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Abstract
Extending the main result of Lorscheid and Weist (2015), in the first part of this paper we
show that every quiver Grassmannian of an indecomposable representation of a quiver of
type has a decomposition into affine spaces. In the case of real root representations
of small defect, the non-empty cells are in one-to-one correspondence to certain, so called
non-contradictory, subsets of the vertex set of a fixed tree-shaped coefficient quiver. In the
second part, we use this characterization to determine the generating functions of the Euler
characteristics of the quiver Grassmannians (resp. -polynomials). Along these lines, we
obtain explicit formulae for all cluster variables of cluster algebras coming from quivers of
type .

Keywords Quiver Grassmannians Extended Dynkin quivers Cell decomposition
-polynomials.
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1 Introduction

Motivation A quiver Grassmannian is a projective variety attached to a fixed quiver repre-
sentation which parametrizes subrepresentations of a fixed dimension vector. In the last 25
years, interest in quiver Grassmannians has grown rapidly which also relies on the fact that
generating functions for the Euler characteristics of quiver Grassmannians of exceptional
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representations can be found as cluster variables [6]. While explicit formulae for the Euler
characteristics of quiver Grassmannians are out of reach in general since quiver Grassman-
nians can be arbitrarily complicated (see [25]), such formulae were established for quivers
of (extended) Dynkin type by Haupt in [19].

In this paper, which is the second part of a series of two papers, cf. [22], we exhibit
formulae for quivers of (extended) Dynkin type , which treats a second important class
of quiver Grassmannians. For more details on the relevance of these results, we refer the
reader to the introduction of [22].

Synopsis We briefly explain the strategy of our approach to caluculate the Euler character-
istic for type -quiver Grassmannians. Denoting the unique imaginary Schur root by , it
is shown in [22] that every quiver Grassmannian of a real root representation of dimension
with 1 has a cell decomposition into affine spaces. Moreover, it is also shown

that this is true for every indecomposable representation lying in an exceptional tube and
for every Schur representation of dimension .

Passing to dual representations, this result can be easily extended to all indecomposable
real root representations of dimension of small defect, i.e. 1. We use this result
to obtain the first main result of this paper, which says that this statement is in fact true for
every indecomposable representation of type .

The focus of this second part of our series of papers is on the generating functions of
the Euler characteristics of quiver Grassmannians (resp. -polynomials) of indecomposable
representations of , i.e. for a fixed representation of , we consider

0

Gr .

Thanks to the Caldero-Chapoton-formula, see [5] and [6], this also builds the bridge to
cluster algebras, which were introduced in [17] and whose theory developed rapidly within
the last ten years. We refer to the introduction of the first part [22] for more details.

Initially, we use the combinatorial description of the non-empty cells in terms of non-
contradictory subsets of a particular coefficient quiver in [22] to obtain explicit formulae
for the -polynomials of indecomposable representations of small defect. Surprisingly, it
turns out that the -polynomials of all preprojective (resp. preinjective) representations of
small defect only depend on the -polynomials of certain preprojective (resp. preinjective)
representations, whose dimension vector is smaller than the imaginary Schur root , and
the -polynomials of representations lying in homogeneous tubes. For the latter ones, we
also have explicit descriptions which then gives explicit formulae for all -polynomials.
For representations lying in exceptional tubes an analogous phenomenon arises.

Subsequently, the results of the first part can be used to obtain explicit formulae for the
-polynomials of all indecomposable representations of dimension of large defect, i.e.

2.
Using the Caldero-Chapoton-formula, these results can now be used to obtain an explicit

description of all cluster variables of mutation finite cluster algebras coming from quivers
of type .

Connections to previous results The formulae for -polynomials of representations of
large defect can also be obtained by applying the multiplication formula of [7].

The formulae we obtain for representations of small defect differ from those present in
the literature as they state relations between -polynomials from different components of
the Auslander-Reiten quiver. Moreover, it is possible to state an explicit formula for the
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-polynomial of any representation in terms of -polynomials of indecomposables whose
dimension is smaller than . Those formulae which are known to us and which are present in
the literature are mostly of recursive nature and between -polynomials of representations
from one component of the Auslander-Reiten quiver, see [15, 20]. But clearly, it would be
interesting to investigate if there is a direct way to obtain our formulae from the present
recursive formulae.

As far as mutation finite cluster algebras are concerned, the approach of calculating the
-polynomials in order to determine cluster variables was mainly applied to cluster algebras

of type and only partially for type , see [9, 10, 15, 19] and [16].
Finally, we note that cluster algebras of type also arise from surfaces. This yields

a combinatorial description of the cluster variables in terms of perfect matchings of edge-
weighted graphs coming from triangulations of the corresponding surface, see [23]. Thus,
in theory, the Euler characteristics could be determined using this approach, but this has
not been carried out yet in the case of quivers of type . In particular, it is not clear if
our explicit formulae for the -polynomials can be obtained using this description. From
the representation-theoretic point of view, this approach would also be unsatisfactory as it
does not use the geometry of the quiver Grassmannians themselves. We should point out
that it is not clear at all how these two combinatorial descriptions fit together. Actually, this
would be very interesting to investigate. However, since the shape of the formulae, which
are obtained with our approach, are indeed easy, there is hope for a generalization to other
mutation finite cluster algebras.

Schubert Decomposition For Schubert decompositions of quiver Grassmannians of inde-
composable real root representations of small defect of a quiver of type , which are in
fact cell decompositions into affine spaces, we consider the coefficient quivers listed in
[22, Appendix B]. Recall that every subset 0 of cardinality defines a possibly
empty Schubert cell Gr induced by the Schubert decompositions of the prod-
uct of usual Grassmannians

0
Gr . The first aim of this paper is to generalize

Theorem 4.4 of [22] to all indecomposable representations of , i.e.:

Theorem A Let be an indecomposable representation of . Then there exists a coef-
ficient quiver of such that the Schubert decomposition Gr is a
decomposition into affine spaces and empty cells. Here runs through all subsets of 0
of cardinality .

The generalization of Theorem 4.4 of [22] to representations of large defect and to repre-
sentations of the homogeneous tubes is subject of Section 2. Since the quiver Grassmannians
of representations lying in the homogeneous tubes behave similar to those of large defect,
throughout the paper, we exclude them when referring to representations of small defect.
While the construction of the cell decompositions of quiver Grassmannians of representa-
tions of small defect is highly combinatorial, in the cases of large defect the main idea is to
consider exact sequences which are close to being almost split. It turns out that every inde-
composable representation of large defect can be written as the middle term of such a
sequence between indecomposables and of small defect. In particular, there exists a
coefficient quiver of with vertex set 0 0 where and are those consid-
ered in [22]. Generalizations of results of [5] can be used to show that this setup preserves
cell decompositions in such a way that every pair of subsets of 0 0 deter-
mines a (possibly empty) cell of a certain quiver Grassmannian of the middle term
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which turns out to be an affine space. Since all cells can be obtained using this construc-
tion, this already proves that every quiver Grassmannian of indecomposables of large defect
has a cell decomposition into affine spaces, see Theorem 2.17 and also Section 2.4 for the
notion of non-contradictory subsets:

Theorem B Let be a real root representation of defect 2. Then there exist indecompos-
able representations and of defect 1 and respective coefficient quivers and
such that the (induced) Schubert decomposition

Gr

is a decomposition into affine spaces and empty cells. Here runs through all non-
contradictory subsets of 0 0 such that the cardinalities of and sum up to
.

There is also a very explicit description in terms of the Auslander-Reiten quiver of those
pairs corresponding to an empty cell. As shown in [5], in the case of almost split sequences
there is only one such pair, consisting of the cokernel and the trivial subrepresentation.

With similar methods we can also show that every quiver Grassmannian of an indecom-
posable representation lying in one of the homogeneous tubes has a cell decomposition into
affine spaces, see Theorem 2.24.

In this paper and also in [22] we consider preprojective representations rather than prein-
jective ones. In Section 2.9, we prove that passing to the opposite quiver and to dual
representations Schubert decompositions are preserved. Thus all results can be transferred
to the case of preinjective representations in the natural way.

Theorems A and B have strong implications on the geometry of Gr , see [21, Section
6]. In particular, we can compute the Euler characteristic of Gr as

Gr # 0 of type such that is not empty .

If, in addition, Gr is smooth, the closures of the non-empty Schubert cells form an addi-
tive basis for the singular cohomology ring of Gr and it follows that the cohomology
is concentrated in even degree.

The construction of the cell decompositions in terms of those of representations of small
defect yields a description of the -polynomial of the indecomposables of large defect, see
Theorem 2.19. As already mentioned, in terms of cluster algebras this result translates to
the well-known multiplication formula of [7]. As far as cluster variables are concerned, we
are thus left with the determination of -polynomials of indecomposables of small defect.
The investigation of -polynomials and the derivation of explicit formulae is the main topic
of Sections 3, 4 and 5.

Calculation of F -poynomials As already mentioned, the -polynomials of representations
of the homogeneous tubes play an important role in the formulae for -polynomials of
arbitrary indecomposable representations. They only depend on the dimension vector and
are independent of the chosen tube, we denote them by throughout the paper. This is
straightforward with the methods of this paper, but also known for general affine quivers,
see [14, Lemma 5.3]. With the results obtained there, also the -polynomials of general
representations (which means that they decompose into certain Schurian representations) of
non-Schurian roots, can be determined recursively.
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Considering the cell decompositions into affine spaces, we first obtain a recursive for-
mula for which can be used to obtain an explicit formula in terms of in Corollary
5.13:

1

2
1 1 where

1

2
2 4

2
.

Besides the combinatorial description of the non-empty cells, there are two other main
ingredients which are used to obtain explicit, i.e. non-recursive, formulae for the -
polynomials of indecomposable representations. The first one is studied in Section 3. The
main idea is to reduce the determination of the -polynomials to smaller quivers, i.e. for

6. Here we use that most linear maps corresponding to indecomposable representations
of for large are isomorphisms. In combination with the reflection functor introduced
in [3], it turns out that this is a powerful tool. In Section 4, we review the reflection functor
and its consequences for quiver Grassmannians, which were also studied in [31] and [13].

If is in subspace orientation, we are left with counting admissible subsets as defined
in Section 5.7. Since the coefficient quivers under consideration follow a certain recursion
and since the description of these subsets is very easy (and again easier for 6), we get
recursive formulae for the -polynomials. It turns out that these recursive formulae can be
used to obtain explicit formulae for all -polynomials of real root representations of small
defect in Section 5. All these explicit formulae are in terms of the -polynomials from
above and of certain indecomposable representations whose dimension is smaller than .
Since there also exists an explicit formula for in terms of , we are left with the easy
task of calculating -polynomials of representations of dimension . While these -
polynomials do depend on the orientation of , the upshot is that the formulae for the
remaining -polynomials turn out to be independent of the orientation.

