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Abstract
We construct a faithful categorical representation of an infinite Temperley-Lieb algebra on
the periplectic analogue of Deligne’s universal monoidal category. We use the correspond-
ing combinatorics to classify thick tensor ideals in this periplectic Deligne category. This
allows us to determine the objects in the kernel of the monoidal functor going to the module
category of the periplectic Lie supergroup. We use this to classify indecomposable direct
summands in the tensor powers of the natural representation, determine which are projective
and determine their simple top.

Keywords Deligne category · Thick tensor ideals · Periplectic Lie superalgebra ·
Categorification · Diagram algebras · Temperley-Lieb algebra · Fock space
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1 Introduction

This is the third paper in a series studying an analogue of the Brauer algebra which appears
in invariant theory for the periplectic Lie superalgebra, see [20]. In [7] the first author stud-
ied cellular and homological properties of the algebras over fields of arbitrary characteristic,
leading in particular to a classification of the blocks in characteristic zero. In [9] we com-
pleted this by determining the Jordan-Hölder decomposition multiplicities of projective and
cell modules.

In the current paper, we study the periplectic analogue PD of the Deligne category
of [10], a strict monoidal supercategory with universal properties, defined in [16, 23]. We
construct a categorical representation of TL∞(0), the infinite Temperley-Lieb algebra with
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the circle evaluated at zero, on PD. This can be interpreted as a natural analogue of the
categorical representation of sl∞ on module categories of symmetric groups or polynomial
functors, see [15, 17]. Moreover, our approach should be adaptable to construct a categorical
representation of sl∞/2 ⊕sl∞/2 on the ordinary Deligne category Rep(Oδ) of [6, 10], which
relates to [14].

Our categorical representation of TL∞(0) is a ‘weak categorification’ of a representa-
tion in the terminology of [18], since there is no known 2-categorical or monoidal notion
of categorification of TL∞ that incorporates the specialisation at 0. We prove that the rep-
resentation we categorify, which is a representation of TL∞(0) on bosonic Fock space, is
faithful, which might be of use in developing such a notion. The categorical representation
of TL∞(0) admits a filtration, where each composition factor corresponds to a cell of the
monoidal supercategory PD. Moreover, we show that the decategorification of the compo-
sition factors are isomorphic to representations of TL∞(0) categorified in [1], and that both
categorifications are very closely related.

The functor on the Deligne category which lies at the basis of the categorical represen-
tation is the tensor product with the generator. Its combinatorics determines explicitly the
structure of the tensor product of this generator and an arbitrary indecomposable object.
In particular, we use this to classify the thick tensor ideals and cells in the periplectic
Deligne category PD. The corresponding classification for the Deligne category Rep(Oδ)

was obtained in [6]. We use a different approach, compared to [6], to prove that the combi-
natorics of the tensor functor is related to the decomposition multiplicities of the periplectic
Brauer algebra in [9]. This approach is much more direct, since it does not rely on liftings
of idempotents or classical invariant theory, and can thus be applied in many similar situa-
tions (including the one in [6]). In subsequent work in [8], the first author will prove that
our classification of thick tensor ideals on the level of objects actually yields a complete
classification of the tensor ideals in PD on the level of morphisms as well.

There exists a tensor functor from the periplectic Deligne category to the category of
finite dimensional modules over the periplectic Lie supergroup, see [16, 23], which is full by
results in [11]. Its kernel must be a thick tensor ideal and similarly the pre-image of the class
of projective modules is a thick tensor ideal. Our classification of thick tensor ideals allows
to determine efficiently those ideals. This thus yields a classification of the indecompos-
able direct summands in the tensor powers of the natural representation for the periplectic
Lie supergroup. Furthermore, we determine which direct summands are projective. These
results are analogues of the corresponding ones for orthosymplectic Lie supergroups in [6].
In contrast to [6], our methods do not rely on cohomological tensor functors and instead use
simple combinatorial considerations to deduce the classification. Finally, we also describe
explicitly the highest weight of the top of each projective cover in terms of the combinatorics
of the Deligne category.

The paper is organised as follows. After recalling some definitions and introducing some
notation concerning monoidal supercategories and periplectic Brauer algebras in Section 2,
we study the elementary properties of the periplectic Deligne category PD in Section 3. In
Section 4, we study the functor T on the Deligne category which corresponds to taking the
tensor product with the generator. We prove that its action on objects can be described in
terms of the decomposition multiplicities of the periplectic Brauer algebra in [9] and that
it decomposes as T = ⊕i∈ZTi according to the eigenvalues of a natural transformation.
Section 5 is a purely combinatorial section where we prove uniqueness and existence of a
representation of the Temperley-Lieb algebra TL∞(0) on the space of partitions (the Fock
space). It then follows that the functors Ti decategorify to this representation. We also prove
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that the representation is faithful and establish a filtration. Section 6 contains our main
results, the classification of thick tensor ideals in PD and the description of the higher
tensor powers of the natural representation of the periplectic Lie supergroup. Finally, in
Section 7 we construct natural transformations related to the functors Ti in order to improve
the above decategorification statements to an actual categorical representation and filtration.
Furthermore, we establish a connection between the composition factors of the filtration of
our categorical representation and the categorical representations of TL∞(0) in [1].

2 Preliminaries

We set N = {0, 1, 2, . . .}. For a given set S, the power set is denoted by P(S) and the set of
subsets of cardinality n by P(S; n). Throughout the paper, k is an algebraically closed field
of characteristic zero. Let sveck denote the monoidal category of all F2-graded k-vector
spaces, with grading preserving morphisms. For elements v of degree 0̄, resp. 1̄, in a graded
vectorspace, we write |v| = 0, resp. |v| = 1. For any r ∈ Z≥1, we introduce the sets

J(r) := {r − 2i | 0 ≤ i ≤ r/2} and J0(r) := {r − 2i | 0 ≤ i < r/2}.

Furthermore, we set J(0) = {0} = J0(0).

2.1 Partitions

We denote the set of partitions of all numbers by Par. The free Z-module of Z-linear com-
binations of the elements of Par will be denoted by ParZ. All matrices that will appear in
the paper will have their columns and rows labelled by Par and have entries in Z.

We will identify a partition with its Young diagram, using English notation. Each box or
node in the diagram has coordinates (i, j), meaning that the box is in row i and column j .
The content of a box in position (i, j) in a Young diagram is j − i. Any box with content q

will be referred to as a q-box. The value i + j will be referred to as the anticontent of the
box.

By a rim hook of λ we mean a removable and connected hook of λ. By a (rim) a-hook
for a ∈ N we mean a rim hook with a boxes. In case λ admits an addable q-box, we write
the partition obtained by adding said box as λ � q. In case λ has a removable q-box, we
write the partition obtained by removing said box as λ � q.

For k ∈ N, we fix the partition ∂k of 1
2k(k + 1), defined as

∂k := (k, k − 1, . . . , 1, 0).

The set {∂k | k ∈ N} thus consists of all 2-cores, i.e. all partitions from which one cannot
remove any rim 2-hook. For all k ∈ N, we define the following subsets of Par:

Par≥k = {λ | ∂k ⊆ λ}, Par≤k = Par \ Par≥(k+1) and Park = Par≥k ∩ Par≤k . (2.1)

2.2 Supercategories

We recall some definitions of [3, Section 1].
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2.2.1 Supercategories and superfunctors

A supercategory is defined as a category enriched over sveck. Superfunctors between
supercategories are functors enriched in the same way. By definition, supercategories and
superfunctors are thus in particular k-linear.

For two supercategories B and C, the supercategory B � C has as objects ordered pairs
(X, Y ), with X ∈ ObB and Y ∈ Ob C, and morphism spaces given by

HomB�C((X1, Y1), (X2, Y2)) = HomB(X1, X2) ⊗k HomC(Y1, Y2),

with composition defined by the super interchange law

(f ⊗ g) ◦ (h ⊗ k) = (−1)|h||g|(f ◦ h) ⊗ (g ◦ k). (2.2)

2.2.2 Natural Transformations

Consider two supercategories C1, C2 and superfunctors F,G : C1 → C2. A natural trans-
formation of superfunctors ξ : F ⇒ G of parity p ∈ F2 is a family {ξX : FX → GX | X ∈
Ob C1} of morphisms of parity p such that for any homogeneous morphism α : X → Y

in C1, we have G(α) ◦ ξX = (−1)p|α|ξY ◦ F(α). An even natural transformation of super-
functors is thus just an ordinary natural transformation, where every morphism is even.
All functors appearing will be superfunctors, thus all natural transformations appearing
are considered as natural transformations of superfunctors. The space Nat(F,G) of natural
transformation of superfunctors F ⇒ G is thus F2-graded.

In the following three paragraphs we recall some standard manipulations of natural trans-
formations. For ease of reading we leave out the categories on which the various functors
are defined, as it should be clear from context.

For a functor F and a natural transformation ξ : G1 ⇒ G2, we denote by F(ξ) :
F ◦ G1 ⇒ F ◦ G2 the natural transformation given by F(ξ)X = F(ξX). The natural
transformation ξF : G1 ◦ F ⇒ G2 ◦ F is defined as (ξF )X = ξFX .

For two natural transformations ξ1 : F1 ⇒ G1 and ξ2 : F2 ⇒ G2, we denote the
horizontal composition, or Godement product, by ξ1 � ξ2 : F1 ◦F2 ⇒ G1 ◦G2, which is the
natural transformation G1(ξ2) ◦ (ξ1)F2 = (ξ1)G2 ◦ F1(ξ2).

For two natural transformations ξ1 : F ⇒ G and ξ2 : G ⇒ H , we denote the vertical
composition by ξ2 ◦ ξ1 : F ⇒ H , this is the natural transformation defined by (ξ2 ◦ ξ1)X =
(ξ2)X ◦ (ξ1)X .

2.2.3 Ob -Kernel of a Functor

We say that a functor is essentially surjective if any object in the target category is isomor-
phic to one in the image. The Ob-kernel of a functor is the full subcategory of the source
category of all objects which are sent to zero. A functor is essentially injective if it has trivial
Ob-kernel. A functor is essentially bijective if it is both essentially injective and surjective.

2.2.4 Monoidal Supercategories

A strict monoidal supercategory is a supercategory C equipped with a superfunctor C �
C → C denoted by − ⊗ −, and a unit object 1C = 1, such that we have equalities of
functors 1⊗− = Id = −⊗1 and (−⊗−)⊗− = −⊗(−⊗−). When we omit ‘strict’, these
equalities are replaced by three even natural isomorphisms, satisfying the ordinary (since
they are all even) coherence conditions, i.e. the commuting pentagon and triangle diagram.
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A braiding B in a monoidal supercategory is a family of even isomorphisms in C

{BX,Y : X ⊗ Y → Y ⊗ X | X, Y ∈ Ob C},

such that BX′,Y ′ ◦ (f ⊗ g) = (−1)|f ||g|(g ⊗ f ) ◦ BX,Y for any two morphisms f : X → X′
and g : Y → Y ′ and the usual commutative diagrams for BX,Y⊗Z and BX⊗Y,Z hold true. If
BX,Y ◦ BY,X = 1Y⊗X the braiding is symmetric.

2.2.5

For two monoidal supercategories C1 and C2, a monoidal superfunctor is a superfunctor F :
C1 → C2 with an even natural isomorphism c : (F−) ⊗ (F−) ⇒ F ◦ (− ⊗ −) and an even
isomorphism i : 1C2 → F(1C1) satisfying the ordinary (because again all morphisms are
even) commuting diagrams with the natural isomorphisms of the monoidal structure on C1
and C2.

2.3 The Periplectic Brauer Category

The periplectic Brauer category A, was introduced as the category B(0,−1) in [16], see
also [3, 7, 23]. It is a small skeletal supercategory with ObA = N. Note that in [16],
contravariant composition of morphisms is used, contrary to [3, 7, 23]. We thus actually
have A = B(0,−1)op.

