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Abstract
We raise the following general question regarding a ring graded by a group: “If P is a
ring-theoretic property, how does one define the graded version Pgr of the property P

in a meaningful way?”. Some properties of rings have straightforward and unambiguous
generalizations to their graded versions and these generalizations satisfy all the matching
properties of the nongraded case. If P is either being unit-regular, having stable range 1
or being directly finite, that is not the case. The first part of the paper addresses this issue.
Searching for appropriate generalizations, we consider graded versions of cancellation,
internal cancellation, substitution, and module-theoretic direct finiteness. In the second part
of the paper, we consider graded matrix and Leavitt path algebras. If K is a trivially graded
field and E is a directed graph, the Leavitt path algebra LK(E) is naturally graded by the
ring of integers. If E is a finite graph, we present a property of E which is equivalent with
LK(E) being graded unit-regular. This property critically depends on the lengths of paths to
cycles and it further illustrates that graded unit-regularity is quite restrictive in comparison
to the alternative generalization of unit-regularity from the first part of the paper.

Keywords Graded ring · Unit-regular ring · Cancellability · Stable range 1 ·
Directly finite ring · Graded matrix algebra · Leavitt path algebra
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1 Introduction

We raise the question “If P is a ring-theoretic property, how does one define the graded
version Pgr of the property P in a meaningful way?” and consider it in the cases when P is
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unit-regularity, cancellability, stable range 1, and direct finiteness. To address these cases,
we study graded generalizations of some of cancellation properties from T.Y. Lam’s “A
crash course on stable range, cancellation, substitution and exchange” ([13]). We focus on
these properties since it is not as obvious and straightforward to define their graded gener-
alization as it is for some other properties and we elaborate on this in the introduction. We
do not assume that the grade group � is abelian and study some properties previously con-
sidered only for abelian groups �. In the last part of the paper, we consider these properties
for Leavitt path algebras of finite graphs and characterize them in terms of the properties of
the graph.

A ring R is graded by a group � if R = ⊕
γ∈� Rγ for additive subgroups Rγ and

Rγ Rδ ⊆ Rγδ for all γ, δ ∈ �. The elements of the set H = ⋃
γ∈� Rγ are said to be

homogeneous. The grading is trivial if Rγ = 0 for every nonidentity γ ∈ �. Since every
ring is graded by the trivial group, we can say that the class of graded rings generalizes the
class of rings. Still, it is customary that a ring graded by the trivial group is referred to as a
nongraded ring.

If a ring-theoretic property P is in its prenex form, the term graded property P has
been used for the property Pgr obtained by replacing every ∀x and ∃x appearing in P

by the restricted versions ∀x ∈ H and ∃x ∈ H . For example, if Reg is the property
(∀x)(∃y)(xyx = x) defining a von Neumann regular (or regular for short), we say that
a graded ring R is graded regular if (∀x ∈ H)(∃y ∈ H)(xyx = x) and we denote this
condition by Reggr.

If a property P has the form (∀x)(∃y)φ(x, y), let P w
gr denote the statement (∀x ∈

H)(∃y)φ(x, y) which we call the weak graded property P . In some cases, P w
gr and Pgr

are equivalent. For example, if P is the property Reg, then P w
gr and Pgr are equivalent (if

x = xyx for x ∈ Rγ , and if yγ −1 is the γ −1-component of y, then xyγ −1x = x).
The situation is trickier if P is a ring-theoretic property such that P w

gr and Pgr are not
equivalent. For example, let UR be the property (∀x)(∃u)(∃v)(uv = vu = 1 and x =
xux) defining a unit-regular ring. The conditions URw

gr and URgr are not equivalent. Indeed,
let K be a field trivially graded by the group of integers Z and R be the graded matrix
ring M2(K)(0, 1) (we review the definition in Section 2.1). The standard matrix unit e12
is homogeneous. As a homogeneous invertible element u is diagonal, e12ue12 = e12 for
no such u and so URgr fails. On the other hand, M2(K)(0, 1) satisfies URw

gr since M2(K)

is unit-regular. The graded ring M2(K)(0, 1) is also an example of a ring which is graded
semisimple but not graded unit-regular. This shows that if P ⇒ Q holds for some properties
of rings, then it may happen that Pgr � Qgr. Moreover, if a property P has a feature
F, then the graded version Fgr may fail to hold for Pgr. For example, while UR is closed
under formation of matrix algebras and corners, URgr is not closed under formation of
graded matrix algebras (by the example with M2(K)(0, 1) above) and graded corners (by
Example 5.2).

The above discussion seems to indicate that more than one aspect should be taken into
consideration if looking for a meaningful way to generalize properties to graded rings. In
some cases, a ring-theoretic definition may just be a convenient simplification of certain
equivalent module-theoretic property. Sometimes the historical origin of a definition may
provide a meaningful insight in the process of a generalization to graded rings. Considering
all of these factors, we ask the following question, central for the motivation of the work in
the first part of this paper:
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Question 1.1 If P is a ring-theoretic property, how does one define the graded version Pgr
of the property P in a meaningful way?

