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Abstract
We investigate criteria for von-Neumann finiteness and reversibility in some classes of
non-associative algebras. Types of algebras that are studied include alternative, flexible,
quadratic and involutive algebras, as well as algebras obtained by the Cayley–Dickson
doubling process. Our results include precise criteria for von-Neumann finiteness and
reversibility of involutive algebras in terms of isomorphism types of their 3-dimensional
subalgebras.
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1 Introduction

A unital ring A is called von-Neumann finite (or Dedekind finite, or weakly 1-finite,
or affine finite, or directly finite, or inverse symmetric) if every one-sided inverse in A

also is two-sided, in other words, if for all a, b ∈ A satisfying ab = 1, the relation
ba = 1 also holds. Many different classes of associative rings have been shown to be von-
Neumann finite, for instance noetherian, self-injective and PI-rings [13]. Also group rings
over fields of characteristic zero [10, 18, 20], or, more generally, endomorphism rings of
permutation modules over such rings [15, 16], have been shown to be von-Neumann finite.
Von-Neumann finiteness for group rings of positive characteristic has, however, remained
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an open problem (for partial results, see [3] and [9]). Of course, not all associative unital
rings are von-Neumann finite; for instance if V is a vector space, then it is easy to see that
End(V ) is von-Neumann finite if and only if V is finite dimensional.

Following Cohn [4], we say that A is reversible if for all a, b ∈ A satisfying ab = 0,
the relation ba = 0 also holds. It is easy to see that the class of associative reversible
rings is properly contained in the class of associative von-Neumann finite rings. Indeed,
suppose that A is an associative reversible ring and ab = 1 for some a, b ∈ A. Then,
since (ba − 1)b = 0, we get that b(ba − 1) = 0 that is b2a = b which implies that
ba = abba = ab = 1. Moreover, if V is a vector space satisfying 1 < dim(V ) < ∞, then
End(V ) is von-Neumann finite but not reversible.

In this article, we consider von-Neumann finiteness and reversibility for some classes of
unital rings which are not associative – apparently a new line of investigation. Our motiva-
tion for doing this is two-fold. First, we wish to see to which extent patterns and phenomena
from the associative context reproduce in more general classes of algebras, and how far the
associative theory can be generalised. Second, the notions of von-Neumann finiteness and
reversibility are relevant by themselves in the structure theory of non-associative algebras.
Particularly, a long-standing problem has been to understand the structure of quadratic divi-
sion algebras (see, e.g., [5–8, 14, 19]). The division property being notoriously difficult to
study directly, investigation of related classes of quadratic algebras can provide insight lead-
ing to a greater understanding of division algebras. The reversible and von-Neumann finite
quadratic algebras are two such classes. While both properly contain the class of quadratic
division algebras, they are also sufficiently narrowly defined to make discernible certain
particular structural properties of these classes of algebras.

Let F be a field. An F -algebra is a vector space A over F endowed with a bilinear
multiplication map A × A → A, (a, b) �→ ab. An F -algebra A is said to be unital if
it possesses a multiplicative identity element 1 = 1A. In this article, we will consider the
problem of characterising von-Neumann finiteness and reversibility for the classes of non-
associative algebras defined below.

Definition 1.1 An F -algebra A is said to be

(a) alternative if it satisfies the identities a2b = a(ab) and ab2 = (ab)b for all a, b ∈ A.
Equivalently, every subalgebra of A generated by at most two elements is associative
[21, Theorem 3.1].

(b) flexible if it satisfies the identity a(ba) = (ab)a for all a, b ∈ A.
(c) quadratic if it is unital and the elements 1, a, a2 are linearly dependent for all a ∈ A.
(d) involutive if it is unital and there exists an anti-automorphism σ of A such that σ 2 =

IA, a + σ(a) ∈ F1 and aσ(a) ∈ F1 for all a ∈ A. We will use the notation σ(a) = ā

for the involution in A. For any a ∈ A, the scalars tr(a) = a + ā and n(a) = aā are
called the trace and the norm of A, respectively.

From here on, all algebras will be assumed to be unital (but not necessarily associative).
Throughout, F denotes a field, and A an F -algebra.

To every quadratic form q : V → F on a vector space V over F is associated a sym-
metric bilinear form 〈x, y〉 = 〈x, y〉q = q(x + y) − q(x) − q(y). The radical of q is the
subspace V ⊥ = {x ∈ V | 〈x, V 〉q = 0} of V . The form q is said to be non-degenerate if
either V ⊥ = 0 or dim(V ⊥) = 1 and q(V ⊥) 	= 0 (the latter case occurs only for charF = 2).
A non-zero element v ∈ V is called isotropic if q(v) = 0 and anisotropic otherwise. The
form q is said to be isotropic, respectively anisotropic, if V contains, respectively does not
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contain, an isotropic element. A subspace U of V such that q(U) = 0 is said to be totally
isotropic.

