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Abstract

Let A be an artin algebra. An A-module M is semi-Gorenstein-projective provided that
Exti (M,A) = 0 for all i ≥ 1. If M is Gorenstein-projective, then both M and its A-dual M∗
are semi-Gorenstein projective. As we have shown recently, the converse is not true, thus
answering a question raised by Avramov and Martsinkovsky. The aim of the present note is
to analyse in detail the modulesM such that bothM andM∗ are semi-Gorenstein-projective.

Keywords Gorenstein-projective module · Semi-Gorenstein-projective module · Finitistic
dimension conjecture · Nunke condition

Mathematics Subject Classification (2010) Primary 16G10 · Secondary 13D07, 16E65,
16G50, 20G42

1 Introduction

Let A be an artin algebra. The modules to be considered are usually left A-modules of finite
length. Given a module M , let M∗ = Hom(M,A) be its A-dual, and φM : M → M∗∗ the
canonical map from M to M∗∗. We will have to deal with complexes P• = (Pi, fi : Pi →
Pi−1) of projective modules. Such a complex is said to be minimal provided the image of
fi is contained in the radical of Pi−1, for all i ∈ Z.
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A module is said to be reduced provided it has no non-zero projective direct summand.
The Main Theorem 2.1 asserts that the (isomorphism classes of the) reduced modules M

such that both M and M∗ are semi-Gorenstein-projective correspond bijectively to the (iso-
morphism classes of) minimal complexes P• of projective modules with Hi(P•) = 0 for
i �= 0, −1, and such that the A-dual complex P ∗• is acyclic. The essential idea is Lemma 2.2
which shows in which way the canonical map φM is related to a four term exact sequence of
projective right modules with M∗ being the image of the middle map. Let us mention that
Tr provides a bijection between the reduced semi-Gorenstein-projective modules M with
also M∗ semi-Gorenstein-projective on the one hand, and the reduced ∞-torsionfree right
modules Z with �2Z being semi-Gorenstein-projective, on the other hand, see Section 2.4.
These results are summarized by exhibiting the complexes P• and P ∗• with the modules
M, M∗,M∗∗, as well as TrM and TrM∗ being inserted, see Section 2.5.

Section 3 is devoted to two special situations. First, in 3.1, we consider the case that M is
a semi-Gorenstein-projective module M with also M∗ semi-Gorenstein-projective such that
φM is either an epimorphism or a monomorphism. In 3.2, we deal with semi-Gorenstein-
projective modules M such that M∗ is projective or even zero. Whereas there do exist
modules M such that both M and M∗ are semi-Gorenstein-projective, but not Gorenstein-
projective (see [8] and [9], and also section 11 of [10]), it is not known whether we may
have in addition that φM is either an epimorphism or a monomorphism. Also, it is not known
whether there exists a semi-Gorenstein-projective module which is not projective, such that
M∗ is projective.

A module M will be said to be a Nunke module provided that M is semi-Gorenstein-
projective and M∗ = 0. Note that an indecomposable semi-Gorenstein-projective module
M such that φM is an epimorphism and M∗ is projective, is either itself projective or else a
Nunke module, see Proposition 3.4. The remaining parts of Section 3 are devoted to Nunke
modules. There is the old conjecture (one of the classical homological conjectures) that the
only Nunke module is the zero module. This conjecture and similar ones are discussed in
3.5. In 3.6 to 3.7 we try to analyze the special case of a simple injective module S which is
semi-Gorenstein-projective (thus S is either projective or a Nunke module).

In the final Section 4, we consider local algebras, and, in particular, those with radical
cube zero (the short local algebras). In [8] and [9], we have exhibited short local algebras
with modules M such that both M and M∗ are semi-Gorenstein-projective, whereas M is not
Gorenstein-projective. Here we show: LetA be a local algebra andM a module such that both
M and M∗ are semi-Gorenstein-projective. If M∗ is projective, then also M is projective.
If A is short, and φM is a monomorphism or an epimorphism, then φM is an isomorphism,
thus M is Gorenstein-projective. In this way, we see that for short local algebras, there are
no non-trivial examples of modules which satisfy the conditions discussed in Section 3.

2 TheMain Theorem

2.1

Main Theorem The isomorphism classes of the reduced modules M such that both M and
M∗ are semi-Gorenstein-projective correspond bijectively to the isomorphism classes of
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minimal complexes P• of projective modules with Hi(P•) = 0 for i �= 0, −1, and such that
the A-dual complex P ∗• is acyclic, as follows:

First, let M be a reduced module such that both M, M∗ are semi-Gorenstein-projective.
Take minimal projective resolutions

· · · → P2
f2−→ P1

f1−→ P0
e−→ M → 0 and 0 ← M∗ q←− Q0

d1←− Q1
d2←− Q2 ← · · · .

For i < 0, let Pi = Q∗−i−1 and fi = d∗−i : P−i → P−i−1, Finally, let f0 = q∗φMe : P0 →
P−1. In this way, we obtain a minimal complex P• of projective modules

· · · → P1
f1−−→ P0

f0−−→ P−1
f−1−−→ P−2 → · · · .

with Hi(P•) = 0 for i �= 0, −1, and such that the A-dual complex P ∗• is acyclic. By
construction, M = Cok f1 and M∗ = Cok d1 = Cok f ∗−1. Also,

H0(P•) = KerφM and H−1(P•) = CokφM .

