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Abstract
We consider “Hopfological” techniques as in Khovanov, M., J. Knot Theory Ramificat
25(3), 26 (2016) but for infinite dimensional Hopf algebras, under the assumption of being
co-Frobenius. In particular, H = k[Z]#k[x]/x2 is the first example, whose corepresenta-
tions category is d.g. vector spaces. Motivated by this example we define the “Homology
functor” (we prove it is homological) for any co-Frobenius algebra, with coefficients in H -
comodules, that recover usual homology of a complex when H = k[Z]#k[x]/x2. Another
easy example of co-Frobenius Hopf algebra gives the category of “mixed complexes” and
we see (by computing an example) that this homology theory differs from cyclic homology,
although there exists a long exact sequence analogous to the SBI-sequence. Finally, because
we have a tensor triangulated category, its K0 is a ring, and we prove a “last part of a local-
ization exact sequence” for K0 that allows us to compute -or describe- K0 of some family
of examples, giving light of what kind of rings can be categorified using this techniques.

Keywords Co-Frobenius Hopf algebras · Tensor triangulated categories ·
Homology theories · K0 · Categorification

Mathematics Subject Classification (2010) 16T05 · 16E35 · 18G99 · 18D99 · 19A49 ·
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1 Introduction

This paper has mainly 3 contributions:

(1) The “Hopfological algebra” can be developed not only for finite dimensional Hopf
algebras but also for infinite dimensional ones, provided they are co-Frobenius. The
language of comodules is better addapted than the language of modules.
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(2) The formula “Ker d/Im d” can be written in Hopf-co-Frobenius language.
(3) Some K-theoretical results allow us to compute K0 of the stable categories associated

to co-Frobenius Hopf algebras of the form H0#B, with H0 cosemisimple and B finite
dimensional.

The paper is organized as follows: In Sections 2 and 3 we show points (1) and (2)
respectively. In Section 4 we develop some tools to understand the triangulated structure. In
Section 5 we exhibit the first examples. Section 6 deals with K0. Section 7 illustrate the first
step on how to develop -in the setting of co-Frobenius Hopf algebras- the direction taken in
[8] for finite dimensional Hopf algebras.

2 Integrals, Co-Frobenius and Triangulated Structure

k will be a field, H a Hopf algebra over k, all comodules will be right comodules. The cate-
gory of H -comodules is denoted MH and the subcategory of finite dimensional comodules
is denoted mH .

2.1 Integrals

Definition 2.1 (Hochschild, 1965; G. I. Kac, 1961; Larson-Sweedler, 1969). A (left)
integral is a linear map � : H → k such that

(id ⊗�)�h = �(h)1 ∀h ∈ H

that is, h1�(h2) = �(h)1.

It is well-known that the dimension of the space of (left) integral is ≤ 1. In case H

admits a non-zero (left) integral � ∈ H ∗, H will be called co-Frobenius. The following is
well-known, we refer to [2] and [3] and references therein for the proofs:

Theorem 2.2 If H is co-Frobenius then, in the category of (say right) H -comodules

1. there exists enough projectives;
2. every finite dimensional comodule is a quotient of a finite dimensional projective, and

embeds into a finite dimensional injective;
3. being projective is the same as being injective.

We will use very often the fact that a finite collection of elements in a comodule is
contained in a finite-dimensional comodule. This is sometimes referred as the fundamental
theorem for comodules (see [4, Theorem 2.1.7]). For expository purpose we just remind
that if m ∈ M is an element in an H -comodule M , a way to produce a finite dimensional
subcomodule M ′ ⊂ M containing m is the following: If ρ : M → M ⊗ H is the comodule
structure map and {hi}i∈I is a k-basis of H , then write

ρ(m) =
∑

i∈I

mi ⊗ hi

where almost all mi are zero. This says that M ′ := the k-span of the mi’s is finite
dimensional. The counit axiom implies m ∈ M ′, because

m = (id ⊗ε)ρ(m) =
∑

i∈I

ε(hi)mi
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A manipulation of the coasociativity axiom shows that in fact M ′ is a subcomodule.
Finally if M and N are two objects in a category B, denote HomB(M,N) set of mor-

phisms and IB(M,N) the subset of HomB(M,N) consisting on morphisms that factors
through an injective object of B. Denote

HomB(M,N) := HomB(M,N)

IB(M,N)

The category whose objects are H -comodules and morphism HomH is called the stable
category and it is denoted MH . Similarly mH is the stable category associated to mH . By
the above theorem, mH is embedded fully faithfully in MH . With these preliminaries, one
can prove the following main construction:

Theorem 2.3 If H is a co-Frobenius Hopf algebra then MH has a natural structure of
triangulated category, mH is a triangulated subcategory.

Proof We apply directly Happel’s Theorem 2.6 of [5]. The only thing to do is to notice that
MH (and mH ) are Frobenius exact categories. Using Happel’s notation, let B be an additive
category embedded as a full and extension-closed subcategory in some abelian category A,
and S the set of short exact sequences in A with terms in B. For as, since both MH and
mH are already abelian, we have A = B and the notion of S-projective and S-injective is
the same as usual projectives and injectives. Maybe we just remark that an object in mH is
injective in mH if and only if it is injective in MH and similarly for projectives (see Lemma
2.4 as an illustration).

An exact category (B,S) is called a Frobenius category if (B,S) has enough S-
projectives and enough S-injectives and if moreover the S-projectives coincide with the
S-injectives. In our case, B = MH or B = mH are clearly Frobenius categories if H

is a co-Frobenius Hopf algebra. Theorem 2.6 in [5] just state that the stable category B is
triangulated.

Lemma 2.4 If P ∈ mH then P is projective in mH if and only if it is projective inMH .

Proof If P is projective in MH then then it has the lifting property for all comodules, in
particular for the finite dimensional ones. Assume P is projective in mH and consider a
diagram of comodules

Z
π �� �� Y

P

f

��

where Z and Y are not necessarily finite dimensional. Since P is finite dimensional, one can
consider Y ′ = f (P ) ⊆ Y , clearly Y ′ is a finite dimensional comodule, with generators say
{y1, . . . , yn}. Since π is surjective, one may found zi (i = 1, . . . , n) with π(zi) = yi and
there exists a finite dimensional subcomodule Z′ ⊆ Z containing all zi’s, hence we have a
diagram

Z′ π |Z′ �� �� Y ′

P

f

��

∃f

���
�

�
�
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Now all comodules are finite dimensional, and because P is projective within finite dimen-
sional comodules, there exists a lifting f : P → Z′ ⊆ Z of f , hence, a lifting of the
original f .

For clarity of the exposition we recall the definition of suspension, desuspension and
triangles in MH . For this particular case of comodules over a co-Frobenius Hopf algebra,
the general definitions can be more explicitly realized. Moreover, for H = H0#B as in
Section 4, concrete and functorial constructions can be done in mH . The reader familiar
with Happel’s results may go directly to Section 3.

2.2 Suspension and Desuspension Functors

In [6], when H is finite dimensional and � is an integral in H (not in H ∗), the author
embeds an H -module X via X⊗� ⊂ X⊗H and define T (X) as (X⊗H)/(X⊗�). For us,
� ∈ H ∗ and this definition makes no sense, but (even without using the integral) one can
always embed an H -comodule M into M ⊗H by means of its structural map. The structure
map ρ is H -colinear provided we use the (co)free H -comodule structure on M ⊗ H (and
not the diagonal one).

Definition 2.5 For a right H comodule M with structure ρ : M → M ⊗ H , define

T (M) := (M ⊗ H)/ρ(M)

If H is finite dimensional this definition also makes sense in mH . If H is co-Frobenius
and 0 �= M is finite dimensional, (M ⊗ H)/ρ(M) is not finite dimensional, however,
there exists a finite dimensional injective I (M) and a monomorphism M → I (M), so,
one can define I (M)/M in mH and we know T (M) ∼= I (M)/M in MH . Moreover, for
co-Frobenius Hopf algebras, one can give functorial embeddings M → I (M) in MH that
works in mH (see Corollary 3.16).

Remark 2.6 If the notation M ⊗ H is confusing because H is Hopf and one also has the
diagonal action, one may consider another injecting embedding:

iM : M → M ⊗ H

m �→ m ⊗ 1

This map is clearly an embedding, and it is H -colinear if one uses the diagonal action on
M ⊗ H . Both embeddings are ok because M ⊗ H with diagonal action and M ⊗ H with
structure coming only from H are isomorphic (see Lemma 3.14).

Similar (or dually) to [6] one can define desuspension. Consider the map �′ = � ◦ S

�′ : H → k

Recall that H co-Frobenius implies S is bijective (see for instance [4]) and it is easy to prove
that �′ = � ◦ S is a right integral:

�′(h1)h2 = �(S(h1))h2 = �(S(h1))S
−1S(h2)

= S−1
(
�(S(h1))S(h2)

)
= S−1

(
�(S(h)2))S(h)1)

)
= S−1

(
�(Sh)1)

)
=�(Sh)1=�′(h)1
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We use �′ because �′ is right colinear:

h�

��

� ��
H

ρ=�

��

�′ �� k

ρ

��

�′(h) �

��������������������

h1⊗h2 � ��H ⊗H
�′⊗id �� k⊗H �′(h1)⊗h2 = 1⊗�′(h1)h2 = 1⊗�′(h)1 �′(h)⊗1

Hence, Ker(�′) is a right H -comodule and we have, for any M , a short exact sequence

0 → M ⊗ Ker(�′) → M ⊗ H → M → 0

Definition 2.7 The desuspension functor is T ′(M) := M ⊗ Ker(�′) ∈ MH

Remark 2.8 When considering mH , we know every finite dimensional comodule M

has a finite dimensional projective cover P(M) → M , so we can consider T ′′(M) :=
Ker(P (M) → M) ∈ mH and this is isomorphic to T ′(M) in the stable category. Also (see
Corollary 3.16), one can define P(M) in MH and in mH in a functorial way.

