of Qt+1. This completes the proof for the statement in Step 1.

As a direct consequence of the statement of Step 1, the quiver Q(C) has the form as in
Fig. 5. Consequently, ◦ ⇒ t + 1 is the unique multiple arrows in μit+1(Qt+1).

Step 2: There re no arrows between vertex k ∈ {1, . . . , t} and vertex t + 1 in the quiver
μit (Qt+2).

Without loss of generality, we may assume that there are a arrows from vertex i to vertex
t + 1 and we consider the full subquiver consisting of vertices •, ◦, t + 1, i:

• ◦.

i

a

t + 1

By applying the mutation sequence t + 1, ◦, • to the above quiver, we obtain

• ◦

i

a

t + 1

t + 1 • ◦

i

a

a + 1

t + 1

◦ • ◦

i

a + 1

a

t + 1

• • ◦

i

=: Q(4) .

a

t + 1

By the assumption that it+1 is a maximal green sequence of Qt+1, we know that the
quiver Q(4) is a full subquiver of μit+1(Qt+1) and we conclude that a = 0. This completes
the proof of the statement in Step 2.

Step 3: There are no arrows between vertex k ∈ {1, . . . , t +1} and vertex t +2 in the quiver
μit (Qt+2).

Fig. 5 Quiver Q(C)
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Note that there is a symmetry between vertex t + 1 and t + 2 in the quiver Qt+2 and the
mutation sequence it does not involve the vertices t + 1 and t + 2. Then the statement of
Step 3 follows the statement of Step 2 directly.

Now Claim 1 is a direct consequence of the statements in Step 1, 2, 3.

Claim 2: Up to a permutation of the rows associated to •∗, ◦∗, 1∗, . . . , t∗, the coefficient
part Cit of μit(B̂

◦) has the following form:[−It+2 X

0 I2

]

where X ∈ M(t+2)×2(Z) with non-negative entries.

We fix a quiver pattern of the framed quiver Q̂t+2 of Qt+2 by assigning Q̂t+2 to the root
vertex t0 ∈ Tt+4. Each sequence i of vertices of Qt+2 induces a path of Tt+4 with starting
point t0. We denote by the ending point si and denote by Gi := Gsi (resp. Ci) the G-matrix
(resp. C-matrix) at si.

Since the sequence it does not involves the vertices t + 1 and t + 2. It follows that

Git =
[
A 0
Y I2

]
, where A ∈ Mt+2(Z) is invertible and Y ∈ M2×(t+2)(Z) with non negative

entries. By the tropical dualities between G-matrices and C-matrices (2.15), we have

Cit = G−T
it

=
[
A−T −A−T Y T

0 I2

]
.

Since it is a maximal green sequence, it follows that A−T is a permutation of −It+2. On
the other hand, the entries of −A−T Y T are non negative by the sign-coherence of c-vectors.
This finishes the proof of Claim 2.

According to Claims 1 and 2, up to permutation of indices, we may assume that

μit(B̂
◦) =

• ◦ 1 · · · t t + 1 t + 2⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 −2 1 · · · 1 1 1 •
2 0 −1 · · · −1 −1 −1 ◦

−1 1 0 · · · 0 0 0 1
...

...
...

...
−1 1 0 · · · 0 0 0 t

−1 1 0 · · · 0 0 0 t + 1
−1 1 0 · · · 0 0 0 t + 2
−1 0 0 · · · 0 a• a•
0 −1 0 · · · 0 a◦ a◦
0 0 −1 · · · 0 a1 a1

...
...

...
0 0 0 · · · −1 at at

0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1

where •, ◦, 1, · · · , t + 2 are (relabelled) vertices of μit(Qt+2), a•, a◦, a1, . . . , at are non
negative integers.

By Fomin-Zelevinsky’s mutation rule, we obtain μit+1(B̂
◦) as in Fig. 6. Note that it+1 =

(it, t + 1, ◦, •) is a maximal green sequence of Qt+1. It follows that the submatirx formed
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Fig. 6 The matrix μit+1 (B̂
◦)

by the first t + 3 row indices and the first t + 3 column indices of the coefficient part of
μit+1(B̂

◦) is a permutation of −It+1. Hence we have

a• = 1, a◦ = 1, a1 = 0, . . . , at = 0.

Finally, we apply the mutation sequence ◦, t + 1, t + 2 to the matrix μit+1(B̂
◦), we compute

the matrix μit+2(B̂
◦) as in Fig. 7. Note that the coefficient part of the matrix μit+2(B̂

◦) is a
permutation of −It+4. According to Remark 2.8, we conclude that it+2 is a maximal green
sequence of Qt+2. This completes the proof of the lemma.

Proposition 4.2 Assume that t ≥ 3. The quiver QTsq(X) admits a maximal green sequence.

Proof Note that the quiver QTsq(X) for any weight sequence is a triangular extension of
Qt by disjoint union of quivers of type A. Every acyclic quiver admits a maximal green
sequence (cf. [2]). According to Lemma 2.13, it suffices to show that the quiver Qt admits
a maximal green sequence for t ≥ 3. We label the vertices of Qt as in Fig. 4. It is straight-
forward to check that i3 = (�, 1, 2, �, 
, 3, 2, 1, 
, �) is a maximal green sequence for Q3
and 
 ⇒ 3 is the unique multiple arrows of μi3(Q3). Furthermore, i4 := (i3, 4, 3, 
) is a
maximal green sequence of Q4. Now the result follows from Lemma 4.1.

Theorem 4.3 Let X be a weighted projective line.

(1) There is a quiver Q′ inMut(QTcan(X)) such that Q′ admits a maximal green sequence.
(2) There is a quiver Q′′ in Mut(QTcan(X)) such that Q′′ does not admit a maximal green

sequence if and only if X is of wild type.

Proof If t = 2, then QTcan(X) is an acyclic quiver. Hence QTcan(X) admits a maximal green
sequce (cf. [2] for instance). Now assume that t ≥ 3. According to Proposition 3.6, we
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Fig. 7 The matrix μit+2 (B̂
◦)

know that QTsq(X) belongs to Mut(QTcan(X)). Consequently, the first statement follows from
Proposition 4.2 directly.

The “only if” part of (2) follows from the main result of [23]. Namely, let us assume that
X is not of wild type, then QTsq(X) is of finite mutation type by Proposition 3.7. According
to the main result of [23], each quiver in Mut(QTsq(X)) admits a maximal green sequence.
To prove the “if” part, we use Lemma 2.11. LetX be a weighted projective line of wild type.
Similar to the proof of the “only if” of Proposition 3.7, we conclude that there is a quiver Q

in Mut(QTcan(X)) such that Qa,b,c is a full subquiver of Q, where 2 ≤ c ≤ b ≤ a and 3 ≤ a.
Consequently, Q does not admit a maximal green sequence by Lemma 2.11.
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