Conversely, let P• = (Pi, fi : Pi → Pi−1)i be a minimal complex of projective modules
with Hi(P•) = 0 for i �= 0, −1, and such that the A-dual complex P ∗• is acyclic. Let
M = Cok f1. Then M is reduced and both M and M∗ are semi-Gorenstein-projective.
Actually, M∗ = Cok f ∗−1, M

∗∗ = Ker f−1.

The essential part of the proof is the following general lemma which shows in which way
exact sequences of projective modules are related to the canonical maps φM : M → M∗∗.

2.2

Lemma Let

Q−2
d−1←− Q−1

d0←− Q0
d1←− Q1

be a sequence of projective right modules with composition zero. Let e : Q∗
1 → M be a

cokernel of d∗−1 and c : Q0 → N a cokernel of d1. The following conditions are equivalent:

(i) The sequence is exact.
(ii) There exists an isomorphism ζ : N → M∗ with d∗

0 = c∗ζ ∗φMe.

If the condition (ii) is satisfied, then q = ζc : Q0 → M∗ is a cokernel of d1 and we have
the following commutative diagrams:

Q−1

M∗

Q0

............
............

............
............

............
............

.............................

..............................................................................................................................................................................
......................................................................................

...
............e∗ q

d0
Q∗−1

M M∗∗

Q∗
0

e

φM

q∗

d∗
0

............................................................................. .........
...

............................................................................................................................................................................................................................................................................. ............

.................................................................. .............................................................................. .............................................................................. ............
............
............
............
............
............
............
.................
............

Before we start with the proof, let us recall: The exact sequence 0 ← N
c←− Q0

d1←− Q0

yields the exact sequence 0 → N∗ c∗−→ Q∗
0

d∗
1−→ Q∗

1, thus Ker d
∗
1 = (Cok d1)

∗. Similarly, the

exact sequence Q∗−2

d∗−1−−→ Q∗−1
e−→ M → 0 yields the exact sequence Q−2

d−1←−− Q−1
e∗←−

M∗ ← 0, thus Ker d−1 = (Cok d∗−1)
∗.

Proof of Lemma. (i) implies (ii). Since the sequence Q• is exact, the cokernel N of d1

is equal to the kernel M∗ of d−1, thus there is an isomorphism ζ : N → M∗ such that
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d0 = e∗ζc. It follows that d∗
0 = c∗ζ ∗e∗∗. We have the commutative diagram

Q∗−1
e−−−−→ M

φ=1

⏐
⏐
�

⏐
⏐
�φM

Q∗−1
e∗∗−−−−→ M∗∗

(with φ = φQ∗−1
the identity map), thus e∗∗ = φMe and therefore d∗

0 = c∗ζ ∗e∗∗ = c∗ζφMe.
(ii) implies (i). We assume that ζ : N → M∗ is an isomorphism with d∗

0 = c∗ζ ∗φMe =
(ζ c)∗φMe. Then d0 = d∗∗

0 = e∗(φM)∗(ζ c)∗∗. There is the commutative diagram

M∗ ζc←−−−− Q0

φM∗
⏐
⏐
�

⏐
⏐
�φ=1

M∗∗∗ (ζ c)∗∗
←−−−− Q∗∗

0 ,

therefore (ζ c)∗∗ = φM∗ζc, thus d0 = e∗(φM)∗(ζ c)∗∗ = e∗(φM)∗φM∗ζc = e∗ζc. (Here we
use that (φM)∗φM∗ is the identity map of M∗. It implies that φM∗ is a splitting monomor-
phism; but in general, φM∗ is not an isomorphism.) This shows that d0 is the composition of
the cokernel map ζc for d1 with the kernel map e∗ for d∗−1. It follows that the sequence Q•
is exact. �

2.3 Proof of Main Theorem

Assume that M is a reduced module such that both M and M∗ are semi-Gorenstein-
projective. Let

· · · → P1 → P0
e−→ M → 0

be a minimal projective resolution. Since M is semi-Gorenstein-projective, the A-dual
sequence

· · · ← P ∗
1 ← P ∗

0
e∗←− M∗ ← 0

is exact. Let
0 ← M∗ q←− Q0 ← Q1 ← · · ·

be a minimal projective resolution of the right module M∗. The concatenation is an acyclic
minimal complex Q• of projective right modules (with Q−i = P ∗

i−1 for i ≥ 1):

· · · ← P ∗
1 ← P ∗

0
e∗q←−− Q0 ← Q1 ← · · · ,

Let us consider the A-dual P• = Q∗•

(∗) · · · → P1 → P0
q∗e∗∗
−−−→ Q∗

0 → Q∗
1 → · · · .

It is the concatenation of the sequence

· · · → P1 → P0
e∗∗−→ M∗∗ → 0

with the exact sequence

0 → M∗∗ q∗
−→ Q∗

0 → Q∗
1 → · · · .

In particular, the complex (∗) is exact at the positions Pi and Q∗
i with i ≥ 1.
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Conversely, let P• = (Pi, fi)i be a minimal complex of projective modules

· · · → P2
f2−→ P1

f1−→ P0
f0−→ P−1

f−1−−→ P−1 → · · ·
such that Hi(P•) = 0 for all i �= 0, −1, and such that the A-dual complex P ∗• is acyclic.
Let e : P0 → M be the cokernel of f1, thus

· · · → P2
f2−→ P1

f1−→ P0
e−→ M → 0

is a minimal projective resolution of M . Since the complex P ∗• is acyclic, it follows that M
is semi-Gorenstein-projective.