2.3.1 Brauer Diagrams

The vector space HomA(i, j) is zero unless i + j is even. Furthermore, the graded vec-
torspace HomA(i, j) is purely even, resp. purely odd, if (i − j)/2 is even, resp. odd. The
vector space HomA(i, j) is spanned by (i, j)-Brauer diagrams. These diagrams correspond
to all partitions of a set of i + j dots into pairs. They are graphically represented by i dots
on a horizontal line and j dots on a second horizontal line, above the first one. The Brauer
diagram then consists of (i + j)/2 lines, connecting the dots belonging to the same pair. An
example of a (6, 8)-Brauer diagram is given below.

The lines in Brauer diagrams which connect the lower and upper horizontal line will be
referred to as propagating lines.

The composition d1◦d2 of an (i, j)-diagram d1 and a (k, l)-diagram d2 is zero unless i =
l. When i = l we identify the dots on the upper line of d2 with those on the lower line of d1,
creating another diagram. If this diagram contains loops, we have d1 ◦ d2 = 0. If it does not
contain loops we obtain a (k, j)-Brauer diagram. Then d1 ◦d2 is equal to that diagram up to
a possible minus sign. The rules for computing this minus sign were obtained in [16]. Note
that op. cit. works with marked Brauer diagrams, whereas we follow the slightly different
point of view that the homomorphisms are ordinary diagrams and their composition is to be
determined by introducing the marking, see [7]. The identity morphism of i ∈ ObA is the
diagram with i non-crossing propagating lines, which we will denote by e∗

i .
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2.3.2 Strict Monoidal Supercategory

It is proved in [16, Theorem 3.2.1], see also [3, Example 1.5(iii)], that A is a strict monoidal
supercategory. The superfunctor

− ⊗ − : A � A → A
satisfies i ⊗ j = i + j for any i, j ∈ N = ObA. In particular, 1 = 0 ∈ ObA. Now we
define the action of − ⊗ − on morphisms. For any Brauer diagram d, we have that d ⊗ e∗

i ,
resp. e∗

i ⊗ d, is the Brauer diagram obtained by adding i propagating lines to the right, resp.
the left, of d. Now take an (i, j)-Brauer diagram d1 and a (k, l)-Brauer diagram d2. Then
we set

d1 ⊗ d2 = (d1 ⊗ e∗
l ) ◦ (e∗

i ⊗ d2).

Thus d1⊗d2 is again a diagram, up to a possible minus sign. The monoidal supercategory A
is symmetric, with braiding morphisms Bi,j : i ⊗ j → j ⊗ i given in [16, Section 3.1].

By [16, Theorem 3.2.1], the monoidal supercategory A is generated by four morphisms:

(1) I = e∗
1, the identity morphism of 1 ∈ ObA, represented by a straight line;

(2) X, the crossing in EndA(2);
(3) ∪, the unique diagram in HomA(0, 2); and
(4) ∩, the unique diagram in HomA(2, 0).

2.3.3 The Periplectic Brauer Algebra

The algebras in [20] are obtained as the endomorphism algebras in A. We define the
periplectic Brauer algebra as

Ar := EndA(r), for r ∈ N.

Note that the Ar are ordinary algebras with trivial F2-grading, since all elements are even
as noted in Section 2.3.1. The algebra Ar is for instance generated by the elements

si := I⊗i−1 ⊗ X ⊗ I⊗r−i−1 and εi := I⊗i−1 ⊗ (∪ ◦ ∩) ⊗ I⊗r−i−1, for 1 ≤ i < r .

The subalgebra generated by {si} is precisely the symmetric group algebra kSr . The other
relations are given in [20, Section 2].

From the monoidal structure on A we get an embedding of algebras

Ar ⊗ As ↪→ Ar+s . (2.3)

The embedding of Ar ⊗ A1 = Ar ⊗ kI in Ar+1 will simply be denoted by Ar ↪→ Ar+1.
By [16, Theorem 4.3.1] or [7, Theorem 1], the isoclasses of simple modules over Ar ,

with r ∈ N, are in one-to-one correspondence with the following subset of Par:


r := {λ � j | j ∈ J0(r)}. (2.4)

We denote the projective cover in Ar -mod of the simple module Lr(λ), with λ ∈ 
r ,
by Pr(λ). When λ ∈ Par\
r , we set Lr(λ) = Pr(λ) = 0.

2.3.4 Cell Modules

For r ∈ N, we set Lr := {λ � j | j ∈ J(r)}. For any μ ∈ Lr , the cell module Wr(μ) was
introduced in [7, Section 4]. When μ ∈ Par\Lr , we set Wr(μ) = 0. We use these modules
to introduce a matrix c. For λ,μ ∈ Par, take an arbitrary r ∈ N with λ ∈ 
r and set

cλμ := [Wr(μ) : Lr(λ)].
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The result in [9, Theorem 1] shows in particular that the definition of c does not depend on
the specific choice of r . Furthermore, we have

cλμ :=
{

1 if μ ⊆ λ and λ/μ ∈ �,

0 otherwise.

Here � is a set of skew Young diagrams introduced in [9, Section 3]. In particular, we
have cλλ = 1. Since cλλ = 1 and cλμ = 0 unless μ ⊆ λ, it is possible to construct a matrix
c−1, such that c−1

λλ = 1, c−1
λμ = 0 unless μ ⊆ λ, and∑

μ

cλμc−1
μν = δλν and

∑
μ

c−1
λμcμν = δλν, for all λ, ν ∈ Par.

Note that both summations are actually finite, by the lower diagonal structures of the
matrices.

2.3.5 Primitive Idempotents and Projective Modules

Take an arbitrary partition λ. We fix for the remainder of the paper a primitive idempotent eλ

in Aj with j := |λ|, according to the labelling in Eq. 2.4. Hence we have Pj (λ) ∼= Ajeλ.
Examples of the idempotents are e∅, which is the identity element in EndA(0), and e� = I.

In [7, Section 3], the algebra

Cr :=
⊕

i,j∈J(r)

HomA(i, j),

was introduced. By construction, we have Aj
∼= e∗

jCre
∗
j for any j ∈ J(r), which allows to

interpret eλ as an idempotent in Cr if |λ| = j ∈ J(r). By [7, Section 4], we have

Pr(λ) ∼= e∗
r Creλ

∼= HomA(j, r)eλ, for all λ � j ∈ J0(r). (2.5)

2.3.6 Restriction and Induction

The embedding Ar ↪→ Ar+1 of Section 2.3.3 yields functors

Resr : Ar -mod → Ar − 1-mod and Indr = Ar+1 ⊗Ar − : Ar -mod → Ar+1-mod.

We introduce the symmetric matrix b as

bλμ =
{

1 if μ = λ � i or μ = λ � i, for some i ∈ Z,

0 otherwise.

By [7, Corollary 5.2.4], ResrWr(μ) (for all μ ∈ Par and r ∈ N such that r − |μ| ∈ 2Z>0)
has a filtration with composition factors given by cell modules of Ar − 1 and multiplicities

(ResrWr(μ) : Wr − 1(λ)) = bλμ, for all λ ∈ Par. (2.6)

Note that multiplicities in cell filtrations of arbitrary Ar -modules are actually independent
of the chosen filtration, if r �∈ {2, 4}, by [7, Theorem 4.1.2(3)].

2.3.7 Jucys-Murphy Elements

The Jucys-Murphy elements for Ar were introduced in [7, Section 6]. The element xr ∈
Ar commutes with the subalgebra Ar − 1, by [7, Lemma 6.1.2]. We interpret xr also as an
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element of As for any r ≥ s, although xr ⊗ e∗
s−r would be more precise. By definition, we

have x1 = 0.
We thus have an action of xr on ResrM , for an Ar -module M , which commutes with

the Ar − 1-action. In [9, Section 2], we introduced the notation Mq for the generalised
q-eigenspace for xr . We have ResrM = ⊕q∈ZMq as Ar − 1-modules. For any q ∈ Z

and λ, μ ∈ Par, we set

b
q
λμ =

{
1 if μ = λ � q, or μ = λ � (q − 1),

0 otherwise.

Clearly, we have b = ∑
q∈Z bq . By [9, Proposition 2.12], we can refine Eq. 2.6 to

(Wr(μ)q : Wr − 1(λ)) = b
q
λμ. (2.7)

2.4 The Periplectic Lie Superalgebra

For each n ∈ Z>0, the periplectic Lie superalgebra pe(n) is the subalgebra of the general
linear superalgebra gl(n|n), which preserves an odd bilinear form β : V × V → k, see [1,
4, 7, 16, 20, 21], with V := k

n|n. Concretely,

pe(n) = {X ∈ gl(n|n) | β(Xv,w) + (−1)|X||v|β(v,Xw) = 0, for all v, w ∈ V }.

2.4.1 The Supercategory sFn of Integrable Modules Over pe(n)

We consider the category sFn which has as objects all F2-graded, finite dimensional,
integrable, left pe(n)-modules, see [1, Section 2]. The morphism spaces consist of all pe(n)-
linear morphisms of (ungraded) k-vector spaces. The morphism spaces are thus naturally
F2-graded vectorspaces. The category sFn is a supercategory. By ‘pe(n)-module’ we will
henceforth mean ‘object in sFn’.

Note that there is a central element H ∈ pe(n)0̄
∼= gl(n), whose adjoint action is diago-

nisable on pe(n)1̄ with eigenvalues ±1. This allows to equip any weight module M of pe(n),
with respect to any Cartan subalgebra of pe(n)0̄, with a F2-grading. For instance, for M

indecomposable we can choose c ∈ C such that H acts through values in c +Z and set M0̄,
resp. M1̄, equal to the sum of all weight spaces for weights λ such that λ(H) − c is even,
resp. odd. It then follows easily that sFn is abelian.

In order to be compatible with [16], we will think of morphisms as ‘acting from the right’
and denote by

HomsFn(M,N) = Hompe(n)(N,M),

the space of pe(n)-linear morphisms N → M . Hence we write (v)f , for v ∈ N and f ∈
HomsFn (M,N). For f ∈ HomsFn(M,N) and g ∈ HomsFn(K,M), the morphism f ◦ g ∈
HomsFn (K,N) is given by

(v)(f ◦ g) = ((v)f )g, for v ∈ N .

2.4.2 Monoidal Structure

For pe(n)-modules M, N , the tensor product M ⊗ N = M ⊗k N is an object in sFn, with
action given by

X(v ⊗ w) = Xv ⊗ w + (−1)|X||v|v ⊗ Xw, for all X ∈ pe(n).
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For f ∈ Hompe(n)(M1,M2) and g ∈ Hompe(n)(N1, N2), the morphism f ⊗ g defined as

(v ⊗ w)(f ⊗ g) = (−1)|f ||w|(v)f ⊗ (w)g

is pe(n)-linear. With this rule, Eq. 2.2 is satisfied and and sFn is a monoidal supercategory
for − ⊗ −.

3 The Periplectic Deligne Category

3.1 Construction

The category PD, which we will define as the pseudo-abelian envelope of A, was denoted
by Rep P in [23, Section 4.5] and by B̂(0, −1) in [16, Section 5]. It is the periplectic
analogue of the categories Rep GLδ and Rep Oδ introduced by Deligne in [10].

3.1.1

The periplectic Brauer category A is k-linear, so in particular pre-additive. It thus admits a
unique (up to equivalence) additive envelope. We define such a supercategory A which has
as objects finite multisets of elements in N = ObA. For such a multiset S, the correspond-
ing object of A is denoted by

⊕
r∈S r . Morphisms in A are matrices with entries morphisms

in A. By construction, A is still skeletal. It is an additive category, with biproducts given by(⊕
r∈S

r

)
⊕

(⊕
r∈S′

r

)
=

⊕
r∈S�S′

r .

The category A inherits a structure of a symmetric strict monoidal supercategory from its
subcategory A, with − ⊗ − extended as a bi-additive functor.