Unit-regularity, for example, originated as a property of the endomorphism ring of a
module, not the ring itself. In the graded case, the graded component of the endomorphism
ring corresponding to the group identity ε ∈ � has a special significance. Requiring this
component of a graded ring to be unit-regular brings us to far less restrictive requirement
URε than URgr and we show that the condition Reggr+URε is less restrictive than URgr but
still strong enough to capture the relevant properties of unit-regularity in the graded case.

After a review of prerequisites and some preliminary results in Section 2, we consider
graded versions of module-theoretic characterizations of unit-regularity in Section 3. If
P(A) is a property of a module A, we let Pgr(A) denote the statement obtained from P(A)

if every instance of “module” in it is replaced by “graded module” and every instance
of “homomorphism” by “graded homomorphism”. In particular, every isomorphism ∼= is
replaced by a graded isomorphism ∼=gr .

For nongraded rings, a module A has internal cancellation IC(A) if

IC(A): A = B ⊕ C = D ⊕ E and B ∼= D implies C ∼= E

holds for all modules B,C, D, E in which case we also say that A is internally cancellable.
This property is equivalent with UR of S = EndR(A) if S is regular. If A is a graded module,
the subring ENDR(A) of EndR(A), generated by graded homomorphisms of degree γ for
all γ ∈ �, is naturally graded and the elements of ENDR(A)ε are exactly the graded endo-
morphisms of A. Thus, the statement ICgr(A), the graded version of IC(A) obtained by the
process we explained above, translates to a property of ENDR(A)ε only, not the entire ring
EndR(A). If ENDR(A)ε is regular, we show that ICgr(A) holds if and only if ENDR(A)ε
is unit-regular (Proposition 3.1). In addition, recall that an R-module A is cancellable in a
category of R-modules M if the condition

C(A): A ⊕ B ∼= A ⊕ C implies B ∼= C

holds for all B and C in M. If R is regular, then R has UR if and only if C(R) holds in the
category of finitely generated projective modules. If R is a graded ring, A a graded module,
and Mgr a category of graded modules, A is graded cancellable in Mgr if Cgr(A) holds in
Mgr. If Pgr denotes the category of finitely generated graded projective modules, we say
that Cgr holds if Cgr(P ) holds for every P in Pgr and that R has graded cancellation in
this case. We also say that ICgr holds if ICgr(P ) holds for every P in Pgr and that R has
graded internal cancellation in this case. By Theorem 3.5, if Reggr holds, then URε, ICgr,

Cgr(R) and Cgr are all equivalent. The condition Reggr+URε, formulated without referring
to any module, is far less restrictive than URgr but strong enough to guarantee that Cgr
holds. By Corollary 3.6, Reggr+URε is graded Morita invariant and, by the example with
M2(K)(0, 1), URgr is not. So, Reggr+URε also avoids this anomaly of URgr.

We compare URgr and Reggr+ URε in one more aspect. Namely, Handelman’s Conjec-
ture stipulates that every ∗-regular ring is unit-regular. In the graded case, it is not difficult
to find an example of a graded ∗-regular ring which is not graded unit-regular (for example,
M2(C)(0, 1) with C trivially graded by Z and ∗ induced by the complex-conjugation). Since
a graded ∗-regular ring is such that Rε is ∗-regular and Reggr holds, we believe that it is
more meaningful to ask whether URε also holds than to come up with an example showing
that URgr fails. So, we ask the following.
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Question 1.2 Is the ε-component of every graded ∗-regular ring unit-regular?

In Section 5.6, we note that the answer to this question is “yes” for unital Leavitt path
algebras.

In Section 3, we also consider the weak and strong graded internal cancellation proper-
ties, ICw

gr(R) and ICs
gr(R) (Proposition 3.4). Although weaker than ICs

gr( ), ICw
gr( ) ends

up being outside of the category of graded modules while Reggr+URε does not have this
disadvantage.

In Section 4, we consider the stable range 1 property. Let sr(R) = 1 stand for
(∀x, y)(∃z, u)(xR + yR = R ⇒ z = x + yu and zR = R) and let srgr(R) = 1
denote the graded version of sr(R) = 1. We have that URgr(R) ⇒ srgr(R) = 1 ⇒
sr(Rε) = 1 ⇒ Cgr(R) and we show that each implication is strict. The property sr(R) = 1
also has its module-theoretic characterization related to cancellation. If A is an R-module,
sr(EndR(A)) = 1 is equivalent with the property below, known as substitution.

S(A) : If A⊕B = A′ ⊕B ′ = M for some modules M,A′, B, B ′ and A ∼= A′, then there
is a module C such that B ⊕ C = B ′ ⊕ C = M .

Let Sgr(A) denote the graded version of this property. By Theorem 4.4, Sgr(A) holds for a
graded module A if and only if sr(ENDR(A)ε) = 1. By Theorem 4.4, sr(ENDR(A)ε) =
1, a much weaker condition that srgr(ENDR(A)) = 1, is sufficient for A being graded
cancellable without any additional requirements on A. This shows that the conclusion of the
Graded Cancellation Theorem ([8, Theorem 1.8.4]) holds without requiring A to be finitely
generated and � to be abelian and with the assumption srgr(ENDR(A)) = 1 replaced by
sr(ENDR(A)ε) = 1.