As an illustration of the need of stabilization for having a triangulated category one see
that, for any M a comodule, we have a short exact sequence in MH

0 → M → M ⊗ H → T M → 0

In particular, considering T ′M instead of M , there is a short exact sequence

0 → T ′M → T ′M ⊗ H → T T ′M → 0

But there is also a short exact sequence

0 → T ′M → M ⊗ H → M → 0

So “M computes T T ′M using another injective embedding”. Usually T T ′M �∼= M in MH

but M ∼= T T ′M in MH . Similar argument for T ′T , hence these are mutually inverse
functors in the stable category, but not in MH .

2.3 Triangles

One of the axioms of triangulated categories is that any map f : X → Y is a part of a

triangle X
f→ Y → Z → T X →. Triangles are defined via the mapping cone construction.

For f : X → Y , Co(f ) is defined in the following way:
Choose an injective embedding i : X → I (X) and define Co(f ) by the square

X
f ��

i

��

Y

��
I (X) �� Co(f ) := I (X)

∐
X Y
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One can see that this definition does not depend -in the stable category- on the choice of the
injective embedding X → I (X). Notice also a well defined map Co(f ) → T (X) given by
the universal property of the push-out:

X
f ��

i

��

Y

�� 0

		

I (X) ��

π 



I (X)
∐

X Y

���
�

�
�

�

I (X)/X

Triangles X → Y → Z → T X in MH are (by definition) all sequences isomorphic

(in MH ) to some sequence of the form X
f→ Y → Co(f ) → T (X). Next two Lem-

mas emphasize the strong relation between the exact structure of MH (resp mH ) and the
triangulated structure of MH (resp mH )

Lemma 2.9 If 0 �� X
u �� Y

π �� Z �� 0 is a short exact sequence in MH then the
sequence X → Y → Z is isomorphic to X → Y → Co(u) in the stable category.

Proof We assume Z = Y/u(X). Consider the diagram

0 �� X
u �� Y

π �� Y/u(X) �� 0

X
u �� Y v �� Co(u)

Let X → I (X) be an embedding into an injective object, for simplicity we assume X ⊆
I (X). We define the map

I (X) ⊕ Y −→ Z

(e, y) �→ π(y)

It has the property that, for any x ∈ X,

(−x, u(x)) �→ π(u(x)) = 0

So, it induces a well defined map

Co(u) = I (X) ⊕ Y

(x, 0) ∼ (0, u(x))
−→ Z

(e, y) �→ π(y)

Now from the injectivity of I (X) we know there exists a map fitting into the diagram

0 �� X

��

u �� Y
π ��

U

��	
	

	
	

Y/u(X) �� 0

I (X)

So, define the map
Y → Co(u)

y �→ (U(y), y)
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It has the property

u(x) �→ (−U(u(x)), u(x)) = (−x, u(x)) = 0

so, it induces a well defined map

Z = Y/u(X) → Co(u)

One composition is the identity:

Z → Co(u) → Z

z = π(y) �→ (−U(y), y) �→ π(y) = z

The other composition is
Co(u) → Z → Co(u)

(e, y) �→ π(y) �→ (−U(y), y)

so, the Kernel is

{(e, y) : y ∈ u(X)} ∼= I (X) ⊕ u(X)

(x, 0) ∼ (0, u(x))
∼= I (X)

that is an injective comodule, so, these morphisms are mutually inverses in MH .

The second Lemma is a useful one, maybe it is folklore but it is not usually written:

Lemma 2.10 If X �� Y �� Z �� T X is a triangle in the stable category then there
exists a short exact sequence 0 → X′ → Y ′ → Z′ → 0 in MH such that the sequence

X �� Y �� Z is isomorphic to X′ �� Y ′ �� Z′ in the stable category.

Proof One of the axioms of triangulated categories says that X �� Y �� Z �� T X

is a triangle if and only if T −1Z �� X �� Y �� Z is so. Hence,

T −1Z �� X �� Y �� Z is isomorphic to a distinguished triangle, that is, there is an
isomorphism (in the stable category) of t-uples

T −1Z ��

∼= ��

X ��

∼= ��

Y ��

∼= ��

Z

∼= ��
A

u �� B �� Co(u) �� T (A)

In particular, there is a commutative diagram in the stable category

X ��

∼= ��

Y ��

∼= ��

Z

∼= ��
B �� Co(u) �� T (A)

and clearly 0 → B → Co(u) → T (A) → 0 -or equivalently

0 → B → I (A)
∐

A

B → I (A)/A → 0,

is a short exact sequence in MH . Notice that if A and B are finite dimensional, one can find
a finite dimensional injective hull I (A) and hence the short exact sequence also belongs to
mH .
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3 Integrals and Coinvariants

If C is a coalgebra and M a right C-comodule then M is a left C∗ module via

φ · m := φ(m1)m0 (φ ∈ C∗, m ∈ M)

where, as usual, if M is a right H -comodule, we denote ρ : M → M ⊗H its structural map
and we use Sweedler-type notation ρ(m) = m0 ⊗ m1 ∈ M ⊗ H . In particular, for C = H

and φ = � ∈ H ∗, being left integral means � · h = �(h)1. Moreover, multiplication by �

in M has the following standard and main property:

ρ(�·m) = ρ(�(m1)m0) = �(m2)m0⊗m1 = m0⊗�(m2)m1 = m0⊗�(m1)1 = (�·m)⊗1

That is, � · M ⊆ McoH . We list some examples, keeping in mind the above formula.

3.1 Examples

1. If H is co-semisimple (e.g. H = O(G) with G an affine reductive group) then the
inclusion k → H split as H -comodules. One can check that an H -colinear splitting
is an integral. In the cosemisimple case, the inclusion � · M ⊆ McoH is actually an
equality (this will be clear in Section 3.2). Nevertheless, the integral may not be so
explicitly described. An easy and explicit example is:

2. If G is a finite group and H = kG, then � = ∑
g∈G g ∈ k[G] ∼= (kG)∗ is an integral.

For any f ∈ kG:

�(f ) =
∑

g∈G

f (g)

Actually, every finite dimensional Hopf algebra is (Frobenius and) co-Frobenius.
Notice that kG is co-semisimple if and only if k[G] is semisimple, if and only if the
characteristic of the ground field does not divide the order of G.

3. Let G be a group (possibly infinite, e.g. G = Z) and H = k[G], define

�(
∑

g∈G

λgg) := λ1G

A right H -comodule M is the same as G-graded vector space M = ⊕g∈GMg . The
action of � gives the projection into M1G

.
4. Tensor product of co-Frobenius algebras is co-Frobenius, the integral can be computed

using tensor products of integrals.
5. Let H be a Hopf algebra and H0 its coradical. Notice that H0 does not need to be a

Hopf subalgebra in general. Nevertheless, one of the main results in [2] is that H is co-
Frobenius if and only if the coradical filtration is finite. A particular case is illustrated
in the following:

6. Let H0 be a cosemisimple Hopf algebra and let V ∈ H0YDH0 be a finite dimensional
Yetter-Drinfel’d module such that its Nichols algebra B = B(V ) is finite dimensional.
Then H = H0#B is co-Frobenius. The integral is essentially given by the “volume
form”, or “Fermionic integration” in B (see Remark 4.5).

(a) The simplest example is: H generated by x and g±1 with relations x2 = 0 and
gx = −xg. Comultiplication given by

�g = g ⊗ g

�x = x ⊗ g + 1 ⊗ x
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The antipode is

S(g) = g−1, S(x) = −xg−1 = g−1x

We have H ∼= k[Z]#k[x]/x2. An element of h may be uniquely written as

h =
∑

n∈Z
ang

n +
∑

n∈Z
bng

nx (an, bn ∈ k)

A left integral is given by

�(h) := b0

This particular example motivates all definitions of this paper. The second
simplest example of this kind is the following:

(b) H generated by x, y and g±1 with relations x2 = 0 = y2, xy = −yx, gx = −xg,
gy = −yg and comultiplication given by

�g = g ⊗ g

�x = x ⊗ g + 1 ⊗ x

�y = y ⊗ g−1 + 1 ⊗ y

If we write an element h ∈ H as

h =
∑

n∈Z
ang

n +
∑

n∈Z
bng

nx +
∑

n∈Z
cng

ny +
∑

n∈Z
dng

nxy

then a left integral is given by �(h) = d0. We will compute some invariants of
the (stable) comodule category associated to this H ∼= k[Z]#�(x, y).

One of the main goals of this paper is to translate into Hopf-co-Frobenius language the
notion of homology “Ker d/Im d”. The definition is very natural:

3.2 Hopf Homology for Algebras with a Non-zero Integral

Definition 3.1 Given a co-Frobenius Hopf algebra H and M ∈ MH , denote

HH
0 (M) := McoH

� · M

For n ∈ N, we define

HH−n(M) := HH
0 (T nM)

and

HH
n (M) := HH

0 (T ′nM)

Example 3.2 If M = k and H is co-Frobenius with �(1) = 0, then � · k = 0, hence
HH

0 (k) = k and the functor HH
0 is non trivial.