3.1.2

The additive category A admits a unique (up to equivalence) Karoubi envelope. We
define PD with objects all pairs (X, e) with X ∈ ObA and e an idempotent in EndA(X).
Morphism superspaces in PD are given by

HomPD((X, e), (Y, f )) = {α ∈ HomA(X, Y ) |α = f ◦ α ◦ e} = f HomA(X, Y )e.
(3.1)

Since PD is karoubian, additive and k-linear with finite dimensional endomorphism alge-
bras, it is Krull-Schmidt. It also inherits naturally from its subcategory A the structure of
a symmetric monoidal supercategory, with − ⊗ − a bi-additive functor. For i, j ∈ N =
ObA ⊂ ObA and idempotents e ∈ Ai and f ∈ Aj , we have for instance

(j, f ) ⊗ (i, e) = (j + i, f ⊗ e), (3.2)

with f ⊗ e interpreted as an element in Aj+i as in Eq. 2.3.

Remark 3.1.3 Consider the category S := ⊕
i∈N kSi-mod. Since char(k) = 0, ∫ is a

pseudo-abelian envelope of the k-linear subcategory C of A with objects N, HomC(i, j) = 0
if i �= j and EndC(i) = kSi . It is in this spirit that our categorical representation on PD is
an analogue of the one for sl∞ on S in [15, 17].
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3.2 Indecomposable Objects and Blocks

For any λ ∈ Par, we set
R(λ) := (|λ|, eλ) ∈ PD,

with eλ the primitive idempotent in A|λ| of Section 2.3.5. In particular, R(∅) = 1
and R(�) = (1, I).

Theorem 3.2.1 The assignment λ �→ R(λ) gives a bijection between Par and the set of
isomorphism classes of non-zero indecomposable objects in PD.

Proof Let X be an arbitrary non-zero indecomposable object in PD. Clearly X is iso-
morphic to (r, e) for some r ∈ N = ObA ⊂ ObA and e a primitive idempotent
in Ar = EndA(r). If r = 0, then X = R(∅), so we can assume r > 0. Let μ be the partition
of r − 2i ∈ J0(r) such that Are ∼= Pr(μ). We will show in two steps that R(μ) ∼= X.

By [7, Section 4.2], there exist a ∈ HomA(r − 2i, r) and b ∈ HomA(r, r − 2i)

such that ba = e∗
r−2i . Consequently, eμ := aeμb is an idempotent in Ar . We define,

using Eq. 3.1,

x := eμb = eμbeμ ∈ eμHomA(r, r − 2i)eμ = HomPD((r, eμ), R(μ)) and

y := aeμ = eμaeμ ∈ eμHomA(r − 2i, r)eμ = HomPD(R(μ), (r, eμ)).

Since xy = eμ and yx = eμ, the identity morphisms of R(μ) and (r, eμ), we have R(μ) ∼=
(r, eμ).

By Eq. 2.5 and the properties of a and b, we have isomorphisms of left Ar -modules:

Are ∼= e∗
r Creμ

∼= Areμ

This means that there exist α ∈ eAreμ and β ∈ eμAre, corresponding to the mutual
inverses in

eHomA(r, r)eμ =HomPD((r, eμ), (r, e)) and eμHomA(r, r)e =HomPD((r, e), (r, eμ)).

Hence (r, e) ∼= (r, eμ) ∼= R(μ), so we find that any indecomposable object in PD is
isomorphic to some R(λ).

Now assume that for λ �= μ we have R(μ) ∼= R(λ). The corresponding isomorphism
which must exist in eμHomA(t, s)eλ with t = |λ| and s = |μ| implies that t − s is even
and that Creλ

∼= Creμ in Cr -mod, for r such that s, t ∈ J(r). This is contradicted by
[7, Section 3].

Remark 3.2.2 The proof of Theorem 3.2.1 implies that for an arbitrary primitive idempotent
e ∈ Ar , we have R(λ) ∼= (r, e) if and only if Are ∼= Pr(λ).

Corollary 3.2.3 When neglecting the monoidal structure, we have an equivalence of
categories

PD ∼=
⊕
k∈N

PD[k],

with PD[k] the full additive, indecomposable, subcategory of PD containing all R(λ)

where the 2-core of λ is ∂k .

Proof Since A decomposes into the coproduct of two subcategories, corresponding to the
even and odd integers, we know that PD decomposes similarly. Now take two partitions
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λ, μ with |λ| − |μ| even. By Remark 3.2.2, there exists r ∈ N and idempotents e, f ∈ Ar

for which

HomPD(R(λ), R(μ)) ∼= HomPD((r, e), (r, f )) ∼= f Are ∼= HomAr (Pr(λ), Pr(μ)).

The block decomposition of PD is thus inherited from the one of Ar in [7, Theorem 1].

3.3 The Split Grothendieck Group

We let [PD]⊕ denote the split Grothendieck group of the small additive category PD, see
[18, Section 1.2]. Concretely, [PD]⊕ is the free abelian group with elements the isomor-
phism classes [X] of objects X in PD, modulo the relations [X] = [Y ] + [Z], whenever
X = Y ⊕ Z. As an immediate consequence of Theorem 3.2.1, we thus find the following.

Corollary 3.3.1 The map � : ParZ → [PD]⊕ determined by λ �→ [R(λ)] is a Z-module
isomorphism.

In the terminology of [18, Section 1.3], (PD, �) is a Z-categorification of ParZ.

4 Tensor Product with the Generator

In this section, we study the functor T, the endo-superfunctor of PD given by

T(−) := − ⊗ R(�).

For idempotents e ∈ Ar , f ∈ As and a ∈ f HomA(r, s)e = HomPD((r, e), (s, f )), we
thus have

T(r, e) = (r + 1, e ⊗ I) and T(a) = a ⊗ I, (4.1)

by definition and Eq. 3.2.

4.1 The Combinatorics of T

We use the Krull-Schmidt category PD to define a matrix a.

Definition 4.1.1 For all ν, μ ∈ Par, we define aν,μ ∈ N, by

T(R(ν)) = R(ν) ⊗ R(�) ∼=
⊕

κ

R(κ)⊕aνκ .

Recall the matrices b and c introduced in Section 2.3.

Theorem 4.1.2 We have a = c b c−1. Concretely, for all ν, κ ∈ Par, we have

aνκ =
∑
λ⊆ν

∑
μ⊇κ

cνλ bλμc−1
μκ . (4.2)

Proof Take r = |ν|. Equation 4.1 and Remark 3.2.2 imply that aνκ is the number of times
the projective Ar+1-module Pr+1(κ) appears as a direct summand of

Ar+1(eν ⊗ I ) ∼= IndrPr(ν).
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Consequently

aνκ = dim HomAr+1(IndrPr (ν), Lr+1(κ)) = [Resr+1Lr+1(κ) : Lr(ν)]. (4.3)

In particular, we thus find∑
κ

aνκcκλ =
∑
κ

[Wr+1(λ) :Lr+1(κ)][Resr+1Lr+1(κ) : Lr(ν)]=[Resr+1Wr+1(λ) :Lr(ν)].

On the other hand, by Eq. 2.6, we have∑
μ

cνμbμλ =
∑
μ

[Resr+1Wr+1(λ) : Wr(μ)][Wr(μ) : Lr(ν)] = [Resr+1Wr+1(λ) : Lr(ν)].

This shows that a = c b c−1.

Remark 4.1.3 Eq. 4.3 shows the explicit connection between T on PD and Res between the
Brauer algebras. This explains the similarities between translation functors for the periplec-
tic Lie superalgebra [1, Corollary 4.4.6] and the restriction functors [9, Proposition 2.3.1].

4.2 The Natural Transformation ξ : T ⇒ T

For an object X = (r, e) in PD, we define

ξX ∈ EndPD(X ⊗ R(�)) = (e ⊗ I)Ar+1(e ⊗ I), as

ξX = (e ⊗ I)xr+1(e ⊗ I) = (e ⊗ I)xr+1 = xr+1(e ⊗ I),

with xr+1 ∈ Ar+1 the Jucys-Murphy element. The different identities for ξX are equal
since xr+1 commutes with elements of Ar . We can easily extend this to arbitrary objects X

in PD.

Proposition 4.2.1 The family of morphisms {ξX |X ∈ ObPD} yields an even natural
transformation of the superfunctor T on PD.

Proof Consider objects X = (r, e), Y = (s, f ) and a morphism

a ∈ HomPD(X, Y ) = f HomA(r, s)e.

We claim that T(a)◦ξX = ξY ◦T(a). Indeed, by Eq. 4.1 the left-hand, resp. right-hand side,
becomes

(a ⊗ I)(e ⊗ I)xr+1 = (a ⊗ I)xr+1, resp. xs+1(f ⊗ I)(a ⊗ I) = xs+1(a ⊗ I).

The claim then follows from the subsequent Lemma 4.2.2.

Lemma 4.2.2 For arbitrary a ∈ HomA(s, r), we have (a ⊗ I)xr+1 = xs+1(a ⊗ I).

Proof The case r = s is precisely the fact that xr+1 commutes with Ar , see Section 2.3.7.
This means that it suffices to prove that, for r ≥ 2,

(∪ ⊗ I⊗r − 1)xr − 1 = xr+1(∪ ⊗ I⊗r − 1) and (∩ ⊗ I⊗r − 1)xr+1 = xr − 1(∩ ⊗ I⊗r − 1).

These easy calculations are left to the reader.
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4.3 The Functors Tq

We introduce some elements of Ar . On any Ar -module, xr ∈ Ar only attains integer
eigenvalues, see [7, Section 6.2]. If r > 0, we can thus construct mutually orthogonal
idempotents γ

(r)
i ∈ Ar , for i ∈ Z, which are in the subalgebra generated by xr , such that

1Ar = e∗
r =

∑
i∈Z

γ
(r)
i , and (xr − i)pγ

(r)
i = 0, for some p ∈ N. (4.4)

Since we keep track of r in the notation, we can with slight abuse of notation also write γ
(r)
j

for γ
(r)
j ⊗ e∗

s−r ∈ As . By construction, γ
(r)
i commutes with any element of Ar − 1 ⊂ Ar .

We also set γ
(0)
i = δi0 ∈ k = A1.

Example 4.3.1 We have x2
2 = 1 and consequently γ

(2)
1 = 1

2 (1 + x2), γ
(2)
−1 = 1

2 (1 − x2)

and γ
(2)
i = 0 if i �∈ {1,−1}.

For an idempotent e ∈ Ar , we set

e[j ] = γ
(r+1)
j (e ⊗ I) = (e ⊗ I)γ (r+1)

j .

Definition 4.3.2 For any j ∈ Z, the additive functor Tj on PD is defined as

Tj (r, e) = (r + 1, e[j ]), for all r ∈ N and e an idempotent in Ar , and

Tj (a) = f [j ](a ⊗ I)e[j ] = γ
(s+1)
j (a ⊗ I)γ (r+1)

j , for all a ∈ HomPD((r, e), (s, f )).

By construction, we have T = ⊕
j∈Z Tj . Following Definition 4.1.1, for each q ∈ Z, we

define a matrix aq by

Tq(R(ν)) =
⊕

κ

R(κ)⊕a
q
νκ .

Proposition 4.3.3 For each q ∈ Z, we have aq = c bq c−1.

Proof This is an analogue of the proof of Theorem 4.1.2. Consider ν ∈ Par with r = |ν|.
We have

aνκ = dimk(eν ⊗ I)Lr+1(κ) = dimk eν Resr+1Lr+1(κ).

Correspondingly, we find
aq
νκ = dimk eν[q]Lr+1(κ).

Since eν[q](xr+1 − q)k = 0 for some k ∈ N, we find

aq
νκ = dimk eνLr+1(κ)q = dimk HomAr (Areν, Lr+1(κ)q) = [Lr+1(κ)q : Lr(ν)].

