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Abstract
Twisted generalized Weyl algebras (TGWAs) A(R, σ, t) are defined over a base ring R

by parameters σ and t , where σ is an n-tuple of automorphisms, and t is an n-tuple of
elements in the center of R. We show that, for fixed R and σ , there is a natural algebra map
A(R, σ, tt ′) → A(R, σ, t)⊗RA(R, σ, t ′). This gives a tensor product operation on modules,
inducing a ring structure on the direct sum (over all t) of the Grothendieck groups of the
categories of weight modules for A(R, σ, t). We give presentations of these Grothendieck
rings for n = 1, 2, when R = C[z]. As a consequence, for n = 1, any indecomposable
module for a TGWA can be written as a tensor product of indecomposable modules over the
usual Weyl algebra. In particular, any finite-dimensional simple module over sl2 is a tensor
product of two Weyl algebra modules.

Keywords Twisted generalized Weyl algebras · Weight modules · Grothendieck group ·
Tensor product
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1 Introduction

Generalized Weyl algebras (introduced by Bavula [1] and Rosenberg [14]) and, more gener-
ally, twisted generalizedWeyl algebras (TGWAs), introduced byMazorchuck and Turowska
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([13]), are a broad family of algebras defined by generators and relations starting from a
base ring R and certain parameters σ and t , where σ ∈ Aut(R)n and t ∈ Z(R)n. Many alge-
bras of interest for ring theory and representation theory can be seen as special cases of this
construction, for example (quantized) Weyl algebras in rank n as well as certain quotients
of universal enveloping algebras and many others. Modules over TGWAs can be studied in
great generality. Of particular interest are weight modules, where the base ring R plays the
role that the Cartan subalgebra has in the study of representations of a Lie (or Kac-Moody)
algebra. These have been studied in [3, 7, 8, 12, 13].

TGWAs do not in general have a natural bialgebra structure, unlike enveloping algebras.
Therefore there is no obvious monoidal structure on their module categories. In this paper
we propose the vision that, instead of considering each TGWA individually, we should
group all of them together, for fixed R and σ and varying t . In fact if A(R, σ, t) is a TGWA,
despite the fact that it is not a bialgebra itself, our first main result (Theorem 3.3) shows
that there is a naturally defined algebra map Δ : A(R, σ, tt ′) → A(R, σ, t) ⊗R A(R, σ, t ′).
Therefore, by taking the restriction functor along Δ, we can define an interesting tensor
product operation on the direct sum, over all values of the parameter t , of the module
categories for the TGWAs.

This construction is reminiscent of the towers of algebras, as formalized by Bergeron
and Li in [2], which is why we use this terminology, although it is a little bit of an abuse
because there are some significant differences. For example, our map Δ goes in the oppo-
site direction, and our algebras are not finite dimensional, though these are not significant
concerns. More importantly, A(R, σ, t) ⊗R A(R, σ, t ′) is not in general a finite rank mod-
ule over the image of A(R, σ, tt ′), hence taking the induction functor along Δ does not
give well-defined operations on the Grothendieck groups of the module categories. Con-
sequently, the only structure that we can define on the sum of all the Grotendieck groups⊕

t K0(A(R, σ, t)-mod) is that of an associative algebra via tensor product and restriction.
Our other main results are giving explicit descriptions, both in terms of a basis with

multiplication formulas and in terms of generators and relations, of the algebras we defined,
for the cases of TGWAs in rank 1 and 2. In rank 1 we are able to describe also the algebra
resulting from the split Grothendieck groups and the map from the split algebra to the non-
split one.

It follows from our results that any indecomposable module of a TGWA of rank 1 can
be written as a tensor product of modules for the usual Weyl algebra, which applies in
particular to finite dimensional irreducible modules and Verma modules for sl2.

The paper is organized as follows:

– In Section 2 we recall some basic definitions about twisted generalized Weyl algebras
that we will need in the paper.

– In Section 3 we show the existence of theΔmap, use it to define the associative algebras
structure on the sum of all the Grothendieck groups (both non-split and split), and prove
some general structural results about these algebras.

– In Section 4 we explicitly describe the algebras from Section 3 (both non-split and split)
in the case of rank 1, with the base ring being polynomials in one variable and σ being
a shift.

– In Section 5 we give an explicit description of the non-split algebra in the case of rank
2 over polynomials in one variable. This relies heavily on previous work by the authors
in [8, 10, 11].
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1.1 Future Directions

Our construction is very general, so there are many interesting special cases of these Groth-
endieck rings that can be approached in the near future. We list a few such possibilities.

– We have not described here the split algebra for the rank 2 case. In order for this to be
done, it requires giving a characterization of indecomposable weight modules for rank
2 TGWAs which is a potentially intriguing avenue of research.

– In the rank 1 case, we can take σ to be an automorphism of finite order instead. This
would change the geometry of the σ -orbit from a line to a circle, and can be accom-
plished either by taking a base ring with positive characteristic or by scaling by a root of
unity. Both simple and indecomposable weight modules for such TGWAs are relatively
well understood (see [3]), which makes this more approachable.

– Combining the previous two examples, in rank 2 we could consider pairs of automor-
phisms that are both of finite order, hence giving us a torus orbit. This is more of a
long-term project, as a good description of weight modules for such TGWAs does not
exist as of yet.

Additionally, our construction should have applications to categorification problems. The
tower of group algebras of the symmetric groups gives a categorification of the Hopf alge-
bra of symmetric functions (see [6]). More generally, towers of algebras in the sense of [2]
categorify dual pairs of graded Hopf algebras (which can be combined into the categorifi-
cation of the Heisenberg double as done in [15]). It is reasonable to expect that the algebras
categorified by our towers of TGWAs should be of interest.

2 Twisted GeneralizedWeyl Algebras

In this section we recall some basic definitions for twisted generalized Weyl algebras, fol-
lowing [13] where they were first defined. There is a generalization involving additional
deformation parameters μij , as seen in [12], and in that notation we take all μij = 1. We

are using the symmetric definition using σ
1/2
i , see [11]. We also state some previous results

about properties of TGWAs that we will need in what follows.

Definition 2.1 Let k be a commutative ring, R an associative unital k-algebra, n a positive
integer, σ = (σ

1/2
1 , σ

1/2
2 , . . . , σ

1/2
n ) ∈ Autk(R)n an n-tuple of commuting automorphisms

of R, t = (t1, t2, . . . , tn) ∈ Z(R)n an n-tuple of central regular elements of R. The twisted
generalized Weyl construction (TGWC) of rank n, denoted Ã = Ã(R, σ, t), is the asso-
ciative algebra obtained from R by adjoining 2n new generators X±

1 , X±
2 , . . . , X±

n that are
not required to commute with each other, nor with the elements of R, but are subject to the
following relations for all i, j = 1, 2, . . . , n:

X±
i r = σ±1

i (r)X±
i , X±

i X∓
i = σ

±1/2
i (ti ), [X±

i , X∓
j ] = 0 if i �= j . (2.1)

The twisted generalized Weyl algebra (TGWA), denoted A(R, σ, t), is defined as the
quotient Ã/I , where I is the two sided ideal of R-torsion elements:

I = {a ∈ Ã | ∃r ∈ Rreg ∩ Z(R) : ra = 0} (2.2)

where Rreg is the set of regular elements in R and Z(R) is the center.
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Our definition of I is different but equivalent to the original one from [13]. The equiva-
lence is proved in [8, Thm. 3.11], although there is a typo in that paper, with Z(R) missing
from the definition. The following property is useful when constructing homomorphisms
from TGWAs.

Lemma 2.2 [8, Cor. 3.12] If B is any k-algebra and ϕ̃ : Ã(R, σ, t) → B is a k-algebra
homomorphism such that ϕ(r) is regular in B for every regular element r of R, then ϕ̃

induces a k-algebra homomorphism ϕ : A(R, σ, t) → B.

Definition 2.3 A(R, σ, t) is consistent if the canonical map R → A(R, σ, t), r 
→ r1, is
injective.

This definition is important for us because consistency guarantees that the relations do
not make the TGWA into the trivial algebra.

Theorem 2.4 [4]A(R, σ, t) is consistent if and only if

σ
1/2
i (tj )σ

1/2
j (ti ) = σ

−1/2
i (tj )σ

−1/2
j (ti ) ∀i �= j (2.3)

σ
1/2
i σ

1/2
j (tk)σ

−1/2
i σ

−1/2
j (tk) = σ

1/2
i σ

−1/2
j (tk)σ

−1/2
i σ

1/2
j (tk) ∀i �= j �= k �= i. (2.4)

3 Towers of Twisted GeneralizedWeyl Algebras

In the rest of the paper we assume thatR is an integral domain.1 Fix σ = (σ
1/2
1 , . . . , σ

1/2
n ) ∈

Aut(R)n, an n-tuple of commuting automorphism of R. For each t = (t1, . . . , tn) ∈ (R \
{0})n such thatA(R, σ, t) is consistent, we define the TGWA A(t) := A(R, σ, t).

Definition 3.1 We define the set of all solutions to the consistency equations

Ω = Ω(R, σ) = {t ∈ (R \ {0})n | A(R, σ, t) is consistent }.

Lemma 3.2 If t, t ′ ∈ Ω then t · t ′ = (t1t
′
1, t2t

′
2, . . . , tnt

′
n) ∈ Ω .

Proof Straightforward from ( 2.3) and (2.4), using that σ 1/2
i are multiplicative.

Let A(t) ⊗R A(t ′) denote the tensor product of A(t) and A(t ′) viewed as left modules
over the commutative ring R. Explicitly

A(t)⊗R A(t ′) :=(A(t)⊗ZA(t ′)
)
/
(
(ra)⊗b−a⊗(rb) | r ∈ R, a ∈ A(t), b ∈ A(t ′)

)
. (3.1)

It is not immediately clear to us whether A(t) ⊗R A(t ′) is a TGWA in general. On the
other hand, A(t) ⊗k A(t ′) is a TGWA over R ⊗k R, see [5, Thm 2.16].

Theorem 3.3 (a) For any two solutions to the consistency equations t, t ′ ∈ Rn, there is a
homomorphism of R-rings

Δt,t ′ : A(tt ′) → A(t) ⊗R A(t ′) (3.2)

1More generally we may work with a noncommutative domain R having an anti-automorphism ∗ which is
the identity on the center.
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which is uniquely determined by

r 
→ r ⊗ 1 = 1 ⊗ r ∀r ∈ R

X±
i (t t ′) 
→ X±

i (t) ⊗ X±
i (t ′) i = 1, . . . , n

where X±
i (t) denotes the generators in A(t).

(b) For any three solutions to the consistency equations t, t ′, t ′′ ∈ Rn, the following
coassociative law holds:

(
Δt,t ′ ⊗ IdA(t ′′)

) ◦ Δtt ′,t ′′ = ( IdA(t) ⊗Δt,t ′t ′′
) ◦ Δt,t ′t ′′ . (3.3)

(c) For any two solutions to the consistency equations t, t ′ ∈ Rn, the following
cocommutative law holds:

P ◦ Δt,t ′ = Δt ′,t , (3.4)

where P(x ⊗ y) = y ⊗ x.

Proof (a) Let F be the free R-ring on {X±
i }ni=1. By the universal property of free R-rings

there exists a homomorphism

Δ : F → A(t) ⊗R A(t ′)

uniquely determined by the conditions

Δ(X±
i ) = X±

i ⊗ X±
i , Δ(r) = r ⊗ 1 = 1 ⊗ r, r ∈ R.