Since M is the cokernel of f1, we see that M∗ is the kernel of f ∗−1. Since the complex
P ∗• is acyclic, there is the exact sequence

0 ← M∗ ← P ∗−1

f ∗−1←−− P ∗−2

f ∗−2←−− P ∗−3 ← · · · ,

and this is a projective resolution of M∗. Since the A-dual sequence

P−1
f−1−−→ P−2

f−2−−→ P−3 → · · · .
is exact, we see that M∗ is semi-Gorenstein-projective.

2.4 The∞-Torsionfree Right Modules Z with�2Z Semi-Gorenstein-Projective

We recall that a module M is said to be ∞-torsionfree provided TrM is semi-Gorenstein-
projective.

Proposition The transpose Tr provides a bijection between the reduced modules M such
that both M and M∗ are semi-Gorenstein-projective and the reduced ∞-torsionfree right
modules Z with �2Z semi-Gorenstein-projective.

For the proof, we need the following (well-known) lemma.

Lemma For any module M , we have �2M = (TrM)∗.

Proof of Lemma Take a minimal projective presentation P1
f1−→ P0 → M → 0. Then

�2M = Ker f1. By definition of TrM , there is the exact sequence P ∗
0

f ∗
1−→ P ∗

1 → TrM →
0. If we apply ∗ = Hom(−, AA), we get the exact sequence 0 → (TrM)∗ → P ∗∗

1

f ∗∗
1−−→ P ∗∗

0 .
But f ∗∗

1 can be identified with f1, thus (TrM)∗ = Ker f ∗∗
1 = Ker f1 = �2M .

Proof of Proposition Let M be a reduced module such that both M and M∗ are semi-
Gorenstein-projective and Z = TrM . Since M = TrZ is semi-Gorenstein-projective, Z is
∞-torsionfree. According to the lemma, �2Z = (TrZ)∗ = (Tr TrM)∗ = M∗, thus �2Z is
semi-Gorenstein-projective.

Conversely, let Z be a reduced ∞-torsionfree module such that �2Z is semi-Gorenstein-
projective. Then M = TrZ is semi-Gorenste-projective. The Lemma asserts that M∗ =
(Tr TrM)∗ = (TrZ)∗ = �2Z. This shows that M∗ is semi-Gorenstein-projective.
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2.5 Summary

Let M be a reduced module such that both M and M∗ are semi-Gorenstein-projective. The
Main Theorem yields a minimal complex P•. Let us display, first, the complex P• indicating
the homology groups above, and second, directly below, the acyclic A-dual complex P ∗• .
We insert the modules M , M∗, M∗∗, together with the canonical map φM : M → M∗∗
(shown as a bold arrow), as well as the modules TrM and TrM∗. Since the modules M and
M∗ both are semi-Gorenstein-projective, the modules TrM and TrM∗ are ∞-torsionfree.
The complexes P• and P ∗• provide minimal projective resolutions of the modules M and
M∗, respectively (they are encompassed by solid lines, with label sGp added). Similarly,
P• and P ∗• provide minimal projective coresolutions of the modules TrM∗ and TrM which
are concatenations of �-sequences, respectively (these coresolutions are encompassed by
dashed lines, with label ∞-tf added).

P2 P1 P0 P−1 P−2 P−3

M M∗∗
e

φM

q∗

........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................................................
.....

..............

sGp

· · · · · ·

........................................
..
.......
.....

............................................. ......................................................... ......................................................... ............
........
........
........
....................
............

f3 f2 f1 f0 f−1 f−2 f−3

...........................................................................
...............

...............
...............

.....

............................................................
...............

...............

...............
...............
...............

............... ...............

∞-tf

TrM∗

................................................ ........
....

.........
.........
.........
.....................
............

........

........

...............
.
.......
.

........

........

...............
.
.......
.

........

........

...............
.
.......
.

........

........

...............
.
.......
.

........

........

...............
.
.......
.

........

........

...............
.
.......
.

Homology
Hi(P•) 0 0 0 0Ker(φM) Cok(φM) · · ·

P•

P ∗
2 P ∗

1 P ∗
0

M∗

P ∗−1 P ∗−2 P ∗−3

qe∗
TrM

........ ........ ........ ........ ........ ........ ........ ........ ........ ...................................................................

........ ........ ........ ........ ........ ........ ........ ........................................

................
........
........
.........................................

.......

∞-tf
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................
...........

.........
........
.......
.......
.......
.......
.

sGp

· · · · · ·

.........
.........
.........
.................................

............................................
....
............ .........

.........
.........
.................................

............................................
....
............

f ∗
3

f ∗
2 f ∗

1
f ∗
0 f ∗−1 f ∗−2 f ∗−3

P ∗•

Be aware that the complexes P• and P ∗• with the accompagnying modules seem to look
quite similar, however there is a decisive difference: whereas the complex P ∗• is acyclic, the
complex P• usually is not acyclic (its homology modules are mentioned above the complex).
Let us stress that P• is acyclic if and only if M is Gorenstein-projective.

2.6

Remarks (1) The Main Theorem illustrates nicely that an indecomposable module M is
Gorenstein-projective if and only if both M and M∗ are semi-Gorenstein-projective and
M is reflexive (since the latter means that φM is an isomorphism), as known from [1], and
stressed for example in [4].

(2) By construction, the complex P• (and thus also P ∗• ) is uniquely determined by the
module M . Let us stress that P• is usually not determined by M∗.