In Section 4.3, we consider direct finiteness DF, closely related to other cancellabil-
ity conditions, its module-theoretic version DF( ), and their graded generalizations DFgr,

DFw
gr( ), and DFs

gr( ). The diagram in [13, Formula (4.2)] becomes Sgr( ) ⇒ Cgr( )

⇒ ICgr( ) ⇒ DFgr( ).
In Section 4.4, we show that if R is strongly graded, Sgr(A) ⇔ S(Aε), Cgr(A) ⇔ C(Aε),

ICgr(A) ⇔ IC(Aε), and DFgr(A) ⇔ DF(Aε), for a graded R-module A (Proposition 4.7).
In contrast, we show that the following three implications are strict even if R is strongly
graded: R satisfies URgr ⇒ Rε satisfies UR, srgr(R) = 1 ⇒ sr(Rε) = 1, R satisfies DFgr
⇒ Rε satisfies DF.

In Section 5, we produce a condition on shifts which characterizes when a Z-graded
matrix algebra over a trivially graded field K or over naturally Z-graded K[xm, x−m] is
graded unit-regular (Proposition 5.1). If E is a finite graph and LK(E) is the Leavitt path
algebra of E over a field K , Theorem 5.3 characterizes graded unit-regularity of LK(E)

in terms of a property of E. This property critically depends on the lengths of paths to
cycles and it further illustrates that URgr is quite restrictive in comparison to Reggr+URε .
Proposition 5.4 characterizes other cancellability properties considered in this paper for
LK(E).

2 Graded Rings Prerequisites and Some Preliminaries

Unless stated otherwise, � denotes an arbitrary group, not necessarily abelian, and ε denotes
its identity element. Rings are assumed to be associative. Unless stated otherwise, rings are
assumed to be unital and a module is assumed to be a right module.
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2.1 Graded Rings Prerequisites

In the introduction, we recalled the definitions of a graded ring, homogeneous elements
and trivial grading. We adopt the standard definitions of graded ring homomorphisms and
isomorphisms, graded left and right R-modules, graded module homomorphisms, graded
algebras, graded left and right ideals, graded left and right free and projective modules as
defined in [14] and [8]. We recall that a �-graded ring R is a graded division ring if every
nonzero element of R has a multiplicative inverse. In this case, R is a graded field if R is
also commutative.

If M is a graded right R-module and γ ∈ �, the γ -shifted or γ -suspended graded right
R-module (γ )M is defined as the module M with the �-grading given by (γ )Mδ = Mγδ for
all δ ∈ �. Analogously, if M is a graded left R-module, the γ -shifted left R-module M(γ )

is the module M with the �-grading given by M(γ )δ = Mδγ for all δ ∈ �. Any finitely
generated graded free right R-module is of the form (γ1)R⊕ . . .⊕(γn)R for γ1, . . . , γn ∈ �

and an analogous statement holds for finitely generated graded free left R-modules (both
[14] and [8] contain details).

If M and N are graded right R-modules and γ ∈ �, then HomR(M, N)γ denotes the
following

HomR(M,N)γ = {f ∈ HomR(M,N) | f (Mδ) ⊆ Nγδ},
then the subgroups HomR(M,N)γ of HomR(M,N) intersect trivially and HOMR(M,N)

denotes their direct sum
⊕

γ∈� HomR(M,N)γ . The notation ENDR(M) is used in the
case if M = N . If M is finitely generated (which is the case we often consider),
then HomR(M,N) = HOMR(M,N) for any N (both [14] and [8] contain details) and
EndR(M) = ENDR(M, M) is a �-graded ring.

In [8], for a �-graded ring R and γ1, . . . , γn ∈ �, Mn(R)(γ1, . . . , γn) denotes the ring
of matrices Mn(R) with the �-grading given by

(rij ) ∈ Mn(R)(γ1, . . . , γn)δ if rij ∈ R
γ −1
i δγj

for i, j = 1, . . . , n.

The definition of Mn(R)(γ1, . . . , γn) in [14] is different: Mn(R)(γ1, . . . , γn) in [14] cor-
responds to Mn(R)(γ −1

1 , . . . , γ −1
n ) in [8]. More details on the relations between two

definitions can be found in [16, Section 1]. Although the definition from [14] has been in
circulation longer, some matricial representations of Leavitt path algebras involve positive
integers instead of negative integers making the definition from [8] more convenient for
us. Since we deal extensively with Leavitt path algebras in Sections 5.3 and 5.4, we opt
to use the definition from [8]. With this definition, if F is the graded free right module
(γ −1

1 )R ⊕ · · · ⊕ (γ −1
n )R, then HomR(F, F ) ∼=gr Mn(R)(γ1, . . . , γn) as graded rings.

We also recall [14, Remark 2.10.6] stating the first two parts in Lemma 2.1 and [8,
Theorem 1.3.3] stating part (3) for � abelian. The proof of this statement generalizes to
arbitrary �.

Lemma 2.1 [14, Remark 2.10.6], [8, Theorem 1.3.3]. Let R be a �-graded ring and
γ1, . . . , γn ∈ �.