We have

Δ
(
X±

i r − σ±1
i (r)X±

i

) = Δ(X±
i )Δ(r) − Δ

(
σ±1

i (r)
)
Δ(X±

i )

= (X±
i ⊗ X±

i )(r ⊗ 1) − (σ±1
i (r) ⊗ 1

)
(X±

i ⊗ X±
i )

= (X±
i r − σ±1

i (r)X±
i ) ⊗ X±

i = 0

Δ(X±
i X∓

i − σ±1/2(ti t
′
i )
) = Δ(X±

i )Δ(X∓
i ) − Δ

(
σ

±1/2
i (ti t

′
i )
)

= X±
i X∓

i ⊗ X±
i X∓

i − σ
±1/2
i (ti )σ

±1/2
i (t ′i ) ⊗ 1

= σ
±1/2
i (ti ) ⊗ σ

±1/2
i (t ′i ) − σ

±1/2
i (ti ) ⊗ σ

±1/2
i (t ′i ) = 0.

Similarly one checks that

Δ(X+
i X−

j − X−
j X+

i ) = 0, i �= j .

This proves that Δ induces a homomorphism

Δ̃t,t ′ : Ã(tt ′) → A(t) ⊗R A(t ′)

where Ã(tt ′) is the TGWC Ã(R, σ, tt ′). By Lemma 2.2, it remains to show that Δ̃t,t ′(r) is
regular for all nonzero r ∈ R. Since A(t) and A(t ′) are consistent TGWAs, they are torsion-
free R-modules. Localizing at the set of nonzero elements of R, A(t) and A(t ′) become
vector spaces over the field of fractions F of R. Thus A(t) ⊗R A(t ′) can be embedded into
the F -vectorspace (F⊗A(t)

)⊗F

(
F⊗A(t ′)

)
, on which any r ∈ R obviously acts injectively.

(b) Since the maps involved are homomorphisms, it suffices to check that equality holds
when each side is evaluated on the generators. Indeed, when evaluated at X±

i (t t ′t ′′) both
sides become X±

i (t) ⊗ X±
i (t ′) ⊗ X±

i (t ′′). And at r ∈ R both sides equal r ⊗ 1 ⊗ 1 (=
1 ⊗ r ⊗ 1 = 1 ⊗ 1 ⊗ r).

(c) The argument is similar to part (b).
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Example 3.4 Let n = 1, R = C[z], σ(z) = z − 1, then for any k ∈ C we have (see [1]) an
isomorphism A(z − k) ∼= A1(C) = C〈x, ∂〉/(∂x − x∂ − 1) given by

X+ 
→ x, X− 
→ ∂, z 
→ 1

2
(x∂ + ∂x) + k.

For any k, l ∈ C such that k− l ∈ Z, we have (see [1]) also an isomorphism U(sl2)/(C−
λ) ∼= A((z − k)(z − l)) given by

e 
→ √−1X+, f 
→ √−1X−, h 
→ 2z − (k + l)

where C = ef + f e + h2/2 is the Casimir operator and λ = 1
2

(
(k − l)2 + 1

)
. Then ( 3.2)

gives an algebra map

U(sl2)/(C−λ) ∼= A((z−k)(z−l)) → A(z−k)⊗RA(z−l) ∼= A1(C, x)⊗RA1(C, y) (3.5)

where A1(C, x) has generators x, ∂x , and A1(C, y) has generators y, ∂y and R = C[z] acts
on A1(C, x) (resp. A1(C, y)) by z 
→ 1

2 (x∂x + ∂xx) + k (resp. z 
→ 1
2 (y∂y + ∂yy) + l).

The map (3.5) is given on the generators by

e 
→ √−1x⊗y, f 
→ √−1∂x ⊗∂y, h 
→ 1

2
(x∂x +∂xx)⊗1+1⊗ 1

2
(y∂y +∂yy). (3.6)

Definition 3.5 If A is an R-ring, an A-module M is called a weight module if

M =
⊕

m∈MaxSpec(R)

Mm, Mm = {v ∈ M | mv = 0}.

For a weight module M , we define the support of M to be

Supp(M) := {m ∈ MaxSpec(R) | Mm �= 0}.
For t ∈ Ω , we let A(t)-wmod be the category of weight modules M for A(t) such that Mm

is a finite dimensional R/m vector space for all m ∈ MaxSpec(R).

Remark 3.6 Since the automorphisms {σi}ni=1 commute, the groupZn acts onMaxSpec(R) by

(g1, . . . , gn).m = σ
g1
1 · · · σgn

n (m).

For each Z
n-orbit O in MaxSpec(R) there is a corresponding full subcategory of weight

modules whose support is contained in O. We denote this subcategory by A(t)-wmodO .

We have the following result about the category of weight modules, which is mostly
well-known.

Theorem 3.7 Let A(t) = A(R, σ, t) be a consistent TGWA,

(a) A(t)-wmod �
∏

O∈MaxSpec(R)/Zn

A(t)-wmodO .

(b) A(t)-wmodO �AO(t̄)-wmodO whereAO(t̄) is the TGWAA(RO, σ̄ , t̄)whereRO is the
localization S−1

O R, SO =R \∪m∈Om, σ̄i are the induced automorphisms and t̄i =1−1ti .
(c) If α is an automorphism of R which commutes with all σi then A(t)-wmodO �

A(R, σ, α(t))-wmodα(O).

(d) If, for all i, σ
1/2
i (ti ) is invertible in S−1

O R and O is a torsion-free orbit, then the
categoryA(t)-wmodO is equivalent to the category of finite-dimensional vector spaces
(i.e. it is semisimple with a unique simple object up to isomorphism). Moreover, the
unique simple object is isomorphic, as an R-module, to

⊕
m∈O R/m.
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Proof (a) This is well-known, see e.g. [13].
(b) By the localization results in [4] we have S−1

O A(R, σ, t) ∼= A(S−1
O R, σ̄ , t̄). Using

that MaxSpec(RO) = O, it is easy to check that the functor A(t)-wmodO →
AO(t̄)-wmodO given by M 
→ S−1

O M is an equivalence of categories.
(c) By [4], the isomorphism α : RO → Rα(O) lifts to an isomorphism A(RO, σ̄ , t̄) →

A(Rα(O), σ̄ , α(t̄)).
(d) This is proved in [12].

Notice that the σ
1/2
i are appearing here because of our choice of using the

symmetric version of the relations and consistency equations.

Lemma 3.8 If M is a weight module for A(t) and M ′ is a weight module for A(t ′), then
M ⊗R M ′, defined as in (3.1), is a weight module for A(t) ⊗R A(t ′) via the action (a ⊗
a′) · (v ⊗ v′) = av ⊗ a′v′. In particular we have (M ⊗R M ′)m = Mm ⊗R M ′

m for all
m ∈ MaxSpec(R) and Supp(M ⊗R M ′) = Supp(M) ∩ Supp(M ′).

Proof In order to show that the action is well-defined, we need to check that if c ⊗ d ∈
A(t) ⊗R A(t ′) is in the two sided ideal generated by all elements of the form (ra) ⊗ b −
a ⊗ (rb), r ∈ R, then it acts as zero on M ⊗R M ′. Let c ⊗ d = ∑

i (ci ⊗ c′
i )((rai) ⊗ bi −

ai ⊗ (rbi))(di ⊗ d ′
i ), then

(c ⊗ d) · (v ⊗ v′) =
∑

i

(ci ⊗ c′
i )((rai) ⊗ bi − ai ⊗ (rbi))(di ⊗ d ′

i )(v ⊗ v′)

=
∑

i

(ci ⊗ c′
i )((rai) ⊗ bi − ai ⊗ (rbi))(div ⊗ d ′

iv
′)

=
∑

i

(ci ⊗ c′
i )(raidiv ⊗ bid

′
iv

′ − aidiv ⊗ rbid
′
iv

′)

=
∑

i

(ci ⊗ c′
i )(0)

= 0.

Now supposem �= m′ and let v⊗v′ ∈ Mm ⊗R M ′
m′ . Let a ∈ m′ \m, then there exists b ∈ R

such that ba = 1 + m, with m ∈ m. We have then

(ba ⊗ 1)(v ⊗ v′) = (1 ⊗ ba)(v ⊗ v′)
(ba)v ⊗ v′ = v ⊗ (ba)v′

(1 + m)v ⊗ v′ = v ⊗ b(av′)
v ⊗ v′ + (mv) ⊗ v′ = 0

v ⊗ v′ = 0.

On the other hand, if v ⊗ v′ ∈ Mm ⊗R M ′
m, then clearly for all r ∈ m we have (r ⊗ 1)(v ⊗

v′) = (1 ⊗ r)(v ⊗ v′) = 0. It follows that

M ⊗R M ′ =
(
⊕

m

Mm

)

⊗R

(
⊕

m′
M ′

m′

)

=
⊕

m,m′
Mm ⊗R M ′

m′

=
⊕

m

Mm ⊗R M ′
m
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is indeed the weight space decomposition.

We let K0(A(t)-wmod) be the Grothendieck group of the category A(t)-wmod. More
precisely, we define

K0(A(t)-wmod) := Z〈[M] | M ∈ A(t)-wmod〉/ ∼
where we quotient by the abelian subgroup generated by [M ′′] − [M] − [M ′] for all short
exact sequences 0 → M → M ′′ → M ′ → 0 in A(t)-wmod.

Analogously, we define K
split
0 (A(t)-wmod) to be the split Grothendieck group of the

category A(t)-wmod, that is

K
split
0 (A(t)-wmod) := Z〈[M] | M ∈ A(t)-wmod〉/ ∼

where we quotient by the abelian subgroup generated by [M ⊕ M ′] − [M] − [M ′] for all
M, M ′ ∈ A(t)-wmod.

Proposition 3.9 The map (3.2) induces maps

K0(A(t)-wmod) ⊗Z K0(A(t ′)-wmod) → K0(A(tt ′)-wmod) (3.7)

K
split
0 (A(t)-wmod) ⊗Z K

split
0 (A(t ′)-wmod) → K

split
0 (A(tt ′)-wmod) (3.8)

both given by
[M] ⊗ [M ′] 
→ [M ⊗R M ′]

where M ⊗R M ′ is seen as a module for A(tt ′) by restriction under the map (3.2). (By
Lemma 3.8 the weight spaces of M ⊗R M ′ are finite dimensional.)

Proof That the map is well-defined on the split Grothendieck groups is clear because

(M1 ⊕ M2) ⊗R M ′ = (M1 ⊗R M ′) ⊕ (M2 ⊗R M ′)
for all M1, M2 ∈ A(t)-wmod and M ′ ∈ A(t ′)-wmod.

For the case of the Grothendieck groups, we need to show that if 0 → M
i→ S

p→ N →
0 is a short exact sequence in A(t)-wmod, then, for all M ′ ∈ A(t ′)-wmod,

0 → M ⊗R M ′ i⊗IdM′−→ S ⊗R M ′ p⊗IdM′−→ N ⊗R M ′ → 0 (3.9)

is a short exact sequence in A(tt ′)-wmod.

Suppose then that 0 → M
i→ S

p→ N → 0 is a short exact sequence of weight modules
for A(t), in particular i and p are maps of R-modules, so for all m ∈ MaxSpec(R) we can
define im : Mm → Sm, and pm : Sm → Nm. We then have that, for all m ∈ MaxSpec(R),

0 → Mm
im→ Sm

pm→ Nm → 0

is a short exact sequence of R-modules. Since all the modules involved in the sequence are
annihilated by m, this is also a short exact sequence of R/m-modules. Now consider the
sequence

0 → Mm ⊗R M ′ im⊗IdM′−→ Sm ⊗R M ′ pm⊗IdM′−→ Nm ⊗R M ′ → 0 (3.10)

which by Lemma 3.8 is the same as the following sequence of R-modules

0 → Mm ⊗R M ′
m

im⊗IdM′−→ Sm ⊗R M ′
m

pm⊗IdM′−→ Nm ⊗R M ′
m → 0. (3.11)
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Again, we can also consider (3.11) as a sequence of R/m-modules, and, since R/m is a
field, M ′

m is free over R/m, hence the sequence (3.11), which is the same as (3.10), is
exact. Since (3.10) is a short exact sequence of R/m-modules and R-modules, by taking
the direct sum over all m, we get that (3.9) is a short exact sequence of R-modules. But the
maps in (3.9) are actually maps of A(t) ⊗R A(t ′)-modules and maps of A(tt ′)-modules, so
the statement is proved.