Example 3.3 For M = H , � · H = k1H = HcoH ⇒ HH
0 (H) = 0.

Example 3.4 The condition “McoH /� · M = 0” is stable under arbitrary direct sums and
direct summands, so I coH /� · I = 0 for any injective module I .
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As a corollary, if f : M → N is an H -colinear map such that if factors through an
injective:

M
f ��















 N

I

����������

then the induced map

HH
0 (M)

HH
0 (f )

��

�����������
HH

0 (N)

HH
0 (I )

��
0

is necessarily zero. So, the functor HH
0 (−) is actually defined in the stable category

HH
0 : MH → kV ect

Remark 3.5 For all n ∈ Z, the functors HH
n (−) are defined in the stable category.

Corollary 3.6 If H is co-semisimple then every H -comodule is injective, henceHH
0 (M) =

0 for all comodule M . In other words, � · M = McoH for all comodule M .

Remark 3.7 From the point of view of invariant theory, � · M = McoH is the more con-
venient situation, but from the point of view of homological algebra, HH

0 (M) �= 0 is most
interesting.

Lemma 3.8 Let H be a Hopf algebra with nonzero integral � and denote HomH the Hom
space in the stable category of H comodules, then there exists an epimorphism

HomH (k,M) → HH
0 (M)

Proof Notice that
HomH (k,M) → McoH

f �→ f (1)

is an isomorphism. We will show that this map fits into a commutative square

HomH (k,M)

����

∼=
f �−→f (1)

�� McoH

����
HomH (k,M) ����� McoH /� · M

Assume f : k → M factors through an injective object

k
f ��

���
��

��
��

� M

I

����������
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then one may consider the unit map k
η→ H and the diagram

k

η

��

f ��

�
��

��
��

� M

H ����� I

����������

Since η is a monomorphism and I is injective, one may find a dashed morphism making a
commutative diagram, so, it is enough to consider the case I = H .

k
f ��

�
��

��
��

M

H

b

����������

Now if x ∈ H is such that �(x) = 1, then

f (1) = b(1) = b(�(x)1) = b(� · x) = � · b(x) ∈ � · M

so f (1) ∈ � · M . This proves that the induced map

HomH (k,M) → McoH /� · M

is both well-defined, and clearly surjective.

Remark 3.9 One may wonder if the epimorphism of the above Lemma is in fact an iso-
morphism. This will be the case (see Theorem 3.12). For finite dimensional Hopf algebras
it is due to You Qi [9], where he proves actually for finite dimensional Frobenius algebras,
in particular for finite dimensional Hopf algebras. It is not clear for the author how to adapt
Qi’s arguments to our case, maybe one can find a simpler proof, but we provide a proof with
some homological machinery first.

Remark 3.10 Lemmas 2.9 and 2.10 gives an alternative proof that the composition of two
consecutive morphisms in a triangle is zero (in the stable category), and so, every func-
tor defined in the stable category sends triangles to complexes. For the particular case of
HH• (−), without knowing that it is representable or not, we have the expected result:

Theorem 3.11 If X → Y → Z → T X is a triangle in the stable category then there is a
long exact sequence of vector spaces

· · · → HH
n+1(Z) → HH

n (X) → HH
n (Y ) → HH

n (Z) → HH
n−1(X) → · · ·

Proof We will prove that

HH
0 (X) → HH

0 (Y ) → HH
0 (Z)

is exact in HH
0 (Y ) when 0 → X → Y → Z → 0 is a short exact sequence. The general

result follows from Lemma 2.10 and the shifting axiom of triangles. So assume 0 → X →
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Y → Z → 0 is a short exact sequence in MH , then multiplication by the integral gives as
a commutative diagram (of vector spaces) with exact rows

0 �� X ��

�·
��

Y ��

�·
��

Z

�·
��

�� 0

0 �� XcoH �� Y coH �� ZcoH

So, even forgetting that X → Y is injective, the snake Lemma gives in particular that

XcoH /� · X �� Y coH /� · Y �� ZcoH /� · Z

is exact.

Now, the above Theorem together with Lemma 3.8 gives the following:

Theorem 3.12 Let H be a Hopf algebra with nonzero integral � and denote HomH the
Hom space in the stable category of H comodules, then the natural map

HomH (k,M) → HH
0 (M)

is an isomorphism.

Proof First recall the following version of the “5”-lemma: given a commutative diagram
with exact rows:

A ��

a

��

B ��

b

��

C ��

c

��

D

d

��
A′ �� B ′ �� C′ �� D′

if b and d are monomorphisms and a is an epimorphism, then c is a monomorphism.
Consider S the class of H -comodules S such that the map HomH (k, S) → HH

0 (S) is an
isomorphism. Because short exact sequences in MH gives both long exact sequences for
HH

n (−) and HomH (k, T −n(−)), given a short exact sequence of comodules

0 → S1 → M → S2 → 0

where S1 and S2 are in S , then we have a diagram

HomH (k, T −1S2)

a

��

�� HomH (k, S1) ��

b

��

HomH (k,M) ��

c

��

HomH (k, S2)

d

��
H0(T

−1S2) �� H0(S1) �� H0(M) �� H0(S2)

Every vertical map is an epimorphism (Lemma 3.8) and both b and d are monomorphism
because they are isomorphisms (Si ∈ S), so c is monomorphism, hence, an isomorphism.

We conclude that the theorem is true for any finite dimensional comodule M , provided
it is true on simple comodules.

If S = k and k is not injective then � · k = 0 and HH
0 (k) = k ∼= HomH (k, k). (If k is

injective, the theorem is noninteresting, but still true).
If S is simple and S �∼= k then ScoH = 0, so trivially HH

0 (S) = 0 = Hom(k, S).
Now let M be a possibly infinite dimensional comodule and f : k → M such that

f (1) = � · m for some m ∈ M . Consider M ′ ⊂ M a finite dimensional subcomodule
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containing f (1) and m. Then, the class of f (1) in HH
0 (M ′) is zero. But because M ′ is finite

dimensional we know HH
0 (M ′) = HomH (k,M ′) and so there exists a factorization

k
f ��

��

M ′ � � �� M

I

����������

with I injective. So, f is zero in HomH (k,M).

3.3 Multiplicative structure

Because H is Hopf, the categories MH and mH are tensor categories, and the tensor
structure descends to the stable category, as one can see after these standard facts:

Lemma 3.13 1. If C is a coalgebra and V a vector space, the right C comodule V ⊗ C

with structure map ρ = idV ⊗� is an injective comodule.
2. Every injective comodule is a direct summand of one as above. The category of

comodules has enough injectives.

Proof 1. It follows from the adjunction formula

HomC(M,V ⊗ C) ∼= Homk(M, V )

f �→ (idV ⊗ε) ◦ f

and that every vector space is an injective object in k-Vect.
2. If M is a comodule, the structure morphism

ρM : M → M ⊗ C

gives an embedding into an injective object: C-colinearity is by coassociativity and
injectivity is because of counitarity. If M = I is injective, then the monomorphism
: ρI : I → I ⊗ C splits, hence, I is a direct summand of V ⊗ C where V is the
underlying vector space of I .

Lemma 3.14 Let H be a Hopf algebra, M ∈ MH . Denote by VM the underlying vector
space of M .

1. M ⊗ H (with diagonal coaction) is isomorphic to VM ⊗ H (with ρ = idVM
⊗�H ).

2. Also H ⊗ M ∼= VM ⊗ H

3. If I is injective then M ⊗ I and I ⊗ M are both injectives.

Proof 1. We only exhibit the maps:

M ⊗ H → VM ⊗ H

m ⊗ h �→ m0 ⊗ m1h

with inverse
m ⊗ h �→ m0 ⊗ S(m1)h

The composition is

m ⊗ h �→ m0 ⊗ S(m1)m2h = m0 ⊗ ε(m1)h = m ⊗ h
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The other composition is similar. The surprising part is that these maps are H -colinear.
For instance:

m ⊗ h
� 



�

��

H ⊗ H ��

ρdiag

��

VH ⊗ H

idV ⊗�
��

m0 ⊗ m1h�

��
m0⊗h1⊗m1h2 � ��H ⊗H ⊗H �� VH ⊗H ⊗H m0⊗m1h1⊗m2h2 = m0⊗(m1h)1⊗(m1h)2

2. The maps are similar: consider

H ⊗ M → VM ⊗ H

h ⊗ m �→ m0 ⊗ m1h

with inverse

m ⊗ h �→ S(m1)h ⊗ m0

The composition is

h ⊗ m �→ m0 ⊗ m1h = S(m1)m2h ⊗ m0 = ε(m1)h ⊗ m0 = h ⊗ m

The other composition is similar. The colinearity follows the same lines.
3. If I is injective then it is isomorphic to a direct summand of V ⊗ H for some vector

space V (e.g. V = VI ), and so M ⊗ I is isomorphic to a direct summand of

M ⊗ (V ⊗ H) ∼= V ⊗ (M ⊗ H) ∼= (V ⊗ VM) ⊗ H

and I ⊗ M is a direct summand of

(V ⊗ H) ⊗ M ∼= V ⊗ (H ⊗ M) ∼= (V ⊗ VM) ⊗ H

In any case, a direct summand of a comodule of the form W ⊗H for some vector space
W .