In general, given an acyclic minimal complex Q• = (Qi, di : Qi → Qi−1) of projective
right modules (such as Q• = P ∗• ), say with Ni being the image of di , then any module Ni
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determines uniquely the modules Nj with j ≤ i, since Nj = �j−iNi, but usually not the
modules Nj with j > i.

If we look at the complexes P• which are obtained in Main Theorem, then there do
exist examples, where P• = (Pi, fi) is not determined by M∗ (this is the image of f0),
as shown in [9]. Namely, let q ∈ k be an element with infinite multiplicative order and
A = �(q) the algebra defined in [9](1.1). Then the modules M of the form M(1, −q, c)

with c ∈ k are indecomposable, non-projective and semi-Gorenstein-projective and they are
pairwise non-isomorphic (thus also the right modules TrM = TrM(1, −q, c) are pairwise
non-isomorphic) — whereas all the right modules M∗ = M(1, −q, c)∗ are isomorphic, and
also semi-Gorenstein-projective, see [9](1.7); they are of the form M∗ = M ′(1, −q−1, 0),
see [9](9.4). Actually, in this case already all the right modules �TrM = (�M)∗ are
isomorphic, namely of the form M ′(1, −1, 0), see [9](3.2).

To phrase it differently: [9] provides an infinite family of acyclic minimal complexes
Q(c)• = (Q(c)i, d(c)i) indexed by the elements c ∈ k, such that for any i ∈ Z, the images
of the maps d(c)i are pairwise non-isomorphic if i ≥ 0, but pairwise isomorphic if i < 0.

(3) Even if the modules M and M∗ are indecomposable, the module M∗∗ may be decom-
posable, as the example of M = M(q) in [8] shows. Note that if M∗ is indecomposable
and not projective (this is the case in the example), then also TrM∗ is indecomposable and
not projective, thus in the complex P• displayed in 2.5, the images of all the maps fi with
i �= 0, −1 can be indecomposable and not projective, whereas M∗∗ is decomposable.

(4) Let A be a connected algebra with a non-reflexive module M such that both M

and M∗ are semi-Gorenstein-projective. Then, of course, A is not left weakly Gorenstein
(recall that an algebra A is said to be left weakly Gorenstein, provided any semi-Gorenstein-
projective module is Gorenstein-projective, see [8]). Is it possible that A is right weakly
Gorenstein (this means that any ∞-torsionfree module is Gorenstein-projective)? As we
have mentioned in 2.4, the module TrM∗ is always ∞-torsionfree. Thus, if TrM∗ is not
Gorenstein-projective, then A is not right weakly Gorenstein. But we do not know whether
TrM∗ can be Gorenstein-projective.

In Section 3, we discuss the extreme case that M∗ is projective (thus TrM∗ = 0).
According to the classical homological conjectures, this case should be impossible, see
Section 3.5. But could M∗ be Gorenstein-projective?

(5) After completing the paper, the authors became aware of the recent preprint [6] by
Gélinas which also deals with the complex P•. There, the central (and decisive) map q∗φMe

is called the Norm map of the module M , with reference to Buchweitz [5], 5.6.1.

3 Special Cases

3.1 The Case where φM is an Epimorphism (or a Monomorphism)

Let us consider now the special case of a module M with both M, M∗ semi-Gorenstein-
projective such that φM is an epimorphism (or a monomorphism). But we stress from
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the beginning that at present no non-trivial such example is known (all known modules
M with both M,M∗ semi-Gorenstein-projective such that φM is an epimorphism or a
monomorphism, are Gorenstein-projective).

Proposition (1) LetM be a semi-Gorenstein-projective module. Then we have:M∗ is semi-
Gorenstein-projective and φM is an epimorphism if and only if (�M)∗ is semi-Gorenstein-

projective.
(2) Let M ′ be a torsionless semi-Gorenstein-projective module and let M = �M ′. Then

M is semi-Gorenstein-projective. And (M ′)∗ is semi-Gorenstein-projective if and only if M∗
is also semi-Gorenstein-projective and φM is an epimorphism.

Here, we consider in (1) a module M such that both M and M∗ are semi-Gorenstein-
projective, and in (2), a module M ′ such that both M ′ and (M ′)∗ are semi-Gorenstein-
projective. In (1) we deal with the case that φM is an epimorphism. In (2) we deal with
the case that φM ′ is an monomorphism (namely, M ′ is torsionless if and only if φM ′ is a
monomorphisms).

Proof of (1) We can assume that M is indecomposable and not projective. Since M is
semi-Gorenstein-projective, it follows that the exact sequence 0 → �M → P(M) →
M → 0 is an �-sequence, and 0 → M∗ → P(M)∗ → (�M)∗ → 0 is exact. Thus,
(�M)∗ is semi-Gorenstein-projective if and only if M∗ is semi-Gorenstein-projective and
Ext1((�M)∗, AA) = 0. According to Lemma 2.4(b) in [8], we have Ext1((�M)∗, AA) = 0

if and only if φM is an epimorphism.

Proof of (2) We can assume that M ′ is indecomposable and not projective. Since M ′ is
torsionless and semi-Gorenstein-projective, the module M = �M ′ is semi-Gorenstein-
projective. There is an �-sequence 0 → M ′ → P → M → 0, thus an exact sequence
0 → M∗ → P ∗ → (M ′)∗ → 0. Then (M ′)∗ is semi-Gorenstein-projective if and only if
M∗ is semi-Gorenstein-projective and Ext1((M ′)∗, AA) = 0. According to 2.4(b) of [8], we
have Ext1((M ′)∗, AA) = 0 if and only if φM is an epimorphism.