Example 3.10 Using the map from Example 3.4, we get that if M1, M2 are weight modules
for the Weyl algebra A1(C), and if we fix two identifications A(z−	) ∼= A1(C) ∼= A(z−k),
then there is a canonical structure of a U(sl2)-module on M1 ⊗C[z] M2. We take k − l ∈
Z≥0, A(z − k) � A1(C, x), A(z − l) � A1(C, y). We let M−

x � A1(C, x)/A1(C, x)x,
M+

y � A1(C, y)/A1(C, y)∂y , M−
y � A1(C, y)/A1(C, y)y.

Then M−
x = ⊕

s≥0 C∂s
x is a simple weight module, with C∂s

x = (M−
x )(z−(k−1/2−s)).

Analogously,

M−
y =

⊕

s≥0

(M−
y )(z−(l−1/2−s)) =

⊕

s≥0

C∂s
y, M+

y =
⊕

s≥0

(M+
y )(z−(l+1/2+s)) =

⊕

s≥0

Cys .

Then, we have the weight space decomposition

M−
x ⊗C[z] M+

y =
k−l−1⊕

s=0

C∂s
x ⊗ yk−l−1−s

which is nonzero if k − l > 0. When k − l > 0, let vs = (
√−1)s∂s

x ⊗ yk−l−1−s . We have
that by (3.6), the action of the generators of sl2 is given by

e · vs = √−1(x ⊗ y)(
√−1)s∂s

x ⊗ yk−l−1−s

= (
√−1)s+1x∂s

x ⊗ yyk−l−1−s

= (−1)(
√−1)s−1(−s)∂s−1

x ⊗ yk−l−1−(s−1)

= svs−1

f · vs = √−1(∂x ⊗ ∂y)(
√−1)s∂s

x ⊗ yk−l−1−s

= (
√−1)s+1∂x∂

s
x ⊗ ∂yy

k−l−1−s

= (
√−1)s+1∂s+1

x ⊗ (k − l − 1 − s)yk−l−1−(s+1)

= (k − l − 1 − s)vs+1

h · vs =
(
1

2
(x∂x + ∂xx) ⊗ 1 + 1 ⊗ 1

2
(y∂y + ∂yy)

)

(
√−1)s∂s

x ⊗ yk−l−1−s

= 1

2
(
√−1)s(x∂x + ∂xx)∂s

x ⊗ yk−l−1−s + 1

2
(
√−1)s∂s

x ⊗ (y∂y + ∂yy)yk−l−1−s

= 1

2
(
√−1)s

(
(−2s − 1)∂s

x ⊗ yk−l−1−s + (2(k − l − 1 − s) + 1)∂s
x ⊗ yk−l−1−s

)

= (k − l − 1 − 2s)(
√−1)s∂s

x ⊗ yk−l−1−s

= (k − l − 1 − 2s)vs .

Hence M−
x ⊗C[z] M+

y is isomorphic to the irreducible finite dimensional representation of
sl2 with highest weight k − l − 1. With a similar computation, it can be checked that for
k − l ≥ 0, M−

x ⊗C[z] M−
y = ⊕

s≥0 C∂k−l+s
x ⊗∂s

y is isomorphic to the irreducible Verma
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module with highest weight l − k − 1. In fact, we can also obtain nonirreducible Verma
modules as tensor products in a similar way, see Proposition 4.12.

Remark 3.11 It would be tempting to restrict ourselves to the subcategory of A(t)-wmod
consisting of modules of finite length, unfortunately the tensor product of two finite length
modules need not be finite length in general, as the next example shows. It is however true
that, for many choices of (R, σ ), finite length modules will be closed under taking tensor
products.

Example 3.12 We provide an example of (R, σ ) in which the tensor product of two simple
modules need not have finite length.

Let R be the algebra of entire functions in the complex plane. Put i = √−1. Let n = 2
and define σ1

(
f (z)

) = f (z+1) and σ2
(
f (z)

) = f (z+ i). Pick an entire function ζ : C →
C with zero set equal to Z. For example one can take ζ(z) = exp(2πiz) − 1. Let

t1(z) = ζ
(z + 1/2

1 + i

)
, t2(z) = ζ

(z − i/2

1 + i

)
. (3.12)

Then t = (t1, t2) solve the consistency equations (2.3). Furthermore, let

s1(z) = ζ
(z − 1/2

1 + i

)
, s2(z) = ζ

(z + i/2

1 + i

)
. (3.13)

Then s = (s1, s2) is another solution to (2.3).
For (a, b) ∈ Z

2, let m(a,b) be the maximal ideal
(
z − (a + bi)

)
of R, and consider the

integral orbit O = {m(a,b) = (z − (a + bi)
) | (a, b) ∈ Z

2} which is torsion-free.
Since R is a domain and Z2 acts faithfully on R (since σk

1 σ l
2(z) = z+(k+il)), it follows

by [9, Thm. 5.1] that R is maximal commutative in any A(f ) for any solution f = (f1, f2),
(with fi �= 0), to the consistency equations (2.3).

Therefore, according to the main results of [7] (more clearly explained in [8, Sec. 3.5]),
there is a bijection between the set of isomorphism classes of simple weight A(f )-modules
and connected components of Specm(R), where connectedness∼ is defined to be the small-
est equivalence relation such that σ

−1/2
i (m) ∼ σ

1/2
i (m) if fi /∈ m for all i. Note that

different orbits are always disconnected.
The orbit O under consideration here has two connected components with respect to t ,

and two with respect to s:

O = O+
t � O−

t , O+
t = {ma,b | a < b}, O−

t = {ma,b | a ≥ b},
O = O+

s � O−
s , O+

s = {ma,b | a ≤ b}, O−
s = {ma,b | a > b}.

On the other hand,O has infinitely many connected components with respect to ts:

O=O+
ts �
( ⊔

a∈Z
Oa

ts

)∪O−
ts , O+

ts ={ma,b | a<b}, O−
ts ={ma,b | a>b}, Oa

ts ={ma,a}.

Thus A(t)-wmodO has exactly two simple weight modules M± and similarly A(s)-wmodO
has two simple weight modules N±. But the A(ts)-module M− ⊗ N+ does not have finite
length, as it is the direct sum of countably infinitely many one-dimensional simple modules.

Definition 3.13 Let Γ ⊂ Ω be a multiplicatively closed subset, then we can define two
Γ -graded C-algebras

A (Γ ) =
⊕

t∈Γ

C ⊗Z K0(A(t)-wmod) A split(Γ ) =
⊕

t∈Γ

C ⊗Z K
split
0 (A(t)-wmod)
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with multiplication given by the map (3.7).

Remark 3.14 By Theorem 3.3(b) and (c), multiplication in A (Γ ) and A split(Γ ) is
associative and commutative.

Proposition 3.15 We have the following direct products of C-algebras:

A (Γ ) =
∏

O∈MaxSpec(R)/Zn

A (Γ,O), A split(Γ ) =
∏

O∈MaxSpec(R)/Zn

A split(Γ,O)

(3.14)
where A (Γ,O) =⊕t∈Γ C ⊗Z K0(A(t)-wmodO) and analogously for A split(Γ,O).

Proof From Theorem 3.7(a), we have the direct products in (3.14) as vector spaces. By
Lemma 3.8, if M ∈ A(t)-wmodO and M ′ ∈ A(t ′)-wmodO′ withO �= O′, then M⊗R M ′ =
0 because the supports are disjoint. This proves that the factors in (3.14) are orthogonal
under the multiplication we defined.

Remark 3.16 For all O ∈ MaxSpec(R)/Zn, t ∈ Γ , there is a canonical surjective map of
abelian groups

K
split
0 (A(t)-wmodO) � K0(A(t)-wmodO), [M] 
→ [M],

which induces a canonical surjective C-algebra map

A split(Γ,O) � A (Γ,O). (3.15)

Remark 3.17 Let 1 = (1, . . . , 1) ∈ Rn, then for any R and σ , we have 1 ∈ Ω and
A(1) � R � Z[X±1

1 , . . . , X±1
n ] (see [13, Example 1], although in that case σi = 1

for all i). By Theorem 3.7, if O is a torsion-free orbit, there is a unique simple object
M1 ∈ A(1)-wmodO , and M1

m � R/m. Given anym0 ∈ MaxSpec(R), and m0 ∈ M1
m0

, then

M1
σ

g1
1 ···σgn

n (m)
= R(X

g1
1 · · ·Xgn

n )m0 for all (g1, . . . , gn) ∈ Z
n.

Proposition 3.18 IfO is a torsion-free orbit, 1 ∈ Γ , and M1 is the unique simple object in
A(1)-wmodO , then A (Γ,O) (resp. A split(Γ,O)) is unital, with identity given by [M1] ∈
K0(A(1)-wmodO) (resp. Ksplit

0 (A(1)-wmodO)).

Proof We fix m0 ∈ MaxSpec(R), and m0 ∈ M1
m0

, so that

M1 =
⊕

m∈O
M1

m =
⊕

(g1,...,gn)∈Zn

R(X
g1
1 · · · Xgn

n )m0.

Notice that we also have

M =
⊕

m∈O
Mm =

⊕

(g1,...,gn)∈Zn

M
σ

g1
1 ···σgn

n (m)
.

We define a map ρ : M → M ⊗R M1 by

ρ(m) = m ⊗ (X
g1
1 · · · Xgn

n )m0, if m ∈ M
σ

g1
1 ···σgn

n (m)
.

We claim that ρ is an isomorphism of weight modules for A(t), where M ⊗R M1 is consid-
ered an A(t) = A(t · 1)-module via the map Δt,1 from (3.2). In the following computation,
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we have denoted the generators in A(t) by X±
i (t) and the generators in A(1) by X±1

i . First
of all, ρ is indeed a map of A(t)-modules because

ρ(r · m) = rm ⊗ (X
g1
1 · · ·Xgn

n )m0 = (r ⊗ 1)m ⊗ (X
g1
1 · · ·Xgn

n )m0 = Δt,1(r) · ρ(m),

ρ(X±
i (t) · m) = X±

i (t)m ⊗ (X
g1
1 · · ·Xgi±1

i · · · Xgn
n )m0

= X±
i (t)m ⊗ X±1

i (X
g1
1 · · ·Xgn

n )m0

= (X±
i (t) ⊗ X±1

i )(m ⊗ (X
g1
1 · · · Xgn

n )m0)

= Δt,1(X
±
i (t))ρ(m).

Then ρ is invertible, with inverse given by the map m ⊗ r(X
g1
1 · · ·Xgn

n )m0 
→ rm, so it is
indeed an isomorphism.

Definition 3.19 For a fixed R, σ , and O ∈ MaxSpec(R)/Zn, we let

Ω×
O := {t ∈ Ω | σ

1/2
i (ti ) �∈

⋃

m∈O
m ∀i = 1, . . . , n }

= {t ∈ Ω | σ
1/2
i (ti ) is invertible in S−1

O R ∀i = 1, . . . , n }.

Notice that if t, t ′ ∈ Ω×
O , then t t ′ ∈ Ω×

O .

Lemma 3.20 Suppose O is a torsion-free orbit, and let t, t ′ ∈ Ω×
O . Let Mt (resp. Mt ′ ) be

the unique simple module in A(t)-wmodO (resp. A(t ′)-wmodO), then Mt ⊗R Mt ′ � Mtt ′

as A(tt ′)-modules, via the map Δt,t ′ of (3.2), where Mtt ′ is the unique simple module in
A(tt ′)-wmodO .