There are several corollaries:

Corollary 3.15 The tensor product is well defined in the stable category. In particular,
K0(m

H ) is an associative ring.

Let E := E(k) be the injective hull of k in MH . It is well-known that H is co-Frobenius
if and only if E(k) is finite dimensional (see Theorem 2.1 in [3]). Also, for co-Frobenius
Hopf algebras, there exists a finite dimensional projective comodule P = P(k) with a
surjective map P → k.

Corollary 3.16 DefineE(M) := M⊗E. The mapM → E(M) (m �→ m⊗1) is a functorial
injective embedding, if M ∈ mH then E(M) ∈ mH as well. Also, P(M) := M ⊗ P gives a
functorial projective surjection P(M) → M , if P ∈ mH then P(M) ∈ mH as well.

Proof The injective part is clear. Let us prove the existence of a surjective map P → k with
P finite dimensional:

Since �′ : H → k is surjective, there exists h0 ∈ H such that �′(h0) = 1, and there
exists a finite dimensional subcomodule M0 ⊂ H containing h0. In particular, �′(M0) �= 0.
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Because H is co-Frobenius, there exists a finite dimensional injective hull of M0, let’s call
it I (M0). Looking at the diagram

0 �� M

��

�� I (M)

∃���
�

�
�

H

Because H is injective there exist the dashed arrow. Because I (M0) is the injective hull
and H is injective, the map I (M) → H is injective and I (M0) is a direct summand of H .
Eventually changing M0 by I (M0) we get a finite dimensional direct summand of H such
that the restriction of �′ is non-zero, hence, a surjection P → k with P projective and finite
dimensional.

Corollary 3.17 For any M , N inMH , there are isomorphisms in the stable category

T (M ⊗ N) ∼= T M ⊗ N ∼= M ⊗ T N

and similarly for T ′. Hence,MH and mH are tensor triangulated categories.

Proof Let i : M → I (M) and j : N → I (N) be embeddings into injective comodules,
then I (M) ⊗ I (N) is injective and one can compute T (M ⊗ N) via

0 → M ⊗ N
i⊗j→ I (M) ⊗ I (N) → T (M ⊗ N) → 0

But I (M) ⊗ N and M ⊗ I (M) are injectives too, and we have the following short exact
sequences with injective objects in the middle:

0 �� M ⊗ N
i⊗id �� I (M) ⊗ N

id ⊗j

��

�� T M ⊗ N ��

���
�
� 0

0 �� M ⊗ N
i⊗j �� I (M) ⊗ I (N) �� T (M ⊗ N) �� 0

0 �� M ⊗ N
id ⊗j �� M ⊗ I (N) ��

i⊗id

��

M ⊗ T N ��

���
�
�

0

Notice that the morphisms are not canonical in the category of comodules, but they are
canonically determined in the stable category

Corollary 3.18 For any m, n ∈ Z there is an isomorphism in the stable category

T nM ⊗ T nN ∼= T n+m(M ⊗ N)

3.4 KünnethMap

Let M and N be two comodules. It is clear that MH ⊗ NH ⊆ (M ⊗ N)H and also one can
easily check that

� · (M ⊗ NcoH ) = � · M ⊗ NcoH

and
� · (McoH ⊗ N) = McoH ⊗ � · N
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So, there is a canonical map

HH
0 M ⊗HH

0 N = McoH

� · M
⊗ NcoH

� · N
∼= McoH ⊗ NcoH

� · M ⊗ NcoH + McoH ⊗ � · N
−→ HH

0 (M ⊗N)

Moreover, using Corollary 3.18 on can define maps

HH
p (M) ⊗ HH

q (N)

��

H0
H (T ′pM) ⊗ H0

H (T ′qN)

��
H0

H (T ′pM ⊗ T ′qN) ∼=
�� H0

H (T ′p+q(M ⊗ N)) HH
p+q(M ⊗ N)

(If a number is negative, we use the convention (T ′)−n = T n.) In this way, one can assemble
all those maps and get, for any fixed n, a map that we call ”Künneth map”

⊕

p+q=n

HH
p (M) ⊗ HH

q (N) → HH
n (M ⊗ N)

For M = N = k, from concrete computations (see Corollary 5.10) we know this map cannot
be an isomorphism in general. It would be interesting to know their general properties. In
any case, HH• (k) = ⊕

n∈ZHH
n (k) is a graded algebra.

4 Small injective embeddings formH0#B

During this section we assume

1. H0 is a co-semisimple Hopf algebra,
2. V ∈ H0YDH0 is such that B(V ), the Nichols algebra associated to the braided vector

space V , is finite dimensional.

Let us recall briefly the conditions above and set notations and conventions. First, H0YDH0

is the category whose objects are left H0-modules and right H0-comodules with the
compatibility

h1m0 ⊗ h2m1 = (h2m)0 ⊗ (h2m)1h1

where h1 ⊗ h2 = �h, h ∈ H0 and m ∈ M , ρ(m) = m0 ⊗ m1 ∈ M ⊗ H0. Morphisms are
H0-linear and colinear maps. For any Hopf algebra A, the category AYDA is braided with

cV,W : V ⊗ W → W ⊗ V

v ⊗ w �→ w0 ⊗ w1 · v

Recall that if V is a braided vector space (e.g. V ∈ YDH0
H0

) then both T V (the tensor alge-
bra) and T cV (the tensor coalgebra) are braided Hopf algebras. T V has free product and
braided-shuffle coproduct, while T cV has deconcatenation coproduct and braided-shuffle
product. The Nichols algebra B(V ) is, by definition, the image of the unique (bi)algebra
map T V → T cV that is the identity on V :

T V

�� ����
��

��
��

�
�� T cV

B(V )
� �

�����������
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It happens to be, degree by degree, the image of the quantum symmetrizer map associated
to the braiding. We refer to Andruskievitch’s notes [1] for a gentle introduction and full
discussion on Nichols algebras. The reader may keep in mind the easy example B(V ) =
�V when the braiding is -flip. The braided bialgebra B(V ) is actually a braided Hopf
algebra, and the bicross product H0#B(V ) is a usual Hopf algebra. Since there is a lot of
structures around B(V ) we recall them:

• B is a coalgebra, we denote �(b) = b1 ⊗ b2,
• B ∈ MH0 , we denote the structure ρ(b) = b0 ⊗ b1,
• H0#B is a coalgebra, the comultiplication is given by the following diagram (recall the

underlying vector space of H0#B is H0 ⊗ B):

H0

�H0

��

⊗ B

�B

��
H0 ⊗ H0

idH0
��

�������

���������

⊗ B⊗ B

idB
��

CH0,B

�����������������

H0 ⊗ B ⊗ H0 ⊗ B

In Sweedler-type notation:

�(h#b) = h1#(b1)0 ⊗ (b1)1h2#b2

• In particular �(1#b) = 1#(b1)0 ⊗ (b1)1#b2. Denoting H := H0#B, we have that
B ∼= 1#B is a right H -subcomodule of H . With this structure we consider B as an
object in MH . To emphasize the difference with ρ : B → B⊗ H0 we call it ρH .

Example 4.1 Let x ∈ V ⊂ B, �x = x ⊗ 1 + 1 ⊗ x. Assume ρ(x) = x ⊗ g ∈ B⊗ H0. In
order to compute ρH (x) we proceed as follows:

ρH (x) ↔ �H (1#x) = 1#(x1)0 ⊗ (x1)1#x2

= 1#(x)0 ⊗ (x)1#1 + 1#(1)0 ⊗ (1)1#x

= 1#x ⊗ g#1 + 1#1 ⊗ 1#x ↔ x ⊗ g + 1 ⊗ x

The main fact of this section is the following:

Proposition 4.2 B ∈ MH is an injective object.

Proof Since H0 is cosemisimple, the inclusion k → H0 splits as H0-comodule. Choose a
splitting �′

0 : H0 → k. This is actually right integral for H0, that is, it satisfies

�′
0(h1)h2 = �′

0(h)1

and additionally �′
0(1) = 1.

Now we define a splitting H → B of the inclusion B ∼= 1#B ⊂ H0#B = H via

h#b �→ �′
0(h)b

We need to see that it is H -colinear. Recall the H -structure in B is given by the
identification B ∼= 1#B ⊂ H , so

ρH (b) = b10 ⊗ b11 #b2
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We check H -colinearity:

h#b
� 



�

��

H0#B
π ��

�H0#B

��

B

ρH

��

�′
0(h)b
�

��
h1#b10 ⊗b11h2#b2

�





H0#B⊗H0#B �� B⊗ (H0#B) �′
0(h)b10 ⊗ b11 #b2

�′
0(h1)b10 ⊗b11h2#b2 b10 ⊗b11�

′
0(h1)h2#b2

Remark 4.3 The proof is independent of the fact of B being finite dimensional, but we are
interested in the case dimB < ∞ so that H0#B is co-Frobenius.

As a corollary we have

Corollary 4.4 For any M ∈ MH , the map iM : M → M ⊗ B defined by

m �→ m ⊗ 1

is a functorial injective embedding. In particular, if B is finite dimensional then M →
M ⊗ B (m �→ m ⊗ 1) is a finite dimensional embedding working in mH . From the short
exact sequence

0 → M → M ⊗ B → (M ⊗ B)/M → 0

we have T M ∼= (M ⊗ B)/M . Recall B is graded (with the tensor grading) and Btop

(its maximal degree) has dimension 1. The Kernel of �′|B is B<top = ⊕top−1
i=0 Bi . From

π : B → B/B<top we have the short exact sequence

0 → M ⊗ B<top → M ⊗ B → M ⊗ (B/B<top) → 0

hence T ′(M ⊗ (B/B<top)) ∼= M ⊗ B<top .