(1) If π a permutation of the set {1, . . . , n}, then
Mn(R)(γ1, γ2, . . . , γn) ∼=gr Mn(R)(γπ(1), γπ(2) . . . , γπ(n)).

(2) If δ in the center of �, Mn(R)(γ1, γ2, . . . , γn) = Mn(R)(γ1δ, γ2δ, . . . , γnδ).
(3) If δ ∈ � is such that there is an invertible element uδ in Rδ, then

Mn(R)(γ1, γ2, . . . , γn) ∼=gr Mn(R)(γ1δ, γ2 . . . , γn).
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2.2 Four Lemmas

Recall that for two idempotents e, f of a ring R, eR ∼= f R holds if and only if there are
x, y ∈ R such that xy = e and yx = f in which case we write e ∼ f and we can require
that x ∈ eRf and y ∈ f Re. This equivalence can be used to show that eR ∼= f R holds
if and only if Re ∼= Rf holds (see [5, Proposition 5.2]). The following lemma, needed for
Proposition 3.4 shows the graded version of these equivalences. Note that if R is graded and
e is a homogeneous idempotent in Rγ then the relation ee = e implies that γ = ε.

Lemma 2.2 Let R be a �-graded ring and e, f homogeneous idempotents of R. The
following conditions are equivalent.

(1) eR ∼=gr (γ )f R for some γ ∈ �.
(2) Re ∼=gr Rf (γ −1) for some γ ∈ �.
(3) There is x ∈ Rγ −1 and y ∈ Rγ such that xy = e and yx = f .
(4) There is x ∈ eRγ −1f and y ∈ f Rγ e such that xy = e and yx = f .

Proof (1) ⇒ (4). If φ : eR ∼=gr (γ )f R, then φ ∈ HomR(eR, (γ )f R)ε . Thus, y = φ(e) ∈
(γ )f Rε ⊆ Rγ . Analogously, x = φ−1(f ) ∈ eRγ −1 ⊆ Rγ −1 . Moreover,
ye = φ(e)e = φ(ee) = φ(e) = y so y ∈ Re and x ∈ Rf similarly. Then
yx = φ(e)x = φ(ex) = φ(x) = φ(φ−1(f )) = f and xy = e similarly.

(4) ⇒ (1). If Lx and Ly denote the left multiplications by x and y respectively, then Ly ∈
HomR(R,R)γ = HomR(R, (γ )R)ε and, similarly, Lx ∈ HomR(R,R)γ −1 =
HomR((γ )R,R)ε . The conditions x ∈ eRf and y ∈ f Re imply that Ly maps
eR into (γ )f R and Lx maps (γ )f R into eR. The conditions xy = e and
yx = f imply that Lx and Ly are mutually inverse so Ly : eR ∼=gr (γ )f R.

The equivalence (4) ⇔ (2) can be shown analogously. The condition (3) implies (4) since
if x, y are as in (3), then exf and fye are elements as in (4). The converse (4) ⇒ (3) directly
holds.

We use the following lemma in the proofs of Propositions 3.1 and 3.4.

Lemma 2.3 If R is a �-graded ring, A is a graded R-module, S = ENDR(A), γ ∈ �, and
e, f homogeneous idempotents in S, then the following conditions are equivalent.

(1) eS ∼=gr (γ )f S (2) eSε
∼= ((γ )f S)ε = f Sγ (3) eA ∼=gr (γ )f A

Proof The equality in condition (2) follows by definition. We show (1) ⇔ (2) and (1) ⇔ (3).
An isomorphism φ : eS ∼=gr (γ )f S restricts to eSε

∼= ((γ )f S)ε = f Sγ so (1) implies
(2). Conversely, if φε : eSε

∼= (γ )f Sε, then φ, defined by ex �→ φε(e)x, is a graded
isomorphism eS ∼=gr (γ )f S.

If (1) holds, then e = xy, f = yx for some x ∈ eSγ −1f and y ∈ f Sγ e by Lemma
2.2. So, y restricted on eA is a graded isomorphism eA ∼=gr (γ )f A which shows (3).
Conversely, if (3) holds and y is a graded isomorphism eA → (γ )f A with inverse x, then
y can be extended to an element of Sγ by y((1 − e)A) = 0. Similarly, x can be extended
to an element of Sγ −1 by x((1 − f )A) = 0. Since xy(a) = xye(a) = e(a), yx = e and,
similarly, xy = f . Thus, (1) holds by Lemma 2.2.
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We also use Lemma 2.4 below. Let R be a �-graded ring, x ∈ Rγ , and let Lx denote the
left multiplication by x. Then ker Lx is a graded right ideal of R and Lx ∈ HomR(R,R)γ =
HomR(R, (γ )R)ε . So, xR is a graded submodule of (γ )R which implies that (γ −1)xR is a
graded right ideal of R. Thus, the following two are short exact sequences of graded right
R-modules.

0 �� ker Lx
�� R

Lx �� xR �� 0

0 �� (γ −1)xR �� R �� (γ −1) coker Lx
�� 0

Lemma 2.4 If R is a �-graded ring, x ∈ Rγ for γ ∈ �, Lx is the left multiplication by x,

and x = xyx for some homogeneous element y, then Lx is a graded isomorphism of yxR,

xR = (γ )xyR, and (1 − yx)R ∼=gr (γ )(1 − xy)R if and only if ker Lx
∼=gr coker Lx .