A Hurwitz algebra is an algebra A possessing a non-degenerate quadratic form n : A →
F satisfying n(ab) = n(a) n(b) for all a, b ∈ A. The form n is uniquely determined by
the algebra structure of A, and every non-zero algebra morphism between Hurwitz algebras
is orthogonal. A Hurwitz algebra A has zero-divisors if and only if its quadratic form n is
isotropic. If this is the case, A is said to be split. Over any ground field, there are precisely
three isomorphism classes of split Hurwitz algebra, one in each dimension 2, 4 and 8, con-
secutively embedded into each other. The 4-dimensional split Hurwitz F -algebra is the 2×2
matrix algebra over F . A Hurwitz algebra is commutative if and only if its dimension is at
most 2, and associative if and only if its dimension is at most 4. All Hurwitz algebras are
alternative. For further details, we refer to [11, Chapter VIII].

We denote byH = F 2×2 the 4-dimensional split Hurwitz algebra over F , and byU ⊂ H

the 3-dimensional subalgebra of upper triangular matrices.
Given an involutive algebra B and a non-zero scalar μ, a new algebra CDμ(B) is con-

structed as follows: as a vector space, CDμ(B) = B × B, with multiplication defined
by

(a, b)(c, d) = (ac + μd̄b, da + bc̄)

for all a, b, c, d ∈ B. The algebra CDμ(B) is said to be obtained from B by the Cayley–
Dickson doubling process. It is again involutive, with involution given by (a, b) = (ā, −b),
and flexible if and only if B is flexible [17, Sec. 6]. Commonly, B is identified with the sub-
algebraB×0 of CDμ(B), and setting � = (0, 1) ∈ B×B gives an orthogonal decomposition
of vector spaces CDμ(B) = B ⊕ B�.

Starting from the algebra F with trivial involution, one obtains a class of flexible invo-
lutive algebras of dimensions 2m, m � 1, by successive application of the Cayley–Dickson
construction. In this paper, we shall refer to the algebras constructed in this way as Cayley–
Dickson algebras. When charF 	= 2, the Cayley–Dickson algebras of dimension at most
eight are precisely the Hurwitz algebras over F [1]. (Hurwitz algebras over fields of charac-
teristic 2 can also be constructed by the Cayley–Dickson process by starting from a so-called
quadratic étale algebra, but this construction will play no role in the present paper.)

The present article is organised as follows. In Section 2, we summarise our main results.
Section 3 contains some general background information and lemmata, and Section 4
the proofs of the main results. Finally, in Section 5 we give some examples illuminating
different aspects of the theory.

A note on conventions: we use words as non-commutative and non-associative in the
strict sense: a non-commutative algebra is one that does not satisfy the commutative law,
etc.

2 Summary of Our Results

Our first theorem, concerning alternative algebras, is rather straightforward from existing
theory.

Theorem 2.1 (Propositions 4.1–4.2) (a) Every finite-dimensional alternative algbra is
von-Neumann finite.

(b) Every reversible alternative algebra is von-Neumann finite.
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(c) A Hurwitz algebra A is reversible if and only if either its quadratic form is anisotropic,
or dimA � 2.

Note that, by Theorem 2.1(a), all Hurwitz algebras are von-Neumann finite.
The next theorem summarises properties of algebras that are both flexible and quadratic.

Such algebras are in particular involutive, by Lemma 3.4(a) in the next section, and hence
equipped with a norm.

Theorem 2.2 (Propositions 4.3,4.4 and 4.13) (a) Every algebra without zero divisors,
that is either flexible or quadratic, is von-Neumann finite.

(b) Assume that charF 	= 2, and let A be flexible and quadratic. If the norm of A is non-
degenerate on every 3-dimensional subalgebra of A, then A is von-Neumann-finite
and reversible.

(c) Assume that F is algebraically closed, charF 	= 2, and that A is flexible and
quadratic. Then A is reversible if and only if either of the following conditions holds:

(i) A is commutative;
(ii) A = F1 ⊕ V , where V is an anti-commutative ideal in A, and the linear map

Lu : V → V, v �→ uv is nilpotent for all u ∈ V .

In relation to Theorem 2.2(a), note that every algebra without zero divisors is reversible.
We also point out that Theorem 2.2(b) in particular applies to every flexible quadratic F -
algebra with anisotropic norm. This immediately implies the first first part of our next
theorem.

Theorem 2.3 (Corollary 4.5, Corollary 4.7) Assume that charF 	= 2.