(4.5)
This and Eq. 2.7 imply that

(aq c)νλ = [Wr+1(λ)q : Lr(ν)] = (c bq)νλ,

which concludes the proof.

Lemma 4.3.4 Let ν be a partition with κ = ν � q.

(i) If κ has a removable q − 1-box, then a
q − 1
νκ = 1.

(ii) If κ has a removable q + 1-box, then a
q+1
νκ = 1.
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Proof Part (i) is [9, Lemma 2.2.3], by Eq. 4.5.
For part (ii), we claim that ν does not admit an addable q+1-box. Indeed, in order for κ to

have a removable q +1-box, there must be a q +1-box above the q-box in ν, such that there
is no q + 2-box to the right of the q + 1-box. Part (ii) then follows from [9, Lemma 2.2.1],
by Eq. 4.5.

An alternative way to prove Lemma 4.3.4 is to use the results in Section 5.

Lemma 4.3.5 If λ̃ = λ � q, then a
q

λλ̃
= 1.

Proof By Proposition 4.3.3, we have

a
q

λλ̃
=

∑
μ⊆λ

∑
ν⊇λ̃

cλμbq
μνc−1

νλ̃
.

The summation thus goes over μ, ν ∈ Par with μ ⊆ λ � λ̃ ⊆ ν. On the other hand b
q
μν = 0

unless μ and ν differ by precisely one box. Hence we have

a
q

λλ̃
= cλλb

q

λλ̃
c−1
λ̃λ̃

= 1,

which concludes the proof.

Corollary 4.3.6 If λ̃ = λ � q, then (c bq)λν ≥ cλ̃ν for all ν ∈ Par.

Proof By Lemma 4.3.5, we have a
q
λη ≥ δηλ̃, for all η ∈ Par, where positivity of the entries

of aq follows by Definition 4.3.2. Since the entries of c are also positive, we thus find

(cbq)λν = (aqc)λν ≥ cλ̃ν ,

where the first equation is Proposition 4.3.3.

5 The Fock Space Representation of the Infinite Temperley-Lieb
Algebra

Consider the Z-algebra with generators {Ti | i ∈ Z} and relations (with |i − j | > 1)

T 2
i = 0, TiTj = TjTi and TiTi±1Ti = Ti .

This is the infinite Temperley-Lieb algebra over Z for parameter zero, TL∞(0). In this
section, we will consider two representations of TL∞(0) on ParZ, related by an automor-
phism of ParZ. Due to its close connection with the Fock space representation of sl∞, we
will refer to one as the Fock space representation of TL∞(0). The twisted version is the one
that will describe the combinatorics of the periplectic Deligne category and will be referred
to as �.

5.1 The Representation�

By Propositions 5.2.3, 5.3.2 and 5.5.1, we have the following theorem.

Theorem 5.1.1 There exists a unique representation

� : TL∞(0) → EndZ(ParZ)
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which satisfies for all q ∈ Z:

• �(Tq)(∅) = δq0�;
• �(Tq)(λ) = λ � q for any λ ∈ Par which admits an addable q-box.

Moreover, the representation � is faithful.

The following theorem is an immediate consequence of the realisation of � in Proposi-
tion 5.3.2.

Theorem 5.1.2 The Z-module isomorphism � : ParZ → [PD]⊕ in Corollary 3.3.1 satis-
fies [Tj ] ◦ � = � ◦ �(Tj ). Hence, the functors Tj satisfy the properties (with |i − j | >

1)

[Ti]2 = 0, [Ti][Tj ] = [Tj ][Ti] and [Ti][Ti±1][Ti] = [Ti].

This means that (PD, �, {Ti | i ∈ Z}) is a Z-categorification of the TL∞(0)-
representation �, in the naı̈ve sense in the terminology of [18, Section 2.2]. We will improve
this statement in Section 7.

In the following, we will usually write Tq(λ) instead of �(Tq)(λ).

5.2 Uniqueness of the Representation

The combinatorial arguments in this subsection are inspired by the results and proofs in [1,
Section 7.2].

5.2.1

For arbitrary λ ∈ Par and q ∈ Z, there are 5 mutually exclusive possibilities:

(a) λ admits an addable q-box;
(b) λ has a removable q-box;
(c) λ has a no boxes with content in {q − 1, q, q + 1} (and λ �= ∅ when q = 0);
(d) there is a box right of the (existing) rim q-box of λ, but not below;
(e) there is a box below the (existing) rim q-box of λ, but not to its right.

We draw the q − 1, q and q + 1 boxes on the rim of λ in the ‘generic’ cases (meaning
assuming that all three contents appear in λ) corresponding to (a), (b), (d) and (e):

(a) : q , (b) :
q

, (d) : q , (e) : q .

If it is clear from context which q is referred to, we will simply say that λ is of type (a), (b),
etc.

5.2.2

We also introduce some terminology for (rim) hooks. A hook is called balanced if its height
(the number of rows it has boxes in) is the same as its width (the number of columns it has
boxes in). A rim hook of λ such that the minimal, resp. maximal, content of its boxes is q is
called a rim hook starting at q, resp. a rim hook ending at q.
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In case (d) there will always be a rim hook starting at q and one starting at q + 1, in
case (e) there will always be a rim hooks ending at q and q − 1.

Proposition 5.2.3 Assume that a representation of TL∞(0) on ParZ satisfies, for any q ∈ Z

and λ ∈ Par:

(I) Tq(∅) = δq0�;
(II) Tq(λ) = λ � q if λ is of type (a).

Then we have the following:

(III) If λ is of type (b) or (c), Tq(λ) = 0;
(IV) If λ is of type (d), Tq(λ) is the partition obtained by removing the minimal balanced

rim hook starting at q + 1, if that exists, otherwise Tq(λ) = 0;
(V) If λ is of type (e), Tq(λ) is the partition obtained by removing the minimal balanced

rim hook ending at q − 1, if that exists, otherwise Tq(λ) = 0.

In particular, there is at most one representation of TL∞(0) on ParZ satisfying (I) and (II).

We prove this in four lemmata and denote by � an arbitrary representation of TL∞(0)

on ParZ.

Lemma 5.2.4 Assume that � satisfies (I) and (II), then it satisfies (III).

Proof Assume first that λ has a removable q-box (type (b)). Then (II) implies that λ =
Tq(μ) for μ = λ � q. Hence we find Tq(λ) = T 2

q (μ) = 0.
Now assume that λ is of type (c). Then λ = Tp1Tp2 · · · Tpk

(∅), with k = |λ| and each
pi �∈ {q − 1, q, q + 1} by (II). The Temperley-Lieb relations thus imply that

Tq(λ) = Tp1Tp2 · · · Tpk
Tq(∅).

As we can clearly assume that q �= 0, this must be zero by (I), which concludes the proof.

If λ is of type (d) for q, we let t ∈ N denote the maximal number such that there is a box
in λ with content q + t + 1 on the row of the rim q-box. We then specify that λ is of type
(d,[r, t]), with r = |λ|.

Lemma 5.2.5 Assume that � satisfies (II), then it satisfies condition (IV) for all λ of types
(d,[r, 0]) and (d,[0, t]).

Proof If λ is of type (d,[r, 0]), then λ has a removable q + 1-box, so by (II) we have λ =
Tq+1(μ), with μ = λ � (q + 1). Furthermore, μ has a removable q-box, so

λ = Tq+1Tq(ν)

with ν obtained from λ by removing the q and q + 1 boxes on its rim. We thus find

Tq(λ) = TqTq+1Tq(ν) = Tq(ν) = μ.

In conclusion, Tq(λ) = λ � (q + 1). Clearly, that removed rim q + 1-box is the minimal
balanced rim hook starting at q + 1.

The case (d,[0, t]) is empty, since λ = ∅ is never of type (d).
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Lemma 5.2.6 Assume that � satisfies (II), (III) in general and (IV) for all partitions of type
(d,[r ′,−]) with r ′ < r , then it satisfies condition (IV) for λ of type (d,[r, 1]).

Proof By assumption on λ and (II) we have λ = Tq+2(μ), with μ = λ � (q + 2). Hence
we have

Tq(λ) = TqTq+2(μ) = Tq+2Tq(μ).

Furthermore μ is of type (d,[r − 1, 0]), so (IV) holds true which means Tq(μ) = ν, with ν =
μ � (q + 1). Hence, we have

Tq(λ) = Tq+2(ν).

We review the two possibilities for ν.
If the rim q-box of λ was on the highest row, then ν contains no box with content in {q +

1, q + 2, q + 3}, so Tq(λ) = Tq+2(ν) = 0 by (III). In this case, λ has no balanced rim hook
starting at q + 1, so (IV) is indeed satisfied for λ.

If there is a row above the rim q-box, then ν is clearly again of type (d), now for q + 2.
Furthermore, |ν| < |λ| = r so ν satisfies (IV). Moreover, we have a clear one-to-one
correspondence between the rim hooks of ν starting at q + 3 and the rim hooks of λ starting
at q+1, by adding the rim q+1 and q+2-boxes in λ to the former hook. This correspondence
preserves the notion of balancedness. Hence we find that λ satisfies (IV).

Lemma 5.2.7 Assume that � satisfies (II) in general and (IV) for all partitions of type
(d,[r ′,−]) with r ′ < r , then it satisfies condition (IV) for λ of type (d,[r, t]) with t > 1.

Proof We have λ = Tq+t+1(μ), with μ = λ � (q + t + 1). We thus have

Tq(λ) = TqTq+t+1(μ) = Tq+t+1Tq(μ),

where now μ is of type (d,[r − 1, t − 1]) for q, and thus satisfies (IV). Hence, by assump-
tion, Tq(μ) is obtained from μ by removing the minimal balanced rim hook starting at q+1,
if it exists and zero otherwise. There is an obvious one-to-one correspondence between the
rim hooks starting at q + 1 for λ and μ, corresponding to ‘moving’ the q + t + 1-box of the
hook. This correspondence thus preserves the notion of balancedness.

If λ does not have a balanced rim hook starting at q, we thus find Tq(λ) =
Tq+t+1Tq(μ) = 0 since μ satisfies (IV). If λ does have a balanced rim hook starting at q,
then Tq(μ) is obtained from μ by removing its minimal rim balanced rim hook starting at q.
By construction Tq(μ) then allows an addable q + t + 1-box and Tq(λ) = Tq+t+1Tq(μ) is
obtained by adding this box by (II). Hence also in this case, λ satisfies indeed (IV).

Proof of Proposition 5.2.3 By Lemma 5.2.4, (III) is satisfied. By Lemma 5.2.5, (IV) is sat-
isfied for all partitions of types (d,[r, 0]) and (d,[0, t]). Lemmata 5.2.6 and 5.2.7 then allow
to prove (IV) in general by induction on r .

The proof of (V) is completely symmetrical to that of (IV).

5.3 Existence of the Representation

First we construct the Fock space representation.

Lemma 5.3.1 We have a representation �′ of TL∞(0) on ParZ, determined by

Tq(λ) =
∑
μ

b
q
λμ μ, for all λ ∈ Par.
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Proof This is an easy combinatorial exercise, see also the proof of [9, Proposition 2.3.1].

We can identify the matrix c with an automorphism of ParZ, defined by

λ �→
∑
μ

cλμμ. (5.1)

Note that the above summation is finite, by Section 2.3.4. We twist the representation in
Lemma 5.3.1 by this automorphism and use Proposition 4.3.3.

Proposition 5.3.2 The representation of TL∞(0) on ParZ defined by

Tq(ν) =
∑
λ,μ,κ

cνλb
q
λμc−1

μκ κ =
∑
κ

aq
νκκ,

satisfies Tq(∅) = δq0� and Tq(λ) = λ � q if λ has an addable q-box.

Proof Using the elementary properties of c in Section 2.3.4 and the definition of bq , we find

Tq(∅) =
∑
μ,κ

b
q
∅μc−1

μκ κ = δq,0

∑
κ

c−1
�κ

κ = δq,0�.