Remark 4.5 B/B<top is not isomorphic to k in general, but it is 1-dimensional. So,
in order to compute T ′M one should ”twist M ⊗ B<top by the inverse of the quantum
determinant”:

If b is a generator of the 1-dimensional vector space Btop then kb is not in general an
H -subcomodule of B, but B/B<top = kb is so, hence

ρH (b) = b ⊗ D

for a unique group-like element D ∈ H , that we call ”quantum determinant”. From the
surjective map

B
π→ B/B<top

∼= kD

we get a surjective map into the trivial comodule k:

B⊗ kD−1 → k

If we call P := B ⊗ kD−1, it is a projective H -comodule that surjects into k and from it
one has functorial projective surjections for any comodule M:

P(M) := M ⊗ P → M
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and functorial T ′, since from:

0 → M ⊗ B<top ⊗ kD−1 → M ⊗ P → M → 0

we get T ′(M) := M ⊗ B<top ⊗ kD−1 is a functor in MH (resp. in mH if M is finite
dimensional) that gives the desuspension functor in MH (resp. in mH ).

Before going into K0 rings, we look at some examples.

5 First Examples

5.1 The Example k [Z]#k [x]/x2

Let H be the k-algebra generated by x and g±1 with relations

gx = −xg, x2 = 0

It is a Hopf algebra if one defines the comultiplication by

�g = g ⊗ g, �x = x ⊗ g + 1 ⊗ x

(to be compared with Example 4.1). That is, g is group-like and x is 1-g-primitive. Notice
that k[x]/x2 is not a Hopf algebra in the usual sense (unless characteristic=2), but it is a
super Hopf algebra. Nevertheless, H = k[Z]#(k[x]/x2) is a Hopf algebra in the usual sense.
Maybe all computations in this example are folklore, but for clearness we include them.

For an element
ω =

∑

n∈Z
ang

n +
∑

n∈Z
bng

nx

define
�(ω) := b0

The main fact about the category MH , noticed by Bodo Pareigis [7], is

A right H − comodule M is the same as a d .g. structure on M

Notice that evaluation at x = 0 gives a map H → k[Z], so any H -comodule is a
k[Z]-comodule (i.e. a Z-graded object), but the presence of x keep track of a square-zero
differential. We just write the correspondence: if M = (⊕n∈ZMn, ∂) with ∂(Mn) ⊆ Mn−1
and ∂2 = 0 then, for m ∈ Mn, the right comodule structure is

ρ(m) = m ⊗ gn + ∂(m) ⊗ xgn−1

and every right H -comodule is of this form.
It is a pleasant exercise to check that the standard differential on the tensor products of

complexes with the usual Koszul ∂⊗1±1⊗∂ agree with the standard H -comodule structure
on the tensor product of H -comodules.

Notice that
�1 = 1 ⊗ 1

�x = x ⊗ g + 1 ⊗ x

means that k[x]/x2 is a right H -subcomodule of H . As d.g. vector space is the complex

· · · → 0 → kx
∂→

x �→1
k → 0 → · · ·

where |x| = 1, |1| = 0.
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5.1.1 Smaller injective embeddings for H = k [Z]#k [x]/x2

In this case we have B = k ⊕ kx, considered as H -comodule via

ρ(1) = 1 ⊗ 1

ρ(x) = x ⊗ g + 1 ⊗ x

The general argument developed in the previous section gives us that, for any M ∈ MH ,
the map M → I (M) := M ⊗ B = M ⊗ k[x]/x2 given by i(m) = m ⊗ 1 is an embedding
of M into an injective object. In particular I (M)/ρ(M) = M ⊗ x and we have proven the
following:

Corollary 5.1 In the stable category ofMH for H = k[Z]#(k[x]/x2),

T M = I (M)/M ∼= M ⊗ kx ∼= M[1]

We leave as an exercise the following:

Corollary 5.2 Identifying d.g.V ectk and MH , the comodule M ⊗ k[x]/x2 identifies with
the mapping cone of the identity of M . Moreover, the “stable H -comodule mapping cone”
of a colinear map identifies with the classical mapping cone of a map between complexes.

5.1.2 Homology

For a d.g. vector space M = (⊕nMn, ∂) viewed as k[Z]#k[x]/x2-comodule, the coinvari-
ants are

McoH = {m : ρ(m) = m ⊗ 1H = m ⊗ g0}
But ”ρ(m) = m ⊗ g0 ” means that m ∈ M0 and ∂m = 0, so

McoH = Ker(∂ : M0 → M−1)

On the other side, the action of the integral on an element m gives

� · m = (id ⊗�)ρ(m) = (id ⊗�)ρ(
∑

n

mn)

= (id ⊗�)(
∑

n

(mn ⊗ gn + ∂(mn) ⊗ gn−1x)) = ∂(m1) ∈ M0

That is

� · (⊕nMn, ∂) = Im (∂ : M1 → M0) ⊆ Ker(∂ : M0 → M−1) ⊆ M0

Hence

Hk[Z]#k[x]/x2

0 (M) = McoH /� · M = H0(M, ∂)

5.2 The Example k [Z]#k [x]/xN and N-Complexes

Fix N ∈ N, N ≥ 2. Let H be the algebra generated by g±1 and x with the relations

xN = 0, gx = ξNxg

where ξN is an N -primitive root of unity. This algebra is Hopf with comultiplication

�g = g ⊗ g,�x = x ⊗ g + 1 ⊗ x
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To have an H -comodule is the same as a Z-graded vector space together with a degree -1
map ∂ satisfying ∂N = 0. The tensor structure for (M•, ∂M) ⊗ (M ′•, ∂R) is given by the
usual total grading in M ⊗ M ′, and the differential on homogeneous elements is

∂(m ⊗ m′) = ∂(m) ⊗ m′ + ξ
|m|
N m ⊗ ∂(m′)

For an homogeneous element m ∈ M of degree n, the coaction is given by

ρ(m) = m⊗gn+∂(m)⊗xgn−1+ 1

[2]ξ ∂2(m)⊗x2gn−2+· · ·+ 1

[N−1]ξ !∂
N−1(m)⊗xN−1gn−N+1

=
N−1∑

i=1

1

[i]ξ !∂
i(m) ⊗ xign−i

where as usual [0]ξ ! = [1]ξ ! = 1, [n]ξ = 1+ξ +· · ·+ξn−1 and [n+1]!ξ = [n+1]ξ · [n]!ξ .
If (M•, ∂) is an N -complex, there are several ways to associate an “homology” in degree

n. For each 0 < i < N , since 0 = ∂N = ∂i∂N−i , one may consider Ker(∂i)/Im (∂N−i ).
The general machinery of co-Frobenius algebras and stable categories, however, choose one
particular i. Since McoH = Ker(∂) ∩ M0 and � · M = M0 ∩ Im (∂N−1) we have

HH
0 (M) = {m ∈ M0 : ∂(m) = 0}

∂N−1(M−N+1)

The other (homological) degrees are not the H0 of the degree-shiftings of the N -complex.
As an illustration we compute H1(M) in terms of the N -complex data:

Proposition 5.3 H1(M) ∼= Ker(∂N−1) ∩ MN−1

Im (∂ : MN → MN−1)

Remark 5.4 From Corollary 4.4 and the isomorphism B/B<top
∼= kgN−1 (notice

B/B<top is generated by the class of xN−1 and ρH (xN−1) = xN−1 ⊗ gN−1+lower degree
terms) it follows that

T ′(M) ∼= M ⊗ kg−N+1 ⊗ B<top

Proof Recall B = ⊕N−1
i=0 kxi , the structure is given by

|xi | = i, ∂(xi) = [i]xi−1

H1(M) = H0(T
′M) = H0(M ⊗ kg−N+1 ⊗ (k ⊕ kx ⊕ kx2 ⊕ · · · ⊕ kxN−2))

The degree zero part of T ′M , if M = ⊕nMn, is

T ′(M)0 =
N−2⊕

i=0

MN−i−1 ⊗ g−N+1 ⊗ xi

A typical element is of the form

N−2∑

i=0

mi ⊗ gN−1 ⊗ xi

where |mi | = −N − i + 1. The differential has the form

∂
( N−2∑

i=0

mi ⊗gN−1 ⊗xi
)

=
N−2∑

i=0

∂(mi)⊗gN−1 ⊗xi +
N−2∑

i=0

ξ−N−i+1+N−1
N mi ⊗gN−1 ⊗∂(xi)
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=
N−2∑

i=0

∂(mi) ⊗ gN−1 ⊗ xi +
N−2∑

i=1

ξ−i
N mi ⊗ gN−1 ⊗ [i]xi−1

= ∂(mN−2) ⊗ gN−1 ⊗ xN−2 +
N−3∑

i=0

(
∂(mi) + ξ−i−1

N [i + 1]mi+1

)
⊗ gN−1 ⊗ xi

This expression is equal to zero if and only if

∂(mN−2) = 0 and mi = −ξ i
N

[i] ∂(mi−1) (i = N − 3, N − 4, . . . , 1)

From the second set of equalities we see that the only parameter is m0, because mi is, up to
scalar, ∂i(m0). The equation ∂(mN−2) = 0 means ∂N−1(m0) = 0. We conclude

(T ′M)coH ∼= Ker(∂N−1) ∩ MN−1

We leave to the reader to check that, under this bijection, � · (M ⊗ gN−1 ⊗ B<top)

corresponds to ∂(MN).