(a) All Cayley–Dickson algebras with anisotropic norm are von-Neumann finite and
reversible.

(b) A Cayley–Dickson algebra with isotropic norm is reversible if and only if its dimension
is at most two.

It is not clear to the authors if there exist Cayley–Dickson algebras with isotropic norm
that are not von-Neumann finite. By Theorem 2.4(a) below, such an algebra would need
to have a 3-dimensional subalgebra that is neither commutative nor associative. We also
remark that when charF 	= 2, Theorem 2.1(c) is a consequence of Theorem 2.3(b).

Theorem 2.4 (Propositions 4.10 and 4.11) Let A be an involutive algebra, and assume that
charF 	= 2.

(a) The algebra A is von-Neumann finite if and only if every 3-dimensional subalgebra of
A is either commutative or associative.

(b) The algebra A is reversible if and only if every 3-dimensional subalgebra of A is
commutative.

Actually, every non-commutative associative involutive algebra of dimension three over
F is isomorphic to the algebra U .
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3 Preliminaries

First, observe that the classes of von-Neumann finite respectively reversible algebras are
closed under taking subalgebras. Since matrix algebras are von-Neumann finite, and every
finite-dimensional associative algebra can be embedded in a matrix algebra, we have the
following (well known) result.

Lemma 3.1 Every finite-dimensional associative F -algebra is von-Neumann finite.

Lemma 3.2 The following statements are equivalent.

(i) The algebra A is von-Neumann finite (respectively, reversible);
(ii) every subalgebra of A generated by at most two elements is von-Neumann finite

(reversible);
(iii) any two elements a, b ∈ A satisfying ab ∈ F \{0} (ab = 0) commute with each other.

Proof If A is von-Neumann finite then so is every subalgebra of A. Hence (i)⇒(ii). Assum-
ing (i), and taking a, b ∈ A such that ab = μ ∈ F \ {0}, we have (μ−1a)b = 1. By
assumption, the subalgebra generated by μ−1a and b is von-Neumann finite, and hence
b(μ−1a) = 1 = (μ−1a)b, implying that ab = ba. This shows that (ii)⇒(iii). Finally, if (iii)
holds and ab = 1, then ba = ab = 1, so A is von-Neumann finite.

The reversible case is analogous.

We now turn our attention to involutive and quadratic algebras.

Lemma 3.3 Let A be a quadratic algebra.

(a) Let a, b ∈ A and B = span{1, a, b}. If ab ∈ B then B is a subalgebra of A.
(b) The algebra A is von-Neumann finite (respectively, reversible) if and only if every

3-dimensional subalgebra of A is von-Neumann finite (reversible).
(c) The algebra A is von-Neumann finite and reversible if and only if every 3-dimensional

subalgebra of A is commutative.

Proof (a) Since A is quadratic, a2 ∈ span{1, a} ⊂ B, and similarly b2, (a + b)2 ∈ B.
Moreover, ba = (a + b)2 − a2 − b2 − ab ∈ B, so B ⊂ A is a subalgebra.

(b) The “only if” part is immediate. For the converse, assume that every 3-dimensional
subalgebra of A is von-Neumann finite, and let a, b ∈ A such that ab = 1. By (a),
B = span{1, a, b} is a subalgebra of A of dimension at most 3. If dimB < 3 then B is
commutative and thus von-Neumann finite, and if dimB = 3 then B is von-Neumann
finite by assumption. Hence, ba = 1, and so A is von-Neumann finite. Reversibility is
proved analogously.

(c) In view of (b), we need to show that a 3-dimensional quadratic algebra is von-
Neumann finite and reversible if and only if it is commutative. Clearly, any commu-
tative algebra is both von-Neumann finite and reversible. Let B = span{1, a, b} be a
von-Neumann-finite reversible quadratic algebra, and ab = α + βa + γ b, for some
α, β, γ ∈ F . Then

(a − γ )(b − β) = ab − βa − γ b + βγ = α + βγ ∈ F,
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implying that (a − γ )(b − β) = (b − β)(a − γ ) since B is von-Neumann finite and
reversible. Now 0 = (a − γ )(b − β) − (b − β)(a − γ ) = ab − ba, so ab = ba and
B = span{1, a, b} is commutative.

Note that in an involutive algebra, the identity n(a) = aā = āa holds: as tr(a) ∈ F it
follows that tr(a)a = a tr(a), and thus

aā = a(tr(a) − a) = tr(a)a − a2 = (tr(a) − a)a = āa . (1)

Equation 1 also implies that a2−tr(a)a+n(a) = 0 so, in particular, every involutive algebra
is quadratic.