Proof The relation x = xyx implies that y ∈ Rγ −1 , that ker Lx = (1 − yx)R and

(γ −1)xR = xyR, and that Lx : yxR → xyxR = xR is a graded isomorphism. So,
(γ −1) coker Lx

∼=gr (1 − xy)R and thus coker Lx
∼=gr (γ )(1 − xy)R.

Lemma 2.5, needed for Proposition 5.1, shows that URgr is a rather strong requirement.

Lemma 2.5 If a graded ring R is graded unit-regular, then every nonzero component
contains an invertible element.

Proof If 0 �= x ∈ Rγ and R is graded unit-regular, then there is a homogeneous invertible
element u such that x = xux. This last condition forces u to be in Rγ −1 and so its inverse is
in Rγ .

3 Graded Unit-regular Rings and Graded Cancellability

3.1 Graded Unit-regular Rings

We recall [6, Theorem 4.1] stating that the following conditions are equivalent for a ring R,
a right R-module A, and S = EndR(A).

(1) S is unit-regular.
(2) S is regular and A satisfies internal cancellation IC(A).
(3) S is regular and e ∼ f implies 1 − e ∼ 1 − f for all idempotents e, f ∈ S.

Propositions 3.1 and 3.4 generalize these equivalences if R is graded. Recall that ICgr(A)

denotes the condition A = B ⊕ C = D ⊕ E and B ∼=gr D implies C ∼=gr E for graded
modules A, B,C, D, E.

Proposition 3.1 Let R be a �-graded ring, A a graded R-module, and Sε be the component
of S = ENDR(A) corresponding to the identity ε ∈ �. Then, the following conditions are
equivalent.

(1) Sε is unit-regular.
(2) Sε is regular and A satisfies graded internal cancellation ICgr(A).
(3) Sε is regular and e ∼ f implies 1 − e ∼ 1 − f for all idempotents e, f ∈ Sε .

If A is finitely generated, the above statements hold for S = EndR(A).
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Proof To show (1) ⇒ (2), let A = B ⊕ C = D ⊕ E and x : B ∼=gr D. Extend x to an
element of Sε by mapping C to 0. Let u ∈ Sε be invertible and such that xux = x. Then,
(1 − ux)A = ker x = C and uxA = uD so u maps D = xA onto uxA and so u maps E

onto (1 − ux)A = C. Hence C ∼=gr E.
To show (2) ⇒ (3), let e, f ∈ Sε be idempotents such that e ∼ f so eA ∼=gr f A. By (2),

(1−e)A ∼=gr (1−f )A which implies that 1−e ∼ 1−f as elements of Sε by Lemma 2.3.
To show (3) ⇒ (1), let x ∈ Sε and y ∈ Sε be such that xyx = x. Then e = xy and

f = yx are idempotents of Sε such that e ∼ f . By the assumption, 1 − e ∼ 1 − f .
So, there are u ∈ (1 − e)Sε(1 − f ), v ∈ (1 − f )Sε(1 − e) such that uv = 1 − e and
vu = 1 − f . Since x ∈ eSεf and yxy ∈ f Sεe, yxy + v ∈ Sε is invertible with inverse
x + u and x(yxy + v)x = x.

Recall the condition ICgr from the introduction and let Matε be the property below.

ICgr : ICgr(P ) holds for every finitely generated graded projective module P .
Matε : The ε-component of Mn(R)(γ1, . . . , γn) is unit-regular for every n and every

γ1, . . . , γn ∈ �.

Proposition 3.2 Let R be a �-graded ring. The following conditions are equivalent.

(1) Matε holds for R.
(2) Matε holds for Mm(R)(δ1, . . . , δm) for every positive integer m and every

δ1, . . . , δm ∈ �.

These two conditions imply the condition ICgr. If Mn(R)(γ1, . . . , γn)ε is regular for every
n and every γ1, . . . , γn ∈ �, then (1), (2) and ICgr are equivalent.

Proof Since (γ −1)(δ−1)R(δ)(γ ) = ((γ δ)−1)R(γ δ) for γ, δ ∈ �, we have that

Mn(Mm(R)(δ1, . . . , δm))(γ1, . . . , γn) = Mnm(R)(γ1δ1, . . . , γ1δm, . . . . . . . . . , γnδ1, . . . , γnδm)

for all positive integers m and n and all γ1, . . . , γn, δ1, . . . , δm ∈ �. So, assuming (1) is
sufficient for (2) and the converse trivially holds.

Since ICgr( ) is preserved under formation of graded direct summands, ICgr holds
iff ICgr(F ) holds for every finitely generated graded free module F . Every such mod-
ule F is of the form

⊕n
i=1(γ

−1
i )R for some n and some γ1, . . . , γn. Since EndR(F ) =

ENDR(F ) = Mn(R)(γ1, . . . , γn), if EndR(F )ε is unit-regular then ICgr(F ) holds by Propo-
sition 3.1. If EndR(F )ε is regular, then ICgr(F ) implies that EndR(F )ε is unit-regular also
by Proposition 3.1.