In order to state the main result of the second part, we need some notation. If is a real
root, we denote by the unique indecomposable representation of this dimension and by

the corresponding -polynomial. In a tube of rank there exist chains of irreducible
morphisms

0 1 0 2 0 1 1 0 1 1

where the dim are real roots and the indecomposable representations 0 of
dimension are uniquely determined by this chain. Furthermore, for every real root in
the tube of rank there exists an exceptional root 0 such that 0 . Under
the convention that 0 if 0 has at least one negative component and setting

0 , we obtain the second main result of this paper, see Theorems 2.19, 5.15, 5.19
and 5.26:

Theorem C (i) For the representations , where 0 1 (lying in the
exceptional tube of rank ) and 1, we have

0
1 0

1 0 1 0 1 .

(ii) Let be preprojective of defect 1 such that dim . If is
injective, we have

1 .

If is not injective, we have
1

1 1 .

Here is the Auslander-Reiten-translation.
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(iii) Let be an indecomposable representation of defect 2 which is not projective. Then
there exist indecomposable representations and of defect 1 such that

dim 1
1 .

(iv) Passing to the dual, we obtain analogous formulae for indecomposable representa-
tions of positive defect.

Note added in proof Meanwhile Cerulli Irelli, Esposito, Franzen and Reineke have
extended in [11] the results of this paper and established Schubert decompositions of quiver
Grassmannians for all tame quivers. The methods are similar to those in this second part of
our series of two papers; in particular, they manage to avoid the arguments from our first
part [22] completely.

2 Schubert Decomposition of Quiver Grassmannians

One main result of this section is that every quiver Grassmannian of an indecomposable
representation of a quiver of type of large defect has a cell decomposition into affine
spaces, see Section 2.7. With similar methods, we can show that this is also the case for
indecomposable representations of the homogeneous tubes, see Section 2.8. This can be
used later to obtain formulae for the -polynomials.

In order to prove this, we first introduce notation in Sections 2.1 and 2.3. In Section 2.2,
we recall some results from the theory of cluster algebras which are linked to our consider-
ations. In Sections 2.5 and 2.6, we state lemmas that are important for the proof of the main
results.

Finally, we show in Section 2.9 how the results can be used to pass from representa-
tions of negative defect to representations of positive defect (resp. from preprojectives to
preinjectives).

2.1 Quiver Representations

We fix as our ground field. This suffices for the application of the results to cluster
algebras. Actually, all results concerning the representation theory of quivers and quiver
Grassmannians of representations remain true when passing to any algebraically closed field
.
We shortly review some basics on quiver representations, see [1] and [12] for more

details. Let 0 1 be a quiver with vertices 0 and arrows 1 denoted by
or for 0. We assume that has no oriented cycles. In most parts of this
paper, we consider quivers of extended Dynkin type , i.e. the underlying graph of is

0 1 5 4
0 5

A vertex 0 is called sink if there does not exist an arrow 1. A vertex

0 is called source if there does not exist an arrow 1. For an arrow
, let and . We denote by the number of arrows from to

. For a vertex 0, let

0 1 1
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be the set of neighbors of . Consider the abelian group 0 0
and its monoid

of dimension vectors 0. A finite-dimensional complex representation of is given
by a tuple

0 1

of finite-dimensional complex vector spaces and -linear maps between them.
Let Rep denote the category of finite-dimensional representations of . The dimen-

sion vector dim 0 of is defined by dim
0
dim . Let

denote the affine space of representations of dimension . Moreover, we denote by op

the quiver obtained from when turning around all arrows. Taking dual vector spaces and
adjoint linear maps for each arrow, we obtain the dual representation of op for every
representation of .

On 0 we have a non-symmetric bilinear form, the Euler form, which is defined by

0 1

for 0. Recall that for two representations , of we have

dim dim dim Hom dim Ext (2.1)

and Ext 0 for 2. For two representation and , define
dimHom . As usual let Rep Hom Ext 0 .

A dimension vector is called a root if there exists an indecomposable representation of
this dimension. It is called Schur root if there exists a representation with trivial endomor-
phism ring with this root as dimension vector. A representation with dim is called
exceptional if we have Ext 0. In the case of real roots, i.e. if 1, there
only exists one indecomposable representation up to isomorphism having as dimension
vector. We denote this representation by . We denote by the simple representation
corresponding to the vertex and by its dimension vector.

If is of extended Dynkin type, we denote by the unique imaginary Schur root which
is actually independent of the orientation. Following [12, Section 7], the defect of a repre-
sentation is defined as dim . Clearly the defect is additive on dimension
vectors. For indecomposables of quivers of extended Dynkin type , we have 2.
We say that an indecomposable representation has small defect if 1 and
large defect if 2. As already mentioned, we exclude the representations from the
homogeneous tubes when referring to representations of small defect.

2.2 Quiver Grassmannians, Cluster Algebras and F-polynomials

For a representation with dim , the quiver Grassmannian Gr is the set
of subrepresentations of with dim . It is a closed subvariety of the product

0
Gr of the usual Grassmannians Gr .

Let 1
0 be the -algebra of Laurent polynomials in the variables for

0. Denoting by the Euler characteristic in singular cohomology, as in [5], we set

0

Gr
0

.

With we can associate a cluster algebra A , which were introduced by [17], and
its cluster category C introduced in [4]. We cite [6, Theorem 4]:
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Theorem 2.1 The correspondence provides a bijection between the set of
indecomposable objects of C without self-extensions and the set of cluster-variables of
A .

Actually, this bijection restricts to a bijection between indecomposable exceptional repre-
sentations of and cluster variables ofA excluding the initial variables. In [7, Theorem
2], which generalizes [5, Proposition 3.10], the following multiplication formula is shown:

Theorem 2.2 Let and be indecomposable objects of C such that
dimExtC 1. Then we have

where and are up to isomorphism the unique middle terms of the non-split triangles

.

Note that we have

dimExtC dimExt dimExt

see [4]. Moreover, if Ext , the middle term is the one induced by the non-
splitting sequence in the module category. But since Ext 0 in this case, using
the terminology of [6], the middle term is just an object of C . But it actually has a
corresponding representation in the module category which can be determined explicitly.

In this paper, we mostly consider the generating function of the Euler characteristics
of the corresponding quiver Grassmannians of , also called -polynomial, i.e.

0

Gr

where
0

for 0, see also [13]. It is closely related to the cluster
variables . Indeed, setting

0

and considering the variable transformation with

0

it is straightforward to check that we have

.

2.3 Coefficient Quivers and Schubert Decomposition

We introduce coefficient quivers and tree modules following the presentation given in [26].
Let be a quiver, 0 a dimension vector and with dim a representation
of . A basis of is a subset B of

0
such that

B B
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is a basis of for all vertices 0. For every arrow , we may write as a
-matrix B with coefficients in such that the rows and columns are indexed

by B and B respectively. If

B

with and B , we obviously have B .

Definition 2.3 The coefficient quiver B of a representation with a fixed basis B
has vertex set B and arrows between vertices are defined by the condition: if B

0, there exists an arrow . If B is ordered linearly, we say that B
is an ordered coefficient quiver.

A representation is called a tree module if there exists a basis B for such that the
corresponding coefficient quiver is a tree.

Note that we obtain a natural map B . In order to shorten notation, we
sometimes denote an arrow by where is the corresponding arrow of the
original quiver.

We shortly recall the notion of Schubert decompositions of quiver Grassmannians,
see [21]. Let be a representation with ordered basis B and corresponding coefficient
quiver . By , where is an arrow in 1 and 1 and

1 , we denote the corresponding matrix coefficient corresponding to the linear map
. The induced Schubert decomposition of the usual Grassmannian induces a Schubert

decomposition of the corresponding quiver Grassmannians

Gr
B

of type

where the affine varieties are obtained as subset of the matrix space MatB B with
variables for B. Let B be the vanishing set of the polynomials

1 1

for all arrows in 1 and all vertices 1 and 1 . For a subset
of B, a matrix MatB B is in -normal form, if it satisfies

(NF1) 1 for all ,
(NF2) 0 for all with ,
(NF3) 0 for all B and with ,
(NF4) 0 for all B and B , and
(NF5) 0 for all B and with .

Now the Schubert cell is the intersection of with the solution set of (NF1)-
(NF5). An arrow of is extremal if for all arrows 1 either
or . A subset of B 0 is extremal successor closed if for all extremal arrows

1, implies .
We can restrict to the reduced Schubert system if is extremal successor closed which

is a necessary condition for the Schubert cell for being not empty, see [22, Section 2.3].
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This means that we find the Schubert cell as vanishing set of the equations where
and :

1 1
and

1

where 0 if does not contain the arrow . These equations are trivial if

such that there is no arrow . Note that we have 0 1 if is a tree module.

2.4 Non-contradictory Subsets

As it is used in this section and in Section 5, we recall the notion of non-contradictory
subsets for those ordered bases of preprojective representations of defect 1 which are
described in [22, Appendix B]. In this case, it is possible to simplify the definition; for the
general definition we refer to [22, Section 4].

Up to a permutation of the underlying graph , a preprojective representation of
defect 1 has an ordered basis B such that the associated coefficient quiver has the
following shape.

2
3 4 5 1 1

2
2 1 2 2 1 5 4 3

2 2
2 3 2 4 2 5

0 5

0 5

0

Note that, depending on the orientation of the arrows , , and , we find one of the
following four situations at the “ramifications” of where stands for or and stands
for or and where we label the vertices with its residue class module for simplicity.

A subset of B 0 is called non-contradictory if is extremal successor closed and if
the following conditions are satisfied, depending on the orientations of and in the above
illustrations.

0 2 3 4 2 3 4

0 2 3 4 3 4

0 1 2 4 2 4

0 1 2 4 4 .

Note that a non-contradictory subset is in particular extremal successor closed as
defined in Section 2.3 and Definition 5.7.
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Remark 2.4 This notion of non-contradictory subsets transfers to the coefficient quivers of
the representations lying in the exceptional tube of rank 2 and, moreover, to the case of
the tubes of rank two for 4, see [22, Section 4.3]. This means that the subsets need to be
successor closed and satisfy the same condition at the ramification subgraphs. In particular,
this notion suffices to determine the -polynomials of all representations of quivers of .

Remark 2.5 The more general definition of non-contradictory -states in [22] is based
on the internal logic of Schubert systems. While the above conditions on are always
satisfied if is non-contradictory, the reverse conclusion does not hold in general, but it
holds in special cases as the one considered above.