In the paper [19], Osborn developed the fundamentals of a theory for quadratic algebras
over fields of characteristic different from 2. For such an algebra A, set

ImA = {u ∈ A \ F1 | u2 ∈ F1} ∪ {0} .
Then A decomposes as a vector space as A = F ⊕ ImA = F1⊕ ImA. This decomposition
defines an F -bilinear form (·, ·) and an anti-commutative multiplication × on ImA, by the
formula uv = (u, v)+u×v ∈ F ⊕ImA for all u, v ∈ ImA. Multiplication inA = F ⊕ImA

can now be written as

(α, u)(β, v) = (αβ + (u, v), αv + βu + u × v) , (2)

for α, β ∈ F , u, v ∈ ImA. A linear map σ : A → A, a �→ ā is defined by σ(α, u) =
(α,−u) and, similarly to the involutive case, we have tr(a) = a + ā = 2α ∈ F , n(a) =
aā = āa = α2 − (u, u) ∈ F and a2 − tr(a)a + n(a) = 0 for a = (α, u) ∈ A. Moreover,
(u, v) = 1

2 tr(uv) for all u, v ∈ Im(A).

Lemma 3.4 (Osborn [19, p 203]) Let A be a quadratic algebra, and charF 	= 2.

(a) The algebra A is involutive if and only if (·, ·) is symmetric.
(b) The algebra A is flexible if and only if the bilinear form (·, ·) is symmetric and (u, u×

v) = 0 holds for all u, v ∈ ImA.

In particular, every flexible quadratic F -algebra is involutive.

For A quadratic and charF 	= 2, we denote by L×
u the linear map ImA → ImA, v �→

u × v.

Lemma 3.5 Let A be a quadratic F -algebra, and charF 	= 2.

(a) Every 3-dimensional subalgebra of A is commutative if and only if the condition u ×
v ∈ span{u, v} implies (u, v) = (v, u) and u × v = 0 for all u, v ∈ ImA.

(b) Assume additionally that F is algebraically closed, and A involutive. Then every 3-
dimensional subalgebra of A is commutative if and only if the map L×

u is nilpotent for
all u, v ∈ ImA.

Proof (a) For any u, v ∈ ImA, the subspaceB = span{1, u, v} ⊂ A is a subalgebra if and
only if u × v ∈ span{u, v}. On the other hand, uv − vu = ((u, v) − (v, u), 2u × v) ∈
F ⊕ImA. Consequently,B is commutative if and only if (u, v) = (v, u) and u×v = 0.

(b) SinceA is involutive, the bilinear form (·, ·) is symmetric by Lemma 3.4(a). Moreover,
as the product × on ImA is anti-commutative, the condition u, v ∈ span{u, v} ⇒
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u × v = 0 for all u, v ∈ ImA is equivalent to that, for all u ∈ ImA, the map L×
u :

ImA → ImA has no non-zero eigenvalues. By the Jordan normal form theorem, this
is equivalent to L×

u being nilpotent for all u ∈ ImA. Hence, the result follows from
Lemma 3.5(a).

For the case charF 	= 2, we shall need the following fact about Cayley–Dickson alge-
bras, which is a consequence of the fact that their norms are Pfister forms [12, Chapter X].

Lemma 3.6 ([12, Theorem X.1.7]) Assume that charF 	= 2 and let A be a Cayley–Dickson
algebra of even dimension 2m, with isotropic norm. Then A has a totally isotropic subspace
of dimension m.

4 Proofs of Our Results

4.1 Proof of Theorem 2.1

Proposition 4.1 Every alternative algebra that is either finite dimensional or reversible is
von-Neumann finite.

Proof Let A be an alternative algebra, and B ⊂ A a subalgebra generated by at most two
elements. If A is finite dimensional or reversible then so is B. If B is finite dimensional
then it is von-Neumann finite by Lemma 3.1; if it is reversible then the same conclusion
follows from the argument given in the introduction. Thus, by Lemma 3.2, the algebra A is
von-Neumann finite.

Proposition 4.2 Every Hurwitz algebra with anisotropic norm is reversible. A split Hurwitz
algebra is reversible if and only if its dimension is less than or equal to 2.

Proof Hurwitz algebras with anisotropic norm have no zero divisors, and Hurwitz algebras
of dimension at most 2 are commutative. Hence, all algebras of either type are reversible.
If A is a split Hurwitz algebra of dimension at least 4, then it contains a split quaternion
subalgebra, that is, an algebra isomorphic to H . Since H is not reversible, neither is A in
this case.

4.2 Proof of Theorem 2.2(a,b)

Proposition 4.3 Every algebra without zero divisors, that is either flexible or quadratic, is
von-Neumann finite.