5.3 The Example k [Z]#�(x, y) andMixed Complexes

Denote
�(x, y) := k{x, y}/(x2, y2, xy + yx)

It is not a Hopf algebra in the usual sense, but it is a Hopf algebra in the (signed) graded
sense. The algebra

k[Z]#�(x, y) = k{g±1, x, y}/(gx = −xg, gy = −yg, 0 = x2 = y2 = xy + yx)

is a Hopf algebra with comultiplication

�g = g ⊗ g, �x = x ⊗ g + 1 ⊗ x, �y = y ⊗ g−1 + 1 ⊗ y

Notice that x produce a differential of degree -1, while y produce a differential of degree
+1. This Hopf algebra H is isomorphic to H0#B(V ) where H0 = k[Z] and V = kx ⊕ ky ∈
H0YDH0 . Writing Z multiplicatively Z ∼= {gn : n ∈ Z}, the action is given by

gv = −v, ∀v ∈ V

and the coaction is determined by

ρx = x ⊗ g, ρy = y ⊗ g−1

Lemma 5.5 MH identifies with objects (M, d, B) where M is a Z-graded vector space, d
and B are square zero differentials with |d| = −1, |B| = 1, and dB + Bd = 0. In other
words,MH are mixed complexes.

The proof is straightforward, we only indicate the correspondence: for a mixed complex
(M, d, B), the corresponding right comodule structure

ρ : M → M ⊗ H

for an homogeneous m, is given by

ρ(m) = m ⊗ g|m| + d(m) ⊗ xg|m|−1 + B(m) ⊗ yg|m|+1 + dB(m) ⊗ yxg|m|

It is clear that McoH = M0 ∩Ker d ∩Ker B. Also, an easy computation shows (see Example
6(b) of Section 3 for the expression of the integral)

� · M = d(B(M0)) = B(d(M0)) ⊆ McoH
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So,

H0(M) = M0 ∩ Ker d ∩ Ker B

d(B(M0))

Remark 5.6 In this (stable) category, the suspension functor is not the shifting degree in
general. However, we have the following lemma:

Lemma 5.7 k[x]/x2 and k[y]/y2 are H -subcomodules of H . B = �(x, y) ∼= k[x]/x2 ⊗
k[y]/y2 as objects in MH . For M ∈ MH denote M(x) := M ⊗ k[x]/x2 and M(y) :=
M ⊗ k[y]/y2. The following assertions follows:

• M(x)(y) ∼= M(y)(x) ∼= M ⊗ �(x, y) is an injective object inMH .
• T (M(x)) ∼= M(x)[−1],
• T (M(y)) ∼= M(y)[1]
• H•(M(x)) = H−•(M,B)
• H•(M(y)) = H•(M, d)

Proof The first item follows from the obvious isomorphism

k[x]/x2 ⊗ k[y]/y2 ∼= �(x, y)

Observe that kx = (k[x]/x2)/k = kx ∼= k[1] and ky = (k[y]/y2)/k = ky ∼= k[−1]. Now
from the short exact sequence

0 → M(x) → M(x) ⊗ k[y]/y2 → M(x) ⊗ y → 0

we get
0 → M(x) → M ⊗ �(x, y) → M(x)[−1] → 0

Since M ⊗ �(x, y) is injective, we conclude T (M(x)) ∼= M(x)[−1]. Similarly for M(y).
In order to compute cohomology we consider first

M(x)coH = M(x)0 ∩ Ker d ∩ Ker B = M(x)
d,B
0

We visualize it using the following diagram

M−1

d
��
M0

d
��

B

�� M1

d
��

B

�� · · ·

· · · M0 ⊗ x

d

��

d ��

B

�� M1 ⊗ x

d

��

d ��

B

�� M2 ⊗ x

B

��

So,
M(x)d = {(m0,m1 ⊗ x) : d(m0) + m1 = 0, d(m1) = 0}

= {(m0,−dm0 ⊗ x) : m0 ∈ M0} ∼= M0

M(x)d,B = {(m0, −dm0|x) : Bm0 = 0, B(−dm0) = 0}
but B(−dm0) = dBm0 = 0, so M(x)d,B ∼= MB

0 .
We also must compute B(d(M(x)0)):

Bd(m0,m1 ⊗ x) = B(dm0 + m1, dm1 ⊗ x) = (Bdm0 + Bm1, Bdm1 ⊗ x)

= (B(m1 + dm0), −d(B(m1 + dm0)) ⊗ x) = (Bm̃, −d(Bm̃) ⊗ x)

So, under the isomorphism M(x)d,B ∼= MB
0 , the subspace � · M(x) = Bd(M(x)0)

corresponds to B(M1) ⊂ M0. We conclude H0(M(x)) ∼= H0(M,B).
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Now from the second item we get

Hn(M(x)) = H0(T
−n(M(x))) = H0(M(x)[n]) = H0(M(x)[n]) = H−n(M,B)

The parts with M(y) instead of M(x) is completely analogous.

Corollary 5.8 For any mixed complex (M, d, B) there are long exact sequences

· · · → H•(M) → H•(M, d) → H•(M[−1]) → H•−1(M) → · · ·
and

· · · → H•(M) → H−•(M,B) → H•(M[1]) → H•−1(M) → · · ·

Proof We consider the short exact sequences in MH :

0 → M → M ⊗ k[y]/y2 → M ⊗ y → 0

and
0 → M → M ⊗ k[x]/x2 → M ⊗ x → 0

Recall M ⊗ y ∼= M[−1] and M ⊗ x ∼= M[1]. These short exact sequences in MH gives
triangles in the stable category; their log exact sequences together with the previous Lemma
gives the result.

Corollary 5.9 Hn(M, d) = 0 ∀n ⇒ Hn(M) = H0(M[−n]);
Hn(M,B) = 0 ∀n ⇒ Hn(M) = H0(M[n]).

Another corollary is the following computation:

Corollary 5.10 Considering k as trivial mixed complex concentrated in degree zero,

H•(k) =
⎧
⎨

⎩

k • = 0
k • = −1
0 otherwise

Proof Specializing the long exact sequence

· · · → H•(M) → H•(M, d) → H•(M[1]) → H•−1(M) → H•−1(M, d) → · · ·
at M = k[p] and • = q + 1 gives

· · · → Hq+1(k[p], d) → Hq+1(k[p + 1]) → Hq(k[p]) → Hq(k[p], d) → · · ·
If p �= q, q + 1 we have

Hq+1(k[p + 1]) ∼= Hq(k[p])
Inductively, for n �= 0, 1

Hn(k) = Hn(k[0]) ∼= Hn−1(k[−1]) ∼= · · · ∼= H0(k[−n]) = 0

because k[n] do not have 0-degree component if n �= 0. It remains to compute H0(k). and
H1(k).

Clearly H0(k) = k. For H1, since B/B<top
∼= k (notice xy ∈ Btop has degree zero),

the formula for T ′ is
T ′(k) = k ⊕ kx ⊕ ky

We have (T ′k)0 = k = (T ′k)coH and dB = Bd = 0 in T ′k, so H1(k) = H0(T
′k) = k.
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Remark 5.11 Notice the asymmetry in the gradings, H1(k) = k but H−1(k) = 0, as we
can see from the general argument above, or compute directly:

T (k) = B/k = kx ⊕ ky ⊕ kxy

The degree zero component is kxy, but d(xy) �= 0 (also B(xy) �= 0), so T (k)coH = 0 and

H−1(k) = H0(T (k)) = T (k)coH

� · T (k)
= 0

6 (De)Categorification: Computation of K0

6.1 K0 of Exact and Triangulated Categories

The main result of this section is Theorem 6.1, that gives a general presentation of K0(m
H ).

We recall the main constructions:
If A is an exact category such that the isomorphism classes of objects is a set, then K0(A)

is defined as the free abelian group on the set of isomorphism classes of objects module the
relations

[X] + [Z] = [Y ]
whenever there is a short exact sequence

0 → X → Y → Z → 0

We remark that [X] + [Y ] = [X ⊕ Y ] and, for n ∈ N, n[X] = [Xn], so, every element in
K0(A) can be written in the form [X] − [Y ] for some objects X, Y in A. For triangulated
categories, K0 is defined similarly, taking the free abelian group on isomorphism classes of
objects modulo the relations

[X] + [Z] = [Y ]
whenever there is a triangle

X → Y → Z → T X

By K0(m
H ) we understand the K-theory of the category of finite dimensional H -

comodules, that is an exact category with usual short exact sequences. We denote K0(m
H )

the K-theory of the stable category mH as triangulated category.
Almost by definition, if I denotes the full subcategory of injective objects in mH , there

is a short exact exact sequence of categories

0 → I → mH → mH → 0

One could expect a general result in K-theory concluding a long exact sequence ending with

K0(I) → K0(m
H ) → K0(m)H → 0

This is actually the case for short exact sequences of exact categories where the left hand
side is also a Serre subcategory. Recall a Serre (sub)category is closed under quotients, sub-
objects and extensions. In our case, mH is an exact category but I is not a Serre subcategory
in general. Also, mH is not in general an exact category, it is triangulated, but the other two
are not triangulated.