Proof By Lemma 3.8, we know that Mt ⊗R Mt ′ is a weight module for A(tt ′), and,
as R-modules, we have (Mt ⊗R Mt ′)m � R/m ⊗R R/m � R/m. Since the category
A(tt ′)-wmodO is semisimple with a unique simple object, the result follows.

Corollary 3.21 IfO is a torsion-free orbit and Γ ⊂ Ω×
O , thenA (Γ,O) � A split(Γ,O) �

C[Γ ] where C[Γ ] is the semigroup ring.

Proof By Theorem 3.7(d), if t ∈ Ω×
O , the category A(t)-wmodO is semisimple with a

unique simple Mt up to isomorphism, hence K0(A(t)-wmod) = K
split
0 (A(t)-wmod) =

Z[Mt ]. The result then follows from Lemma 3.20.

Proposition 3.22 If O is a torsion-free orbit, t ∈ Ω and t× ∈ Ω×
O then the category

A(t)-wmodO is equivalent to the category A(t · t×)-wmodO via the functor

M 
→ M ⊗R Mt× (3.16)

where Mt× is the unique simple object in A(t×)-wmodO .

Proof By Theorem 3.7(b), we have A(t)-wmodO � AO(t̄)-wmodO . Now, we define a
functor Ft̄× : AO(t̄)-wmodO → AO(t̄ t̄×)-wmodO by

M 
→ M ⊗RO Mt̄×
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where Mt̄× is the unique simple object. Since, t× ∈ Ω×, its image t̄× ∈ (RO)n is
invertible. Hence we can define another functor

F(t̄×)−1 : AO(t̄ t̄×)-wmodO → AO(t̄)-wmodO, N 
→ N ⊗RO M(t̄ ′)−1

where M(t̄×)−1
is the unique simple object. Then we have the compositions

F(t̄×)−1Ft̄×(M) = (M ⊗RO Mt̄) ⊗RO M(t̄×)−1

= M ⊗RO (Mt̄ ⊗RO M(t̄×)−1
)

( by Lemma 3.20 ) � M ⊗RO M1

( by Prop. 3.18 ) � M

and analogously

Ft̄×F(t̄×)−1(N) = N .

It follows that Ft̄× and F(t̄×)−1 are equivalences of categories, hence, by applying again
Theorem 3.7, we have a chain of equivalences

A(t)-wmodO � AO(t̄)-wmodO � AO(t̄ t̄×)-wmodO � A(tt×)-wmodO

and the composition of functors is given exactly by (3.16).

Remark 3.23 Let Γ ⊂ Ω be a monoid (i.e. 1 ∈ Γ ), let O be a torsion-free orbit, and let
Γ × := Γ ∩ Ω×

O , then we have a short exact sequence of monoids

1 → Γ × → Γ → Γ/Γ × → 1 (3.17)

which by Corollary 3.21 induces the inclusions

C[Γ ×] � A (Γ ×,O) ↪→ A (Γ,O), C[Γ ×] � A split(Γ ×,O) ↪→ A split(Γ,O).

We can also define the quotient algebras

A (Γ /Γ ×,O) := A (Γ,O)/
([M] − [M ⊗R Mt ] | ∀M, ∀t ∈ Γ ×) ,

A split(Γ /Γ ×,O) := A split(Γ,O)/
([M] − [M ⊗R Mt ] | ∀M, ∀t ∈ Γ ×) ,

which are graded by the quotient monoid Γ/Γ ×.

Proposition 3.24 IfO is a torsion-free orbit and the short exact sequence (3.17) splits, i.e.
there is a monoid Γ ′ such that Γ = Γ ×·Γ ′ and Γ ×∩Γ ′ = {1}, then we have isomorphisms
of graded C-algebras

A (Γ /Γ ×,O) � A (Γ ′,O), A (Γ,O) � C[Γ ×] ⊗C A (Γ ′,O),

A split(Γ /Γ ×,O) � A split(Γ ′,O), A split(Γ,O) � C[Γ ×] ⊗C A split(Γ ′,O).

Proof Since (3.17) splits, for all t ∈ Γ , we can write in a unique way t = t×t ′, with
t× ∈ Γ ×, t ′ ∈ Γ ′. We define a map α to be the composition of the obvious inclusion with
the quotient map

A (Γ ′,O) ↪→ A (Γ,O) � A (Γ /Γ ×,O)

which is clearly an algebra map. We define a map going the other way

β : A (Γ /Γ ×,O) → A (Γ ′,O)
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as follows. Let M ∈ A(t)-wmod, for t = t×t ′ ∈ Γ = Γ × · Γ ′, then by Proposition 3.22,
M � Mt× ⊗ M ′ for some M ′ ∈ A(t ′)-wmod, so we define

β([M]) = [M ′].
It is clear that β is well-defined on the quotient, and that for t ∈ Γ ′ we have t ′ = t , so for
[M] ∈ A (Γ ′,O)

(β ◦ α)([M]) = β([M]) = [M ′] = [M].
We also have, for [M] ∈ A (Γ /Γ ′,O),

(α ◦ β)([M]) = α([M ′]) = [M ′] = [M ′ ⊗R Mt×] = [M].
Hence β is a two sided inverse of α and they are both isomorphisms.

Now consider the map

δ : A (Γ,O) � A (Γ ×,O) ⊗C A (Γ ′,O), δ([M]) = [Mt×] ⊗ [M ′]
for M ∈ A(t)-wmod and M � Mt× ⊗R M ′. We now show that δ is an algebra map.
If M ∈ A(t)-wmod, N ∈ A(u)-wmod, then tu = t×t ′u×u′ = (tu)×(tu)′, and M �
Mt× ⊗R M ′, N � Mu× ⊗R N ′. So, using Theorem 3.3, we have the following isomorphisms
of A(tu)-modules:

M ⊗R N � (Mt× ⊗R M ′) ⊗R (Mu× ⊗R N ′)
� Mt× ⊗R Mu× ⊗R M ′ ⊗R N ′

� Mt×u× ⊗R (M ′ ⊗R N ′)
� M(tu)× ⊗R (M ′ ⊗R N ′).

Hence (M ⊗R N)′ � M ′ ⊗R N ′ and

δ([M] · [N ]) = δ([M ⊗R N ])
= [M(tu)×] ⊗ [(M ⊗R N)′]
= [Mt×u×] ⊗ [M ′ ⊗R N ′]
= [Mt× ⊗R Mu×] ⊗ [M ′ ⊗R N ′]
= ([Mt×] · [Mu×]) ⊗ ([M ′] · [N ′])
= ([Mt×] ⊗ [M ′]) · ([Mu×] ⊗ [N ′])
= δ([M]) · δ([N ]).

We can also define

ε : A (Γ ×,O) ⊗C A (Γ ′,O) → A (Γ,O), ε([M] ⊗ [N ]) = [M ⊗R N ]
and it is clear that ε is the inverse of δ, hence they are isomorphisms. Finally, we use
Corollary 3.21 to conclude the proof for the A ’s. The arguments for the A split’s are
identical.

Proposition 3.25 Let O ∈ MaxSpec(R)/Zn be a torsion-free orbit. Let Γ1, Γ2 ⊂ Ω be
submonoids, and let γ : Γ1 → Ω×

O be a monoid map such that the map

φ : Γ1 → Γ2, φ(t) = γ (t) · t

is a monoid isomorphism. Then we have isomorphisms of C-algebras

A (Γ1,O) � A (Γ2,O), A split(Γ1,O) � A split(Γ2,O).
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Remark 3.26 The isomorphisms are actually graded isomorphisms if we identify the
grading monoids via φ.

Proof We prove the statement for theA ’s, the statement for theA split is entirely analogous.
We define a map

α : A (Γ1,O) → A (Γ2,O), [M] 
→ [M ⊗R Mγ(t)]
where M ∈ A(t)-wmod, t ∈ Γ1, Mγ(t) is the unique simple module in A(γ (t))-wmod,
and M ⊗R Mγ(t) is an A(γ (t) · t) = A(φ(t))-module. Notice that if M ∈ A(t)-wmod,
N ∈ A(u)-wmod, then

α([M] · [N ]) = α([M ⊗R N ])
= [(M ⊗R N) ⊗R Mγ(tu)]
= [M ⊗R N ⊗R Mγ(t)γ (u)]
= [M ⊗R N ⊗R Mγ(t) ⊗R Mγ(u)]
= [(M ⊗R Mγ(t)) ⊗R (N ⊗R Mγ(u))]
= α([M]) · α([N ])

so α is an algebra map. We also define β : A (Γ2,O) → A (Γ1,O) as follows: let u ∈ Γ2,
N ∈ A(u)-wmod, then N � N ′ ⊗R Mγ(φ−1(t)), we define

β([N ]) = [N ′].
Then for all M ∈ A(t)-wmod, t ∈ Γ1, we have

(β ◦ α)([M]) = β([M ⊗R Mγ(t)]) = [M],
and for all N ∈ A(u)-wmod, u ∈ Γ2,

(α ◦ β)([N ]) = α([N ′]) = [N ′ ⊗ Mγ(φ−1(u))] = [N ].
Hence α and β are inverses of each other and they are isomorphisms.

4 Rank one setting (Line)

We retain all notation of Section 3 and we explictly describe the algebras introduced there,
in the special case of n = 1, R = C[z], and σ 1/2(z) = z − 1

2 .
In this case Ω = C[z] \ {0} and for all t ∈ Ω we have the TGWA A(t) generated by X+

and X−, with relations

X+X− = σ 1/2(t), X−X+ = σ−1/2(t),

X+r = σ(r)X+, X−r = σ−1(r)X−,

for all r ∈ C[z].
We have MaxSpec(R) = {(z − λ) | λ ∈ C} with Z-action given by σ(z − λ) = (z −

λ − 1). The orbits of this action can then be parametrized by C/Z. If λ + Z ∈ C/Z,
the corresponding orbit is Oλ+Z = {(z − λ + Z)}, in particular we will consider OZ =
{(z − λ) | λ ∈ Z}.
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Remark 4.1 Let λ ∈ C/Z, thenO = Oλ+Z is a torsion-free orbit, and we have

Ω×
O = {t ∈ C[z] \ {0} | σ 1/2(t) �∈

⋃

m∈O
m}

= {t = α
∏

k∈C
(z − k)nk | σ 1/2(t) �∈

⋃

s∈Z
(z − λ + s)}

= {α
∏

k∈C
(z − k)nk | α

∏

k∈C
(z − k − 1/2)nk �∈

⋃

s∈Z
(z − λ + s)}

= {α
∏

k∈C
(z − k)nk | nk = 0 if k + 1/2 ∈ λ + Z}

= {α
∏

k �∈λ+1/2+Z

(z − k)nk | α ∈ C
×, nk ≥ 0}.

In all the products here, nk > 0 for only finitely many terms.
Then, the short exact sequence of monoids

1 → Ω×
O → Ω → Ω/Ω×

O → 1

splits, with

Ω/Ω×
O � Ω ′ := {

∏

s∈Z
(z − λ − 1/2 − s)ns ∈ Ω | ns ≥ 0}.

In particular, the reason this short exact sequence splits is that in a polynomial ring we
always have a canonical choice of monic polynomials as representatives of each maximal
ideal.

To describe A (Ω) and A split(Ω), by Proposition 3.15, it is enough to describe
A (Ω,O) and A split(Ω,O). Also, by Remark 4.1 and Proposition 3.24 we have
A (Ω,O) � C[Ω×

O] ⊗ A (Ω ′,O) (and similarly for A split(Ω,O)) so it is enough to
describe A (Ω ′,O). Since all the orbits O ∈ MaxSpec(C[z])/Z are isomorphic, we will
only explicitly examine the case ofO = OZ, the other orbits will give isomorphic algebras.
For the rest of this section, we fixO = OZ and

Ω ′ := {t ∈ C[z] | t =
∏

s∈Z+ 1
2

(z − s)ns , ns ≥ 0}.