Proof Let A be an algebra without zero divisors. If A is flexible and ab = 1 then a =
(ab)a = a(ba), whence a(1 − ba) = 0 and ba = 1. If A is quadratic then span{1, a}
is a field for every a ∈ A, and hence there exists an element ã ∈ span{1, a} such that
aã = ãa = 1. Now, if ab = 1 then a(b − ã) = ab − aã = 1 − 1 = 0, implying that b = ã

and hence ba = 1.

For the remainder of Section 4, we assume that charF 	= 2.
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Proposition 4.4 Let A be a flexible quadratic F -algebra. If the norm n of A is non-
degenerate on every 3-dimensional subalgebra of A, then A is von-Neumann finite and
reversible.

Proof Any 3-dimensional subalgebra B ⊂ A can be written as B = span{1, u, v}, where
u, v ∈ ImA are anisotropic vectors. Since A is flexible, the bilinear form (·, ·) on ImA is
symmetric by Lemma 3.1(b), moreover, n(w) = −(w,w) and 〈w, z〉n = −2(w, z) for all
w, z ∈ ImA. Again by Lemma 3.4(b), we have (u, u × v) = (v, u × v) = 0 implying that
〈u, u × v〉 = 〈v, u × v〉 = 0 and, consequently, u × v ∈ ImB ∩ (ImB)⊥ = 0. Thus B is
commutative, by Lemma 3.5(a). Lemma 3.3(c) gives the result.

4.3 Proof of Theorem 2.3

Since Cayley–Dickson algebras are flexible and quadratic, Proposition 4.4 implies the
following result.

Corollary 4.5 All Cayley–Dickson algebras with anisotropic norm are von-Neumann finite
and reversible.

Theorem 2.3(b) is a consequence of the following proposition.

Proposition 4.6 Let A be a Cayley–Dickson algebra of dimension at least 4 with isotropic
norm. Then A has a subalgebra isomorphic to the split quaternion algebra H .

Proof By construction, the algebra A contains a subalgebra of the form B ′ = CDμ(B) =
B ⊕ B�, where B is a Cayley–Dickson algebra with anisotropic norm, μ ∈ F \ {0}, and the
norm of B ′ is isotropic. Set m = dimB. If m = 1 then B ′ � F × F and, since dimA � 4,
there exists a subalgebra of A of the form CDν(B

′) � CDν(F × F) � H , ν ∈ F \ 0.
Assume instead that m � 2. By Lemma 3.6, the (2m)-dimensional quadratic space

B ′ contains a totally isotropic subspace U of dimension m. It follows that the (m + 1)-
dimensional subspace B ⊕ F� of B ′ intersects U non-trivially, and hence B ⊕ F� contains
an isotropic vector v. Let b ∈ B be such that v −b ∈ F�, and let C ⊂ B be a 2-dimensional
subalgebra containing b. Then C′ = C ⊕ C� ⊂ B ′ is a subalgebra of dimension 4, and
C′ � CDμ(C). Hence C′ is a quaternion subalgebra of A, and since v ∈ C′ is an isotropic
element, it follows that C′ � H .

Corollary 4.7 A Cayley–Dickson algebra with isotropic norm is reversible if and only if its
dimension is at most two.

4.4 Proof of Theorem 2.2(c) and Theorem 2.4

We start by proving Theorem 2.4.

Lemma 4.8 Let A be an involutive algebra.

(a) The identity ab − ba = tr(a) tr(b) − tr(a)b − tr(b)a holds for all a, b ∈ A.
(b) The algebra A is von-Neumann finite if and only if the condition ab ∈ F \ {0} implies

that either a, b ∈ ImA or 1, a, b are linearly dependent.
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(c) The algebra A is reversible if and only if ab = 0 implies that either a, b ∈ ImA or
1, a, b are linearly dependent.

Proof (a) This is a straightforward calculation:

ab − ba = b̄ā − ba = (tr(b) − b)(tr(a) − a) − ba = tr(b) tr(a) − tr(b)a − tr(a)b .

(b,c) We shall prove that if ab ∈ F , then ab = ba if and only if either 1, a, b are linearly
dependent or a, b ∈ ImA. This, together with Lemma 3.2, implies the result.

Let ab ∈ F . Then ab = ab, so ab − ba = ab − ba = tr(a) tr(b) − tr(a)b − tr(b)a by
(a). Hence, if ab = ba then either 1, a, b are linearly dependent, or tr(a) = tr(b) = 0, that
is a, b ∈ ImA. Conversely, if tr(a) = tr(b) = 0 then clearly ab − ba = 0. If instead 1, a, b

are linearly dependent, then these elements are contained in a subalgebra of dimension at
most two, and hence commute with each other.