For exact sequences of Waldhausen categories there is also a long exact sequence in K-
theory, both I and mH are Waldhausen categories, but it is not clear that mH is so, in any
case one should prove it. Instead, one can prove directly the following:
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Theorem 6.1 The natural functors I → mH and mH → mH induce an exact sequence

K0(I) → K0(m
H ) → K0(m

H ) → 0

In particular, the ring K0(m
H ) can be presented as the quotient of K0(m

H ) by the ideal
generated by injective objects.

Proof The functor mH → mH is the identity on objects, so the induced map K0(m
H ) →

K0(m
H ) is surjective. By definition of mH , the composition I → mH → mH is zero, so

the composition K0(I) → K0(m
H ) → K0(m)H is zero as well. Let us denote

K0(m
H )/K0(I) := K0(m

H )

Im
(
K0(I) → K0(mH )

)

We have a surjective ring homomorphism

K0(m
H )/K0(I) → K0(m

H )

To see injectivity of this map we argue as follows: Assume ω = [M]−[N ] in K0(m
H ) goes

to zero in K0(m
H ). From the short exact sequence

0 → N → I (N) → T N → 0

in mH with I (N) injective, [T N ] = [I (N)] − [N ] in K0(m
H ), hence [T N ] = −[N ] in

K0(m
H )/K0(I). So, we have

ω = [M] − [N ] = [M ⊕ T N ] Mod I
Eventually changing ω = [M] − [N ] by ω′ := [M ⊕ T N ], we can assume that, modulo I ,
the element ω is equal to [M] for some object M . Now if [M] is zero in K0(m

H ), then there
exists integers ni and triangles in the stable category

Xi → Yi → Zi → T Xi

such that
[M] =

∑

i

mi([Xi] + [Zi] − [Yi])

But, using that direct sum of triangles is a triangle, for the positive mi’s we get
∑

i

mi([Xi] + [Zi] − [Yi]) = [⊕mi>0X
mi

i ] + [⊕mi>0Z
mi

i ] − [⊕mi>0Y
mi

i ]

and similarly for the negative mi’s. From this, we may assume that there are two triangles
Xi → Yi → Zi → T Xi , i = 1, 2 such that

[M] = ([X1] + [Z1] − [Y1]) − ([X2] + [Z2] − [Y2])
But because X

id→ X → 0 → T X is a triangle, then so is X → 0 → T X → T X →,
hence [T X] = −[X] in K0(m

H ), and for X → Y → Z → T X a triangle, we have
T X → T Y → T Z → T 2X is also a triangle and

−([X] + [Z] − [Y ]) = [T X] + [T Z] − [T Y ]
So, we can conclude that there exists a single triangle X → Y → Z → such that

[M] = [X] + [Z] − [Y ]
But we know (Lemma 2.10) that any triangle in the stable category X → Y → Z → T X

is isomorphic, in the stable category, to a short exact sequence

0 → X′ → Y ′ → Z′ → 0
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Recall also that X ∼= X′ in mH if and only if there exist injectives I and J such that
X ⊕ I ∼= X′ ⊕ J in mH . But Modulo I , clearly [X] = [X] + [I ] = [X ⊕ I ] = [X′ ⊕ J ] =
[X′] + [J ] = [X′]. So, we finally get that

[M] = [X′] + [Z′] − [Y ′] Mod I
Hence, [M] in K0(m

H ) is zero Mod K0(I).

Remark 6.2 It could be interesting to know if this is the last part of a long exact sequence
for higher K-groups.

6.2 K0 and the Coradical

Let H be a Hopf algebra and H0 its coradical. Since H0 is a subcoalgebra, every H0-
comodule is an H -comodule. Consider the category A = mH and B = mH0 ; B is a
non-empty full subcategory closed under taking subobjects, quotient objects, and finite
products in A. Also B is an abelian category and the inclusion functor B → A is exact, so
Quillen’s theorem gives.

Theorem 6.3 ([10], Theorem 4. (Devissage)) Let B andA be as above. Suppose that every
object M of A has a finite filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M such that Mj/Mj−1
is in B for each j . Then the inclusion B → A induces an isomorphism K•(B) ∼= K•(A)

If M ∈ MH is a nonzero comodule, then its socle soc(M) is a nonzero subcomodule
that is actually an H0-comodule (see Exercise 3.1.2. of [4], page 117, its solution on page
140). If in addition M is finite dimensional, considering M/soc(M) and induction in the
dimension of M one can easily define a finite filtration

0 = soc(M) ⊆ M2 ⊆ · · · ⊆ Mn = M

such that Mj/Mj−1 = soc(Mj/Mj−1), hence Mj/Mj−1 ∈ mH0 . Now Quillen’s theorem
implies the following:

Corollary 6.4 As abelian groups, K0(m
H ) ∼= K0(m

H0). If H0 is a Hopf subalgebra then
this isomorphism is also a ring isomorphism.

6.3 Smash Products

Let H = H0#Bwhere H0 is cosemisimple and B a finite dimensional braided Hopf algebra
in H0YDH0 . For an element M ∈ MH , denote grM the associated graded with respect to the
”socle filtration”. Recall that the assignment [M] �→ [grM] implements the isomorphism
K0(m

H ) ∼= K0(m
H0). If {Si : i ∈ I } denote the set of (isomorphism classes of) simple

objects in MH0 , then , for M ∈ mH ,

grM ∼= ⊕i∈I S
mi

i

for uniques (and finite non zero) multiplicity integers mi = mi(M). We define

[M]H0 :=
∑

i

mi[Si] = [grM] ∈ K0(m
H0) =

⊕

i∈I

Z[Si]

In particular B is a finite dimensional H -comodule, so it makes sense

[B]H0 ∈ K0(m
H0)
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In the case H0 = k[G] with G a group, the isomorphism classes of simple comodules can
be parametrized by {kg}g∈G and kg ⊗ kh ∼= kgh, so we identify K0(m

k[G]) ∼= Z[G]. The
main result of this section is the following:

Theorem 6.5 Let G be a group and H0 = k[G]. Assume H = H0#B, with finite
dimensionalB. The assignment [M] �→ [M]H0 induces an isomorphism of rings

K0(m
H ) ∼= Z[G]/([B]H0)

Proof From Theorem 6.1 it follows that K0(m
H ) ∼= K0(m

H )/K0(I). But from Corollary
6.4 we know

K0(m
H ) ∼= K0(m

H0)

M �→ [grM]
For H0 = k[G] we also know K0(m

k[G]) ∼= Z[G]. We need to identify K0(I) inside
K0(m

H ) ∼= Z[G].
Recall that B is injective and BcoH = k. Now let I be a finite dimensional indecom-

posable injective H -comodule. Because I is indecomposable and injective, soc(I ) is an
indecomposable H0-comodule (here, injectivity of I is essential), hence simple and

soc(I ) ∼= kg

for some g ∈ G. Clearly Ĩ := I ⊗ kg−1 is an injective indecomposable H -comodule and
(Ĩ )coH = k. Since Ĩ is injective, there exist a dashed morphism in the diagram:

k��

��

socĨ � � �� Ĩ

B

����������

This map restricted to the socle is injective, so the map is injective and we have dimB ≤
dim Ĩ . But B is injective, so the same argument in the opposite direction gives dim Ĩ ≤
dimB and so B ∼= Ĩ . In other words,

I ∼= B⊗ kg

for some g ∈ G. We can conclude that if I is finite dimensional injective (non necessarily
indecomposable) H -comodule, then there exists integers {mg : g ∈ G} with

I ∼=
⊕

g∈G

mgB⊗ kg

That is, Im(K0(I) → K0(m
H )) is the ideal generated by [B].

6.4 Examples

The first two examples are well-known:

1. H = k[Z]#k[x]/x2 :

K0(m
H ) ∼= K0(k[Z])/〈k[x]/x2〉 ∼= Z[z±1]/(1 + z) ∼= Z

2. (Khovanov) H = k[Z]#k[x]/xN :

K0(m
H ) ∼= K0(k[Z])/〈k[x]/xN 〉 ∼= Z[z±1]/(1 + z + · · · zN−1)

If N is is a prime p then K0(m
H ) ∼= Z[ξp].
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3. H = k[Z]#�(x, y) where |x| = 1, |x = −1, then

�(x, y) = k ⊕ kx ⊕ ky ⊕ kxy

hence [gr�(x, y)] = 1 + z + z−1 + 1 = z−1 + 2 + z = z−1(1 + z)2 and so

K0(m
H ) ∼= Z[z±1]/(1 + z)2 = Z[z]/(1 + z)2 ∼= Z[t]/t2

4. If N1, . . . , Nk ∈ N, for 1 ≤ i < j ≤ k, a list of nonzero scalars qij ∈ k× is given, then
define H as the algebra generated by x1, . . . , xk, g

±1
1 , . . . , g±1

k with relations

gigj = gjgi (∀i, j)

xixj = qij xj xi (i < j)

xigj = qij gj xi (i < j)

gixj = qij xj gi (i < j)

x
Ni

i = 0

It is a Hopf algebra with comultiplication given by

�gi = gi ⊗ gi

�xi = xi ⊗ gi + 1 ⊗ xi

Then H is a Hopf algebra of the form k[Zk]#B. The algebra B has monomial basis
{xn1

1 · · · xnk

k , 0 ≤ ni < Ni}, so, writing Z[Zk] = Z[z±1
1 , . . . , z±1

k ],

[B]H0 =
k∏

i=1

(1 + zi + z2
i + · · · + z

Ni−1
i )

Hence,

K0(m
H ) ∼= Z[z±1

1 , · · · , z±1
k ]/

k∏

i=1

(1 + zi + · · · zNi−1
i )

Remark 6.6 It would be interesting to compute K0(H0#B) for some non pointed
cosemisimple H0, for instance, H0 = O(G) with G non abelian reductive affine group.