2.5 Short Exact Sequences and Quiver Grassmannians

As already mentioned, the first aim of this paper is to prove that every quiver Grassmannian
of an indecomposable representation of large defect has a cell decomposition into affine
spaces. To do so, we write representations of large defect as the middle term of certain
short exact sequences between indecomposables of small defect. Then we can combine
[22, Theorem 4.4] with the following observations relating the quiver Grassmannians of the
middle term to those of the outer terms. In general, given two representations , and an
exact sequence

0 0

following [5, Section 3], this yields a map

Gr Gr Gr 1

whose restrictions to 1 Gr Gr are morphisms of algebraic varieties for
every and with . Note that we have 1 and

.
The following is shown in the course of the proof of [5, Lemma 3.11] in the case of

almost split sequences. Actually, the proof for almost split sequences applies to arbitrary
short exact sequences:

Lemma 2.6 If 1 is not empty, we have 1 .

The next step is to restrict the map to the preimage of products of Schubert cells

1 2
in

1 2
. This gives a morphism of affine varieties which we denote by 1 2 .

If has ordered basis B1 and has ordered basis B2, the middle term has ordered
basis B B1 B2 where we can assume that for all B1 and B2. Thus the
non-vanishing variables corresponding to the Schubert cell

1 2
can be subdivided

into three disjoint subsets V for 1 2 3 where V1 if B1, V2 if
B2 and V3 if B1 B2.

From now on we assume that 1, 2 and 1 2 are extremal successor closed which sim-
plifies the following considerations. Actually, this is no restriction as we already mentioned
that this is a necessary condition to the Schubert cell to be not empty.

Also the set of non-trivial reduced equations can be subdivided, i.e. we have
E E1 E2 E3 with E1 if B1, E2 if B2
and E3 if B2 B1. Note that the set of equations E1 defines

1

and the set E2 defines
2
. Moreover, all variables appearing in E are in V for 1 2.
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Finally, it is straightforward to see that, for fixed variables in V for 1 2, the equations
E3 are linear in the variables from V3. Indeed, we have with B2

and B1 if is non-trivial. The term can only be non-trivial if
and . Thus V3 would imply B2 and B1 which means
. But there is no arrow from a basis element of B1 to a basis element B2 in

the coefficient quiver of . Thus in terms of the variables V the morphism 1 2 is given
by setting the variables V3 to zero.

Proposition 2.7 Fix B for 1 2 and let 1 2. Assume that the Schubert
cells

1
and

2
are affine spaces and let dim

1
dim

2
. Consider

1 2 1 2
.

If the fibres of 1 2 are affine spaces of constant dimension for some 0, we have
.

Proof As a first step, we observe that the fibres 1
1 2

and are reduced schemes for

the following reason. The Schubert cell is a subspace of a large matrix space MatB B

and equals the intersection of the affine space
1 2

MatB1 B2 with the hypersurfaces

defined by the equations in E3. Since these equations are linear in the variables
in V3, it is clear that each fibre of 1 2 is an affine space and henceforth reduced.

The equations in E3 are also linear in the variables in V1 V2, which means
that the fibres of 1 2 can be seen as the solutions to a system of affine linear equations
whose coefficients are linear in the variables of V1 V2. Therefore there is an open subset
in

1 2
such that at each point of the rank of this system of affine linear equations

is maximal.
Thanks to the Gauss algorithm, the solution space at a point in can be parametrized

by a bijective affine linear map from an affine space that is rational in the coefficients of
the affine linear equations , i.e. those variables contained in V1 V2. As a rational
function on

1 2
, it is actually defined on an open subset and it specializes to a

parametrization of the solution space for all points in a non-empty open subset of .
This shows that the restriction of 1 2 to the inverse image of is a trivial vector

bundle over and therefore reduced. Since is a closed subscheme of the ambient affine
space of all variables in V1 V2 V3, it must contain the reduced subscheme whose support
is the closure of 1

1 2
. By the semi-continuity of the fibre dimension and since all

fibres of 1 2 have the same dimension, we conclude that is equal to this reduced
subscheme.

The map 1 2 induces homomorphisms on the tangent spaces for each which
we denote by 1 2 . As the fibres of 1 2 are affine spaces of dimension , we
have ker 1 2 for every , see [18, Section II.8].

A priori, it is not clear yet that is irreducible. But contains an irreducible com-

ponent of dimension dim dim such that 1 2 is dense in
1 2

.
Therefore we can apply [29, Theorem 25.3.1], which asserts that there exists a dense open
subset such that 1 2 is smooth of dimension dim dim

1 2
. Thus

there exists a dense open subset such that is surjective for all . This yields

dim dim dim
1 2 1 2
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for all which means that is contained in the smooth locus of . Thus for an
arbitrary , we have

dim dim dim im dim
1 2 1 2

dim .

This shows that is smooth and that is surjective for all . Since all fibres of

1 2 are affine spaces of dimension , this implies that every fibre is contained in . We
conclude that .

Thus 1 2 is a morphism between smooth complex varieties whose fibres are affine
spaces of constant dimension. As the induced maps on the tangent spaces are all surjective,
it follows that 1 2 is smooth of relative dimension , see [18, Proposition III.10.4]. Thus
we can cover

1 2
with open affine such that the following diagrams commute

1
1 2

1 2

for all , where is étale. Since we know that the fibres of are affine spaces of dimension
, each fibre of is a point. By the inverse function theorem for étale morphisms, is an

étale locally trivial fibre bundle whose fibre is a point. In other words, is an étale vector
bundle of rank 0, and therefore by Serre’s theorem (see [27, Section 4]) a Zariski vector
bundle of rank 0. We conclude that is an isomorphism.

This shows that 1 2 is a locally trivial -bundle. A result of [2] shows that every
affine bundle over an affine space is already a vector bundle. Thus our claim follows by the
Quillen-Suslin-Theorem [24, 28] as every vector bundle over an affine space is trivial.

2.6 Quiver Grassmannians of Exceptional Regular Representations

For the remaining part of this section, is assumed to be of extended Dynkin type . In
order to prove the main result of Section 2, we need some properties concerning the quiver
Grassmannians of exceptional regular representations. More detailed, we need that the cell
decomposition of [22, Theorem 4.4] is compatible with the decomposition of subrepresen-
tations into direct sums of regular and preprojective representations. To do so, we consider
the coefficient quivers of the exceptional regular representations lying in the tubes of rank
2 and 2 respectively treated in [22, Appendix B].

Proposition 2.8 Let be an exceptional regular representation of and let be

a Schubert cell. If there exists such that with regular and

preprojective, we have with is preprojective for all .

Proof First recall the shape of the exceptional tubes listed in [22, Appendix B]. If lies in
a tube of rank 2, the statement is clearly true because has no regular subrepresentation.
In the tube of rank 2 there exist 2 chains of irreducible inclusions

1 2 3
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of exceptional regular representations. Thus we have for some 1 3

and 1 2 . We proceed by induction on . If 1, we have that has only
preprojective subrepresentations and the claim follows.

If is the dimension vector of a regular subrepresentation of , we have that
dim with . Moreover, is an exceptional root and thus by [8, Corollary 4] we have

dimGr dim dimHom 1 0.

In particular, there exists a unique subset of the vertex set of the coefficient quiver of
corresponding to Gr . Since there exists a short exact sequence

0 0

with , where 0 0, the construction of the coefficient quivers in [22, Appendix

B] shows that the coefficient quiver of is obtained by glueing the one of to the one

of by an outgoing arrow.

Now assume that is a subrepresentation of such that is preprojective.

Since Ext 0, we obtain a commutative diagram

0 0

0 0

In particular, lies in a cell defined by a subset of the vertex set of the coefficient

quiver of . By induction hypothesis, we have that all representations in the cell of
decompose into preprojective representations.
Now we have 1

dim dim
0 which shows that the lifted cell

1
dim dim

has the same dimension. Thus every representation in the cell of

decomposes into a direct sum of and a preprojective representation.

2.7 Representations of Large Defect

The main aim of this section is to show that the Schubert decomposition of indecomposable
representations of small defect obtained in [22, Theorem 4.4] extends to a Schubert decom-
position of indecomposable representations of large defect. In Section 2.8, it turns out that
similar methods can be applied to show that every quiver Grassmannian coming along with
a representation lying in one of the homogeneous tubes has a cell decomposition into affine
spaces.

As already mentioned, we can restrict to the case of preprojective roots. Recall that the
preprojectives of defect 1 are precisely the Auslander-Reiten translates of the projectives
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corresponding to the outer vertices, i.e. of and . The preprojectives of
defect 2 are Auslander-Reiten translates of projectives corresponding to the inner vertices,
i.e. of 0 4 .

Remark 2.9 (i) An indecomposable preprojective representation has no proper fac-
tor such that . This follows because the defect is additive on exact
sequences and preprojective representations have only preprojective subrepresenta-
tions.

(ii) If is preprojective with 1 and is preprojective, then every non-zero
morphism is injective. Indeed, since Im is a subrepresentation of ,
we have Im 1 . Since Im is a factor of , the first part yields
Im .

(iii) If and are preprojective and there is no path from to in the Auslander-
Reiten quiver we have Hom Ext 0. The first statement
is clear, the second follows by the Auslander-Reiten formula dimExt
dimHom keeping in mind that every morphism between and is a finite
decomposition of irreducible ones. Indeed, there is a path from to and thus no
path from to by assumption.

For in subspace orientation, there exist almost split sequences 0 1

0 0 and 0 1
4 0 for

, and 1. The initial part of the preprojective component of the
Auslander-Reiten quiver looks as follows

1

0
1

0
1 2

0

1
1

1
2

1

2
1

2

2
7

6
1

6
2

6

5
1

5

4
1

4

where we use the abbreviations . If is even, the remaining part of the
preprojective component is obtained from this and looks for every orientation as follows:
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0

2

6

4

where the usual arrows indicate monomorphisms and the are Auslander-Reiten translates
of . In subspace orientation we have

0
3

2 0 2
1

2 2 6
2

6 4
1

4.

If is odd, the remaining part of the preprojective component is obtained from this and
looks for every orientation as follows:

0

2

5

3

where the usual arrows indicate monomorphisms and the are Auslander-Reiten translates
of . In subspace orientation we have

0
3

2 0 2
1

2 2 5
2

5 3
1

3 .

If is preprojective with 1, we denote by its neighbor in the Auslander-
Reiten quiver satisfying 1, which means by definition that they are Auslander-
Reiten translates of and (resp. and ). Note that, for 5, this means that
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they are direct summands of the middle term of the same Auslander-Reiten sequence. In
subspace orientation, for we have

and

and the corresponding relations when permuting and respectively.

For a representation with 1, we define 1 and . Then
we get a chain of irreducible inclusions

2 .

Let C denote the full subcategory of Rep which contains the objects for
1 and which is closed under exact sequences and images.

Lemma 2.10 The following holds:

(i) The category C is equivalent to the full subcategory of Rep whose objects are
direct sums of representations of the tube of rank 2.