Remarks If we denote by M the class of reduced modules M such that both M and
M∗ are semi-Gorenstein-projective and φM is an epimorphism, and by M′ the class of
reduced modules M ′ such that both M ′ and (M ′)∗ are semi-Gorenstein-projective and φM ′

is a monomorphism, then � and � provide inverse bijections between isomorphism classes
as follows:

M′ M........................................................................................................................................................... ............

.......................................................................................................................................................................

�

�

If M belongs toM and M ′ = �M (thus �M ′ = M), then CokφM ′ � KerφM .

3.2 The Semi-Gorenstein-Projective Modules M withM∗ Projective

Another special case should be considered, namely the case of a semi-Gorenstein-projective

reduced module such that M∗ is projective. Also here, let us stress from the beginning that
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at present no non-trivial such example is known (all known semi-Gorenstein-projective
modules M with M∗ projective are Gorenstein-projective, thus even projective).

Let M be a semi-Gorenstein-projective module with M∗ being projective. In addition,
we may assume that M is reduced. Since M∗ is projective, we take as projective cover

q : Q0 → M∗ the identity map 1 = 1M∗ ; thus f0 = φM · e. The diagram considered in 2.5
now has the following special form:

P2 P1 P0 M∗∗ 0 0

M
e φM

· · · · · ·

............................................................. ........
.... .........

.........
.........
.........
....................
............

f3 f2 f1 f0

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
...........
.........
........
.......
.......
.......
.

sGp

........

........

...............
.
.......
.

........

........

...............
.
.......
.

........

........

...............
.
.......
.

........

........

...............
.
.......
.

........

........

...............
.
.......
.

........

........

...............
.
.......
.

Homology
Hi(P•) 0 0 0 0Ker(φM) Cok(φM) · · ·

P•

P ∗
2 P ∗

1 P ∗
0 M∗ 0 0

TrM

........ ........ ........ ........ ........ ........ ........ ........ ........ ...................................................................

........ ........ ........ ........ ........ ........ ........ ........................................

................
........
........
.........................................

.......

∞-tf

· · · · · ·

.........
.........
.........
.................................

............................................
....
............

f ∗
3

f ∗
2 f ∗

1 e∗

P ∗•

Here, P ∗• is acyclic, TrM is the image of f ∗−2 and e : M∗ = P ∗
0 is an inclusion map. It

follows that TrM has projective dimension at most 2 (and projective dimension at most 1,
in case M∗ = 0).

3.3

Recall that a module M is a Nunke module provided M is semi-Gorenstein-projective and
M∗ = 0 (and the Nunke condition for an algebra A asserts that the zero module is the only
Nunke A-module, see Section 3.5).

Proposition The transpose Tr provides a bijection between the modules M which are semi-

Gorenstein-projective, with M∗ being projective, and the ∞-torsionfree right modules Z of

projective dimension at most 2.

The transpose Tr provides a bijection between the Nunke modules M and the ∞-

torsionfree right reduced modules Z of projective dimension at most 1.

3.4 NunkeModules

We consider now Nunke modules. As we will see, this is essentially just the situation where,
on the one hand, φM is an epimorphism (as discussed in 3.1), and, on the other hand, M∗
is projective (as discussed in 3.2). Of course, again we have to stress that no non-trivial
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example is known (the only known Nunke module is the zero module) and there is the old
conjecture (one of the classical homological conjectures) that no non-zero Nunke module
exists (for a further discussion of corresponding conjectures, see Section 3.5).

Proposition Let M be a module. The following conditions are equivalent:

(i) M is semi-Gorenstein-projective, φM is an epimorphism and M∗ is projective.
(ii) M is the direct sum of a projective module and a Nunke module.

Proof We can assume that M is indecomposable.
(i) implies (ii). Let M be a semi-Gorenstein-projective module, with φM an epimorphism

and M∗ projective. Then also M∗∗ is projective, thus φM is a split epimorphism, thus M �
M ′ ⊕ M∗∗. Since we assume that M is indecomposable, there are two possibilities: Either
M ′ = 0, thus M � M∗∗, thus M is projective. Or else M∗∗ = 0 and thus already M∗ = 0
(namely, if M∗ �= 0, then also M∗∗ �= 0, since the module M∗ is torsionless), thus M is a
Nunke module.

(ii) implies (i). If M is projective, then M is semi-Gorenstein-projective. Also, M is
reflexive, thus φM is surjective, and with M projective, also M∗ is projective.. If M is a
Nunke module, then M∗ = 0 implies that M∗∗ = 0, thus φM is surjective and M∗, being
the zero module, is projective.

3.5 Some Conjectures

Proposition Let A be an artin algebra. We consider the following conditions:

(1) There is a bound b with the following property: If M is a right A-module of finite

projective dimension, then the projective dimension of M is at most b.

(2) A semi-Gorenstein-projective A-module M with M∗ of finite projective dimension is

projective.
(3) A semi-Gorenstein-projective A-module M with M∗ projective is projective.

(4) The only Nunke module is the zero module

(5) There is no simple module which is a Nunke module.

(6) There is no simple injective module which is a Nunke module.

Then (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (6).

Remarks One may conjecture that all these conditions hold true in general.