To prove the second relation, we need to show that, for all partitions λ̃ = λ � q, we have∑
μ

cλμbq
μν = cλ̃ν , for all ν ∈ Par. (5.2)

By Corollary 4.3.6, we have (cbq)λν ≥ cλ̃ν , so we focus on the inequality in the other
direction.

We first reformulate (5.2) combinatorially. We will assume the reader is familiar with
the set �0 of connected hooks and the set � of skew Young diagrams introduced in [9,
Section 3.3], which describe the matrix c. Let S1(λ) denote the multiset of partitions ν

obtained by the following procedure, first take a partition μ ⊆ λ such that λ/μ ∈ �, then
either add a q-box to μ or remove a (q − 1)-box from μ to obtain the partition ν. This
multiset is linked to the left-hand side of Eq. 5.2. Concretely, each ν ∈ Par appears (cbq)λν

times in S1(λ). Let S2(λ) denote the set of partitions ν ⊆ λ̃ such that λ̃/ν ∈ �. This
describes the right-hand side of Eq. 5.2. First we will show that each element in S1(λ) is
also an element in S2(λ) and then secondly that S1(λ) is actually a set. In conclusion, we
have S1(λ) ⊆ S2(λ) and hence (cbq)λν ≤ cλ̃ν , which thus implies the proposition.

We start with the following observation, which follows from immediate application of
the properties of �. Let μ be a partition such that λ/μ = γ ∈ �, with decomposition γ =
γ1 � . . .�γr , such that each γi is a disjoint union of connected rim hooks belonging to �0 in
the partition λ\(γ1 � . . . � γi−1). Under the assumption that λ has an addable q-box, there
is a k, 1 ≤ k ≤ r , such that γ1, . . . , γk−1 all contain a q, (q − 1) and (q + 1)-box, while γk

does not contain a q-box, and γk+1, . . . , γr contain no boxes with any of the three contents.
Each γ1, . . . , γk−1 will thus contain a shape of the form

a b
c

,

with a being a q-box. By swapping a for the q-box below b and to the right of c we thus
obtain γ ′

1, . . . , γ
′
k−1 ∈ �0, such that the skew Young diagram γ ′

1 � . . . � γ ′
k−1 ∈ � is

removable from λ̃.
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From now on, to avoid additional notation, we denote by a, b and c the boxes, in the
same configuration as above with a being a q-box, that are on the rim of the partition λ \
(γ1 � . . . � γk−1). Furthermore denote by d the q-box directly below b and to the right of c.
By construction we know that γk does not contain a, but may contain any of the other two
boxes, and that d is directly adjacent to γ ′

k−1 (it was the box in γk−1 that was swapped for
another box to obtain γ ′

k−1). We treat the three possible cases one by one.
Case 1: γk contains neither b nor c. In this case, we can always add a q-box to μ (the

box d) and sometimes it is possible to remove a q − 1-box from μ (the box c).

(i) If ν ∈ S1(λ) is obtained by adding the box d to μ, we set γ ′
j = γj for j ≥ k and

obtain ν = λ̃ \ (γ ′
1 � . . . � γ ′

r ), so ν ∈ S2(λ).
(ii) If ν ∈ S1(λ) is obtained by removing the (q − 1)-box c from μ, we define γ ′

k as the
union of γk and the boxes c and d. By construction γ ′

k is either an element of �0 or the
disjoint union of two elements of �0. Furthermore, we set γ ′

j = γj for j > k and we

have ν = λ̃ \ (γ ′
1 � . . . � γ ′

r ) ∈ S2(λ).

Case 2: γk contains c but not b. In this case it is obvious that one cannot add the q-box
d to μ and one can also not remove the (q − 1)-box directly to the left of a from μ. Thus
this case will not produce any elements in S1(λ).

Case 3: γk contains b but not c. As in Case 2, it is not possible to add the q-box d, but
it can be possible to remove the (q − 1)-box c. In case that this is possible we add the two
boxes c and d to γk as in Case 1 above to obtain γ ′

k and set γ ′
j = γj for j > k. Thus

ν = λ̃ \ (γ ′
1 � . . . � γ ′

r ).
In this way we have realised every element of S1(λ) as an element of S2(λ).
Now we prove that S1(λ) is in fact a set, by showing that each element of S2(λ) can only

be created in at most one of the above ways from the construction in the definition of S1(λ).
For this, note that in the different cases we obtain the following:

• Case 1(i): for p ∈ {q − 1, q, q + 1}, the skew diagram λ̃/ν contains k − 1 p-boxes.
• Case 1(ii): for p ∈ {q − 1, q}, the skew diagram λ̃/ν contains k p-boxes and k − 1

q + 1-boxes.
• Case 3: for p ∈ {q − 1, q, q + 1}, the skew diagram λ̃/ν contains k p-boxes.

Clearly there is no overlap between 1(ii) and the other cases. To distinguish elements
obtained from Case 1(i) and 3, we look at the unique hook α in �0, in the covering (see
[9, 3.3]) of λ̃/ν ∈ �, which contains the q−1-box with minimal anticontent. In case 1(i), we
have α ⊂ γ ′

k−1 and the fact that the connected hooks in γk−1 must satisfy the D-condition
in [9, Definition 3.3.4] shows that γk−1 and also α contains a q − 2-box. In Case 3, we have
α ⊂ γ ′

k = γk �{c, d}. Since the box c was not contained in λ/μ ⊃ γk , neither was the q −2-
box left of c. Hence α does not contain that q − 2-box. The q − 2-box below c belongs to
γ ′
k−1, so also not to α. In conclusion, α is different for cases 1(i) and (3). A fixed element

of S2(λ) can thus only be identified in at most one way with an element of S1(λ).

5.4 A Filtration of�

Recall the set Par≥k and Park from Eq. 2.1

Proposition 5.4.1 The representation � of TL∞(0) on ParZ restricts to subrepresentations
�≥k on Par≥k

Z
for each k ∈ N.
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We denote the composition factors of the above filtration by

�k : TL∞(0) → EndZ(Park
Z
). (5.3)

The proposition follows immediately from the following lemma.

Lemma 5.4.2 If λ ∈ Par≥k , for some k ∈ N, and a
q
λκ �= 0 for some q ∈ Z, then κ ∈ Par≥k .

Proof By Propositions 5.3.2 and 5.2.3, κ is obtained from λ either by adding a q-box (in
which case ∂k ⊆ λ ⊂ κ) or by removing a rim hook as described in 5.2.3(IV) or (V). We
restrict to the case (IV) for simplicity. The rim hooks which are removed are balanced and
minimal with that property. This means that the minimal anticontent of a box in the hook is
attained by the q + 1-box, since otherwise one could construct a smaller balanced rim hook
which ends at the box before the first one with strictly smaller anticontent.

Assume first that the rim q-box of λ is inside ∂k . It is then necessarily a removable box
in ∂k (in other words a box with maximal anticontent in ∂k). As the rim q + 1-box has
anticontent one higher than the q-box, the above observation on the anticontent shows that
no boxes in the rim hook are contained in ∂k . If the rim q-box already is not contained in ∂k

then the q-box consequently has higher content than the ones in ∂k and the same reasoning
thus allows to conclude that no boxes in the rim hook are contained in ∂k .

5.5 Faithfulness of�

Proposition 5.5.1 The representations � and �′ are faithful.

Before we get to the proof we need some preparatory results.

5.5.2

For every sequence of integers i = (i1, . . . , ir ), we define the element Ti = Ti1 · · · Tir

in TL∞(0). We also denote by �(i) = r the length of i. We multiply sequences of integers by
concatenation and, for a ≤ b, we write [a, b] for the sequence (a, a + 1, . . . , b). Sequences

w = [a1, b1] · [a2, b2] · . . . · [ar , br ], (5.4)

for some r ≥ 0 such that a1 > a2 > . . . > ar and b1 > b2 > · · · > br , will be called fully
commutative sequences. We denote the set of such sequences by fcs. The segments [aj , bj ]
will be called the intervals of w.

5.5.3

The algebra TL∞(0) admits a basis of the form {Tw | w ∈ fcs}. By [13, Proposition 1],
a basis of TL∞(0) is given by products of generators corresponding to fully commutative
elements in S∞, see [13, Section 1] for a definition of fully commutative elements. Further-
more, by [24, Corollary 5.8], fully commutative elements have a normal form given by the
elements in fcs. Such an expression for a fully commutative element in S∞ is unique, see
[24, Section 1.3].

5.5.4

Consider the Fock space representation �′ of TL∞(0). For w ∈ fcs and λ ∈ Par, we denote
by 〈Tw(λ)〉m, the part of the summation in �′(Tw)(λ) of partitions of size |λ| − �(w).
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Lemma 5.5.5 Consider arbitrary w, v in fcs.

(i) For an arbitrary λ ∈ Par, we have either 〈Tw(λ)〉m = 0 or 〈Tw(λ)〉m is a partition.
(ii) There exists λ ∈ Par, such that 〈Tw(λ)〉m �= 0.
(iii) If �(w) = �(v) and 〈T(w)(λ)〉m = 〈Tv(λ)〉m �= 0 for some λ ∈ Par, then w = v.

Proof We will assume w is of the form Eq. 5.4 for the entire proof. Consider first the
interval [ar , br ]. Then T[ar ,br ] can remove br − ar + 1 boxes in λ ∈ Par if and only if there
is an i ∈ Z≥1 such that

λi − i = br − 1 and λi − λi+1 ≥ br − ar + 1.

In this case, the unique partition λ of size |λ| − (br − ar + 1) in the summation T[ar ,br ](λ)

is obtained from λ by removing br − ar + 1 boxes in row i. We can use the above argument
on T[ar−1,br−1](λ). Moreover, since br−1 > br , it follows that the row from which boxes are
removed in this step is strictly above the previous one.

It follows that the unique partition of |λ| − �(w) which can appear in Twλ is obtained by
removing bj − aj + 1 boxes in the unique row k for which λk = bj + j − 1. This already
proves part (i). Furthermore, since the number of boxes which are removed in each row
reflects the lengths of the intervals of w and the rows in which they are removed determines
the values bj , we obtain part (iii).

Now we prove part (ii). Take p ∈ N such that p ≥ 2 − ar − r . We define λ ∈ Par of
length p + r , by setting{

λl = p + 1 + b1 − 1, for 1 ≤ l ≤ p,

λp+i = p + i + bi − 1, for 1 ≤ i ≤ r .

That this is a partition follows from w ∈ fcs and the definition of p. Clearly, by acting
with T[ar ,br ] we can remove br − ar + 1 boxes in row p + r . As such we obtain a partition λ

with

λp+r−1 = λp+r−1 = p + r + br−1 − 2 and λp+r = p + r + ar − 2.

In particular
λp+r−1 − λp+r = br−1 − ar ≥ br−1 − ar−1 + 1.

Hence, 〈T[ar−1,br−1](λ)〉m will again be non-zero and we can proceed iteratively.

Proof of Proposition 5.5.1 Since the representation � in Proposition 5.3.2 is obtained from
�′ in Lemma 5.3.1 by applying an automorphism we will only prove faithfulness of the
latter.

Fix an arbitrary element x in TL∞(0), written as
∑m

k=1 rkTwk , with rk ∈ R and the wk ∈
fcs distinct. Assume that w := w1 has maximal �(w). By Lemma 5.5.5(ii), there exists
λ ∈ Par such that the summation Twλ contains a partition of size |λ| − �(w), say ν, with
coefficient 1. If �(wj ) < �(w), then clearly Twj λ will not contain ν, since all appearing

partitions will be of strictly bigger size. Furthermore, if �(wj ) = �(w), Lemma 5.5.5(i)
and (iii) imply that Twj λ does not contain ν either. This proves that x(λ) �= 0.