(ii) For 1 3 and 0, we have

dimExt 2 1 dimHom 2 .

Proof For two representations Rep , we have Hom Hom
1 1 and Ext Ext 1 1 by the Auslander-Reiten formulae,

see [1, Theorem IV.2.13]. Thus we can assume that and the first part of the lemma
is straightforward.

For the second part, one observes that dim 2 dim for 0. Since we
have Ext 0 or Hom 0 for two preprojective representations and since

1, the claim follows by formula Eq. 2.1.

Given two representations , and an exact sequence

0 0

we consider the map

Gr Gr Gr 1

defined in Section 2.5. If non-empty, the dimension of a fibre depends on the direct sum
decomposition of the subrepresentations of and . In general, it is already difficult to
say in which cases the fibre is empty. But in the case of representations of large defect there
are sequences which are close to being almost split so that the fibres can be determined in
any case. This extends the following result, see [5, Lemma 3.11] and [8, Proposition 2].

Theorem 2.11 Let be a representation of and be its Auslander-Reiten translate.
Consider the almost split sequence

0 0.

Then we have

1 if 0

otherwise.
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In particular, we have

Gr
Gr Gr if dim

Gr Gr 1 if dim .

In general, a representation of large defect cannot be written as the middle term of an
almost split sequence. But we can modify the preceding statement to make it applicable for
our purposes. If is indecomposable preprojective of defect 2, which is not projective, in
the Auslander-Reiten quiver exists the following subquiver

1

1

Here and are two indecomposable preprojective representations of of defect
1. More precisely, we have:

Lemma 2.12 Every indecomposable preprojective representation with 2which
is not projective is obtained as the middle term of an exact sequence

0 0

such that with 3, Ext and Hom 0.

Proof The representation is the th Auslander-Reiten translate of a projective represen-
tation corresponding to an inner vertex where 1. As is not projective, it has
a subrepresentation which is the th Auslander-Reiten translate of a projective repre-
sentation of defect 1 where 1 . This can be seen when considering the
preprojective component of the Auslander-Reiten quiver. By applying Auslander-Reiten
translations, we can assume that . The claim follows by Lemma 2.10 together with
the Auslander-Reiten-formulae.

Note that, if is projective, it might happen that such a triangle does not exist. This is
for instance the case if is in subspace orientation. But as our quiver is acyclic, there is at
most one path between each two vertices of the quiver which means that for the dimension
vectors of projective representations, we have 0 1 for all vertices . In turn, the
quiver Grassmannians trivially have cell decompositions.

Actually, we can assume that with 2 1. This is because the two lower
rows of the Auslander-Reiten quiver behave dual to the upper ones. In particular, if 4 5
we can assume that 1 and, moreover, we are in the situation of Theorem 2.11.

From now on, we assume that is not projective. In the following, we refer to the
indecomposable representations lying properly in the above triangle or corresponding to
a point on the path from to as -inner representation. The remaining
ones, i.e. those which are outside the triangle or on the path from to , as -outer
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representations. We drop if it is clear which representations are considered. Finally,
if a -inner (resp. -outer) representation is also a subrepresentation of , we
call it inner (resp. outer) subrepresentation of if we fixed a triangle. In order to investigate
such a triangle, the Auslander-Reiten formulae assure that we can mostly without loss of
generality assume that and .

In order to prove the following essential lemma, we use the notation of Lemma 2.12 and
use some well-known facts concerning the Auslander-Reiten theory of extended Dynkin
quivers, see for instance [1, Sections IV, VIII.2]:

Lemma 2.13 The following holds:

(i) For every inner representation , we have Hom Hom 0.
(ii) The representation has no subrepresentation which is isomorphic to a representa-

tion which lies on the border of the triangle.
(iii) If is an outer representation, an injective morphism Hom with 0

factors through .
(iv) The inner subrepresentations of are precisely the representations for

1 . In particular, has no inner subrepresentation of defect 2.
(v) If is a non-zero subrepresentation of and is any subrepresentation of we

have Ext 0.

Proof The first part follows because there is no path from an inner representation to
and respectively, see also part three of Remark 2.9.

We get (ii) as follows: for each representation which lies on the border, there
exists an injection . Now we can use that Hom 0.

To see (iii), one first observes that every such mono factors through an outer represen-
tation which lies on the path from to and we thus have . Since
Hom 0, we have and thus 2 . As we get an exact sequence
with the same properties as those for and , which has as the middle term and as
the kernel, it is straightforward that which yields Hom Hom .
Thus if an injection factors through it already factors through .

Every representation of defect 2 which lies in the triangle has as a subrepresentation.
As Hom 0, the representation has no such subrepresentations. Moreover, there
exists the following chain of inner representations

2 .

Apart from these representations the only representations of defect 1 in the triangle are of
the form for 1 . But since , they are no subrepresentations of .
Thus we get (iv).

Since is preprojective, is also preprojective. By the first part of Remark 2.9, it
follows that has no preprojective direct summand. Thus we get (v).

We use this lemma to prove the following proposition classifying subrepresentations of
.

Proposition 2.14 The following holds:

(i) If 0 , the corresponding injection either factors through or
where is an inner subrepresentation of .
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(ii) If such that is an inner subrepresentation, we have that is
preprojective, and, moreover, with respect to the Schubert decomposition induced by
the bases considered in [22, Appendix B], we have that

Grdim dim preprojective Grdim preprojective

is a union of cells of the cell decomposition ofGrdim dim into affine spaces.

Proof Part (i) is just a reformulation of statements of Lemma 2.13 taking into account
Remark 2.9. Note that we have Hom 0 and thus has no subrepresentation
isomorphic to where is an inner subrepresentation.

The second part can be obtained as follows. For a fixed inner subrepresentation ,
setting dim dim , we again obtain a map of quiver Grassmannians

Gr Gr Gr .

Our task is to analyze the fibres in the case dim and the consequences for the
Schubert decompositions.

By Lemma 2.10, we have that is an exceptional regular representation. In addi-
tion, it follows that Hom Ext 0. Now [8, Corollary 4] yields
Grdim pt . Moreover, since we have for some 4, by con-
struction of the coefficient quiver of in [22, Appendix B], this subrepresentation
corresponds to the full subquiver of which consists of the first dim vertices. Since

is a subrepresentation of and a factor, the full subquiver consisting of the
vertices 0 0 is connected to by an outgoing arrow.

If has a regular direct summand, we have Hom 0. In particular,
is no subrepresentation of . Note that, if is regular indecomposable, we can consider the
inclusion Hom Ext . Then we even have that the middle term of the
corresponding sequence is also an inner representation, see also Remark 2.15.

Thus assume that is preprojective. By Proposition 2.8, we have that there exist
cells

1
such that the subsets have cardinality dim and such that all

representations in these cells are preprojective. If Ext 0, we obtain a commutative
diagram

0 0

0 0

with . In particular, the subrepresentation lifts to a subrepresentation of .
We claim that, actually, Ext 0 for all preprojective subrepresentations

. We can without loss of generality assume that is indecomposable,
and that where 1 3. In particular, we have

dim dim . If for some 3 1, the representation would
be an indecomposable inner representation with 2. Indeed, in this case we have

by Lemma 2.10. But since has no inner subrepresentations of defect 2 by
Lemma 2.13, this is not possible. Also 2 is not possible because then we had
dim dim .
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We have dimExt dimHom by the Auslander-Reiten formulae. If
Ext 0, since is of defect 1, by the second part of Remark 2.9, it follows that

. If 2, there exists a chain of inclusions
1

In particular, we have dim dim dim . But for we either have
dim 1 or dim 1 and thus dim 2 dim or dim
2 dim . But this is not possible because is a subrepresentation of and
dim .

Thus it remains to deal with the case if for some 0. There exists
a 1 such that 4 and 4 for and 1 0. Moreover,
there exists almost-split sequences

0 4
1 0 0 4

1 0

for some 0. By the choice of , we have Hom Hom 0
because otherwise there were a path of irreducible morphism from to which were
forced to factor through 1

4. Thus, keeping in mind the second part of Remark 2.9,
it follows that for all and the claim follows as in the case

2.
Since we have 1 0 if the fibre is not empty, as a consequence, we obtain

an isomorphism

Grdim dim preprojective Grdim preprojective .

As the right hand side is compatible with the Schubert decomposition by Proposition 2.8,
this restricts to an isomorphism between the respective Schubert cells.

Remark 2.15 By the results of this section, it follows that every subrepresentation
such that the fibre of 0 is empty are in bijection with the subrepresentations

of 1 . To check this it suffices to keep in mind that every inner representation is
obtained as the middle term of an exact sequence between a regular subrepresentation of

1 and 1 .

The considerations of this section enable us to prove several properties concerning the
morphism

Gr Gr Gr

induced by short the exact sequence under consideration:

Proposition 2.16 Let and be subrepresentations such that dim
dim .

(i) The fibre 1 is empty if and only if 0 and where is an
inner subrepresentation and 0 or is preprojective.

(ii) We have dim dim . In particular, we have 1

dim dim if 1 is not empty, i.e. the fibre dimensions only depend on
the dimension vectors of and .
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Proof The strategy of the proof is adopted from [5, Lemma 3.11].
If 0, by Proposition 2.14, the inclusion does not factor through if and

only if where is an inner subrepresentation and 0 or is
preprojective. This yields one direction of the first part.

From now on let 0. If is direct sum of outer representations, by Proposition 2.14,
every injection factors through . Thus the fibre is not empty.

Next let be an inner subrepresentation of . Then we have with
1 3. We have Hom 0 because is exceptional regular by
Lemma 2.10. As , considering the appropriate long exact sequence, we obtain
Ext 0 and thus Ext Ext . Since the representation is
preprojective and has no preprojective direct summand, we have Ext 0
and thus we get a surjection

Ext Ext Ext .

In particular, we get a commutative diagram

0 0

0 0

showing that 1 where dim .
Finally, if is a direct sum of an inner subrepresentation and outer subrep-

resentations, we can combine both cases in order to show that the fibre is not empty. In
summary, we obtain the first statement.

The second part is obtained as follows. By Lemma 2.6, we have 1 .
If 0, we have Ext 0 because has no preprojective direct summand
by the preceding considerations. Thus the second part follows in this situation. If 0
and if the fibre is not empty, by the first part, is forced to be a direct sum of outer
subrepresentation. Let 1 be its direct sum decomposition. Since does also
not lie on the border, by the second part of Lemma 2.13, there is no path from to in
the Auslander-Reiten quiver for all 1 . It follows that we have Ext 0 and
thus dimHom dim dim .

Keeping in mind Proposition 2.7, the considerations of this section together with
[22, Theorem 4.4] now yield that there exists a cell decomposition for every quiver
Grassmannian attached to preprojective representations (resp. preinjective representations).