Lemma 4.9 Let B be a 3-dimensional non-commutative involutive algebra. Then there
exists a basis u, v of ImB such that u × v = u and either (u, u) = 0 or (u, v) = 0.

Proof Since B is involutive, the bilinear form (·, ·) is symmetric. Consequently, commuta-
tivity of B is equivalent to the condition that x × y = 0 for all x, y ∈ ImB. As B is not
commutative, the product × on ImB is non-trivial, so there exist x, y ∈ ImB such that
x × y 	= 0. Set u = x × y. Using the anti-commutaticity of × we compute

(αx+βy)×(γ x+δy)=αγ x×x+αδx×y+βγy×x+βδy×y =(αδ−βγ )x×y =(αδ−βγ )u .

This means that (ImB) × (ImB) = span{u}, and that w × z = 0 if and only if w, z ∈ ImA

are linearly dependent. Now, if (u, u) 	= 0 then there exists a vector v ∈ ImB such that
(u, v) = 0 and u × v = u, and thus u, v is a basis of ImB with the required properties. In
case (u, u) = 0, any v ∈ ImB such that u × v = u will do.

Proposition 4.10 Let A be an involutive algebra. The following statements are equivalent.

(i) The algebra A is von-Neumann finite;
(ii) every 3-dimensional subalgebra of A is either commutative or associative;
(iii) every 3-dimensional subalgebra of A is either commutative or isomorphic to the

algebra U of upper triangular 2 × 2 matrices.

Proof As all commutative algebras and all finite-dimensional associative algebras are von-
Neumann finite, the implication (ii)⇒(i) is immediate from Lemma 3.3(b). Moreover, we
have (iii)⇒(ii) since the algebra U is associative. To prove (i)⇒(iii), by Lemma 3.3(b),
it suffices to show that if B is a 3-dimensional von-Neumann-finite non-commutative
involutive algebra, then B � U .

By Lemma 4.9, there exists a basis u, v of ImB such that u × v = u. For this basis, we
have

(0, u)(−1, v) = ((u, v), −u + u × v) = (u, v) ∈ F .
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Moreover, the elements 1, (0, u), (−1, v) of B are linearly independent, (−1, v) /∈ ImB

and B is von-Neumann finite. Thus Lemma 4.8(b) implies that (u, v) = (0, u)(−1, v) = 0.
Similarly, again applying Lemma 4.8(b),

(1, u+v)(−1, v) = (−1 + (v, v), v−u−v+u×v)=(v, v)−1 ∈ F ⇒ (v, v) = 1 , and

(1, u + v)(0, u) = ((u, u), u + v × u) = (u, u) ∈ F ⇒ (u, u) = 0 .

From the identities u × v = u, (u, u) = (u, v) = 0, (v, v) = 1, and Eq. 2, it is easy to
work out the multiplication table of B: u2 = 0, v2 = 1 and uv = u = −vu. This coincides
with the multiplication table of U given in Table 2 (see Example 5.1 below), consequently,
B � U .

Proposition 4.11 Let A be an involutive algebra. The following statements are equivalent.

(i) The algebra A is reversible.
(ii) Every 3-dimensional subalgebra of A is commutative.

Proof Again, the implication (ii)⇒(i) follows directly from Lemma 3.3(b). For the con-
verse, assume that there exists a reversible involutive algebra B of dimension 3 that is not
commutative. Then, by Lemma 4.9, there exist u, v ∈ ImB such that u × v = u and either
(u, u) = 0 or (u, v) = 0. Computing

(1, v)(0, u) = ((u, v), u + v × u) = (u, v) ∈ F

and invoking Lemma 4.8(c), we get that (u, v) 	= 0 and, consequently, (u, u) = 0. Now,
similarly,

(1, u + v)(1, u − v) = (1 − (v, v), (u − v) + (u + v) + (u + v) × (u − v))

= (1 − (v, v), 2u − u × v + v × u) = 1 − (v, v) ∈ F

and thus 1− (v, v) 	= 0 by Lemma 4.8(c). Now, setting y = (1− (v, v))u + (u, v)v we get

(v, y) = (1 − (v, v))(u, v) + (u, v)(v, v) = (u, v),

v × y = (1 − (v, v))v × u = ((v, v) − 1)u,

and hence

(1, v)(−(u, v), y) = (−(u, v) + (v, y), y − (u, v)v + v × y)

= (0, (1 − (v, v))u + (u, v)v − (u, v)v + ((v, v) − 1)u) = 0 .

Note that since (1 − (v, v)) 	= 0, the elements v and y are linearly independent. As
(1, v) /∈ ImB, Lemma 4.8(c) implies that B cannot be reversible, a contradiction. Hence B

is commutative.