4.1 The AlgebraA (Ω ′,O)

Since 1 ∈ Ω ′ and O is torsion-free, by Proposition 3.18 the algebra A (Ω ′,O) is unital,
with identity element [M1], where M1 ∈ A(1)-wmodO is the unique simple module.

Let t ∈ Ω ′, t �= 1, then t =∏
s∈Z+ 1

2
(z − s)ns , and we consider the set of zeros of t ,

Z(t) :=
{

s ∈ Z + 1

2
| ns > 0

}

,

which we order and extend with infinities on both sides

Ẑ(t) := {s0 = −∞ < s1 < s2 < . . . < s	 < s	+1 = ∞ | si ∈ Z(t), i = 1, . . . , 	 = 	(t)}.

Proposition 4.2 ([1]) Up to isomorphism, the simple weight modules for A(t) are

{Mt
si ,si+1

| si , si+1 ∈ Ẑ(t), i = 0, . . . , 	(t)}
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where Supp(Mt
si ,si+1

) = {(z − k) | k ∈ Z, si < k < si+1}.
Moreover, (Mt

si ,si+1
)(z−k) � Cvk is one dimensional, and the action of A(t) satisfies the

following

X+vk = 0, if k + 1 > si+1 X+vk ∈ C
×vk+1, if k + 1 < si+1

X−vk = 0, if k − 1 < si X−vk ∈ C
×vk−1, if k − 1 > si .

From Proposition 4.2, the following results follow immediately.

Corollary 4.3 Let t ∈ Ω ′, t �= 1, then

K0(A(t)-wmodO) �
	(t)⊕

i=0

Z[Mt
si ,si+1

].

Corollary 4.4 Let t, u ∈ Ω ′ \ {1}, si , si+1 ∈ Ẑ(t), wj ,wj+1 ∈ Ẑ(u) then

Mt
si ,si+1

⊗C[z]Mu
wj ,wj+1

�
{

Mtu
max{si ,wj },min{si+1,wj+1} if max{si , wj } < min{si+1, wj+1},

0 otherwise.

We can then give a description for the algebra A (Ω ′,O) in terms of a basis.

Theorem 4.5 As Ω ′-graded vector spaces, we have

A (Ω ′,O) � C[M1] ⊕
⊕

t∈Ω ′, t �=1

	(t)⊕

i=0

C[Mt
si ,si+1

]

with multiplication in A (Ω ′,O) given by Corollary 4.4 and the fact that [M1] is the
identity.

Proof This follows directly from the above.

Theorem 4.6 We have an isomorphism of Ω ′-graded algebras
A (Ω ′,O) � C[x±

s | s ∈ Z + 1
2 ]/(x−

s x+
w | s ≤ w)

given by
x−
s 
→ [Mz−s−∞,s], x+

s 
→ [Mz−s
s,∞].

Proof Consider the map

α : C[x±
s | s ∈ Z + 1

2 ] → A (Ω ′,O), x−
s 
→ [Mz−s−∞,s], x+

s 
→ [Mz−s
s,∞].

We show that α is surjective by proving that A (Ω ′,O) is generated as an algebra by
[Mz−s−∞,s], [Mz−s

s,∞], s ∈ Z + 1
2 . We will proceed by induction on the degree of t . If

t ∈ Ω ′, deg t = 1, then t = z − s, s ∈ Z + 1
2 and [Mz−s−∞,s], [Mz−s

s,∞] form a basis for
K0(A(t)-wmodO). Now suppose that deg t > 1, t = (z − s1)

n1 · · · (z − s	)
n	 , ni ≥ 1,

i = 1, . . . , 	. Let t̄ = t
z−s1

. If n1 > 1, then Ẑ(t̄) = Ẑ(t) and

Mt
si ,si+1

�
{

Mt̄−∞,s1
⊗C[z] M

z−s1−∞,s1
if i = 0,

Mt̄
si ,si+1

⊗C[z] M
z−s1
s1,∞ if i ≥ 1.
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If n1 = 1, then Ẑ(t̄) = {−∞ < s2 < s3 < . . . s	 < ∞} and hence we have

Mt
si ,si+1

�

⎧
⎪⎨

⎪⎩

Mt̄−∞,s2
⊗C[z] M

z−s1−∞,s1
if i = 0,

Mt̄−∞,s2
⊗C[z] M

z−s1
s1,∞ if i = 1,

Mt̄
si ,si+1

⊗C[z] M
z−s1
s1,∞ if i ≥ 2.

The claim follows then by the inductive hypothesis, since deg t̄ < deg t .
By Corollary 4.4, if s ≤ w, we have

[Mz−s−∞,s] · [Mz−w
w,∞] = [Mz−s−∞,s ⊗C[z] Mz−w

w,∞] = 0

hence (x−
s x+

w | s ≤ w) ⊂ ker(α) and we get an induced map

C[x±
s | s ∈ Z + 1

2 ]/(x−
s x+

w | s ≤ w) � A (Ω ′,O)

and the result will follow from the fact that this induced map is injective. Notice that a basis
for C[x±

s | s ∈ Z + 1
2 ]/(x−

s x+
w | s ≤ w) is given by

{(x+
w1

)n1(x+
w2

)n2 · · · (x+
wa

)na | w1 < w2 < · · · < wa, ni ≥ 1}∪
∪{(x−

s1
)m1(x−

s2
)m2 · · · (x−

sb
)mb | s1 < s2 < · · · < sb, mj ≥ 1}∪

∪{(x+
w1

)n1 · · · (x+
wa

)na (x−
s1

)m1 · · · (x−
sb

)mb | w1 < · · · < wa < s1 < · · · sb, ni,mj ≥ 1}∪{1}.
Then

(x+
w1

)n1(x+
w2

)n2 · · · (x+
wa

)na 
→
[
M

∏a
i=1(z−wi)

ni

wa,∞
]

(x−
s1

)m1(x−
s2

)m2 · · · (x−
sb

)mb 
→
[

M

∏b
j=1(z−sj )

mj

−∞,s1

]

(x+
w1

)n1 · · · (x+
wa

)na (x−
s1

)m1 · · · (x−
sb

)mb 
→
[

M

∏a
i=1(z−wi)

ni
∏b

j=1(z−sj )
mj

wa,s1

]

1 
→ [M1]
which shows that the image of a basis is linearly independent, hence the map is injective,
which concludes the proof.

4.2 The AlgebraA split(Ω ′,O)

Indecomposable weight modules over a rank one generalized Weyl algebra were classified
in [3]. In the case of torsion-free orbit the simple modules are determined by their support.
However the indecomposable modules are not, and it will be convenient for our purpose of
the description of tensor products to introduce a notion of “directed” subsets. We only need
to consider subsets of R.

4.2.1 Directed subsets

A directed subset of R is a subset where some of the elements have a directionality
(left/right) to their membership. Formally, a directed subset S of R is a function S : R →
{0, 1, →,←}. We write k ∈ S if S(k) ∈ {1,→, ←} and k /∈ S if S(k) = 0. We further

write k
→∈ S if S(k) =→ and k

←∈ S if S(k) =←. We call k a directed element of S if
S(k) ∈ {→,←}. We say k is an undirected element of S if S(k) = 1.

The underlying set of S is defined to be
◦
S := S−1({1, →,←}).
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Any subset of R can be thought of as a directed subset taking values in {0, 1}. The
intersection S ∩ T of any two directed subsets S and T is defined to be

(S ∩ T )(k) = S(k) · T (k) ∀k ∈ R, (4.1)

where · is the commutative binary operation on {0, 1, →, ←} satisfying
1 · x = x, 0 · x = 0, x · x = x, → · ←= 0. (4.2)

We will be interested in directed subsets of R whose underlying sets are open, and
directed elements are half-integers.

Example 4.7 Let S be the directed subset S of R given by

◦
S =

(
1

2
, ∞
)

,
3

2

→∈ S,
5

2

←∈ S,
7

2

←∈ S

and remaining elements undirected. Similarly let T be given by

◦
T =

(

−∞,
9

2

)

, −1

2

←∈ T ,
3

2

←∈ T ,
7

2

←∈ T

and remaining elements undirected. Let U = S ∩ T . Then

◦
U =

(
1

2
,
3

2

)

∪
(
3

2
,
9

2

)

,
5

2

←∈ U,
7

2

←∈ U

and remaining elements undirected.

We say S and T are strongly disjoint if the underlying sets of S and T are disjoint. The
union S ∪ T of S and T , defined when S and T are strongly disjoint, is defined to be

(S ∪ T )(x) = S(x) + T (y), where x + 0 = x = x + 0 for x ∈ {0, 1, →,←}. (4.3)

Lastly, we say that a directed subset S of R is connected if
◦
S is a connected subset of R.

4.2.2 Semi-indecomposable modules

It turns out it is easier to describe the tensor product rule if we generalize indecomposable
modules to what we call semi-indecomposable modules. The reason is that the class of
indecomposable modules is not closed under the tensor product, but the wider class of semi-
indecomposable modules is.

Definition 4.8 A module is semi-indecomposable if it is a direct sum of pairwise non-
isomorphic indecomposable modules.

To describe these we need admissible directed subsets.

Definition 4.9 Let t ∈ Ω ′ be a monic polynomial with zero set equal to {k1, k2, . . . , kr } ⊆
Z + 1

2 . A directed subset S of R is t-admissible if it satisfies the following conditions:

(i) The underlying set of S is an intersection of open intervals of the form (ki, ∞) and
(−∞, ki).

(ii) The directed elements of S are exactly the elements of
◦
S ∩ {k1, k2, . . . , kr }.

The set of t-admissible directed subsets of R will be denoted by Pdir
t (R).
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We have

S ∩ S′ ∈ Pdir
t t ′ (R) for all (S, S′) ∈ Pdir

t (R) × Pdir
t ′ (R) (4.4)

S ∪ S′ ∈ Pdir
t (R) for all strongly disjoint S, S′ ∈ Pdir

t (R). (4.5)

The point now is that Pdir
t (R) precisely parametrize semi-indecomposable modules for

a generalized Weyl algebra A(t). This part is a direct consequence of a special case of [3].
But moreover, the tensor product simply corresponds to intersection. More precisely, we
have the following:

Theorem 4.10 Let R = C[z], σ(z) = z − 1, and

t = (z − k1)
m1(z − k2)

m2 · · · (z − kr )
mr ∈ C[z],

where r ∈ Z≥0, ki ∈ Z + 1
2 , mi ∈ Z>0. (So t = 1 if r = 0.) Let O = {(z − x) | x ∈ Z}

be the integral orbit in Specm(C[z]) under the action of 〈σ 〉. Let A(t) = R(σ, t) denote the
corresponding generalized Weyl algebra.

(a) For each t-admissible directed subset S of R there is a unique (up to isomorphism)
semi-indecomposable object Mt

S in A(t)−wmodO such that (i) Supp(Mt
S) = S ∩ Z;

(ii) If v ∈ Mt
S is a nonzero weight vector of weight ki − 1

2 then X+v �= 0 if and only if
S(ki) =→; (iii) If v ∈ Mt

S is a nonzero weight vector of weight ki + 1
2 then X−v �= 0

if and only if S(ki) =←;
(b) The assigment S 
→ [Mt

S] is a bijection between the set of t-admissible directed
subset S of R and the set of isomorphism classes of semi-indecomposable objects in
A(t)−wmodO . Moreover, Mt

S is indecomposable if and only if the underlying set of S
is connected.

(c) If t and t ′ are two monic polynomials in C[z] with zero sets being finite subsets of
Z + 1

2 , and if S ∈ Pdir
t (R) and S′ ∈ Pdir

t ′ (R) then

Mt
S ⊗C[z] Mt ′

S′ ∼= Mtt ′
S∩S′ (4.6)

as A(tt ′)-modules.
(d) For any submonoid Γ of the monoid of monic polynomials with half-integer roots,

there is a C-algebra isomorphism

A split(Γ,O) ∼= C[xS,t | t ∈ Γ, S ∈ Pdir
t (R)]/(Rels) (4.7)

K
split
0 (A(t)−wmodO)� [Mt

S] 
→ xS,t (4.8)

where the relations are given by

xS,t xT ,t ′ = xS∩T ,tt ′ (4.9)

xS,t + xT,t = xS∪T ,t when S and T are strongly disjoint. (4.10)

Proof (a) and (b) are immediate by the classification of indecomposable weight modules
over GWAs from [3].