Theorem 2.17 Let Rep be an indecomposable preprojective representation with
2. Then there exist two preprojective representations and with

1 and a short exact sequence

0 0

such that for we have

1 if 0 an -inner subrepresentation
dim dim otherwise

.

Moreover, the fibres 1 are constant over Grdim Grdim
for each pair of type dim dim andGr has a cell decomposition into affine
spaces.
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Using Theorem 2.26, we obtain:

Corollary 2.18 Let Rep be a preinjective representation with 2. Then
every quiver Grassmannian Gr has a cell decomposition into affine spaces.

The results of this section can now be used to obtain the -polynomials of indecompos-
able representations of large defect. It is straightforward to check that, in terms of cluster
variables, this corresponds to the multiplication formula, see Theorem 2.2:

Theorem 2.19 Let be an indecomposable representation with 2. If 0
0 is a short exact sequence as in Theorem 2.17 we have

dim 1
1 .

Proof First recall that Grdim pt for every inner representation C . Every
regular subrepresentation of gives rise to a subrepresentation where is also
an inner subrepresentation of such that fibre of 0 is empty. Moreover, every pre-
projective subrepresentation gives rise to a subrepresentation of such that the
fibre of 0 is empty. We can also combine both cases in the natural way. Choosing

1 as in Remark 2.15, these observations can be summarized to

Gr Gr Gr
dim 1

Gr 1 .

Now it is straightforward that, in terms of -polynomials, this translates to the claim.

Clearly, the analogous statement holds for preinjective representations with 2.

2.8 Representations of the Homogeneous Tubes

In this section, we consider quiver Grassmannians of indecomposable representations lying
in one of the homogeneous tubes. It turns out that they are independent of the chosen tube
because the quiver Grassmannians of indecomposable representations of dimension are
independent of the chosen homogeneous tube, see [14, Lemma 5.3] and [22, Theorem 4.4].
Note that this can also be checked by hand, see Section 5.3. We fix a homogeneous tube and
denote by the indecomposable representation of dimension which lies in this tube
where 1. There exists a chain of irreducible inclusions

0
1 2

2
3 1

Actually, we can recursively construct all representations by considering non-splitting
short exact sequences

0 1 0.

The idea is to proceed along the lines of Section 2.7. Thus we start with considering the
morphism

Gr Gr 1 Gr 1 .

Remark 2.20 We have Gr pt if . Indeed, the only subrepresentations
of are preprojective or contained in the tube of . Since 0 and since the
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defect is additive, a subrepresentation of dimension cannot contain a preprojective direct
summand.

Lemma 2.21 Let be a subrepresentation of 1 such that 0 1 .
Then we have Ext 1 0.

Proof Since is a proper subrepresentation of , we have that is preprojective and
is preinjective. Thus we have Ext 0. But since is preprojective,

the inclusion factors through 1 . In particular, we get (using the universal
property of the cokernel of 1 ) a commutative diagram

0 2 1 0

0 2 1 0

But since the lower sequence does not split and, moreover, since Ext 2 ,
this shows that Hom Ext 2 is surjective. Thus we have

Ext 1 Ext 0

which completes the proof.

Lemma 2.22 The fibre 1 is empty if and only if and 1
1 ,

i.e. is already a subrepresentation of 2 .

Proof If 0, the fibre of is clearly not empty because every subrepresentation
of 1 is already a subrepresentation of .

If 0 , we have that is preprojective and thus the canonical inclusion factors
through . In particular, the fibre of is not empty.

Thus assume that . If 0, the fibre is empty because the sequence does not
split. For general 1 , we consider the long exact sequence

0 Hom Hom 1 Hom 1

Ext Ext 1 Ext 1 0

Since dimExt 1 1, we have that the fibre is empty if and only if 0.
This is obviously the case if and only if Ext 1 . In turn the fibre is not
empty if and only if is surjective. First assume that 1

1 . If 2 , we
have 1 by Remark 2.20. Then every vector space in the above sequence is
isomorphic to . In particular, we have 0.

Furthermore, if 2 , we have that is the composition

Ext
1
Ext 2

2

Ext 1 .

Thus also in this case the fibre is empty.
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If 1
1 , we have 1 0. Then we have the following

commutative diagram

0 2 1 0

0 0

inducing a diagram

Ext
1

Ext 2 Ext 2 0

Ext Ext 1 Ext 1 0

Ext Ext Ext 0

If , we clearly have Ext 0. By induction, we have that 1 is
surjective and thus it follows that Ext 1 0. Thus the fibre is not empty.

Finally, assume that 0 1 . By Lemma 2.21, we have
Ext 1 0. Thus is surjective. But since is a factor of , we have
Ext Ext . Thus the fibre of is not empty.

Lemma 2.23 If 1 , we have 1 dim dim 1 .

Proof By Lemma 2.6, we have
1 dim dim 1

if it is not empty. The statement is clearly true for 0. If 0 , it is preprojective.
Since 1 has no preprojective direct summand, we have Ext 1 0 in
this case. If and the fibre is not empty, by the considerations in the proof of Lemma
2.22, we have that is surjective. Thus we have Ext 1 0.

The preceding lemmas together with Lemma 2.6 and Proposition 2.7 can now be used to
prove the main result of this section:

Theorem 2.24 Every quiver Grassmannian Gr has a cell decomposition into affine
spaces. Moreover, this decomposition is compatible with the decomposition

Gr Gr 0 Gr 0 . (2.2)

Proof We proceed by induction on . If 1, the claim follows by [22, Theorem 4.4].
Alternatively, it is straightforward to check by hand that every quiver Grassmannian has a
cell decomposition. Since we clearly have 1 0 for every subrepresentation
0 , also the compatibility follows.

Thus let 2. By Lemma 2.22, the fibre of is empty if and only if is a
subrepresentation of 2 and . Since Gr 1 and Gr have cell
decompositions, by Lemma 2.23 together with Proposition 2.7, it follows that

1 Gr 1 Gr
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has a cell decomposition if . If , the fibre is empty if 1 0. Since
the cell decompositions of the quiver Grassmannians Gr 1 are compatible with the
decomposition Eq. 2.2 by induction hypothesis, the claim follows in this case in the same
way.

Since we have 1 0 if and only if 0, it follows that

Gr 0 1 Gr 1 0

and

Gr 0 1

0

Gr 1 Gr .

This already shows that the cell decompositions of the quiver Grassmannians Gr are
also compatible with decomposition Eq. 2.2.

We define . Now the following Corollary, which is also obtained in [15,
Theorem 7.1] is straightforward:

Corollary 2.25 We have

1 2

for 1 where 0 1 and 0.

In Section 5.3, we use this recursive formula to obtain an explicit formula for the -
polynomial .

2.9 Representations of Positive Defect

For indecomposable representations of positive defect, we can deduce that Gr
decomposes into affine spaces from the corresponding fact for indecomposable representa-
tions of negative defect when passing to dual representations.

Let be a representation of with ordered basis B and dim . It defines the
dual basis B of , which consists of the linear maps with .
We endow B with the inverse order of B. Note that the coefficient quiver B is
obtained from the coefficient quiver B by inverting the arrows.

If 1 is preprojective, then 1 is preinjective, and
vice versa. Therefore the dual establishes a correspondence between the preprojec-
tive representations of and the preinjective representations of op. If is of extended
Dynkin type , the absolute value of the defect depends on whether .
Thus this correspondence restricts to a correspondence between defect 1 (or defect 2)
preprojectives and defect 1 (or defect 2) preinjectives.

For a subrepresentation of with dimension vector , we define as
the collection of subspaces

0 for all

of . For a subset of B, we define its dual as

B 0 for all

which is of type . Note that is the complement of the set of dual elements
B of basis vectors .
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Theorem 2.26 The association defines an isomorphism Gr Gr ,
which restricts to an isomorphism between Schubert cells for every subset
of B.

Proof Let be the total dimension of , the total dimension of and
the total dimension of . Then has dimension as a -vector space, a subrepresentation

with dimension vector has dimension over and a subrepresentation of with
dimension vector has dimension over .

The canonical isomorphism that sends 1 to the unique
element 1 with 0 for all 1 and 1 induces an

isomorphism between the corresponding projective spaces.
A subrepresentation of of type corresponds to a point of and

corresponds to a point of where and denote the respective Plücker
embeddings. It is clear from the definitions that .

The following calculation shows that is a subrepresentation of , i.e. that
for all arrows of where denotes the dual arrow

of op. For , we have 0 for all since . By
the defining property of the adjoint map of , we have .
Thus 0 for all , which shows that the functional is indeed an
element of .

We conclude that the isomorphism restricts to a morphism
Gr Gr . By the same arguments as above applied to the respective

dual spaces and , we see that the inverse of restricts to a morphism
Gr Gr , which is inverse to . This shows that the association

defines an isomorphism Gr Gr , which establishes the first claim of the
theorem.

For a subset ofB, the Schubert cell consists of all subrepresentations of
such that 0 and 0 for all 0 and . The isomorphism

Gr Gr restricts to an isomorphism of Schubert cells since
it is compatible with the vanishing of Plücker coordinates, i.e. we have 0 if and
only if 0 where we make use of the notation from the Introduction of [22]. This
shows the second claim of the theorem.

3 Reductions of Quiver Grassmannians

In this section, we show how we can simplify the determination of quiver Grassmannians
by passing to smaller quivers and smaller roots respectively. Together with BGP-reflections
reviewed in Section 4, it turns out that these methods are very useful when calculating
generating functions of representations of in Section 5.

3.1 Reduction of Type One

Assume that has a full subquiver of the form

0
1

1
2

2.
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Let be a dimension vector of and let be a representation of dimension such that the
linear maps for 1 2 have maximal rank. Note that this is true for all linear maps of
real root representation. This follows because they are even of maximal rank type, see [30].

Let be a second dimension vector such that and such that Gr . Thus, in
terms of quiver Grassmannians, we consider a commutative diagram

0 1 2

0 1 2

where and .
Let 1 be the quiver of type 1 resulting from when deleting the ver-

tex 1 and the two corresponding arrows and, moreover, when adding an extra arrow
2 0. Moreover, let be the corresponding dimension vectors and the induced

representation.
If 2 1 0, all maps in the diagram are injective and we have 2 1 0. It is

easy to check that is indecomposable if and only if is indecomposable. For a vector
space , we denote by Gr the usual Grassmannian (resp. Gr in the case ).
Recall that, for a fixed vector space and a subspace with dim , we have

Gr Gr Gr dim dim dim .

Thus it is straightforward that Gr is Gr 1 2 0 2 -bundle over Gr . In
particular, we have

Gr Gr 1 2 0 2 Gr .

Note that, since 1 0 every subspace of 0
0 can be identified with a subspace of

1
1 and vice versa. Moreover, note that, in case of a subquiver

2 1 0

with dimension vector satisfying 2 1 0, we can turn around all arrows in to
obtain the situation treated above.