As the norm of U is isotropic, Proposition 4.1. and Proposition 4.11 together have the
following consequences.

Corollary 4.12 Let A be an involutive algebra.

(a) If A is reversible then it is von-Neumann finite.
(b) If A is von-Neumann finite and the norm of A is anisotropic, then A is reversible.

The following result establishes the proof of Theorem 2.2(c).
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Proposition 4.13 Assume that F is algebraically closed, and let A be a flexible and
quadratic F -algebra. Then A is reversible if and only if one of the following conditions
holds:

(i) u × v = 0 for all u, v ∈ ImA, that is, A is commutative;
(i) n(u) = 0 for all u ∈ ImA, and the map L×

u : ImA → ImA, v �→ u × v is nilpotent
for all u ∈ ImA.

Note that in the latter case, the subspace ImA is an ideal in A, and A is obtained from
ImA by adjoining an identity element. Hence, reversible algebras of this type are given by
anti-commutative (non-unital) algebras V satisfying the nilpotency condition specificed in
(ii). This holds, for example, if V is a nilpotent Lie algebra.

Proof Combining Proposition 4.11 with Lemma 3.5(b), we see that A is reversible if and
only if L×

u is nilpotent for all u ∈ ImA. Clearly, this holds if A satisfies either of the
conditions (i) and (ii). For the converse implication, assume that L×

u is nilpotent for all u ∈
ImA. We shall show that for any anisotropic w ∈ ImA, the identity L×

w = 0 holds. Then,
since the anisotropic vectors form a Zariski-open subset of ImA, whereas the condition
L×

w = 0 is closed, it follows that either n = 0 or Lw = 0 for all w ∈ ImA.
First, linearising the identity (u, u × v) = 0 in Lemma 3.4(b) gives the equivalent

condition

(u × v, w) = (u, v × w) (3)

for all u, v, w ∈ ImA. Assume that w ∈ ImA is anisotropic, 0 � m < dim(ImA),
and that there exist linearly independent anisotropic vectors w = v1, v2, . . . , vm, such that
w × vi = 0 for all i � m. Set Wm = span{v1, . . . , vm}⊥ ⊂ ImA. Then, for all u ∈ ImA,

0 = (w × vi, u) = −(vi × w, u) = −(vi, w × u),

that is, L×
w(ImA) ⊂ Wm. In particular, the subspace Wm is invariant under L×

w . The map L×
w

being nilpotent, it means that there exists a non-zero element z ∈ Wm such that L×
w(z) = 0.

Now, set vm+1 = z if n(z) 	= 0, and vm+1 = z+w if n(z) = 0. In either case, the elements
v1, . . . , vm+1 ∈ ImA are linearly independent, anisotropic, and contained in ker(L×

w). By
induction, ker(L×

w) = ImA.

5 Examples

We start by mentioning two particular, associative algebras that are of certain importance
for our study.

Example 5.1 Let charF 	= 2. The split quaternion F -algebra H is, as already mentioned,
isomorphic to the algebra F 2×2 of 2 × 2 matrices with entries in F . Choosing

i =
(−1 0

0 1

)
, j =

(
0 1
1 0

)
, and k =

(
0 1

−1 0

)

gives a basis e = (1, i, j, k) of H , with multiplication as in Table 1.
It is easy to see that ImH = span{i, j, k}, and that e is an orthogonal basis of H . Indeed,

since 〈x, y〉 = n(x + y) − n(x) − n(y) = xy + yx for all x, y ∈ ImH , a subset of ImH is
orthogonal if and only its elements pair-wise anti-commute – as do i, j, k.
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Table 1 Multiplication in H
· 1 i j k

1 1 i j k

i i 1 k j

j j −k 1 −i

k k −j i −1

Now consider the subalgebra U of F 2×2, consisting of all upper triangular matri-
ces. Being a subalgebra of an involutive associative algebra, U is again involutive and
associative. We choose a basis f = (1, u, v), where

u = 1

2
(j + k) =

(
0 1
0 0

)
and v = i =

(−1 0
0 1

)
.

Again, f is orthogonal, and ImU = span{u, v}. The multiplication of elements in f is
given by Table 2.

As (1 + v)u = 0 but u(1 + v) = 2u 	= 0, the algebras U and H are not reversible.
However, being finite-dimensional associative algebras, they are von-Neumann finite.

The following examples demonstrate the necessity of some of the assumptions in our
main theorems. First we give an example of a flexible quadratic algebra with non-degenerate
norm that is neither reversible nor von-Neumann finite. The existence of such an algebra
implies that the hypothesis in Theorem 2.2(b), that the norm is non-degenerate on every
3-dimensional subalgebra, cannot be replaced by the weaker condition of the norm being
non-degenerate on A itself.