5.6 The Temperley-Lieb Algebra as an Enveloping Algebra

Consider the Z-Lie algebra sl∞ with standard Chevalley generators {ei, fi | i ∈ Z}. The
Fock space representation � of sl(∞) on ParZ, see e.g. [15, Section 2.3], is clearly such that

�(ei + fi−1) = �′(Ti), for all i ∈ Z.
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Let k denote the Lie subalgebra of sl∞ generated by {ei + fi−1 | i ∈ Z}. By construction,
we have

�(U(k)) = �′(TL∞(0)),

as subalgebras of EndZ(ParZ). By Proposition 5.5.1, we thus have

TL∞(0) ∼= U(k)/K

with K the kernel of �|U(k).

6 Main Theorems

6.1 Thick Tensor Ideals and Cells in the Periplectic Deligne Category

6.1.1 Thick Tensor Ideals

A thick tensor ideal in a Krull-Schmidt monoidal (super)category C is a full subcategory I

which is

• an ideal: X ⊗ Y ∈ I, whenever X ∈ I or Y ∈ I;
• thick: if Z ∈ I satisfies Z ∼= X ⊕ Y , then X, Y ∈ I.

For C and I as above, the monoidal supercategory C/I is defined as the quotient category
of C with respect to all morphisms which factor through objects in I.

Remark 6.1.2 The first condition simplifies for braided monoidal supercategories, such
as PD. The second condition implies in particular that I is strictly full. Sometimes it is
imposed that I must also be an additive subcategory. As all thick tensor ideals in PD, using
the above definition, will be generated by one indecomposable object, they are obviously
additive.

Let Ik denote the thick tensor ideal in PD generated by R(∂k). Concretely, Ik is the
strictly full additive subcategory which contains all direct summands of R(∂k) ⊗ R(ν) for
all ν ∈ Par.

Theorem 6.1.3 The set {Ik | k ∈ N} yields a complete set of thick tensor ideals in PD. The
indecomposable objects in Ik are (up to isomorphism) given by {R(λ) | ∂k ⊆ λ}. We thus
have one chain of ideals

PD = I0 � I1 � · · · � Ik � Ik+1 � · · · .

Proof Proposition 5.3.2 implies that T(R(ν)) = R(ν) ⊗ R(�) = ⊕κR(κ)⊕aνκ contains
any R(κ), with κ obtained by adding a box to ν. Consequently, Ik contains R(λ) for all
partitions λ which contain ∂k . On the other hand, Lemma 5.4.2 implies that R(λ) ∈ Ik
requires ∂k ⊆ λ.

It thus suffices to show that there are no more thick tensor ideals. Let I be such an ideal
and ∂k the largest 2-core which is contained in all λ with R(λ) ∈ I. Let ν be a partition
with R(ν) ∈ I, with ∂k+1 �⊂ ν and which has minimal |ν| under those two restrictions.
Assume first that ν �= ∂k . Then ν must contain a removable rim 2-hook and by Lemma 4.3.4
there exists κ � ν such that R(κ) is a direct summand of T(R(ν)). This violates the
minimality of |ν|, so ν = ∂k . By the above paragraph we then find I = Ik .
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6.1.4 Two-Sided Cells

Following [19, Section 3], we have the notions of left, right and two-sided cells on a
monoidal supercategory. As we work with symmetric categories, these three notions coin-
cide. The quasi-order � on the set of isomorphism classes of indecomposable objects in a
Krull-Schmidt symmetric monoidal (super)category C is determined by

[X] � [Y ], if there exists Z ∈ Ob C such that Y is a direct summand of X ⊗ Z.

There is a corresponding equivalence relation, defined as [X] ∼ [Y ] if we have both [X] �
[Y ] and [Y ] � [X]. We denote the equivalence class of [X] under ∼ by [[X]].

For each c = [[X]], we consider the additive strictly full subcategory Cc generated by
the indecomposable objects Y ∈ Ob C with [X] � [Y ]. This is the thick tensor ideal in C
generated by X. Furthermore, we have the additive strictly full subcategory Cc of Cc cor-
responding to the indecomposable objects Y ∈ Ob C with [Y ] �∼ [X]. The cells of C are
the quotient categories Cc/Cc. We call a cell maximal if it corresponds to indecompos-
able objects which are maximal in the quasi-order. A maximal cell hence corresponds to a
subcategory of C.

Recall the subsets of Par in Eq. 2.1. Clearly, for PD, the quasi-order � is total:

[R(λ)] � [R(μ)] if and only if k ≤ l, with λ ∈ Park and μ ∈ Parl .

Corollary 6.1.5 The set {Ik/Ik+1 | k ∈ N} yields a complete set of cells in PD.

We clearly have [Ik/Ik+1]⊕ ∼= Park
Z

.

6.2 The Ob -Kernel of the Universal Tensor Functor

By [16, Section 5] (see also [23, Section 4.5]), for any n ∈ Z≥1, we have a monoidal
superfunctor

Fn : PD → sFn, (6.1)

where i ∈ N ⊂ ObPD gets mapped to V ⊗i and ∪ ∈ HomA(0, 2) is mapped to

Fn(∪) ∈ HomsFn(k, V ⊗2) =Hompe(n)(V
⊗2, k), given by sFn(∪)(v⊗w) = β(v, w),

with β the defining bilinear form in Section 2.4. In particular, Fn induces the algebra
morphisms

φr
n : Ar → Endpe(n)(V

⊗r )op,

first introduced in [20, Proposition 2.4].

Theorem 6.2.1 The monoidal superfunctor (6.1) is full and its Ob -kernel is given by In+1.

We start with two preparatory lemmata.

Lemma 6.2.2 For λ ∈ Par, we have Fn(R(λ)) = 0 if and only if φr
n(e) = 0 for an

arbitrary r ∈ N with |λ| ∈ J0(r) and e ∈ Ar an idempotent corresponding to Lr(λ).

Proof By Remark 3.2.2, we have R(λ) ∼= (r, e) in PD. Furthermore, by definition of φr
n,

we have Fn((r, e)) = im φr
n(e). This concludes the proof.

Lemma 6.2.3 For any partition λ with λn+1 > n, we have Fn(R(λ)) = 0.
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Proof By Lemma 6.2.2, it suffices to prove that φr
n(eλ) = 0, with r = |λ|.

When we restrict the action φr
n from Ar to the subalgebra kSr (see Section 2.3.3), the

image commutes with the gl(n|n) action on V ⊗r , see [2, Theorem 4.14]. Hence, we have a
commuting diagram:

Ar

φr
n �� Endpe(n)(V

⊗r )op

kSr
����

��

Endgl(n|n)(V
⊗r )op.

��

��

Now, let fλ ∈ kSr be a primitive idempotent corresponding to the (simple) Specht
module for λ. By the choice of the labelling of simple modules over Ar , eλ appears
(up to conjugation) in the decomposition of fλ into primitive idempotents in Ar , see
e.g. [7, Corollary 4.3.3].

The hook condition in [2, Theorem 3.20] and the above commuting diagram together
imply that φr

n(fλ) = 0 if λn+1 > n, so in particular φr
n(eλ) = 0.

Proof of Theorem 6.2.1 By additivity it suffices to show that the restriction A → sFn is
full. By [16, Section 5.3], the surjectivity of

HomA(i, j) → Hompe(n)(V
⊗j , V ⊗i ),

for any i, j ∈ N, is equivalent to surjectivity of

HomA(0, i + j) → Hompe(n)(V
⊗(j+i),k).

The latter is precisely [11, Section 4.9].
As Fn is a monoidal superfunctor, its Ob-kernel Kn is a thick tensor ideal. By

Theorem 6.1.3, we thus have Kn = Ik for some k ∈ N.
By [7, Lemma 8.3.2], for λ � r with λn+1 = 0, we have φr

n(eλ) �= 0. By Lemma 6.2.2,
we find that in particular R(∂n) �∈ Kn, which implies Kn �= Ik when k ≤ n.

By Lemma 6.2.3, we have R(λ) ∈ Kn for λ = (n+1, . . . , n+1), the partition of (n+1)2

of length n+1. As ∂k �⊆ λ for k > n+1, we find Kn �= Ik when k > n+1. This concludes
the proof.

6.3 Tensor Powers of the Natural Representation of pe(n)

The results in the previous subsection allow to classify the indecomposable summands in
the pe(n)-module V ⊗r up to isomorphism. In this subsection we further determine when the
direct summands are projective.

Theorem 6.3.1 The assignment

λ �→ Rn(λ) := Fn(R(λ)),

is a bijection between Par≤n and the set of isomorphism classes of indecomposable sum-
mands in

⊕
r∈N V ⊗r . The module Fn(Rn(λ)) appears as a direct summand in V ⊗r if

|λ| ∈ J0(r) and is projective if and only if λ ∈ Parn.

We denote the full subcategory of projective modules in sFn by pe(n)-proj.
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Theorem 6.3.2 The subcategory pe(n)-proj is the unique maximal cell in sFn. The func-
tor Fn restricts to an essentially surjective functor In → pe(n)-proj with Ob-kernel In+1.
Hence, there exists a superfunctor

In/In+1 → pe(n)-proj,

which is essentially bijective and full.

Remark 6.3.3 It will be proved in [8] that this superfunctor is actually an equivalence.

Note first that since the tensor functor Fn is full, it maps indecomposable objects in PD
to objects in sFn which are indecomposable or zero. We use this fact freely.

Now we prove these two theorems. There is a duality ∗ on sFn, see [1, Section 2].
Furthermore, the right adjoint of −⊗M is −⊗M∗, for a module M , see e.g. [1, Section 4.4].
This implies that M ⊗N is projective as soon as either M or N is projective. Consequently,
pe(n)-proj is a thick tensor ideal.

Lemma 6.3.4 Let Q1, Q2 be arbitrary indecomposable projective modules in sFn. Then
Q1 is a direct summand of Q2 ⊗ V ⊗k for some k ∈ N.

Proof It is well-known that injective and projective modules coincide in sFn, see e.g. [1, 4].
In particular, the duality ∗ maps projective modules to projective modules. We then find that
there exists j, i ∈ N such that Q1 is a direct summand of V ⊗j and Q∗

2 is a direct summand
in V ⊗i , by [7, Lemma 8.3.4]. Then we have a composition of epimorphisms

Q2 ⊗ V ⊗i+j � Q2 ⊗ Q∗
2 ⊗ Q1 � Q1.

Since Q1 is projective, the corresponding epimorphism splits, which concludes the proof.

Corollary 6.3.5 The full subcategory pe(n)-proj is the unique maximal cell in sFn.

Proof Lemma 6.3.4 implies that all indecomposable projective modules are equivalent
under the relation of Section 6.1.4. This implies that the thick tensor ideal is in fact a cell.
Moreover, V ⊗k contains a projective direct summand for some k > 0 ([7, Lemma 8.3.4]).
Consequently, for this k, the module M ⊗ V ⊗k contains a projective direct summand for
any module M , showing that pe(n)-proj is the unique maximal cell.

Proof of Theorem 6.3.1 The classification of indecomposable summands is an immediate
consequence of Theorem 6.2.1 and Lemma 6.2.2.

The projective modules form a thick tensor ideal in sFn. This implies that the cor-
responding pre-image under the tensor superfunctor Fn also forms a thick tensor ideal I
in PD. By Theorem 6.2.1, we have In+1 ⊆ I. Since each projective module appears as
direct summands of V ⊗j for some j ∈ N ([7, Lemma 8.3.4]), we even have In+1 � I. By
Theorem 6.1.3, we thus have I = Ik for some k ≤ n. Because Fn is full (Theorem 6.2.1),
Corollary 6.3.5 implies that Ik/In+1 must be a cell, so k = n.

Proof of Theorem 6.3.2 This follows from Corollary 6.3.5 and Theorems 6.2.1 and 6.3.1.
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6.4 A Bijection Par → P(Z)

6.4.1

For an arbitrary partition λ, we “mark” its Young diagram as follows. We start by putting a
diamond � in the right-most box of the bottom row. Then we move up the rows as follows.
In any given row we put a � in the right-most box if the number of � we have added so far is
strictly smaller than the column (or more precisely the number of the column when counting
from left to right) of the box in question. Note that the column of that box is precisely λi ,
with i the row considered.