The condition (1) is called the finitistic dimension conjecture for Aop, and (4) is called
the Nunke condition for A. Both are classical homological conjectures (that these condi-
tions hold true for all finite-dimensional algebras) and it is well-known that (1) implies (4).
See, for example, [7]. The assertion (5) is called the weak Nunke condition, it is equivalent
to the generalized Nakayama conjecture (see [2], Proposition 1.5). The conditions (1),
(4), and (5) are mentioned in [3] as conjectures 11, 12, and 9, respectively). The Proposition
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formulates the intermediate conjectures (2) and (3). Also, we mention the weaker conjecture
(6) which will be discussed in 3.6 and 3.7.

Proof of Proposition (1) implies (2). LetM be semi-Gorenstein-projective. Wemay assume
that M is indecomposable and not projective. Now Z = TrM is ∞-torsionfree, thus there
is an exact sequence

0 → Z → P 0 d0−−−−→ P 1 d1−−−−→ · · ·
with projective modules P i , where i ≥ 0. Let Mi be the image of di−1 for all i ≥ 1. Since
Z is indecomposable and not projective, we see that �iMi = Z for all i ≥ 1.

We apply the Lemma from 2.4 to Z = TrM and see that �2Z = (Tr TrM)∗ = M∗,
since M is reduced.

By assumption, M∗ has finite projective dimension, thus �a(M∗) = 0, for some a ≥ 0
and therefore �i+2+aMi = �2+aZ = �aM∗ = 0. Thus Mi has finite projective dimen-
sion, for all i ≥ 1. According to (1), we know thatMi has projective dimension at most b, for
all i ≥ 1. Since Mb+1 has projective dimension at most b, we see that Z = �b+1Mb+1 = 0.
But Z = 0 imples that M = TrZ = 0. (2) implies (3) is trivial. (3) =⇒ (4): Let M be
semi-Gorenstein-projective and M∗ = 0. Since M∗ is projective, it follows from (3) that M
is projective. But a projective module P with P ∗ = 0 is the zero module. The implications
(4) =⇒ (5) =⇒ (6) are again trivial.

Remarks As we have mentioned already, the weak Nunke condition 3.5 (5) is equivalent
to the following conjecture, now called the Auslander-Reiten conjecture: There is no non-
zero semi-Gorenstein-projective M , with ExtiA(M,M) = 0 for all i ≥ 1. This was shown
by Auslander and Reiten [2].

The weak Nunke condition asserts that a simple semi-Gorenstein-projective module
should be torsionless. One may ask whether a simple semi-Gorenstein-projective module
should be even Gorenstein-projective, but at present, nothing is known about simple semi-
Gorenstein-projective modules, this is really a pity. There is the special case of a simple
injective module. Is it possible that a simple injective module is semi-Gorensetin-projective
without being already projective (thus uninteresting)? In 3.5, we have added the correspond-
ing conjecture: There are no simple injective Nunke modules, as conjecture (6). One may call
this conjecture (6) the very weak Nunke condition. In 3.6 and 3.7, we show that the very
weak Nunke condition is equivalent to a weak form of the Auslander-Reiten conjecture.

3.6 Simple Injective Semi-Gorenstein-Projective Modules

The conjecture 3.5 (6) asserts that a simple injective semi-Gorenstein-projective module S

should be projective (thus �S = 0). In 3.6, we look at a simple injective semi-Gorenstein-
projective module and try to analyse �S. Let A be an artin algebra and S a simple injective
module with endomorphism ring End(S) = D. Let M = �S. Let e be a primitive idempo-
tent of A such that eS �= 0. Let B = A/AeA, thus U(S) = modB is a full subcategory of
modA; it consists of all the A-modules which do not have S as a composition factor. Note
that M belongs to U(S).

As we have mentioned, A is supposed to be an artin algebra. We assume that A is a
k-algebra, where k is a commutative artinian ring and A is of finite length as a k-module.
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Proposition Let S be a simple injective module with End(S) = D. Let M = �S. Let e be
a primitive idempotent of A such that eS �= 0 and B = A/AeA. The following conditions
are equivalent:

(i) The module S is semi-Gorenstein-projective.
(ii) The B-module M is a Nunke B-module, ExtiB(M,M) = 0 for all i ≥ 1, and either

M = 0 or else End(M) is isomorphic to D as a k-algebra.

We need some preparations for the proof.

(a) Projective B-module are projective when considered as A-modules. Thus U(S) is
closed under projective covers. �

(b) If U, U ′ are B-modules, then ExtiA(U, U ′) = ExtiB(U,U ′) for all i ≥ 0.

Proof This is clear for i = 0. For i ≥ 1, we start with a projective resolution P• of the
B-module U . According to (a), this is also a projective resolution of U considered as an A-
module. We form the complex HomB(P•, U ′) = HomA(P•, U ′) and consider its homology.

(c) If U is a B-module, then ExtiA(U, P (S)) = ExtiA(U,M)(= ExtiB(U, M)) for all
i ≥ 0.

Proof We apply HomA(U, −) to the exact sequence 0 → M → P(S) → S → 0. We have
Hom(U, S) = 0, since U belongs to U(S), and we have Exti (U, S) = 0 for i ≥ 1, since
S is injective. This shows that ExtiA(U,M) = ExtiA(U, P (S)) for all i ≥ 0. For the second
equality, see (b).

(d) Let U be a B-module. Then U is semi-Gorenstein-projective as an A-module if and
only if U is semi-Gorenstein-projective as a B-module and ExtiB(U, M) = 0 for all
i ≥ 1.