We want to consider a similar case: using the same notation, we assume that we are faced
with the following situation

0 0

1 1

2 3 2 3

where 2 3 1 0 and . Assume that 2 3 0 when understanding
these two vector spaces as subspaces of 1 . This is again true for real root representations
and representations of maximal rank type respectively.

Since all maps in the diagram are injective, similar to the preceding case, we can reduce
this situation to the case

0 0

2 3 2 3
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Note that it is again straightforward to check that is a root if and only if is a root
(resp. that the corresponding representation is indecomposable if and only if is inde-
composable). As before we get a subrepresentation of for a fixed subrepresentation of

together with a subspace Gr 1 2 3 0 2 3 . As above, we obtain that
Gr is a Gr 1 2 3 0 2 3 -bundle over Gr and we have

Gr Gr Gr 1 2 3 0 2 3 .

Note that there is again a dual case obtained when turning around all arrows. In the sequel
we will refer to these two procedures as reduction of type one.

3.2 Application to Real Root Representations and Examples

When calculating the generating function of the Euler characteristics of quiver Grassman-
nians, it turns out that the reduction of type one is a very powerful tool when combining it
with BGP-reflections. Actually, we can start with in subspace orientation where we can
apply reductions of type one. Then we can show that the obtained formulae are invariant
under BGP-reflections. Note that the reductions of type one preserve possible cell decom-
positions into affine spaces whence it is not clear under which conditions this is true for
BGP-reflections.

Considering the Auslander-Reiten quiver of in subspace orientation, it can be seen
easily that the preprojectives of defect 1 can be reduced to

2 1 2

1 2 2 1

1

and

2 1 2

1 1

where the numbers indicate the dimension vector.
Note that in the same way we can reduce the calculation of quiver Grassmannians of

indecomposables of preinjective roots to the case of 5. Alternatively, we can consider the
opposite quiver and restrict to preprojective roots.

Next we consider the non-exceptional real roots. It is easy to check that we can actually
reduce all the real roots of the tubes of rank two to cases of the form

2 1

1 1

Most of the real roots of the exceptional tubes of rank 2 can be reduced to the case 5,
the remaining to 6. Roughly speaking, the worst roots to consider are the following:
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2 2 2 2

1 1 2 1 1 1 2 2

2 1 2 1

1 1 1 1

In summary, as far as subspace orientation is concerned, by the introduced reductions
steps, we can stick to the exceptional roots of 5 and to the non-exceptional roots of 6. As
far as the calculation of -polynomials is concerned, it suffices to consider the case 5.

Note that one has to be careful when applying these methods to imaginary root rep-
resentations lying in the exceptional tubes because not all linear maps are of maximal
rank.

4 BGP-reflections and Quiver Grassmannians

Another method to get morphisms and connections between quiver Grassmannians and the
corresponding generating functions is to consider the reflection functor introduced by Bern-
stein, Gelfand and Ponomarev in [3], see [31, Section 5] and [13, Section 5]. For a quiver ,
consider the matrix 0 with 2 and for , in which

1 . Fixed some 0 define 0 0
as

.

Let be a quiver and 0 a sink (resp. a source). Then by we denote the quiver
which is obtained from by turning around all arrows with tail (resp. head) . In both
cases we denote the reflection functors, which are additive functors, by Rep
Rep . If is a representation of and is a sink (resp. a source) we consider the
linear maps

(resp. .

Recall that in both cases we have if . Moreover, we have
Ker (resp. coker ). Now the linear maps for (resp.

for ) are the natural ones. Moreover, the maps for the remaining
arrows 1 do not change. The functors have the following properties:

(i) If , then 0.
(ii) If is indecomposable, then is indecomposable such that 2

and dim dim .

In order to investigate the behavior of quiver Grassmannians and the corresponding gen-
erating functions under the reflection functor, we review and re-prove some results of [31]
and [13]. Note that in [13] the more general case of mutations is treated. We define

Gr Gr dimHom .

and
Gr Gr dimHom .
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In order to simplify notations, we assume that is a sink and, moreover, that is an
indecomposable representation of with dim . The case when is a source can be
obtained analogously or simply by considering the isomorphisms Gr Gr .
Following [31, Section 5], we consider the following map

Gr Gr 0

where is defined by Im and if . Note that, indeed,
is a subrepresentation of dimension of such that Hom 0. By

[31, Theorem 5.11], we have for sinks :

Theorem 4.1 The morphism is surjective with fibres isomorphic to Gr .
Moreover, there exists an isomorphism of varieties

Gr 0 Gr 0 .

The analogous statement holds if is a source.

For every dimension vector 0, there exists some 0 such that
Gr for 1 and . Then we have Gr 0 Gr .
Fix minimal with this property. Thus, for with we have
Gr Gr . Then we have the following statement:

Proposition 4.2 Assume that is a sink and that Gr Gr 0 . Then we have

Gr 0

0

1 Gr .

Proof First recall that Gr for . We proceed by induction on . The
statement is satisfied for 0. By Theorem 4.1, we have

Gr
0

Gr 0 .

Applying the induction hypothesis, we get

Gr 0 Gr
1

Gr 0

Gr
1

0

1 Gr

Gr
1

0

Gr

1

1
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Gr
1

0

1 Gr

1

1 .

Since we have

1

1 1

the claim follows.

We need the following identities which can be proved by induction where

1 1

for .

Lemma 4.3 The following holds:

(i) For natural numbers with , we have

0

1 1 .

(ii) For natural numbers with , we have

0

1
1

1
.

Proof We proceed by induction where the result is checked easily for 0. Applying the
induction hypothesis and the well-known formula 1

1
1 have

1

0

1
1 1

1

0

1
1

1

0

1
1

1 1

0

1

1 1 1

1

1 1 1
.

The second statement can be proved similarly. We proceed by induction where the result
is checked easily for 0. Applying the induction, hypothesis we have
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1

0

1
1 1

1
0

1
1

1

0

1

1 1

1 1

1

1
1

1

This completes the proof of the lemma.

Applying the preceding statements, we see that the Euler characteristic of a quiver
Grassmannian of a representation, which is obtained by reflecting at a source or sink, is
already determined by the Euler characteristics of quiver Grassmannians of the original
representation:

Theorem 4.4 Let be a representation of dimension . Let be a sink and 0 such
that Gr Gr 0 . Let and . We have

Gr
0

Gr .

Proof Let be a source and assume that Gr Gr 0 . This is the case if and
only if Gr Gr 0 . Since Gr Gr , by Theorem
4.1 (for a source ), we get

Gr Gr
0

Gr 0

0

Gr 0 .

Thus if Gr Gr 0 , applying successively this statement, Theorem 4.1 and
Proposition 4.2, we have

Gr
0

Gr 0

0

Gr 0

0 0

1 Gr

0

Gr
0

1 .

Set and . First assume that . Applying Lemma 4.3, we
obtain:
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Gr
0

1 Gr

0

1

0

Gr 1 2

0

Gr .

If , again applying Lemma 4.3, we obtain

Gr
0

1 Gr

0

1

0

1 1

1
Gr

0

1 Gr
1

0

Gr .

This completes the proof of the theorem.

We want to investigate how the -polymonial of a representation changes when applying
BGP-reflections. Assume that Gr Gr 0 . By Theorem 4.4, we know that

Gr

contributes to the coefficient of for 0 and 0 . In other
words for the coefficient of in we get

0

Gr Gr 1 1 .

Define

1 1 .

Recall that was defined as the number of arrows from to . Finally, we re-obtain
[13, Lemma 5.2] in the case where is a sink:

Theorem 4.5 The following holds:
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(i) Let be a sink. We have

1 1 dim

0

Gr 1 1 dim

where
1 if

1 1 if

(ii) Let be a source. We have

1 1 dim

where
1 if

1 if

Proof The first part follows from the results of this section. Moreover, we have
. Since is a sink of op and keeping in mind that 0

dim 1
0 , the statement is straightforward consequence of the first

part.

Remark 4.6 If we consider the quiver with one vertex and if is the semi-simple repre-
sentation of dimension vector we get the generating function of the usual Grassmannian

0

.

We have 1 1 and thus

0

0

1 1 1.

5 Generating Functions of Euler Characteristics of Quiver
Grassmannians of TypeDn

The main aim of this section is to develop explicit formulae for the generating functions
of Euler characteristics of quiver Grassmannians (resp. -polynomials) of representations
of quivers of type . This reduces to counting certain subsets of the vertex set of coeffi-
cient quivers of the respective representations. We first derive formulae for the generating
functions of indecomposable representations of small defect. To do so, we initially restrict
to subspace orientation and generalize the obtained formulae by applying BGP-reflections.
By Theorem 2.19, this can be used to obtain formulae for all indecomposable representa-
tions of a quiver of type . Since we have for two representations and
, see [5, Corollary 3.7], we obtain formulae for all representations of . Throughout this

section, we frequently use the notation of Section 4.

Remark 5.1 The following observation is trivial, but crucial for the considerations of this
section: if 0 and , where 0 , is a variable
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transformation, we have

and .

In many cases, we can use this to transfer a factorization or a formula for the generation
function of a representation to one of which is obtained from by applying the
reflection functor or the methods from Section 3.1.

Recall that for a sink (resp. source) 0 we defined where is
obtained by the variable transformation of Theorem 4.5. Moreover, this extends to
1 1 dim . We frequently use the following lemma:

Lemma 5.2 The following holds:

(i) Let 0. For a sink 0, we have

1 1 0

0

1 1 0 .

(ii) Let be sink of . Then for every indecomposable representation , we have

dim
0

dim dim .

Proof The first part is just a reformulation of the definition. The second statement follows
because the Auslander-Reiten translate can be obtained by any admissible sequence of BGP-
reflections at sinks.

Remark 5.3 If a dimension vector 0 is a root of , it is a root with respect to all
orientations of the arrows. Though the -polynomial depends on the chosen orientation
of , we opt to suppress it from the notation. Note that also the -polynomial of a
representation from a homogeneous tube depends on the orientation.

5.1 Reduction Steps and Generating Functions

In this section, we analyze the behavior of the generating functions under reduction of type
one, i.e. we have an indecomposable representation of dimension such that

1 2 1. Let be of maximal rank type and and the induced representation
and induced dimension vector, respectively. According to Section 3, when removing the
vertex 1, for the Euler characteristic we get

Gr Gr 1 2 Gr 2

1
Gr .

This yields the following easy relation between the corresponding -polynomials.

Lemma 5.4 Let be a representation of which can be reduced to a representation
by reduction of type one. Then we have

0

Gr 2
1 1 1

2 .
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In other words, considering the variable transformation where

1 1 2 2 1 1 1
1 for all 2

we have .
Moreover, we obtain an analogous statement for the second instance of reduction of type

one.