7 H-comodule Algebras and the Category AMH

An H -comodule algebra A is a k-algebra A together with an H -comodule structure such
that the multiplication map

A ⊗ A → A

and the unit
k → A

are H -colinear. Usual examples are:

• H = k[G]: comodule algebra = G-graded algebra.
• G finite, H = kG: comodule algebra = algebra with a G-action by ring homomor-

phisms.
• G affine group, H = O(G): comodule algebra = algebra with a rational G-action.
• H = Ug, comodule algebra =algebra with a g-action acting by derivations.
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For our purpose, the motivating example is H = k[Z]#k[x]/x2. In this case, an H -
comodule algebra = d.g. algebra.

Also, if H is any Hopf algebra and A is any algebra, then A viewed as trivial H -comodule
is an H -comodule algebra.

The main fact for our interest is the following:

M ∈ AMH , V ∈ MH ⇒ M ⊗ V ∈ AMH

where A-module structure in M ⊗ V is the one coming from M and the H -comodule struc-
ture is the diagonal one. Moreover, if M is finitely generated as A-module and V is finite
dimensional, then A ⊗ V is finitely generated as A-module. In this way, the subcategory of
AMH consisting on A-finitely generated modules, denoted by Am

H , is naturally a module
over the category mH . Following [6], we consider the restriction functor

AMH → MH

and define M ∈ AMH → MH to be acyclic (or H -acyclic to emphasize the role of H )
if M is injective as H -comodule. In other words, if M ∼= 0 in MH . A map f : M → N

is called quasi-isomorphimsm (qis) if f becomes an isomorphism in MH . Denote IA the
class of objects in AMH that are injective as H -comodules.

Example 7.1 Let M ∈ AMH be an arbitrary object and I ∈ MH an injective
H -comodule. In virtue of Lemma 3.14, M ⊗ I ∈ IA.

If M, N ∈ AMH , denote IA(M,N) the set of maps that factors through an object in IA.
The stable category - or the H -derived category- , denoted by AMH and also by DH (A),
is defined as the category with same objects as AMH but morphism

HomDH (A)(M,N) := HomH
A (M,N)

IA(M,N)

The subcategory of DH (A) whose objects are in Am
H (i.e. are finitely generated as A-

modules) is denoted by Dc
H (A).

Recall that if E = E(k) is the injective hull of k, E is a finite dimensional injective
H -comodule (because H is co-Frobenius), and for any M ∈ AMH , then

M → M ⊗ E

is an embedding of M into an acyclic object in AMH . If P := P(k) is a (finite dimensional)
projective cover of k, then

M ⊗ P → M

is an epimorphism from an H -acyclic object in AMH into M . If M is finitely generated as
A-module, then so is M ⊗E and M ⊗P . The definition of T M , of T ′M and of the mapping
cone of objects and maps in AMH (resp. in Am

H ) actually gives objects in AMH (resp. in
Am

H ). One can easily see that all constructions and proof’s of Happel’s Theorem 2.6 in [5],
when starting with objects in in AMH (resp. in Am

H ) always stay in AMH (resp. in Am
H ).

So DH (A) and Dc
H (A) are triangulated categories, and by Example 7.1, they are modules

over MH and mH respectively.

Remark 7.2 K0(Dc
H (A)) is a module over the ring K0(m

H ).

Example 7.3 If A = k then DH (k) = MH and Dc
H (k) = mH .
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Example 7.4 if H = k[Z]#k[x]/x2 and A is an ordinary algebra viewed as trivial H -
comodule algebra then DH (A) = D(A), the (unbounded) derived category of A.

Example 7.5 If A is a semisimple Hopf algebra and H is a co-Frobenius Hopf algebra, we
view A as trivial H -comodule algebra, then

AMH ∼= MA∗⊗H

Since A is semisimple, A∗ is co-semisimple and A∗ ⊗ H is co-Frobenius. In this case we
have DH (A) = m(A∗⊗H). Also if H = k[G]#B as in Section 6.3 then K0(DH (A)) =
K0(m

A∗⊗k[G]#B) is a quotient of K0(m
A∗⊗k[G]). Assuming k algebraically closed, every

simple corepresentation of the tensor product A∗ ⊗ k[G] is given by the tensor product of
a simple A∗-comodule and a simple k[G]-comodule, hence K0(m

A∗⊗k[G]) = K0(m
A∗

) ⊗Z

Z[G] = K0(A) ⊗Z Z[G].

7.1 Enriched Hom

If M,N ∈ AMH , there are several Hom spaces that one can consider. We begin with the
discussion for d.g. A-modules:

If M and N are d.g. A-modules, then one may consider

• Chain maps: HomH
A (M,N)= maps preserving degree and commuting with the differ-

ential.
• Chain maps up to homotopy: HomH

A (M,N)/ ∼, where f ∼ g if f − g = dh + hd for
some degree +1 A-linear map h.

• The HOM complex: HOMA(M,N) = ⊕n∈Z HOMA(M,N)n where HOMA(M,N)n=
A-linear maps of degree n. If A is concentrated in degree zero (i.e. A is a trivial
k[Z]#k[x]/x2-comodule) then HOMA(M,N)n = ∏

q∈Z HomA(Mq,Nq+n)
• Morphisms in the derived category: HomDH (A)(M,N).

In general HOMA(M,N) is different from HomA(M,N). Assume for simplicity A is
an ordinary alegbra (i.e. d.g. algebra concentrated in degree zero), if M and N have infinite
nonzero degrees, then

HomA(M,N) = HomA(⊕pMp, ⊕qNq) �∼=
⊕

n

(∏

q

HomA(Mq, Nq+n)
)

For instance, if M = ⊕nA[n] and N = A, then

HomA(⊕nA[n], A) �∼= ⊕nHomA(A[n], A)

Nevertheles, the set of chain maps agree with B0(HOMA(M,N)) and the set of chain maps
up to homotopy is the same as H0(HOMA(M,N)).

For general co-Frobenius Hopf algebras (i.e. not necesariily finite dimensional ones) one
has the same ”problems” but also analogous solutions. First of all, if H is a (not finite dimen-
sional) Hopf algebra, A an H -comodule algebra and M, N ∈ AMH , then HomA(M,N) is
not an H -comodule in general. For instance, if A = k = N and M = H , then H ∗ is a not
rational H ∗-module, so it is not an H -comodule. In this way, if one consider

HomA(M,N)

it is not expectable to have an object in MH .
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It is not clear to the author how to get an object in MH analogous to HOMA (maybe
HOMA(M,N) := lim→ μ

HomA(Mμ,N), where Mμ runs over all A-finitely generated sub-

objects?). To have an object HOMA(M, N) ∈ MH would provide the notion of map up to
homotopy just by taking H0. Nevertheles, we have the following

Proposition 7.6 HomA(M,N) is a (left) H ∗-module and the definition of HH
0 can be

naturally extended to H ∗-modules.

Proof The first statement is probably well-known, for completenes we exhibit the proof:
First recall that if K is a finite dimensional Hopf algebra and M, N are K-modules (e.g.
K = H ∗ if H is finite dimensional and M, N ∈ MH ) then the standard action of an
element x ∈ K in a map f , acting on an alement m ∈ M is given by

(x · f )(m) := x1f (S(x2) · m)

If K = H ∗ and M,N ∈ MH then the above formula is

(x·f )(m) = x1·f ((S(x2)(m1))m0) = x2(S(m1))x1·f (m0) = x1(f (m0)1)x2(S(m1))f (m0)0

= x(f (m0)1S(m1))f (m0)0

and the last term in the equality make sense for x ∈ H ∗, independently on the dimension of
H , so one defines the H ∗-action of x ∈ H ∗ on f : M → N via

(x · f )(m) := x(f (m0)1S(m1))f (m0)0

In other words,
x · f = (1 ⊗ m∗

H (x))(ρN ⊗ 1)(f ⊗ S)ρM

One can proof by standard diagramatic methods that this is an action, and f is H -colinear
(if and only if it is H ∗-linear) if and only if

x · f = ε(x)f = x(1)f ∀x ∈ H ∗

Concering the second statement, if W is an H ∗-module, one may define

WH ∗ = {w ∈ W : x · w = x(1)w} ∼= HomH (k,W)

If W is a right H -comodule then it is clear that WcoH = {w : ρ(w) = w ⊗ 1} = WH ∗
, so

one can extend the definition of HH
0 on H ∗M simply by

HH
0 (W) := WH ∗

� · W

If W = HomA(M,N) then WH ∗
=A linear and H ∗-linear maps =HomH

A (M,N), and a
definition of ”chain maps up to homotopy” is available definig

HH
0 (HomA(M,N)) = HomH

A (M,N)

� · HomA(M,N)

This recover the definition given in [8] for finite dimensional Hopf algebras and when M

and N are Z-graded vector spaces, but we emphasizes that this definition makes sense in
full generality for H a co-Frobenius algebra (whose coradical is not necesarily finite over
k[Z]).

A warning on the notation in [8], we call HH
0 what he calls H in the ungraded case. He

defines Hn only in the graded case but using the degree shifting, and not the triangulated
structure, so Hn in [8] is different from our HH

n .
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