Proof We can assume that A is basic, thus AA = B ⊕ P(S). By definition, U is semi-
Gorenstein-projective as an A-module if and only if ExtiA(U,B) = 0 and ExtiA(U, P (S)) =
0 for all i ≥ 1. According to (b), we have ExtiB(U, B) = ExtiA(U,B) for all i ≥ 1. But
ExtiA(U, B) = 0 for all i ≥ 1 means that U is semi-Gorenstein-projective as a B-module.
Also, by (c) we have ExtiA(U, P (S)) = ExtiB(U,M) for all i ≥ 0.

(e) Let M �= 0. The embedding M → P(S) is a left add(AA)-approximation if and only
if End(M) is isomorphic to D as a k-algebra and Hom(M, BB) = 0.s

Proof Let ι : M → P(S) be the inclusion map. We assume again that A is basic, thus

AA = B ⊕ P(S).

A map f : M → BB factors through ι if and only if f = 0 (since Hom(P (S), BB) = 0).
Thus all maps f : M → BB factor through ι if and only if Hom(M, BB) = 0.

It remains to look at maps M → P(S). Any endomorphism of P(S) maps M =
radP(S) into M , thus there are canonical maps π ′ : End(P (S)) → End(M) as well as
π : End(P (S)) → End(S). Since P(S) is a projective cover of S, thus π is surjective. Since
S is injective, we have Hom(P (S),M) = 0, π is an injective map. Altogether, we see that
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π is an isomorphism. Since M �= 0, and S is injective, Hom(S, P (S)) = 0, therefore π ′ is
injective. It follows that μ = π ′π−1 is an embedding of D = End(S) � End(P (S)) into
End(M). Of course, μ is an surjective if and only if ι is a add(AA)-approximation. Note that
the embedding μ is an isomorphism if and only if the length of kD is equal to the length of

k End(M), thus if and only if End(M) is isomorphic to D as a k-algebra.

Proof of Proposition (i) =⇒ (ii). Let S be semi-Gorenstein-projective. If S is projective,
then M = 0 and the conditions in (ii) are trivially satisfied. Thus, we assume that S is
not projective, thus Then AM = �S is an indecomposable semi-Gorenstein-projective A-
module. According to (d), M considered as a B-module is semi-Gorenstein-projective and
ExtiB(M,M) = 0 for all i ≥ 1. Also, the inclusion ι : M → P(S) is a left add(AA)-
approximation (since Ext1(S, AA) = 0), thus (e) asserts that End(M) is isomorphic to D as
a k-algebra and Hom(M, BB) = 0. In particular, we see that M is a Nunke B-module.

(ii) =⇒ (i). We can assume that M is non-zero (otherwise S is projective, thus of course
semi-Gorenstein-projective). We assume that M is a Nunke B-module, that End(M) is iso-
morphic to D as a k-algebra (in particular, M is indecomposable) and that ExtiB(M,M) = 0
for all i ≥ 1. Since M is a semi-Gorenstein-projective B-module and ExtiB(M,M) = 0 for
all i ≥ 1, we can apply (d) to U = M and see that M is semi-Gorenstein-projective also
as an A-module. Since End(M) is isomorphic to D as a k-algebra and Hom(M, BB) = 0,
we can use (e). It asserts that the embedding M → P(S) is a left add(AA)-approximation.
Since M is a Nunke B-module, we have Hom(M, BB) = 0. It follows from M �= 0 that M
is not a projective B-module. Of course, M is also not isomorphic to P(S), thus M is not
projective as an A-module. Since M is semi-Gorenstein-projective, indecomposable and not
projective, it follows that S = �M is semi-Gorenstein-projective.

3.7

Corollary There exists an artin algebra A with a simple injective Nunke module if and
only if there exists an artin algebra B with an indecomposable semi-Gorenstein-projective
module M with rad End(M) = 0, such that Hom(M, BB) = 0 and ExtiB(M,M) = 0 for all
i ≥ 1.

Proof Let A be an artin algebra with a simple, injective, semi-Gorenstein-projective mod-
ule S with S∗ = 0. Let U(S) = modB for some artin algebra B. Then Proposition
3.6 asserts that the B-module M is semi-Gorenstein-projective, Hom(M, BB) = 0, and
ExtiB(M,M) = 0 for all i ≥ 1, and End(M) is isomorphic to End(S) as a k-algebra.
Of course, if End(M) is isomorphic to End(S), then End(M) is a division ring, thus M is
indecomposable and rad End(M) = 0.

Conversely, let B be an artin algebra with an indecomposable B.module M which is
semi-Gorenstein-projective, such that rad End(M) = 0, Hom(M, BB) = 0, and finally
ExtiB(M,M) = 0 for all i ≥ 1. Let D = End(M). Since M is indecomposable, D is a local
artin algebra. Since rad End(M) = 0, we see that D is a division ring. Let A = [

B M
0 Dop

]

.
Let P be the indecomposable projective A-module P = [

M
Dop

]

, let S = P/ radP . Then
End(S) = D. Note that S is simple and injective, U(S) = modB and �S = M . Proposition
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3.6 asserts that S is semi-Gorenstein-projective. Also, S is not projective, since M �= 0.
Since S is injective and not projective, we see that S∗ = 0, thus S is a Nunke module.

4 (Short) Local Algebras

One may wonder whether there do exist non-trivial examples of modules which satisfy the
conditions discussed in Section 3. Here we want to mention at least one class of algebras,
the short local algebras, were no examples of this kind do exist. First, let A be an arbitrary
local artin algebra.

4.1

Proposition LetA be a local artin algebra. LetM be a semi-Gorenstein-projective module.
If M∗ is projective, then M is projective.