Finally, in order to pass to preinjective representations, we can pass to the opposite
quiver and dual representations. On the level of -polynomials this can be described by the
following formula:

Lemma 5.5 Let be a representation of . Then for the -polynomial of the dual
representation we have

dim

where 1 for every 0.

5.2 Counting Admissible Subsets

In order to determine -polynomials for any orientation of , we first determine the -
polynomials for representations of in subspace orientation. Applying BGP-reflections,
we obtain the corresponding formula for every orientation. To do so and to fix notation,
we proceed with recalling some well known procedure which can be used to obtain the
generating functions explicitly.

Let 0 1 and let for 2 be recursively defined by

2

2 1

2 2

2 1

for some and where 1. The eigenvalues of are

the zeroes of , i.e.

2

2

4
.

Define
2

4 . We have and 2 . Assuming
that 0 and 0, for the eigenspaces, we get

.

For

we have 1 1

det
.

Then we have
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2

2 1

0

1

1

2
0

0
0

1

1

2

2
0

1
.

Thus we get

2
1

2
1 1

0 1 (5.1)

and

2 1
1

2
0 1 (5.2)

The quiver 0 1 appears as a subquiver of and the coeffi-
cient quiver of the real root representation of dimension 1 1 1 1 as a subset of
the vertex set of the coefficient quivers under consideration. If 1 is the corresponding
indecomposable representation, it is straightforward to check that we have

1

1 0

.

Moreover, let 1 0 1 . By an easy induction, the following can be proved:

Lemma 5.6 We have

(i) 0
1 0
1

1 0
1 0

(ii) 1
0

0 1
1

1 1 1 1 1

1 1 1

In order to determine generating functions of preprojectives of defect 1, we consider
the following snake-shaped coefficient quiver Q (where 2 2) where we omit
the vertices in the notation:

396



Quiver Grassmannians of type Dn ...

Wewill see that we can basically restrict our calculations to this case. Also the case of the
exceptional tubes can be reduced to this case. We refer to the corresponding preprojective
representation by .

We call a subgraph a ramification subgraph if it is of the following form:

1

2 3

Note that in our case we have and . In this situation, the extremal
arrows of Q defined in Section 2.3 are all arrows but those of the form 1
contained in the ramification subgraphs.

Definition 5.7 We call a subset 0 of Q 0 admissible if the following holds:

(i) 0 is extremal successor closed, i.e. if the tail of an extremal arrow is contained in
0, the head is also contained in 0.

(ii) For all ramification subgraphs, we have: if 1 2 0, then 0.

Note that we automatically have 3 0 if is extremal successor closed and if
1 0 or 2 0. Every subset induces a dimension vector 0, called

the type of 0 in what follows. The next step is to determine the number of admissible
subsets of Q 0 of a fixed type for the following reason. By Theorem [22, Theorem
4.4], for representations of defect 1, the non-empty Schubert cells correspond to the non-
contradictory subsets , see Section 2.4. In the present case, this translates into the notion
of admissibility.

Theorem 5.8 Let 0. Then Gr is the number of admissible subsets of
Q 0 of type .

Remark 5.9 In order to determine the -polynomials for indecomposables lying in excep-
tional tubes, we need to consider slight modifications of the coefficient quiver Q for
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5. The notions of extremal arrows and admissible subsets are the same as before, i.e.
the extremal arrows are all but those of the form 1 contained in the ramification
subgraphs and Definition 5.7 can be transferred word by word.

Consider 0 2 1 and 0 4 . If we delete the sources of
Q corresponding to the ramification subgraphs, we can think of the remaining graph
as a matrix having entries which are vertices, i.e. with every index we associate the
vertex in the th row and th column of the remaining graph. Note that we start the indexing
by 0 0 .

For , let G be the full (connected) subgraph of Q which has
vertices 0 4 0 5 ... and where we add the subgraph 1 0 and also
all sources of ramification subgraphs whose remaining vertices are all contained in 0
4 0 5 ... . Let

F

0

be the generating function counting the number of admissible subsets of G 0
of type . We define F 4

1 1 and F 4
0 1 4 4 .

Lemma 5.10 We have the following recursive relations:

(i) For all 0 5 0, we have F2 F 1
2 F 4

2 1.
(ii) For all 0, we have

F 0
2 1 1 0 0 0 0 F 0

2 0 F 4
2 1.

(iii) For all 0, we have F 1
2 1 1 1 F 0

2 1 1F 0
2 .

(iv) For all 0 2 4, we have F2 1 1 F 1
2 1 F 2

2 .
(v) For all 1, we have

F 4
2 1 4 4 4 4 F 4

2 1 4 F 5
2 1.

Proof An admissible subset of G 2 0 is obtained from one of G 2 1 0 by adding
the vertex corresponding to the index 2 or it is given by an admissible subset G 2
1 4 0. Note that if 2 is a vertex of an admissible subset, then 2 1 is forced to
be part of the admissible subset because it is extremal successor closed for 4 1.
Thus we obtain the first statement. The third and forth statements can be obtained similarly.

An admissible subset of G 2 1 0 0 is obtained by adding an admissible subset of the
ramification subgraph which is glued. This corresponds to the first summand in the second
statement. But because of the second property we have to drop those subsets containing the
vertices 2 1 but not containing 3. This gives the
second summand. The last statement can be obtained by a similar argument.

Let 1 . Together with the observations in the beginning
of this section, Lemmas 5.6 and 5.10 give rise to the following recursive description of the
generating functions:
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Corollary 5.11

F 4
2 1

F 4
2 2

0 1
4 4

1 5 1 1 5

1 4 1 1 4

0 1
0 0

1 0

6
5
0

F 4
2 1

F 4
2

For 4, we get

F 4
2 1

F 4
2 2

0 1
0 0

0 1
0 0

F 4
2 1

F 4
2

0 0

0 0 0 0 0

F 4
2 1

F 4
2

With this tool in hand we can determine the -polynomials of representations of
explicitly using formulae Eqs. 5.1, 5.2. This is done in the following subsections. We begin
with the representations of the tubes as it turns out that the proofs are less technical.

5.3 The Homogeneous Tube

The -polynomials of the representations of the homogeneous tubes play an important role
in the following. The imaginary Schur root of is independent of the orientation of .
Using the methods of Sections 3.1 and 4, it is straightforward to check that the -polynomial
of a representation of dimension lying in one of the homogeneous tubes does not depend
on the tube. Alternatively, one can apply [14, Lemma 5.3] or [22, Theorem 4.4]. Thus we
can fix a homogeneous tube without loss of generality. We denote the unique representation
of dimension in this tube by and define . Moreover, for every 1
there exists an almost split sequence of the form

0 1 1 0

where 0 0 0 and 0 1. By applying Theorem 2.11, we obtain

Lemma 5.12 The -polynomial of representations lying in one of the homogeneous tubes
depends only on the dimension vector and satisfies the recursion

1 1
2

for 1.

By the methods of Section 5.2, we also obtain an explicit formula for . Recall Corollary
2.25, saying that

1 2

for 1 where 0 1 and 0. This yields

1

0 1 1
0
1

Defining
1

2
2 4

2
we thus get the following explicit formula:

399



O. Lorscheid, T. Weist

Corollary 5.13 We have
1

2
1 1 .

5.4 The Exceptional Tubes of Rank Two

In this section, we apply the developed methods to representations lying in the exceptional
tubes of rank two. To do so we first restrict to 4 in subspace orientation. Afterwards, we
extend the results to in subspace orientation and, finally, to any orientation.

If is a real root let . Similar to the case of preprojective representations of
defect 1, we obtain all coefficient quivers of representations lying in this tube by glueing
the coefficient quivers

This means that (up to permutation of the arrows ), we consider the coefficient

quivers Q 4 with an extra arrow 1 1. Also the notion of non-contradictory subsets
transfers exactly to the one of admissible subsets, see also Remark 5.9. We denote the rep-
resentation on the left hand side by 1 and the representation on the right hand side by 2.
Then we get for the generating functions

1 1 0 0 0 0 2 1 0 0 0 0 .

Without loss of generality we can assume that we start our glueing process with the coeffi-
cient quiver of 1. Now we proceed completely analogous to Section 5.2 and apply Theorem
[22, Theorem 4.4] to obtain 1 0, 0 1 and

2 1 1 2 0 2 1 2 2 2 2 1 0 2

where 2 1 is the generating function corresponding to the unique indecomposable of
dimension dim 1 and 2 2 is the generating function corresponding to the
unique indecomposable 1

1 of dimension 1 such that 1
1

1 . Note that
also the recursion is up to permutation of arrows basically the same as the one in Section 5.2.
The only difference is that we start our glueing process in the present situation with the

empty coefficient quiver while in Section 5.2, we start with the coefficient quiver .

Proposition 5.14 For 0, we have

2 1 1 0

1
1

2 2 1 0

Proof Using the notation from Section 5.2, we have

0 1 0 2 0 1 2 .

Then it is easy to check that we have

1

2
2 4 .

400



Quiver Grassmannians of type Dn ...

Moreover, we get

1

2
2 4

1

2
2 4 .

Since 1 0 and 0 1, Eq. 5.1 yields

2 1
1

2 1
1 1 .

Since and take the same values as in Section 5.3, by Corollary 5.13, we get 2 1

1 .
Using Eq. 5.2 together with Corollary 5.13, we have

2 2
1

2
1

0
1

0

1

2
2 2 1

2
0

1 1

1 0

which completes the proof of the proposition.

Let us consider the tubes of rank two for general with arbitrary orientation. For a fixed
tube, we denote by 1 0 and 2 0 the quasi-simple roots. The real roots in this tube are
given by 0 . Finally, we denote the representation of dimension with
subrepresentation 0 by .

Theorem 5.15 For the indecomposable representations and lying in one of the
exceptional tubes of rank two of , we have:

(i) 0
(ii) 0

1

Proof Under consideration of Lemma 5.4 it is straightforward to generalize Proposition
5.14 to arbitrary in subspace orientation.

Assume that with dim lies in one of the exceptional tubes of rank two
of (with arbitrary orientation) and satisfies 0 . Applying Theorem 4.5, we
have

0 .

Thus the first statement follows by induction.
For a fixed sink , of with arbitrary orientation, it is straightforward to check that

0

0 .

Indeed, if , both sides are one. Otherwise both sides are two. Assume that
0

1 . Then, again by Theorem 4.5 and Lemma 5.2, we have

0 1 1 0
0 1 1

1
0

1 .

Thus the second statement also follows by induction.
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5.5 The Exceptional Tube of Rank n 2

Let us consider the tube of rank 2. In this tube, there exist 2 indecomposable
representations of dimension , which we denote by for 1 2. If it is clear
which of these representations is considered, we drop the .