Example 6.4.2 The following are Young diagrams marked according to the procedure in
Section 6.4.1.

� , � ,

�
� ,

�
� ,

�
�
� ,

�
�

� .

Lemma 6.4.3 For λ ∈n, we have precisely n diamonds in the marking.

Proof Assume that we have precisely n � in the marking of λ ∈. Take the marked Young
diagram obtained from λ by removing all rows without �. Denote the corresponding par-
tition by μ. By construction, the � in the diagram corresponds to the marking for μ as
in Section 6.4.1. Now we have a partition μ with n rows and a � in each row. This means
that μi ≥ n − i + 1, for all 1 ≤ i ≤ n. Hence, we have ∂n ⊂ μ ⊂ λ.

To conclude the proof it suffices to show that ∂n ⊂ λ implies that we have at least
n � in the marking of λ. We do this by induction on n. For n ∈ {0, 1}, this is trivial.
Now take λ ∈≥n and denote by ν the partition obtained by deleting the first row in λ. By
construction, ν ∈≥n−1. If ν has at least n boxes in its marking, then clearly so does λ. By
the induction hypothesis, the only other option is that ν has precisely n − 1 �. To obtain the
marking in λ we just take the one in ν and need to decide whether a � needs to be added in
the upper row in λ. Since λ1 ≥ n and we have only added n − 1 boxes so far, this is always
the case. Hence the marking in λ always contains at least n �.

Definition 6.4.4 For any λ ∈, we denote by d̃λ ⊂ Z the set with as elements the contents
of the boxes in λ which contain a � according to the marking in Section 6.4.1. Denote by dλ

the set obtained from d̃λ by subtracting 1 from each element.

By Lemma 6.4.3, the definition yields maps d :n→ P(Z; n), for all n ∈ N, with P(Z; n)

as in Section 2. It will follow in Section 6.5.4 that these maps are actually bijections.
Consequently, we find that d is a bijection

d : ∼→ P(Z), λ �→ dλ.

Lemma 6.4.5 Consider q ∈ Z and λ ∈n with addable q-box, with μ := λ� q ∈n. Then we
have Tq(R(λ)) ∼= R(μ), and

(i) if λ has a marked box with content q − 1, then dμ is obtained from dλ by replacing
q − 2 ∈ dλ by q − 1.
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(ii) if λ has a marked box with content q + 1, but no marked box with content q − 1, then
dμ is obtained from dλ by replacing q ∈ dλ by q − 1.

Proof That Tq(R(λ)) ∼= R(μ) is Proposition 5.3.2. Part (i) then follows immediately from
the definition of the marking. For part (ii), we first observe that the assumptions imply that
the box above the q + 1-box with a � does not contain a �. Indeed, existence of such a � in
the marking would imply that the box with content q − 1 on the rim should have a � too.
The claim then follows again from the definition of the marking.

6.5 Link Between the Labelling Sets

Fix n ∈ N. By Theorem 6.3.2, the superfunctor Fn induces a bijection between {R(λ) | λ ∈
Parn} and indecomposable projective modules {P(ω) | ω ∈ X+

n } in sFn, with notation as
explained below. Now we will describe this bijection.

6.5.1

The projective module P(ω) is labelled by the highest weight ω of its simple top. We follow
the conventions of [1, Section 2] regarding root system and notation of weights. The set of
integral dominant weights is given by

X+
n :=

{
ω =

n∑
i=1

ωiεi | ωj ∈ Z and ω1 ≥ ω2 ≥ · · · ≥ ωn

}
.

As in [1, Section 2.2], we introduce the bijection

c : X+
n

∼→ P(Z; n), ω �→ cω = {ω1 + n − 1, ω2 + n − 2, . . . , ωn}.

Definition 6.5.2 The map f is given by

f : n → X+
n , λ �→ c−1(dλ),

with dλ ⊂ Z as in Definition 6.4.4.

Theorem 6.5.3 For all λ ∈n, we have Fn(R(λ)) ∼= P(f(λ)).

6.5.4

Before proceeding to the proof of Theorem 6.5.3, we observe that comparison with Theo-
rem 6.3.2 implies that f is actually a bijection. Consequently, d :n→ P(Z; n) must also be
a bijection.

6.5.5

If λ ∈ Parn, there is at least one 0 ≤ k0 ≤ n such that λk0+1 = n − k0. Note that,
since λ ∈ Par≥n, we have λi ≥ n + 1 − i, for all 1 ≤ i ≤ n. For λ ∈ Parn, with such k0, we
define ν ∈ Par by

νt = (λk0+1, λk0+2, . . .).

As a special case of Theorem 6.5.3, we have the following closed formula for
generic Fn(R(λ)).
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Corollary 6.5.6 Take λ ∈ Parn, with k0 and ν as in Section 6.5.5. Assume that νi �= νj ,
whenever i �= j . Then we have

Fn(R(λ)) ∼= P

⎛
⎝ k0∑

i=1

(λi − n − 1)εi +
n∑

i=k0+1

(−νn−i+1 − k0)εi

⎞
⎠ .

Now we proceed to the proof of Theorem 6.5.3. Consider the exact functor � = − ⊗ V

on sFn, with V the natural pe(n)-module, as introduced in [1, Section 4.1]. This func-
tor has a natural transformation �, see [1, Lemma 4.1.4], according to which we have a
decomposition � = ⊕

j∈Z �j , see [1, Proposition 4.1.9].

Lemma 6.5.7 We have a natural isomorphism Fn ◦ Tj
∼⇒ �j ◦ Fn, for all j ∈ Z.

Proof Since Fn(R(�)) ∼= V , we clearly have Fn ◦ T ∼= � ◦ Fn. Consider (r, e) ∈ PD.
By [7, 8.4.3], the morphism ξ(r,e) = exr+1e of (r, e) is mapped to �Fn(r,e). The result then
follows easily.

We will use the above connection between the functors Tj and �j freely.

Lemma 6.5.8 We have

Fn(R(∂n)) ∼= P(−ε1 − 2ε2 − · · · − nεn).

Proof Assume P(ω) ∼= Fn(R(∂n)), for ω = ∑n
i=1 ωiεi . We have

Tn(R(∂n)) �= 0, and Tk(R(∂n)) = 0 for all k > n.

By [1, Section 7.2], this means that max cω = n − 2, so ω1 = −1. Similarly,

T−n(R(∂n)) �= 0, and T−k(R(∂n)) = 0 for all k > n,

implies that ωn = min cω = −n.
Now assume that we would have ωi = ωi+1 for 1 ≤ i < n. This means we would have

two integers in cω which differ by one. Since max cω − min cω = 2n − 2, this would imply
that there exists a ∈ Z such that {a, a + 1} ⊂ cω, but a + 2 �∈ cω. By [1, Lemmata 7.2.1(1)],
Ta+3R(∂n) is non-zero. By [1, Lemma 7.2.3(1)], Ta+2R(∂n) is non-zero. Since there is no
a ∈ Z for which both these statements are true, the only remaining option for ω is the one
proposed in the lemma.

Proof of Theorem 6.5.3 The claim is true for λ = ∂n, by Lemma 6.5.8. Now take an arbi-
trary λ ∈n, with k0 as in Section 6.5.5. We ‘construct’ λ from ∂n in two steps. In step (a)
we add λ1 − n boxes in row 1, then λ2 − n + 1 boxes in row 2, and so on, until we add
λk0 −n+k0 −1 boxes in row k0. In step (b) we similarly add λt

1 −n boxes in column 1, then
boxes in column 2, until we conclude by adding sufficiently many boxes in column n − k0.

Let μ ∈n be a partition obtained while constructing λ as above and let μ′ ∈n be the
partition obtained by adding one more box to μ along the procedure towards λ. Then we
have ∂n ⊂ μ ⊂ μ′ ⊂ λ. Assume that the claim holds for μ.

If μ′ is obtained from μ by adding a box as in step (a), then, by construction, the row in
which a box is added to obtain μ′ contains a �. The change dμ �→ dμ′ is thus as in Lemma
6.4.5(i). Comparing this with [1, Lemma 7.2.1(1)] gives the claim for μ′.
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If μ′ is obtained from μ by a construction step of type (b), then both cases in Lemma
6.4.5 can occur. In case (i), comparing again with [1, Lemma 7.2.1(1)] gives the claim for
μ′. In case (ii), comparing with [1, Lemma 7.2.3(2)] gives the claim.

Schematically, we can represent the relation between the local combinatorics of marked
partitions of Section 6.4.1 and weight diagrams of [1, Section 5.1], under the above
construction, as follows

?
� ↔ •

i − 2
◦

i − 1
?
i ,

�
↔ ◦

i − 2
◦

i − 1
•
i .

Here the content of the addable box is i, and ? is a box which may or may not contain �.

7 Categorification of the Representation�

7.1 Categorical Action of TL∞(0) onPD

In this section we upgrade the naı̈ve categorification (PD, �, {Ti | i ∈ Z}) from Theo-
rem 5.1.2 to a ‘weak categorification’ of the TL∞(0)-representation �, in the sense of
[18, Definition 2.7].

Theorem 7.1.1 We have natural isomorphisms of functors, for all i, j ∈ Z with |i −j | > 1,

T2
i

∼⇒ 0, TiTj
∼⇒ TjTi and TiTi±1Ti

∼⇒ Ti .

The second natural isomorphism is even, the third one odd.

Remark 7.1.2 Theorem 7.1.1 implies also that we get a weak categorification of
the TL∞(0)-representation �k in Eq. 5.3 on the cell Ik/Ik+1.

To stress the similarity with the notion of g-categorification for a Kac-Moody algebra
g in [22, Definition 5.29], we add the following proposition. For this we use the affine
periplectic Brauer algebra P̂ −

d , with generators si , εi , for 1 ≤ i < d, and yj , for 1 ≤ j ≤ d,
and relations as in [5, Definition 3.1].

Proposition 7.1.3 We have even natural transformations σ, τ : TT ⇒ TT, such that for
any d ∈ N, we get an algebra morphism

P̂ −
d → Nat(Td ,Td)0̄, given by

si �→ Td−i−1(σTi−1) and εi �→ Td−i−1(τTi−1), for 1 ≤ i < d,

yj �→ Td−j (ξTj−1), for 1 ≤ j ≤ d,

with ξ : T ⇒ T as in Section 4.2.
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7.1.4

We start the proofs of the above results by defining two families of odd morphisms. For X =
(r, e) ∈ PD, we set, using Eq. 3.1,

εX : TT(X) → X, εX = (e ⊗ ∩) ∈ eHomA(r + 2, r)(e ⊗ I ⊗ I), and

ηX : X → TT(X), ηX = (e ⊗ ∪) ∈ (e ⊗ I ⊗ I)HomA(r, r + 2)e.

These extend easily to arbitrary objects X ∈ ObPD.

Lemma 7.1.5 The families {εX | X ∈ ObPD} and {ηX | X ∈ ObPD} define odd natural
transformations ε : TT ⇒ Id and η : Id ⇒ TT.

Proof We prove the claim for ε, the case η is proved identically. Take idempotents e ∈
Ar and f ∈ As and set X = (r, e) and Y = (s, f ). Consider a ∈ f HomA(r, s)e =
HomPD((r, e), (s, f )). By definition, we need to show that

a ◦ (e ⊗ ∩) = (−1)|a|(f ⊗ ∩) ◦ (a ⊗ I ⊗ I).

This equation holds true by Eq. 2.2 and ae = a = f a.

Lemma 7.1.6 We have equalities of natural transformations

T(ε) ◦ ηT = 1T and εT ◦ T(η) = −1T.