Proof We can assume that M is indecomposable and not projective, thus reduced. Accord-
ing to the Main Theorem, there is a minimal complex P• = (Pi, fi) of projective modules
such that P ∗• is acyclic, as exhibited in the display 2.5. In particular, M∗ is the image of
f ∗
0 . Since f0 maps into the radical of P−1, f ∗

0 maps ito the radical of P ∗
0 , thus M∗ is a

submodule of the radical of a projective right module. Since A is local, M∗ cannot have an
indecomposable projective direct summand.

If we assume that M∗ is projective, then M∗ = 0. But for a local algebra A, this implies
that M = 0, a contradiction. This completes the proof.

4.2

We recall that a local algebra A is said to be short provided that J 3 = 0. From now on, let
A be a short local artin algebra with e = |J/J 2| and a = |J 2|. The pair (e, a) is called the
Hilbert type ofA. For any moduleM , we denote by |M| its length and set t (M) = |M/JM|.
If M has Loewy length at most 2, then dimM = (t (M), |JM|) is called the dimension
vector of M . Note that if Q• = (Qi, di : Qi → Qi−1) is a minimal complex of projective
modules and Ni is the image of di , then Ni has Loewy length at most 2, thus its dimension
vector is defined.

Proposition Let A be a short local artin algebra.

(a) Assume that A is not self-injective, and let Q• = (Qi, di : Qi → Qi−1) be an acyclic
minimal complex of projective modules. Let Ni be the image of di and assume that at
least one of the modules Ni is semi-Gorenstein-projective. Then all modules Qi have
the same rank, say rank t and dimNj = (t, at) for all j ∈ Z.

(b) Let M be a module such that both M and M∗ are semi-Gorenstein-projective. Then
|Ker(φM)| = |Cok(φM)|. (Thus, if φM is a monomorphism or an epimorphism, then
φM is an isomorphism, and therefore M is Gorenstein-projective.)
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The proof will rely on two results (Theorems 3 and 4) from [10].

Proof of (a) Let Q• = (Qi, di : Qi → Qi−1) be an acyclic minimal complex of projective
modules, with Ni the image of di , for all i ∈ Z. Since Q• is acyclic and minimal, the
canonical maps Qi → Ni are projective covers, thus t (Qi) = t (Ni) for all i ∈ Z.

According to Theorem 3 of [10], the complexQ• shows thatA is of Hilbert type (a+1, a)

with a ≥ 1, and that either all the modules Ni have the same dimension vector (type I), in
particular all the projective modules Qi have the same rank, or else the rank of the modules
Qi strictly increases for i � 0 (type II).

Let us now assume that N0 is semi-Gorenstein-projective. Of course, N0 is torsionless
and not projective and

0 ← N0 ← Q0 ← Q1 ← · · ·
is a minimal projective resolution ofN0. We apply Theorem 4 of [10] to the indecomposable
direct summands of N0 and see that a ≥ 2, and that all the modules Ni = �iN0 with
i ∈ N have the same dimension vector dimNi = (t, at), where t = t (N0) = t (Q0). As a
consequence, t (Qi) = t (Ni) = t for all i ≥ 0. This shows that Q• cannot be of type II.
Thus, Q• is of type I, and therefore all the projective modules Qi have the same rank t , and
dimNi = (t, at) for all i ∈ Z. This completes the proof of (a).

Proof of (b) If A is self-injective, then all modules are reflexive, thus (b) holds trivially in
this case. We therefore may assume that A is not self-injective.

Let M be a module such that both M and M∗ are semi-Gorenstein-projective. According
to the Main Theorem, there is a minimal complex P• = (Pi, fi) of projective modules such
that P ∗• is acyclic, as exhibited in the display 2.5. We apply the assertion (a) to the opposite
algebra Aop, thus to right A-modules, namely to the acyclic complex P ∗• of projective right
A-modules. Since the image of f ∗

0 is the semi-Gorenstein-projective module M∗, we see
that all the modules P ∗

i have the same rank, say t . Thus also the modules Pi have rank t .
Now �M is the image of f1. Since P1 is a projective cover of �M , we see that top�M

has length t . Similarly, TrM∗ is the image of f−2 and P−2 is a projective cover of TrM∗,
thus top TrM∗ has length t . Next, �M is an idecomposable torsionless semi-projective
module and not projective, thus Theorem 4 of [10] asserts that its dimension vector is (t, at).
Similarly, TrM∗ is an indecomposable ∞-torsionfree module and not projective, thus the
same reference shows that the dimension vector of TrM∗ is also (t, at). We consider the
sequence

0 → �M
u−−−−→ P0

f0−−−−→ P−1
f−1−−−−→ P−2

r−−−−→ TrM∗ → 0,

where u is the canonical inclusion and r the canonical projection. This is a complex, and
the alternating sum of the length of the modules involved is zero (the modules �M and
TrM∗ have length et , whereas the modules P0, P−1, P−2 have length 2et). It follows that
also the alternating sum of the length of the homology modules is 0, but this is |Ker(φM)|−
|Cok(φM)|.

4.3 Remark

Let a ≥ 2. In section 11 of [10] we will exhibit a short local algebra A of Hilbert type
(a + 1, a) which has a Loewy length 2 module M with dimension vector (1, a) such that
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both M and M∗ are semi-Gorenstein-projective, whereas M is not reflexive (actually, we
have |Ker(φM)| = |Cok(φM)| = 1). The construction is a straightforward generalization
of the case a = 2 algebras as discussed in [8] and [9].
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