We again first restrict to subspace orientation and treat the general case later. Let
be the root given by

for

1 for

2 1 for 0

2 2 for 1 4

In this tube, there exists an infinite chain of irreducible inclusions

0 1 1 1 4 1 0 2

where the imaginary root representations are uniquely determined by this chain.

Lemma 5.16 Let 5. Then we have

(i) 0 0 1 0 1 1
(ii) 1 1 1
(iii) 0 1 1 1

Proof First note that the coefficient quivers of the representations under consideration
pointed out in [22, Appendix B] are modifications of Q 5 . Moreover, the notion of non-
contradictory subsets and admissibility transfers again, see Remark 5.9. More precisely, we
add an extra arrow 1 1 in all cases and, moreover, the last vertices of the quivers to
consider are 1 2 and 2 respectively.

Then the last two statements follow in the same way as Proposition 5.14 where we addi-
tionally apply Lemma 5.4. Now we can apply (the methods of) Lemma 5.10 in order to
obtain

0 0 1 0 1 1 0 1 0 1 1 .

Here we use that 0 1 1 1 1 1 1 , see also Lemma 5.10.

For , we denote by the exceptional representation with dimension vector
dim . Note that

dim 2 4 4 1 0 1 1 1 4 1 1 1 .

Moreover, we have
1

1

1 1
0

0 1 .

Lemma 5.17 For arbitrary , we have

(i) 1 0
1
1 2 4 1 for 0 5.

(ii) 4 4 1
(iii) 0 1 4 1
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Proof This is obtained when combining Lemma 5.16 and Lemma 5.4.

For with arbitrary orientation in the tube of rank 2, there exist 2 chains of
irreducible morphisms of the form

0 1 0 2 0 3 1 0 1 1

where the dim are real roots and the imaginary root representations 0
are uniquely determined by this chain. In particular, for every real root in the tube of

rank 2 there exists an exceptional root 0 such that 0 .

Lemma 5.18 For 1 4, we have 3 0 1 0 0 .

Proof Considering the tube and its roots in detail, we obtain

3 0 3 0 4 0 .

Since we also have

0 2 0 1 0 1 0 2 0 1 0 1 0 0

the claim follows by induction.

Under the convention that 0 if 0 has at least one negative coefficient, we
obtain the following result:

Theorem 5.19 Set 0 2 1 . Let be an indecomposable representation
of lying in the tube of rank 2 such that dim for some 0 3.
Then we have and, moreover, we have

0
1 0

3 0 1 0 1

for 0 3.

Proof We proceed by induction. For every representation lying in the tube of rank 2,
there exists a sequence of reflections 1 at sinks and a representation with

1 4 such that 1 . Since the claim is true for , by
Lemma 5.17, we can assume that and that the claim is true for , i.e. we
have

0
1 0

3 0 1 0 1

Then applying Theorem 4.5 and Lemma 5.2, we have

0 1 1 1 1 1 0
3 0 1 0 1

with

0 3 0 1 0
0

1 0 .

Again by Lemma 5.2 and, moreover, by Lemma 5.18, we have

0 3 0 1 0 0

which completes the proof of the theorem.

Note that Theorems 5.15 and 5.19 can be summarized as done in Theorem C.
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5.6 The Preprojectives of Small Defect

Finally, we consider the preprojective roots. Also in this case, we obtain explicit formulae.
Thanks to Theorem 2.19, the generating functions corresponding to the roots of defect 2
can easily be obtained from those of defect 1. Moreover, the generating functions for the
preinjectives can be calculated when passing to the opposite quiver.

We again denote the projective representations corresponding to the outer vertices by
and . We follow the strategy of the last two subsections and first restrict to

subspace orientation. Up to permutation of the sources, the preprojective roots for 4
are given by

1 2 1 1 and 2 2 1 .

Proposition 5.20 Let 4. Then we have

(i) 1
dim 1

dim 1 1

(ii) 2 1 1 2

Proof Initially, we consider the coefficient quiver of the preprojective representation of

dimension 1 1 0 0 0 , i.e. . By glueing the coefficient quivers

in turn, up to permutation of the arrows, we obtain the coefficient quivers Q 4 and
we can apply Theorem 5.8. We denote the corresponding representations by 1 and 2
respectively. Using the notation and results from Section 5.2, we have

0 1 1 1 0 0 .

Moreover, we have 2 2 and 2 1 1 and

0 1 0 2 0 1 2 .

Using , we also have
2 .

Since and hence and take the same values as in the proof of Proposition 5.14,
following Corollary 5.13, we have

1

2
1 1 .

We obtain

2 0 1 2 1 1 1 1 1 2

2 1 1 1 1

dim 1

dim 1 1

Note that dim 1 dim is the simple root (which is in this case also the injective
root respectively) corresponding to the vertex .
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Remark 5.21 Applying the reflection functor to 1 (resp. 1 ), it is straightforward
to check that

2 1 1 dim
dim 1 .

Note that 1 2 , where 2 is defined below.

The following is straightforward to check:

Lemma 5.22 Considering the variable transformation of Lemma 5.4, we have

1 1 dim dim

where the root dim on the left hand side is the root 0 of 4 and on
the right hand side it is the root 0 2 1 of 5.

For general , the preprojective roots of defect 1 are given by:

1 , 0 4, with 1 2 1 for 0 , 1 2 for
1 4, 1 1 1 and 1 1. We

denote by 1 the resulting root obtained when permuting and .
2 with 2 2 for 0 4, 2 2 2 and

2 1. We denote by 2 the resulting root obtained when permuting and
.

3 , 0 4, with 3 2 for 0 , 3 2 1 for
1 4, 3 3 3 and 3 1. We

denote by 3 the resulting root obtained when permuting and .
4 with 4 2 1 for 0 4, 4 4 4 and

4 1. We denote by 4 the resulting root obtained when permuting and
.

Note that we have 1
1

1
1 for 0 5, 1 4

1 2 1
and 1

2 1 0
1 1 . The analogous statement holds for 3 and 4 1 .

We denote by the projective corresponding to the vertex and by the simple root
corresponding to . We have 1 0 dim .

Proposition 5.23 Let be in subspace orientation. Then we have

(i)
1 1 0

1
1 0

1
1 0 1

(ii) 2 2 1 1 2

(iii)
3 3 1 1

1
3 1

1
3 1 2

(iv) 4
3

4
3 1 1 2

(v) 4 4 0
1

4 0
1

4 0 1

Proof Initially, we derive the case 5 when applying Lemma 5.4 to the results of
Proposition 5.20. We first obtain

1
1

1
1 0

1 1
1 0

1 1
1 0 1 .

405



O. Lorscheid, T. Weist

We have 1
1

0
1 where 1

1 is obtained from 1
1 when reflecting successively

at the sinks 0 1 and . Thus, keeping in mind Lemma 5.2 and Theorem 4.5,
a straightforward calculation yields

0
1

1
1

1
1 0

1 0
1 0

1 0
1 0 1

0
1 0

1 0
1 0

1 0
1 0 1 .

Again by Proposition 5.20 together with Lemma 5.4, we get

2 2 1 1 2 .

Moreover, we get
1
3

1
3 1 1 2 .

Similar to the case of 0
1 , we have 1

3
0
3 . Let 1 0. It is

straightforward to see that

1
3

1
3 1 1 2 .

But since 1
3 0 0 we get

1
3

1
3 1 1 1 1

2

0
3 1 1

1 0
3 1

1 0
3 1 2 .

Finally, also the formula for 4 for 5 is obtained in this way. In order to obtain
the formulae for general 4, we can apply Lemma 5.4 starting with the case 5.

For the remaining part of the subsection, we should keep the following remark in mind:

Remark 5.24 Using Lemma 5.22 together with Eq. 5.1, we get

2 1 1 dim
dim 1 .

It is likely that there is a similar formula for 4
3 .

If is a preprojective root such that , then is a source and
is the injective simple root corresponding to . Indeed, is a preinjective root if
0 is preprojective. Since the positive non-simple roots are invariant under the
Weyl group, is forced to be simple. In particular, if and 1 , we have
that 1 if and only if 1 is the simple root corresponding to the source
. The analogous statement holds if is preinjective.

If is a sink, we have that . If is preprojective with 1 , we have
1 because otherwise 1 were injective. In turn if and
1 , we already have 1 in which case is injective.

If is a preprojective root of defect 1 of in subspace orientation, we have that
is injective if and only if 2 1 or 4

3 1 .
If is the injective representation corresponding to and is a source, we have
that is also injective. Note that since is tree-shaped, we have dim 1
if and only if there exists a (unique) path from to and dim 0 otherwise.

Proposition 5.25 Let be a preprojective representation of such that dim
. Let be a sink.
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(i) Assume that
1

1 1 .

If 1 and , we have
1

1 1 .

Then we also have 1 .
(ii) Assume that

1

and that is the injective root corresponding to . Then we have 1

dim . Moreover, if , we have

1 .

and if , (we have and) we have
1

1 1

where 1 .

Proof For a sink , by the second part of Lemma 5.2, we have

0

1 1 .

Thus we get

0

1 1 1 .

Thus, since is not the simple root corresponding to , the first part follows by Theorem
4.5.

For the second statement, note that is preinjective and dim is the
injective root of corresponding to . Indeed, is a sink of and in turn a source of

. For the first part, it suffices to show that

0

.

This can be deduced from

0 0

1 1

which actually follows from 1 dim . Indeed, since is a sink and tree-
shaped, we have dim 1 if and only if there is exactly one neighbour such that
dim 1.

Since is a sink, we have dim . Thus the second part follows because

1 1 1
1

and 1 1 in this case.

Clearly the formulae hold in the other direction as well. This leads to the main result of
this section:
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Theorem 5.26 Let be preprojective of defect 1 such that dim . If
is injective we have

1 .

If is not injective we have

1
1 1 .

Proof We proceed by induction. For in subspace orientation, the statement is true by
Proposition 5.23 keeping in mind Remark 5.24.

Now assume that 1 are all preprojective roots of defect 1 of with a fixed
orientation such that . If is a sink, we can reflect at to obtain all preprojective
roots with of except . In particular, we can apply Proposition
5.25 to obtain the generating functions corresponding to preprojectives of defect 1 except
those of the form . Using the notation of Proposition 5.25, we are thus left with the
case when where we can assume that

1
1 1

because is not injective. Since , we have dim . In particular, since
is injective, by induction hypothesis, we have

dim 1 2 .

Now there exists an admissible sequence

0

of reflections at sources such that . Since the first part of the second statement
of Proposition 5.25 clearly also holds in the opposite direction, keeping in mind the last part
of Remark 5.24, we have

dim 1 2 .

Since is a source, we have dim and the claim follows.

Acknowledgements The authors would like to thank Giovanni Cerulli Irelli, Christof Geiß, Markus Reineke
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