Remark 3.3 Note that the assumption in the last sentence of Proposition 3.2 is automati-
cally satisfied if R is graded regular. Indeed, by the graded analogue of [6, Theorem 1.7],
graded regularity is passed to graded matrix algebras. The proof is analogous to the non-
graded case: if R is graded regular, then it is direct to check that (γ −1)R(γ ) is graded
regular for every γ ∈ �. So, (γ −1

i )R(γi) ∼=gr eii Mn(R)(γ1, . . . , γn)eii is graded regular
for all the standard matrix units eii for any n and γ1, . . . , γn ∈ �. Then one shows that
Mn(R)(γ1, . . . , γn) is graded regular by induction analogously to the proof in the nongraded
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case (see [6, Lemma 1.6]). This shows that if R is graded regular, then Mn(R)(γ1, . . . , γn)

is graded regular and, consequently, Mn(R)(γ1, . . . , γn)ε is regular.

In Proposition 3.4, we relate URw
gr and URgr of ENDR(A) for a graded module A with

the following weak and strong internal cancellation properties of A respectively.

ICw
gr(A): A = B ⊕ C = D ⊕ E and B ∼=gr (γ )D for some γ ∈ � implies C ∼= E.

ICs
gr(A): A = B ⊕C = D⊕E and B ∼=gr (γ )D for some γ ∈ � implies C ∼=gr (γ )E.

In Proposition 3.4, we relate the properties URw
gr and URgr with ICw

gr(A) and ICs
gr(A)

respectively.

Proposition 3.4 Let R be a �-graded ring, A be a graded right R-module, and S =
ENDR(A). The following conditions are equivalent.

(1w) S is weakly graded unit-regular.
(2w) S is graded regular and A satisfies weak graded internal cancellation ICw

gr(A).
(3w) S is graded regular and eA ∼=gr (γ )f A for some γ ∈ �, implies (1−e)A ∼= (1−f )A

for all homogeneous idempotents e, f ∈ S.

The following conditions are also equivalent.

(1s) S is graded unit-regular.
(2s) S is graded regular and A satisfies strong graded internal cancellation ICs

gr(A).
(3s) S is graded regular and eA ∼=gr (γ )f A for some γ ∈ �, implies (1 − e)A ∼= (γ )(1 −

f )A for all homogeneous idempotents e, f ∈ S.

If A is finitely generated, then the above statements hold for S = EndR(A).

Proof Let us show (1w)⇒(2w) and (1s) ⇒(2s). Let A = B ⊕ C = D ⊕ E and x : B ∼=gr
(γ )D. Extend x to A by xC = 0. So, x ∈ HOMR(A, (γ )A)ε = ENDR(A)γ = Sγ .
Assuming (1w), there is invertible u ∈ S such that x = xux. By the proof of (1)⇒(2) of
Proposition 3.1, we obtain C ∼= E. Assuming (1s), such u can be found in Sγ −1 . Then,
(1 − ux)A = ker x = C and uxA = u(γ )D so u maps (γ )D = xA onto uxA and so u

maps (γ )E onto (1 − ux)A = C. Hence C ∼=gr (γ )E.
Let us show (2w)⇒(3w) and (2s)⇒(3s). Assume that eA ∼=gr (γ )f A for some γ ∈ �.

Condition (2w) implies that (1−e)A ∼= (1−f )A and condition (2s) implies that (1−e)A ∼=gr
(γ )(1 − f )A.

Let us show (3w)⇒(1w) and (3s)⇒(1s). Let x ∈ Sγ . Under either (3w) or (3s), there is
y ∈ Sγ −1 such that xyx = x. Then e = xy and f = yx are homogeneous idempotents

and eA ∼=gr (γ −1)f A by Lemmas 2.2 and 2.3. Condition (3w) implies that (1 − e)A ∼=
(1 − f )A and condition (3s) that (1 − e)A ∼=gr (γ −1)(1 − f )A. In the second case, there
are u ∈ (1 − e)Sγ (1 − f ), v ∈ (1 − f )Sγ −1(1 − e) such that uv = 1 − e and vu = 1 − f

by Lemmas 2.2 and 2.3. Then yxy + v ∈ Sγ −1 is invertible with inverse x + u ∈ Sγ and
x(yxy + v)x = x. In the first case, there are u ∈ (1 − e)S(1 − f ) and v ∈ (1 − f )S(1 − e)

such that uv = 1 − e and vu = 1 − f and the rest of the prior arguments show that yxy + v

is invertible and that x(yxy + v)x = x.

The implication URgr ⇒ URw
gr is direct and it is strict by Example 3.7. It is also

direct to see that ICs
gr( ) implies both ICw

gr( ) and ICgr( ). Hence, URgr implies

633Graded Cancellation Properties of Graded Rings and Graded...



ICgr(R). However, it is not direct to see that URgr ⇒ ICgr. This implication follows from
Theorem 3.5.

3.2 Graded Cancellability

The cancellation property has a favorable feature that a finite direct sum is cancellable if and
only if each of its terms is cancellable (see [13, Proposition 3.3]). Relating ICgr( ) with
Cgr( ) in Theorem 3.5, we show that ICgr( ) is closed under the formation of direct sums
of modules if the ring is graded regular. The conditions ICgr( ) and ICs

gr( ) alone are not
closed for finite direct sums (consider [13, Example 3.2 (3)] and grade the ring trivially).