(c) Put W = Mt
S ⊗C[z] Mt ′

S′ . By part (a) it suffices to check that W satisfies properties (i)-
(iii) from part (a) with respect to the t t ′-admissible directed subset S∩S′. By Lemma 3.8, W
is a weight module with support equal to Supp

(
Mt

S

)∩ Supp
(
Mt ′

S′
) = (S ∩Z) ∩ (S′ ∩Z) =

(S ∩ S′) ∩ Z. Suppose v ⊗ v′ is a nonzero weight vector in W of weight ki − 1
2 . Then

X+(v ⊗ v′) = (X+v)⊗ (X+v′) which is nonzero if and only if S(ki) =→ and S′(ki) =→.
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By our definition of intersection of directed subsets, this is equivalent to (S ∩ S′)(ki) =→.
Similarly X−(v ⊗ v′) is nonzero if and only if (S ∩ S′)(ki) =←.

(d) Let B = C[xS,t | t ∈ Γ, S ∈ Pdir
t (R)] and define a map

Φ : B → A split(Γ,O)

by
xS,t 
→ [Mt

S].
Φ is surjective: Every object is a finite sum of indecomposables. Every indecomposable is
of the form Mt

S by part (a).
(Rels)⊆ kerΦ: Relations (4.9) belong to kerΦ by (4.6). If S and T are strongly disjoint

t-admissible directed subsets of R, then Mt
S∪T

∼= Mt
S ⊕Mt

T by the fact that Supp(Mt
S∪T ) =

Z ∩ (S ∪ T ) = (Z ∩ S) ∪ (Z ∪ T ) = Supp(Mt
S ⊕ Mt

T ) using part (a). So Relations (4.10)
also belong to ker(Φ).

Thus we get an induced surjective map

Φ̃ : B/(Rels) → A split(Γ,O).

Φ̃ is injective: Since Φ̃ is a map of Γ -graded algebras, it suffices to show that Φ̃ is
injective on each homogeneous component Bt for t ∈ Γ . We define an inverse map Ψt :
A split(Γ,O)t → Bt as follows. We have A split(Γ,O)t = K

split
0 (A(t)-wmodO) which

is a free abelian group on the set of isoclasses of indecomposables in A(t)-wmodO . By
part (a), any such indecomposable module is of the form Mt

S where S is a t-admissible
directed subset of R whose underlying set is connected. Define Ψt([Mt

S]) = xS,t and extend
additively. We have ΨtΦ̃(xS,t ) = xS,t which proves that Φ̃ is injective.

Lemma 4.11 Let t = ∏r
i=1(z − ki)

mi be any monic polynomial with half-integer roots
ki ∈ Z + 1

2 , k1 < k2 < · · · < kr . Then any connected t-admissible directed subset S of R
can be written as an intersection

S = S1 ∩ S2 ∩ · · · ∩ Sr (4.11)

where Si is (z − ki)-admissible and where the underlying set of Si is one of (ki,∞),
(−∞, ki), R. Moreover, this decomposition is unique, if we choose (ki, ∞) or (−∞, ki)

over R, when possible.

Proof We have
◦
S = (ki, kj ) where 0 ≤ i < j ≤ r + 1 where we put k0 = −∞ and

kr+1 = ∞. For 1 ≤ a ≤ i, define Sa to be the (undirected) subset (ka,∞). For i < a <

j , define Sa by
◦
Sa = R and Sa(ka) = S(ka) and remaining elements of R undirected.

Finally, for j ≤ a ≤ r , define Sa to be the (undirected) subset (−∞, ka). Then clearly
S = S1 ∩ S2 ∩ · · · ∩ Sr . For i < a < j , the choice of Sa is unique. In the cases 1 ≤ a ≤ i,

the only other choice of Sa would be
◦
Sa = R with Sa(ki) ∈ {1,→, ←}. Similarly on the

right side. So choosing the directed subsets whose underlying set are the half-open intervals
instead of R, we get uniqueness.

Recall the simple modules Mz−k
k,∞ and Mz−k

−∞,k from the previous section. We denote them

here by Mz−k
(k,∞) and Mz−k

(−∞,k) to match the notation of Theorem 4.10. Also, for k ∈ Z + 1
2 ,

letR±
k denote the (z−k)-admissible directed subset whose underlying set isR and k

→∈ R
+
k ,

while k
←∈ R

−
k .
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Proposition 4.12 Let t =∏r
i=1(z − ki)

mi be any monic polynomial with half-integer roots
ki ∈ Z+ 1

2 , k1 < k2 < · · · < kr . LetM be any indecomposable object inA(t)−wmodO , and
let S be the corresponding connected t-admissible directed subset of R such that M ∼= Mt

S .
Then

M ∼= M
⊗m1
1 ⊗ M

⊗m2
2 ⊗ · · · ⊗ M⊗mr

r (4.12)

where ⊗ = ⊗C[z], and Mi are indecomposable modules over the Weyl algebra A(z − ki),

given as follows. Let 0 ≤ i < j ≤ r + 1 be such that
◦
S = (ki, kj ), where k0 = −∞ and

kr+1 = ∞. Then

Ma =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M
z−ka

(−∞,ka) 1 ≤ a ≤ i,

M
z−ka

R
+
ka

if i < a < j and S(ka) =→,

M
z−ka

R
−
ka

if i < a < j and S(ka) =←,

M
z−ka

(ka,∞) j ≤ a ≤ r .

(4.13)

Moreover, the modules Ma are uniquely determined for i < a < j . For 1 ≤ a ≤ i and for
j ≤ a ≤ r , the module Ma could be replaced by M

z−ka

R
±
ka

and the isomorphism (4.12) would

still hold.

Proof The existence of the directed subset S such that M ∼= Mt
S follows from Theorem

4.10(b). By Lemma 4.11, S can be decomposed as S1 ∩ S2 ∩ · · · ∩ Sr . By repeated use of
Theorem 4.10(c), this yields the required decomposition.

Theorem 4.13 If Z is a subset of Z + 1
2 and Γ is the monoid of all monic polynomials

whose zero-set is contained in Z, then there is a C-algebra isomorphism

A split(Γ,O) ∼= C[x±
k , y±

k | k ∈ Z]/(Rels) (4.14)

where the relations are given by:

y+
j x+

k = y−
j x+

k = x+
j x+

k if j < k, (4.15a)

x−
j y+

k = x−
j y−

k = x−
j x−

k if j < k, (4.15b)

x−
j x+

k = 0 if j ≤ k, (4.15c)

y+
k y−

k = (x+
k )2 + (x−

k )2, (4.15d)

for all j, k ∈ Z. The isomorphism maps the generators x±
k and y±

k to the two simples and

the two non-simple indecomposables of Ksplit
0 (A(z − k)−wmodO) respectively. Explicitly,

x+
k 
→ [Mz−k

(k,∞)] (4.16a)

x−
k 
→ [Mz−k

(−∞,k)] (4.16b)

y+
k 
→ [Mz−k

R
+
k

] (4.16c)

y−
k 
→ [Mz−k

R
−
k

] (4.16d)

where R±
k is just the set R except the point k is directed: R+

k (k) =→ and R−
k (k) =←.
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Proof Let B = C[x±
k , y±

k | k ∈ Z] and define a C-algebra map Φ : B → A split(Γ,O) by
(4.16). By Proposition 4.12, Φ is surjective and the relations (4.15) belong to the kernel of
Φ, inducing a surjection Φ̃ : B/(Rels) → A split(Γ,O). The injectivity of Φ̃ follows from
the normal form of words in B̄ = B/(Rels). In more detail, let t = (z−k1)

m1 · · · (z−kr)
mr

with ki ∈ Z + 1
2 , k1 < . . . < kr and mi ∈ Z>0. The set of elements of B̄t of the form

X+
i Y εX−

j

where 0 ≤ i < j ≤ r + 1 and ε = (εi+1, . . . , εj−1) ∈ {+, −}j−i−1, and

X+ = (x+
k1

)m1 · · · (x+
ki

)mi

Y = (y
εi+1
ki+1

)mi+1 · · · (yεj−1
kj−1

)mj−1

X− = (x−
kj

)mj · · · (x−
kr

)mr

is a basis for B̄t as a vector space overC. Indeed, that these span can be checked by induction
on m1 + · · · + mr , and their linear independence follows from the Diamond Lemma. These
correspond precisely to the indecomposable objects in A(t)−wmodO which in turn form a
C-basis for C ⊗Z K

split
0 (A(t)−wmodO) = A split(Γ,O)t .

We can also describe the algebra map from the split to the non-split algebra.

Theorem 4.14 If Z is a subset of Z + 1
2 and Γ is the monoid of all monic polyno-

mials whose zero-set is contained in Z, then the canonical homomorphism (3.15) from
the split Grothendieck group to the Grothendieck group yields a surjective C-algebra
homomorphism

A split(Γ,O) → A (Γ,O) (4.17)

which in terms of the algebra generators is given by

x+
k 
→ x+

k (4.18)

x−
k 
→ x−

k (4.19)

y±
k 
→ x+

k + x−
k (4.20)

for all k ∈ Z.

Proof The elements x±
k correspond to the simple modules M

(z−k)
(−∞,k), M

(z−k)
(k,∞) respectively,

while y±
k correspond to the indecomposable modules M

(z−k)

R
±
k

. The latter have composition

series of length two:

0 → M
(z−k)
(k,∞) → M

(z−k)

R
+
k

→ M
(z−k)
(−∞,k) → 0 (4.21)

0 → M
(z−k)
(−∞,k) → M

(z−k)

R
+
k

→ M
(z−k)
(k,∞) → 0 (4.22)

This proves the claim.

5 Rank Two Setting (Cylinder)

Now we describe the situation of Section 3 in the special case of n = 2, R = C[z],
σ
1/2
i (z) = z − αi

2 , αi ∈ C, i = 1, 2. In this case, the solutions to the consistency equations
(2.3) were classified in [10]. In particular, we have nontrivial solutions t = (t1, t2) ∈ Ω
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if and only if α1
α2

is a negative rational number. For simplicity, we will then, throughout
this section, fix a pair or relatively prime positive integers m, n and assume that α1 = −n,
α2 = m.

Remark 5.1 We have MaxSpec(R) = {(z−λ) | λ ∈ C} with Z2-action given by σ1(z−λ) =
(z − λ + n), σ2(z − λ) = (z − λ − m). Clearly Z2 · (z − λ) ⊂ {(z − λ +Z)}, but since m, n

are relatively prime, we actually have Z
2 · (z − λ) = {(z − λ + Z)}. Hence the orbits

of this action can again be parametrized by C/Z. If λ + Z ∈ C/Z, the corresponding
orbit is Oλ+Z = {(z − λ + Z)}. Notice that, unlike the case of Section 4, this Z2 orbit
is not torsion free, hence some of the results from Section 3 do not apply here. It is how-
ever still true that all the orbits are isomorphic, hence we will specifically focus only on
OZ = {(z − λ) | λ ∈ Z}.

We now describe Ω using the conventions of [8].

Definition 5.2 We consider the quotient group C = R
2/G, where G is the additive sub-

group of R2 generated by (m, n) ∈ R
2. We call C the cylinder because, as a topological

space, we have a homeomorphism C � S1 × R. We define certain discrete subsets of C

(See Fig. 1).

– The face lattice of the cylinder is L = Z
2/G ⊂ C.