Example 5.2 Assume that charF 	= 2, and let H be the split quaternion algebra with basis
e = (1, i, j, k) as in Example 5.1.

Set A = H ⊕ F l, where l(ImH) = (ImH)l = 0 and l2 = −1. This defines A as a
quadratic algebra with ImA = span{i, j, k, l}. Since H is associative and thus in particular
flexible, the bilinear form (·, ·)H on H is symmetric, and (u, u × v)H = 0 for all u, v ∈
ImH . By the construction, it follows that also (·, ·)A is symmetric, and (w,w × z)A = 0
for all w, z ∈ ImA. Hence, Lemma 3.4 implies that A is flexible and thus, in particular,
involutive. The elements 1, i, j, k, l constitute an orthogonal basis of A, so the norm on A

is non-degenerate.
Set x = i + l, y = j + k, and B = span{1, x, y} ⊂ A. We have

xy = (i+l)(j+k) = ij+ik = k+j =y and yx =(j+k)(i+l) = ji+ki = −k−j = −y

so B is a 3-dimensional non-commutative subalgebra of A. Moreover, x2 = i2 + l2 =
1− 1 = 0, so x2y = 0, whereas x(xy) = xy = y 	= x2y. Hence B is not associative either.

Table 2 Multiplication in U
· 1 u v

1 1 u v

u u 0 u

v v −u 1
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From Theorem 2.4 it now follows that the algebra A is not von-Neumann finite, and not
reversible. Indeed, straightforward calculations shows that

(1 − x − y)(1 + x − y) = 1, y(1 + x) = 0,

(1 + x − y)(1 − x − y) = 1 + 4y , (1 + x)y = 2y ,

giving explicit counterexamples.
We remark that B⊥ ∩ B = ImB, so indeed, the algebra A does not satisfy the condition

in Theorem 2.2(b) that the norm be non-degenerate on every 3-dimensional subalgebra.

Dropping the condition of flexibility, there exist involutive algebras even with anisotropic
norm that are not reversible and not von-Neumann finite.

Example 5.3 Assume that charF 	= 2. Let V be a 2-dimensional vector space over F , and
q : V → F a quadratic form such that the form 1 ⊥ (−q) : F ⊕ V → F, (α, x) �→
α2 − q(x) is anisotropic (e.g., in the real case, q is negative definite). Take an orthog-
onal basis (u, v) of V , and set u × v = −v × u = u and (x, y) = 1

2 〈x, y〉q =
1
2 (q(x + y) − q(x) − q(y)) for all x, y ∈ V . This defines a quadratic algebra structure on
A = F ⊕ V , with ImA = V and multiplication given by Eq. 2.

Clearly, (·, ·) is symmetric, so A is involutive by Lemma 3.4(a). Moreover,

n(α, x) = (α, x)(α, x) = (α, x)(α,−x) = α2 − (x, x) = α2 − q(x),

meaning that n is anisotropic. Now,

(0, u)(−1, v) = ((u, v), −u + u × v) = 0,

(−1, v)(0, u) = ((v, u), −u + v × u) = (0, −2u) 	= 0,

so A is not reversible; and

(0, u)(−1, u + v) = (0, u)(−1, v) + (0, u)2 = − n(u) 	= 0,

(−1, u + v)(0, u) = (−1, v)(0, u) + (0, u)2 = (− n(u),−2u) 	= (0, u)(−1, u + v),

implying that A is not von-Neumann finite either. It follows from Theorem 2.2(b) that A

cannot be flexible, which indeed also can be seen directly from the identities (uv)u = u2 =
−u(−u) = −u(vu).

For associative algebras, reversibility implies von-Neumann finiteness, and by Theo-
rem 2.4, the same is true for involutive algebras over fields of characteristic different from
2. However, this implication does not hold for general non-associative algebras, as the
following example demonstrates.

Example 5.4 Let A be any non-commutative non-quadratic division algebra of dimension
3 over F . (Non-quadraticity is automatic if charF 	= 2, by [19, Theorem 3].) For example,
A may be a twisted field of dimension 3 over a finite field F with at least 3 elements (see
[2]).

As A is not quadratic, there exists some element a ∈ A such that A = span{1, a, a2}, and
non-commutativity then implies that aa2 	= a2a. Since A is a division algebra, there exists
an element b ∈ A such that ab = 1. If b ∈ span{1, a} then 1 = ab ∈ span{a, a2}, which
is impossible since 1, a, a2 are linearly independent. Hence b /∈ span{1, a} and therefore
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ba 	= ab. Thus, A is not von-Neumann finite. But A is reversible, since it is a division
algebra.
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