Proof By [16, Theorem 3.2.1], we have

(∩ ⊗ I) ◦ (I ⊗ ∪) = I and (I ⊗ ∩) ◦ (∪ ⊗ I) = −I.

Set X = (r, e) ∈ ObPD. By Section 7.1.4, Eq. 4.1 and the above formula, we have

T(εX) ◦ ηTX = (e ⊗ ∩ ⊗ I) ◦ (e ⊗ I ⊗ ∪) = (e ⊗ I) = 1TX .

The second relation follows identically.

7.1.7

We introduce natural transformations ιi : Ti ⇒ T and πi : T ⇒ Ti . For X = (r, e), the
morphism ιiX, resp. πi

X , is to be identified with

(e ⊗ I)γ (r+1)
i = γ

(r+1)
i (e ⊗ I)γ (r+1)

i = γ
(r+1)
i (e ⊗ I),

which can be interpreted inside HomPD(TiX,TX), resp. HomPD(TX,TiX), as in Eq. 3.1.
Furthermore, (ιi ◦πi)X ∈ HomPD(TX,TX) and 1TiX = (πi ◦ ιi )X ∈ HomPD(TiX,TiX)

can also be interpreted as the above element. All this extends to arbitrary X ∈ ObPD.

Lemma 7.1.8 We have equalities of natural transformations, for all i ∈ Z,

ε ◦ ιiT = ε ◦ (ιi � (ιi+1 ◦ πi+1)), for TiT ⇒ Id,

ε ◦ T(ιi) = ε ◦ ((ιi−1 ◦ πi−1) � ιi), for TTi ⇒ Id,

T(πi) ◦ η = ((ιi+1 ◦ πi+1) � πi) ◦ η, for Id ⇒ TTi ,

πi
T ◦ η = (πi � (ιi−1 ◦ πi−1)) ◦ η, for Id ⇒ TiT.
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Proof By [7, Lemma 6.3.1(1)], for k ∈ N, we have

(I⊗k ⊗ ∩) ◦ xk+1 = (I⊗k ⊗ ∩) ◦ (xk+2 + I⊗k+2) and

xk+2 ◦ (I⊗k ⊗ ∪) = (xk+1 + I⊗k+2) ◦ (I⊗k ⊗ ∪).

From the first equation we find

(I⊗k ⊗ ∩)γ
(k+2)
i γ

(k+1)
j = 0, unless j = i + 1. (7.1)

Eq. 4.4 then further implies

(I⊗k ⊗ ∩)γ
(k+2)
i = (I⊗k ⊗ ∩)γ

(k+2)
i γ

(k+1)
i+1 = (I⊗k ⊗ ∩)γ

(k+1)
i+1 . (7.2)

These equations, and their analogues for ∪ can be used to prove the proposed equalities. We
do this explicitly for the first one.

For X = (r, e), we calculate, using Eq. 4.1 and the definitions in Sections 7.1.4 and
7.1.7, that

(ε ◦ ιiT)X = (e ⊗ ∩) ◦ (e ⊗ T ⊗ T)γ
(r+2)
i = (e ⊗ ∩)γ

(r+2)
i

and

(ε ◦ (ιi � (ιi+1 ◦ πi+1)))X = εX ◦ ιiTX ◦ Ti (ι
i+1
X ◦ πi+1

X )

= (e ⊗ ∩) ◦ (e ⊗ I ⊗ I)γ (r+2)
i ◦ ((e ⊗ I)γ (r+1)

i+1 ⊗ I)γ (r+2)
i

= (e ⊗ ∩)γ
(r+2)
i γ

(r+1)
i+1 .

By Eq. 7.2, these two morphisms are the same indeed.

The following two lemmata were inspired by [12, Lemmata 2.7 and 2.8].

Lemma 7.1.9 For ψr := sr − 1(xr − 1 − xr) + 1 ∈ Ar , with r ≥ 2, we have

(i) xrψr = ψrxr − 1 − εr − 1,
(ii) xr − 1ψr = ψrxr − εr − 1,
(iii) ψ2

r = 1 − (xr − 1 − xr)
2,

(iv) ψr ◦ (a ⊗ I ⊗ I) = (a ⊗ I ⊗ I) ◦ ψs, for any a ∈ HomA(s − 2, r − 2).

Proof Parts (i)-(iii) are direct applications of the commutation relations in [7,
Lemma 6.3.1]. Part (iv) follows from the fact that sr − 1 is equal to I⊗r − 2 ⊗ X and
Lemma 4.2.2.

Now we define a family of even morphisms. For each X = (r, e) ∈ ObPD, we set

ϕX : TT(X) → TT(X), ϕX = ψr+2(e ⊗ I ⊗ I) = (e ⊗ I ⊗ I)ψr+2.

Again we extend to arbitrary objects in PD and we obtain a natural transformation ϕ :
TT ⇒ TT by Lemma 7.1.9(iv).

Lemma 7.1.10 Take i, j ∈ Z, such that |i − j | > 1, then

(i) ϕ◦(ιi �ιj ) = (ιj �ιj )◦(πj �πi)◦ϕ◦(ιi �ιj ) as natural transformations TiTj ⇒ TT;
(ii) (πi � πj ) ◦ ϕ ◦ ϕ ◦ (ιi � ιj ) is a natural isomorphism of TiTj .
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Proof We start by proving part (i). For X = (r, e), we have

(ϕ ◦ (ιi � ιj ))X = (e ⊗ I ⊗ I)ψr+2γ
(r+2)
i γ

(r+1)
j .

By Lemma 7.1.9(i), we have

(xr+2 − j)(e ⊗ I ⊗ I)ψr+2γ
(r+2)
i γ

(r+1)
j

= (e ⊗ I ⊗ I)
(
ψr+2(xr+1 − j)γ

(r+2)
i γ

(r+1)
j − εr+1γ

(r+2)
i γ

(r+1)
j

)
.

As we assume that j �= i + 1, the last term vanishes by Eq. 7.1. Multiplying (ϕ ◦ (ιi � ιj ))X
with (xr+2 − j)p from the left for the appropriate p ∈ N will thus yield zero, meaning

(e ⊗ I ⊗ I)ψr+2γ
(r+2)
i γ

(r+1)
j = γ

(r+2)
j (e ⊗ I ⊗ I)ψr+2γ

(r+2)
i γ

(r+1)
j .

The corresponding reasoning for (xr+1 − i) concludes the proof of part (i).
Now we consider part (ii). By Lemma 7.1.9(iii), for X = (r, e), we have

((πi � πj ) ◦ ϕ ◦ ϕ ◦ (ιi � ιj ))X = (e ⊗ I ⊗ I)(1 − (xr+1 − xr+2)
2)γ

(r+2)
i γ

(r+1)
j .

For any c ∈ k, we can expand

1 − (xr+1 − xr+2)
2 = (1 − c2) − (xr+1 − xr+2 − c)2 − 2c(xr+1 − xr+2 − c)

If we set c = j−i, then this allows to write the above morphism as the sum of (1−c2)1TiTj X

and a nilpotent one. Since c2 �= 1, this means that the morphism is an isomorphism
of TiTjX.

Proof of Theorem 7.1.1 The relation T2
i

∼= 0 follows immediately from Theorem 5.1.2.
Now assume that |i − j | > 1. The composition

(πi � πj ) ◦ ϕ ◦ (ιj � ιi) ◦ (πj � πi) ◦ ϕ ◦ (ιi � ιj )

corresponding to

TiTj ⇒ TT ⇒ TT ⇒ TjTi ⇒ TT ⇒ TT ⇒ TiTj

is an isomorphism, by Lemma 7.1.10. We hence have even natural transformations α :
TiTj ⇒ TjTi and β : TjTi ⇒ TiTj such that β ◦ α is an isomorphism. Since TiTjX ∼=
TjTiX for all X ∈ ObPD, see Theorem 5.1.2, this means that both α and β must be
isomorphisms.

Now we consider the natural transformation

πi ◦ T(ε) ◦ ((ιi ◦ πi) � (ιi−1 ◦ πi−1) � (ιi ◦ πi)) ◦ ηT ◦ ιi ,

corresponding to

Ti ⇒ T ⇒ TTT ⇒ TiTi−1Ti ⇒ TTT ⇒ T ⇒ Ti .

Using the standard interchange laws ηT ◦ ιi = TT(ιi) ◦ ηTi
and πi ◦ T(ε) = Ti (ε) ◦ πi

TT,
subsequently Lemma 7.1.8, again the interchange laws, and finally Lemma 7.1.6, shows
that the composition above is equal to 1Ti

= πi ◦ ιi . In particular, we find odd natural
transformations α : Ti ⇒ TiTi−1Ti and β : TiTi−1Ti ⇒ Ti such that β ◦ α = 1Ti

. As
Ti (X) ∼= TiTi−1Ti (X) for all X ∈ ObPD, see Theorem 5.1.2, it follows that α and β are
isomorphisms. The relation for i + 1 follows similarly.
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Proof of Proposition 7.1.3 We define τ : TT ⇒ TT as η ◦ ε. Similarly, we define σ :
TT ⇒ TT by setting

σX = (e ⊗ X) = sr+1(e ⊗ I ⊗ I), for X = (r, e).

Now we argue that the relations in [5, Definition 3.1] are satisfied. It is easy to see that
it suffices to prove that evaluation on the objects k ∈ ObA ⊂ ObPD actually yields
morphisms

P̂ −
d → EndPD(T d(k)) = EndA(d + k) = Ad+k .

That we indeed get an algebra morphism

P̂ −
d → Ad+k, si �→ si+k, εi �→ εi+k, yj �→ xj+k,

then follows immediately from consistency between the relations in [5, Definition 3.1] and
[7, Section 6.3].

7.2 Relation with Other Categorical Representations

By [1, Theorem 4.5.1], the functors �j on sFn yield a categorical representation of TL∞(0)

on sFn. That result served as inspiration for the statement in Theorem 7.1.1. Both cate-
gorical representations are actually intimately connected, despite the fact that one is on an
abelian and one on an additive category. We briefly explore the relation in this section.

7.2.1

By Lemma 6.5.7, the decategorification of Fn is a morphism of TL∞(0)-modules. Since Fn

has a kernel, this is not a monomorphism. Moreover, Fn is not essentially surjective and
more importantly it is not clear whether the induced morphism

[PD]⊕ → [sFn]
from the split Grothendieck group of PD to the Grothendieck group of sFn is surjective.

7.2.2

Since sFn has infinite global dimension, the canonical group monomorphism

[pe(n)-proj]⊕ ↪→ [sFn]
will not be an isomorphism. In fact, by the results in Section 6.3, the functor � restricts
to the full additive subcategory pe(n)-proj and this subcategory constitutes the socle of the
categorical TL∞(0)-representation on sFn in [1, Theorem 4.5.1].

By Theorem 6.3.2, we have an essentially bijective (and full) k-linear functor from
In/In+1 to pe(n)-proj, so in particular

[In/In+1]⊕ ∼= [pe(n)-proj]⊕.

By construction and Section 7.2.1, this is an isomorphism between the TL∞(0)-
representation �n in Eq. 5.3 and the decategorification of the socle of the categorical
representation of [1, Theorem 4.5.1] on sFn.

In conclusion, our categorical representation � of TL∞(0) on PD admits a filtra-
tion, labelled by n ∈ N, where each composition factor ‘corresponds to’ a categorical
representation of TL∞(0) on the category of projective modules over pe(n) introduced
in [1].
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7.2.3

Contrary to the representation �, the decategorification of [1, Theorem 4.5.1] for a fixed
pe(n) is not a faithful representation of TL∞(0). Indeed, using the combinatorics of [1,
Section 5.2], it follows that a generic functor of the form

�i1�i2 · · ·�ip

with p > n will send any (thick) Kac module to zero. Since the functor is exact this auto-
matically implies that it maps any module to zero. In particular Ti1Ti2 · · · Tip will generically
act as zero on the decategorified representation of TL∞(0).
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