– The two edge lattices are

Ei =
(
1
2ei + Z

2
)

/G ⊂ C, i = 1, 2

where e1 = (1, 0), e2 = (0, 1).

– The vertex lattice is V =
(
1
2 + Z

)2
/G ⊂ C.

Definition 5.3 A configuration on C is a function ω = (ω1, ω2) : E1 × E2 → N such that
two conditions are satisfied:

1. |ω−1(N \ {0})| < ∞ (finiteness)
2. For all v ∈ V we have the ice rule

Fig. 1 Square lattice grids
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ω
(
v − 1

2e1

)
+ ω

(
v − 1

2e2

)
= ω

(
v + 1

2e1

)
+ ω

(
v + 1

2e2

)
. (5.1)

We denote the set of all configurations on C by C .

Remark 5.4 In Definition 5.2, we have identified the edges of the edge lattices by their
midpoints, it will be useful however to also consider them as line segments of length

one. Specifically, if s1 =
(
a + 1

2 , b
)

∈ E1, the corresponding line segment is {(x, y) ∈
R
2/G | x = a + 1

2 , b − 1
2 ≤ y ≤ b + 1

2 }. Analogously, if s2 = (a, b + 1
2 ) ∈ E2, we have

the corresponding segment {(x, y) ∈ R
2/G | a − 1

2 ≤ x ≤ a + 1
2 , y = b + 1

2 }. In partic-
ular, if ω ∈ C is a configuration, we consider Supp(ω) = ω−1(N \ {0}) as a union of line
segments. Notice that we are using Supp both to denote the support of a weight module and
the support of a configuration, the context should prevent any possible confusion.

Remark 5.5 A function ω : E1 × E2 → N is a configuration on C if and only if it can be
written as a sum of indicator functions of (m, n)-paths in C (lattice paths of length m + n

withm steps east and n steps north, due to the identification of the cylinder these are actually
loops topologically). We will identify the paths with their indicator functions throughout
this section.

Example 5.6 Let m = 3, n = 2. We draw the cylinder as a fundamental domain of an
infinite vertical strip in the plane. We identify points (3, y) on the right boundary with points
(0, y − 2) on the left boundary. An example of a configuration on the cylinder is in Fig. 2
on the left, where we write the value assigned to each edge (zero if nothing is written). On
the right we show one possible way of decomposing the configuration as a sum of four
(3, 2)-paths. This is in fact the unique way to write the configuration in such a way that
the resulting paths are a chain in the partial order defined on the set of (m, n)-paths on the
cylinder. The partial order is defined, for two paths π and ν, by π ≥ ν if each segment of π

either overlaps with ν or it is to the north of ν.

Fig. 2 Configuration and corresponding paths
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Remark 5.7 As described in [8, Thm 1.15], for each t ∈ Ω , we have a set of pairs
{(ω(j), λj ) ∈ C × C | j = 1, . . . , k} such that

t =
k∏

j=1

tω
(j)

where

tω
(j) = (tω

(j)

1 , tω
(j)

2 ) ∈ Ω, tω
(j)

i =
∏

(s1,s2)∈Ei

(z + s1n − s2m − λj )
ω

(j)
i (s1,s2), i = 1, 2.

Notice that for all j = 1, . . . , k, tω
(j)

i ∈ C[z] because of the finiteness condition 5.3(1)

and tω
(j)

satisfies (2.3) because of the ice rule (5.1). Additionally, the pairs (ω(j), λj ) cor-

responding to a given t are uniquely determined up to the Z2-action. Notice that each tω
(j)

is an orbital solution, in the terminology of [11].

For any t ∈ Ω , we have a rank two TGWA over C[z], denoted A(t), with generators
X±
1 , X

±
2 and relations given as in Definition 2.1. Even though we do not have torsion-free

orbits in this setting, it is still true that, by the localization results of Theorem 3.7(b), when
examining the category A(t)-wmodO , we can restrict ourselves to parameters t = (t1, t2)

such that all the irreducible factors of σ
1/2
i (ti ) are in

⋃
m∈O m. This is basically the idea of

[8, Theorem A]. We fixO = OZ and accordingly we then define

Ω ′ =
⎧
⎨

⎩
tω =(tω1 , tω2 )∈Ω | tωi =

∏

(s1,s2)∈Ei

(z+s1n−s2m)ωi(s1,s2), i =1, 2, for some ω∈C

⎫
⎬

⎭
.

5.1 The AlgebraA (Ω ′,O)

We recall here the classification of simple weight modules for A(tω), which was one of the
main results of [8], adapting the notation to our current setting.

Theorem 5.8 [8, Thm. B] Let tω ∈ Ω ′, then the simple objects ofA(tω)-wmodO areMω
(D,ξ)

where D is a connected component of C \ Supp(ω) and ξ ∈ C is such that ξ = 0 if and
only if D is contractible. Moreover, Supp(Mω

(D,ξ)) = L ∩ D, all the weight spaces are one
dimensional over C, and there is a centralizing element c(ω) ∈ A(tω) ⊗C[z] C(z) such that
c(ω) acts by ξ on Mω

(D,ξ) when D is not contractible.

Example 5.9 For the configuration ω of Fig. 2, there are five connected components of
C \ Supp(ω), two unbounded ones, which are not contractible, and three bounded ones that
are contractible.

Proposition 5.10 For any sequence i = (i1, i2, . . . , im+n) of m 1’s and n 2’s, there exists

a nonzero polynomial f
i
ω(z) ∈ C[z] such that the centralizing element c(ω) ∈ A(tω) ⊗C[z]

C(z) equals

c(ω) = X(i) · 1

f
i
ω(z)

where X(i) = X+
im+n

· · · X+
i2

X+
i1
. Moreover, if D is not contractible then, for all (z − λ) ∈

Supp(Mω
(D,ξ)) and corresponding sequence i such that the face path λ, λ + ei1 , . . . , λ +

1370 J.T. Hartwig, D. Rosso



ei1 + · · · + eim+n does not cross any edge from ω, we have f
i
ω(λ) �= 0 and for all m ∈

(Mω
(D,ξ))(z−λ) the action is defined by

c(ω) · m = X(i) ·
(

1

f
i
ω(λ)

m

)

.

Finally, for any sequence i, the polynomials f
i
ω(z) satisfy

f
i

ω+ω′(z) = f
i
ω(z) · f

i

ω′(z).

Proof This follows directly from [8, Prop. 6.3], by using the properties of ord(i, λ).

Remark 5.11 If D is a connected component of C \ Supp(ω) and D′ is a connected compo-
nent of C \ Supp(ω′), then D ∩ D′ ⊆ C \ Supp(ω + ω′) is either a single noncontractible
connected component (which is only possible if D and D′ were both noncontractible), or a
disjoint union of contractible components. We denote the set of connected components of
C \ Supp(ω) by H0(C \ Supp(ω)) (zeroth homology group).

Proposition 5.12 Consider Mω
(D,ξ), M

ω′
(D′,ξ ′), with D, D′ not contractible such that D ∩ D′

is also not contractible. Then we have an isomorphism of A(tω+ω′
)-modules

Mω
(D,ξ) ⊗C[z] Mω′

(D′,ξ ′) � Mω+ω′
(D∩D′,ξ ·ξ ′).

Proof First of all, it is clear by Lemma 3.8 that

Supp(Mω
(D,ξ) ⊗C[z] Mω′

(D′,ξ ′)) = Supp(Mω
(D,ξ)) ∩ Supp(Mω′

(D′,ξ ′)) = D ∩ D′

and all the weight spaces are one dimensional. Then, the only thing left to check is the action
of c(ω+ω′) on the moduleMω

(D,ξ)⊗C[z]Mω′
(D′,ξ ′). Letm⊗m′ ∈ (Mω

(D,ξ)⊗C[z]Mω′
(D′,ξ ′))(z−λ)

= (Mω
(D,ξ))(z−λ) ⊗C[z] (Mω′

(D′,ξ ′))(z−λ). Choose a sequence i such that path in the face lattice
λ, λ+ei1 , . . . , λ+ei1 +· · ·+eim+n does not cross any edges from the configuration ω+ω′.
Then the same path does not cross any edges from ω nor from ω′. We have

c(ω + ω′) · m ⊗ m′ = X(i)
1

f
i

ω+ω′(z)
· m ⊗ m′

= X(i) ·
(

1

f
i

ω+ω′(λ)
m ⊗ m′

)

(by Prop 5.10) = Δ
tω,tω

′ (X(i))

(
1

f
i
ω(λ)f

i

ω′(λ)
m ⊗ m′

)

= (
X(i) ⊗ X(i)

)
(

1

f
i
ω(λ)

m ⊗ 1

f
i

ω′(λ)
m′
)

=
(

X(i)
1

f
i
ω(λ)

m

)

⊗
(

X(i)
1

f
i

ω′(λ)
m′
)

= (c(ω) · m) ⊗ (c(ω′) · m′)
= ξm ⊗ ξ ′m′

= ξξ ′(m ⊗ m′).
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Let 0 ∈ C defined by 0(e1, e2) = 0 for all (e1, e2) ∈ E1 × E2. Then 1 = (1, 1) = t0 ∈
Ω ′ and A(1) � C[z] � Z[X±1

1 , X±1
2 ] as in Remark 3.17 (although in this case the orbit is

not torsion free so we do not have a unique simple module). Notice that C \ Supp(0) = C

is connected and not contractible, and that 1 is the trivial submonoid of Ω ′.

Proposition 5.13 We have an algebra isomorphism

A (1,O) � C[C×] given by [M0
(C,ξ)] 
→ ξ

where C[C×] is the group algebra.

Proof By Theorem 5.8, we have

K0(A(1)-wmodO) =
⊕

ξ∈C×
Z[M0

(C,ξ)].

In this case, C ∩ C = C is not contractible, hence by Proposition 5.12, we have

M0
(C,ξ) ⊗C[z] M0

(C,ζ ) � M0
(C,ξζ )

and the result follows.

Proposition 5.14 The algebra A (Ω ′,O) is unital, with unit element [M0
(C,1)].

Proof Let Mω
(D,ξ) ∈ A(tω)-wmod, then Supp(Mω

(D,ξ) ⊗C[z] M0
(C,1)) = D ∩ C = D. If D is

contractible, this is enough to prove that

Mω
(D,ξ) ⊗C[z] M0

(C,1) � Mω
(D,ξ) (5.2)

as a module for A(tω · 1) = A(tω), with ξ = 0, since there is a unique simple module with
the given support. If D is not contractible, the isomorphism (5.2) of A(tω)-modules also
holds (with ξ �= 0), due to Proposition 5.12.

Theorem 5.15 As Ω ′-graded vector spaces, we have an isomorphism

A (Ω ′,O) �
⊕

ω:tω∈Ω ′

⊕

D∈H0(C\Supp(ω)),
ξ∈Z(D)

C[Mω
(D,ξ)]

with

Z(D) =
{

{0} if D is contractible,

C
× if D is noncontractible.

Multiplication in the algebra is given by

[Mω
(D,ξ)] · [Mω′

(D′,ξ ′)]

=

⎧
⎪⎨

⎪⎩

0 if D ∩ D = ∅,

[Mω+ω′
(D∩D′,ξξ ′)] if D ∩ D′ is noncontractible,

∑
D′′∈H0(D∩D′)[Mω+ω′

(D′′,0)] if D ∩ D′ is a union of contractible components.

Proof The statement about the basis for A (Ω ′,O) follows directly from Theorem 5.8. The
multiplication formulas follow from the fact that Supp(M ⊗C[z] N) = Supp(M)∩Supp(N),
together with Proposition 5.12 and Remark 5.11.