If R is a �-graded ring and A a graded module, recall that we say that Cgr(A) holds
in a category of graded R-modules M if A ⊕ B ∼=gr A ⊕ C implies B ∼=gr C for all
graded modules B and C in M. If Pgr is the category of finitely generated graded projective
modules, and A in Pgr, we consider Cgr(A) only in Pgr so we abbreviate “Cgr(A) holds in
Pgr” as “Cgr(A) holds”.1

Note that Cgr(A) holds if and only if Cgr((γ )A) holds for any γ ∈ � as it is directly
to check. In addition, Cgr(A ⊕ B) holds if and only if Cgr(A) and Cgr(B) hold. This can
also easily be checked by the argument completely analogous to the nongraded case (see
[13, Proposition 3.3]).2 Thus,

Cgr(R) holds if and only if Cgr(P ) holds for any P ∈ Pgr.

Hence, Cgr(R) holds if and only if the �-monoid V�(R) (see [16, Section 1.3]) is
cancellative.

In the nongraded case, C( ) ⇒ IC( ) and the converse holds if R is regular ([6, The-
orem 4.5]). We show the graded versions of these statements and relate Cgr with URε and
ICgr.

Theorem 3.5 Let R be a �-graded ring and P ∈ Pgr.

(1) If Cgr(P ) holds, then ICgr(P ) holds and the converse holds if R is graded regular.
(2) If Cgr(R) holds, then ICgr holds and the converse holds if R is graded regular.
(3) If R is graded regular, then Rε is unit-regular if and only if Cgr(R) holds. Hence, the

conditions URε, Cgr(R), Cgr, ICgr, and Matε are all equivalent for a graded regular
ring R.

Proof Assuming that Cgr(P ) holds, let P = A⊕B = C⊕D and A ∼=gr C. Then A⊕B ∼=gr
A ⊕ D. Since Cgr(P ) implies Cgr(A), we have that B ∼=gr D.

Let R be graded regular and let P ⊕ A ∼=gr P ⊕ B for some A,B ∈ Pgr now. By
[6, Theorem 2.8], two direct sum decompositions of a finitely generated projective module

1One could also consider the weak and strong graded cancellability of a module A ∈ Pgr analogously to the
weak and strong graded internal cancellation as follows.

Cw
gr(A): A ⊕ B ∼=gr (γ )A ⊕ C implies B ∼= C for every γ ∈ � and every B,C ∈ Pgr.

Cs
gr(A): A ⊕ B ∼=gr (γ )A ⊕ C implies (γ )B ∼=gr C for every γ ∈ � and every B,C ∈ Pgr.

It is direct to show that Cs
gr( ) ⇒ Cgr( ) and that Cs

gr( ) ⇒ Cw
gr( ). One can show that the conditions

Cw
gr( ) and Cs

gr( ) do not share the nice addition and shift-invariant properties of Cgr( ).
2 All the statements made in this section so far are true if Pgr is replaced by any category of graded modules.

634 L. Vaš



over a regular ring have isomorphic refinements. The graded version of this statement can
be shown by a proof completely analogous to the proof of [6, Theorem 2.8]. So, there are
graded decompositions P = P1 ⊕ P2 and A = A1 ⊕ A2 such that P1 ⊕ A1 ∼=gr P and
P2 ⊕ A2 ∼=gr B. Hence P1 ⊕ A1 ∼=gr P = P1 ⊕ P2 implies A1 ∼=gr P2 by ICgr(P ). Thus,
A = A1 ⊕ A2 ∼=gr P2 ⊕ A2 ∼=gr B.

To show (2), assume that Cgr(R) holds. Since Cgr( ) is closed under taking finite direct
sums and graded direct summands, Cgr(P ) holds for any P ∈ Pgr. By statement (1), ICgr
holds and the converse holds if R is graded regular.

To show (3), note that if R is graded regular, then URε and ICgr(R) are equivalent by
Proposition 3.1. By part (1), ICgr(R) and Cgr(R) are equivalent. By part (2), Cgr(R) and
ICgr are equivalent. The conditions Cgr(R) and Cgr are equivalent since Cgr( ) is closed
under taking finite direct sums and graded direct summands and the conditions ICgr and
Matε are equivalent by Proposition 3.2.

If R is a ring and e and idempotent, the ring eRe is called a corner. If R is a graded ring
and e a homogeneous idempotent, the ring eRe is a graded corner. The property of being
unit-regular, being directly finite and having stable range 1 are passed to corners. The proofs
of these facts involve consideration of an element x + 1 − e of R for any element x of eRe

(see [12, Theorem, §2] for unit-regularity, [19, Theorem 2.8] for stable range 1 and [5, 7.3]
for direct finiteness). This is problematic for graded rings since if x is in Rγ for γ �= ε and
if e �= 1, then x + 1 − e is not homogeneous so none of the proofs of the nongraded cases
can be adjusted to the graded cases. In Example 5.2, we show that graded unit-regularity is
not necessarily passed to graded corners.