1372 J.T. Hartwig, D. Rosso



Theorem 5.16

A (Ω ′,O) � C[γξ , x
±
π | ξ ∈ C

×, π is a (m, n)-path ]/(Rels)
where the relations are

(i) γ1 = 1,
(ii) γξ1γξ2 = γξ1ξ2 ,
(iii) x±

π1
x±
π2

= x±
π ′
1
x±
π ′
2
, if π1 + π2 = π ′

1 + π ′
2,

(iv) x+
π1

x−
π2

= 0, if π1 ≥ π2,
(v) x+

π1
x−
π2

+ x+
π3

x−
π4

= x+
π ′
1
x−
π ′
2
+ x+

π ′
3
x−
π ′
4
, if π1 + π2 = π3 + π4 = π ′

1 + π ′
2 = π ′

3 + π ′
4

and π1 + π3 = π ′
1 + π ′

3,
(vi) γξx

+
π1

x−
π2

= x+
π1

x−
π2
, if π1 and π2 intersect.

Remark 5.17 Given two (m, n)-paths π1 and π2, there are two uniquely defined paths π1 ∨
π2 and π1 ∧ π2 such that (π1 ∨ π2) + (π1 ∧ π2) = π1 + π2 and (π1 ∨ π2) ≥ π1, π2 ≥
(π1 ∧ π2). The relations (iv)-(v) then imply the following (by taking π3 = π2, π4 = π1,
π ′
1 = π ′

4 = π1 ∧ π2, π ′
2 = π ′

3 = π1 ∨ π2):

(vii) x+
π1

x−
π2

+ x+
π2

x−
π1

= x+
(π1∧π2)

x−
(π1∨π2)

. (5.3)

Example 5.18 Let m = 3, n = 4, and consider the two paths π1, π2 on the left of Fig. 3,
then the paths π1 ∧ π2 and π1 ∨ π2 are the ones on the right.

Proof of Theorem 5.16 Consider the map

α : C[γξ , x
±
π | ξ ∈ C

×, π is a (m, n)-path ] → A (Ω ′,O)

Fig. 3 The paths π1, π2, π1 ∨ π2, and π1 ∧ π2
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defined, for all ξ ∈ C
× and for all (m, n)-paths π , by

γξ 
→ [M0
C,ξ ], x±

π 
→ [Mπ

D±
π ,1

]

where D+
π (resp. D−

π ) is the connected component of the cylinder above (resp. below) the
path π (since the path π cuts the cylinder into two noncontractible components).

First we prove that this map is surjective. Let ω ∈ C , D ∈ H0(C \ Supp(ω)). We write
ω = ∑k

i=1 πi , where πi is an (m, n)-path on the cylinder and π1 ≥ π2 ≥ · · · ≥ πk . We
proceed by induction on k. If k = 0, then ω = 0 and [M0

D,ξ ] = α(γξ ). If k = 1, then

[Mω
D,ξ ] = [Mπ1

D,ξ ] = [M0
C,ξ ⊗C[z] M

π1
D,1] = [M0

C,ξ ] · [Mπ1
D,1] ∈ Im(α).

Now suppose that k ≥ 2, and that the upper boundary (to the left and above) of D is
part of πs , while the lower boundary (below and to the right) of D is part of πs+1. By
swapping some edges of πs and πs+1, if necessary, we can obtain paths π ′

s and π ′
s+1 such

that πs + πs+1 = π ′
s + π ′

s+1, and D = D+
π ′

s
∩ D−

π ′
s+1

(notice that π ′
s �≥ π ′

s+1 in general). Let

ω′ = ω − (πs + πs+1), then there is D′ ∈ H0(C \ Supp(ω′)) such that D ⊆ D′. Then, if D

is contractible we have

Mω
D,0 � Mω′

D′,ξ ⊗C[z] M
π ′

s

D+
π ′
s
,1

⊗C[z] M
π ′

s+1

D−
π ′
s+1

,1

for any ξ ∈ Z(D′). If D is non contractible we have, for all ξ ∈ C
×,

Mω
D,ξ � Mω′

D′,ξ ⊗C[z] M
π ′

s

D+
π ′
s
,1

⊗C[z] M
π ′

s+1

D−
π ′
s+1

,1
.

In either case, since [Mω′
D′,ξ ] ∈ Im(α) by inductive hypothesis, it folllows that [Mω

D,0] ∈
Im(α) (resp. for all ξ ∈ C

×, [Mω
D,ξ ] ∈ Im(α)).

Then we want to prove that the relations are satisfied in A (Ω ′,O) so that the map α

descends to a map on the quotient. Relations (i) and (ii) follow directly from Proposition
5.14 and Proposition 5.13.

If we have paths such that π1 + π2 = π ′
1 + π ′

2, then D±
π1

∩ D±
π2

= D±
π ′
1

∩ D±
π ′
2
are

noncontractible, hence

M
π1

D±
π1 ,1

⊗C[z] M
π2

D±
π2 ,1

� M
π1+π2

D±
π1∩D±

π2 ,1
= M

π ′
1+π ′

2

D±
π ′
1
∩D±

π ′
2
,1

� M
π ′
1

D±
π ′
1
,1

⊗C[z] M
π ′
2

D±
π ′
2
,1

from which relation (iii) follows.
If π1, π2 are two paths, with π1 ≥ π2, then D+

π1
∩ D−

π2
= ∅, hence

[Mπ1

D+
π1 ,1

] · [Mπ2

D−
π2 ,1

] = [Mπ1

D+
π1 ,1

⊗C[z] M
π2

D−
π2 ,1

] = 0,

which shows that relation (iv) is satisfied.
For relation (v), let ω = π1 + π2 = π3 + π4 and notice that the module

(M
π1

D+
π1 ,1

⊗C[z] M
π2

D−
π2 ,1

) ⊕ (M
π3

D+
π3 ,1

⊗C[z] M
π4

D−
π4 ,1

)
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has support D+
π1∧π3

∩ D−
π2∨π4

and all the weight spaces are of dimension one, except the
ones in D+

π1∨π3
∩D−

π2∧π4
which have dimension two. It follows then from Theorem 5.8 that

(M
π1

D+
π1 ,1

⊗C[z] M
π2

D−
π2 ,1

) ⊕ (M
π3

D+
π3 ,1

⊗C[z] M
π4

D−
π4 ,1

)

� (M
π1∧π3

D+
π1∧π3

,1
⊗C[z] M

π2∨π4

D−
π2∨π4

,1
) ⊕ (M

π1∨π3

D+
π1∨π3

,1
⊗C[z] M

π2∧π4

D−
π2∧π4

,1
)

� (M
π ′
1

D+
π ′
1
,1

⊗C[z] M
π ′
2

D−
π ′
2
,1

) ⊕ (M
π ′
3

D+
π ′
3
,1

⊗C[z] M
π ′
4

D−
π ′
4
,1

)

for any π ′
1, π

′
2, π

′
3, π

′
4 such that π ′

1 + π ′
2 = π ′

3 + π ′
4 = ω and π ′

1 + π ′
3 = π1 + π3, because

then we have π ′
1 ∨ π ′

3 = π1 ∨ π3, π ′
1 ∧ π ′

3 = π1 + π3 and similarly for π ′
2 and π ′

4. Thus the
relation is verified.

If π1 and π2 are intersecting paths, then D+
π1

∩D−
π2

is a union of contractible components,
hence

[M0
C,ξ ] · [Mπ1

D+
π1 ,1

] · [Mπ2

D−
π2 ,1

] = [M0
C,ξ ] ·

∑

D′′∈H0(D
+
π1∩D−

π2 )

[Mπ1+π2
(D′′,0) ]

=
∑

D′′∈H0(D
+
π1∩D−

π2 )

[M0
C,ξ ] · [Mπ1+π2

(D′′,0) ]

=
∑

D′′∈H0(D
+
π1∩D−

π2 )

[Mπ1+π2
(D′′,0) ]

= [Mπ1

D+
π1 ,1

] · [Mπ2

D−
π2 ,1

]

and relation (vi) is satisfied.
Finally, we want to prove that the map is injective by showing that the image of a basis

of the polynomial ring maps to linearly independent elements. A general element in the
polynomial ring can be written, using relation (ii), as a linear combination of monomials
such as

γξ (x
−
π1

)aπ1 · · · (x−
πk

)aπk (x+
ν1

)bν1 · · · (x+
νs

)bνs . (5.4)

But then, using relations (iii) repeatedly, we can assume that π1 > · · · > πk and ν1 > · · · >

νs . Further, by applying (5.3) and again (iii), as many times as necessary, we can obtain that
π1 > · · · > πk−1 > πk > ν2 · · · > νs and π1 > · · · > πk−1 > ν1 > ν2 · · · > νs . This is
because if, for example, πk �≥ ν2, then

x−
πk

x+
ν1

x+
ν2

= (x−
πk

x+
ν2

)x+
ν1

( by (vii) ) = (x−
π ′x

+
ν′ − x+

πk
x−
ν2

)x+
ν1

with π ′ = πk ∨ ν2 and ν′ = πk ∧ ν2

= x−
π ′x

+
ν′ x+

ν1
− x+

πk
x−
ν2

x+
ν1

( by (iv) since ν1 ≥ ν2 ) = x−
π ′x

+
ν′ x+

ν1

= x−
π ′x+

ν1
x+
ν′

( by (iii) ) = x−
π ′x

+
(ν1∨ν′)x

+
(ν1∧ν′)

and now we have both π ′ ≥ ν′ ≥ (ν1 ∧ ν′) and (ν1 ∨ ν′) ≥ (ν1 ∧ ν′). In general then, we
can always reduce to monomials in (5.4) such that only the paths πk and ν1 can potentially
cross.
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In the case where πk > ν1 and the two paths are disjoint, then D−
πk

∩ D+
ν1

is connected
and noncontractible, and we have

α
(
γξ (x

−
π1

)aπ1 · · · (x−
πk

)aπk (x+
ν1

)bν1 · · · (x+
νs

)bνs

)
=
[

Mω

D−
πk

∩D+
ν1 ,ξ

]

where ω = ∑
i aπi

πi + ∑j bνj
νj , hence the images of different monomials are linearly

independent.
In the case where πk and ν1 do intersect, then using relation (vi) we have

γξ (x
−
πk

)aπk (x+
ν1

)bν1 = (x−
πk

)aπk (x+
ν1

)bν1 . Now, suppose that there are m bounded connected
components of C \ Supp(πk + ν1), and for each i = (i1, . . . , im) ∈ {0, 1}m, let πi be the
unique path that passes above the j -th component if ij = 1 and below the j -th component if
ij = 0, for all j = 1, . . . m. For i ∈ {1, 0}m, let |i| =∑m

j=1 ij and (i)′ = (1−i1, . . . , 1−im)

be the ‘opposite’ sequence. Then for all i ∈ {0, 1}m we have that πk + ν1 = πi + πi′ .
We claim that any monomial of the form x−

πi
x+
πi′ can be written as a linear combination

of x−
πj

x+
πj ′ , with |j | = 1. We proceed by induction on |i|. If |i| = 0, then πi′ > πi so

x−
πi

x+
πi′ = 0 by (iv). If |i| = 1, the result is clear. Now suppose that |i| ≥ 2, and that i	 = 1

for some 	. Define i	 = (i1, . . . , i	−1, 0, i	+1, . . . , im) and 	 = (0, . . . , 0,
	

1, 0, . . . , 0).
Then

x−
πi

x+
πi′ = x−

πi
x+
πi′ + x−

π(0,...,0)
x+
π(1,...,1)

( by (v) ) = x−
π

i	
x+
π

(i	)′
+ x−

π	
x+
π	′

and by inductive hypothesis, since |i	| = |i| − 1, x−
π

i	
x+
π

(i	)′
can be written as a linear

combination as desired, so the claim follows.
Then, any monomial containing x−

πk
x+
πν1

can be written as a linear combination of terms

containing x−
πi

x+
πi′ , with |i| = 1. These map under α to [Mω

D,0] with D a contractible con-

nected component of C \ Supp(ω) which are linearly independent elements of A (Ω ′,O),
showing that α is indeed injective, hence an isomorphism.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.
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