If a graded property Pgr is closed under formation of graded matrix algebras and graded
corners, then it is graded Morita invariant and the converse also holds (see [8, Section 2
and Theorem 2.3.8]). While unit-regularity is Morita invariant, graded unit-regularity is not
graded Morita invariant as we have seen in the introduction (also by Proposition 5.1 and
by Example 5.2). However, Reggr+URε is graded Morita invariant by Corollary 3.6. This is
another advantage of Reggr+URε over URgr.

Corollary 3.6 The property Reggr+URε is graded Morita invariant.

Proof The property Reggr is closed under formation of graded matrix algebras (see Remark
3.3) and graded corners (direct to check). By Theorem 3.5, Reggr ⇒ (URε ⇔ Matε), so URε

is closed under formation of graded matrix algebras. Since (eRe)ε = eRεe if R is graded
ring and ee = e ∈ Rε, URε is closed under formation of graded corners as UR is closed
under formation of corners.

Propositions 3.2 and 3.4 and Theorem 3.5 show the diagram below.

Reggr+URε ⇔
Reggr+Cgr(R) ⇔ Reggr+ICgr(R)

⇐ URgr ⇔
Reggr+ICs

gr(R)
⇒ URw

gr ⇔
Reggr+ICw

gr(R)

We present examples showing that both implications above are strict and that URε

and URw
gr are not equivalent even if a ring is graded regular, and that UR and URgr are

independent. We also show that the following relations hold.

(1) Reggr+URε � URgr, UR � URgr, URw
gr � URgr.

(2) URw
gr � UR, URgr � UR, Reggr+URε � UR.
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(3) Reggr+URε � C(R).
(4) C(R) � URw

gr and Cgr(R) � URw
gr.

Example 3.7 In (1), (2) and (3) below, K is any field trivially graded by Z.

(1) The graded ring R = M2(K)(0, 1) is not graded unit-regular as we have seen in the

introduction. Since R0 =
[

K 0
0 K

]
, R0 is unit-regular. Graded regularity is passed to

graded matrix algebras (see Remark 3.3) so R is graded regular. The ring R = M2(K)

is unit-regular and hence R is weakly graded unit-regular.
(2) Let R = K[x, x−1], Z-graded as in Section 5.1. Then R is a graded field so it is graded

unit-regular, hence weakly graded unit-regular also. Since R0 = K, R0 is unit-regular.
However, R is not unit-regular (consider 1 + x for example).

(3) Let R be the Leavitt algebra L(1, 2) i.e. the universal example of a K-algebra R such
that R ⊕ R ∼= R. Clearly, R is not cancellable. The algebra R can be represented as
a Leavitt path algebra of the graph •�� �� and it is naturally graded by Z (see
Section 5.2). Since every Leavitt path algebra is graded regular and graded cancellable
(by [7, Theorem 9] and [4, Corollary 5.8]), R is such too and hence Reggr+URε holds
by Theorem 3.5.

(4) Let R = Z. Then V(R) = Z+ so R is cancellable. Consider R trivially graded by
Z. Then VZ(R) = Z+[x, x−1] ([8, Example 3.1.5] has more details) so R is graded
cancellable. The ring R is not regular, so it is not unit-regular and, since it is trivially
graded, URw

gr fails.

4 Graded Stable Range 1 and Graded Direct Finiteness

4.1 Graded Stable Range 1

A regular ring is unit-regular if and only if it has stable range 1. First, we review some
related terminology and show the graded version of this statement.

A sequence of elements a1, . . . , an of a ring R is said to be right unimodular if a1R +
. . . + anR = R. If R is �-graded, a sequence of elements a1, . . . , an with deg(ai) = γi,

i = 1, . . . , n, is graded right unimodular if (γ −1
1 )a1R + . . . + (γ −1

n )anR = R. Note that
this last condition is equivalent with

∑n
i=1 aixi = 1 for some x1, . . . , xn. However, by

replacing xi with its γ −1
i -component yi, we obtain homogeneous elements y1, . . . , yn such

that
∑n

i=1 aiyi = 1.
If R is nongraded, recall that a sequence of unimodular elements a1, . . . , an of R is

reducible if there are elements b1, . . . , bn−1 such that (a1 + anb1)R + . . . + (an−1 +
anbn−1)R = R. As opposed to the conditions with weak and strong versions, there is just
one level of graded reducibility since the following two conditions are equivalent for n ≥ 2
and a graded unimodular sequence a1, . . . , an of elements of R with deg(ai) = γi, i =
1, . . . , n.

(1) There are elements b1, . . . , bn−1 such that ai + anbi ∈ Rγi
for i = 1, . . . , n − 1 and

(γ −1
1 )(a1 + anb1)R + . . . + (γ −1

n−1)(an−1 + anbn−1)R = R.
(2) There are homogeneous elements b1, . . . , bn−1 such that ai + anbi ∈ Rγi

for i =
1, . . . , n − 1 and (γ −1

1 )(a1 + anb1)R + . . . + (γ −1
n−1)(an−1 + anbn−1)R = R.
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The first condition implies the second if we replace the elements bi with their γ −1
n γi-

components and the converse clearly holds. If any of the above two conditions are satisfied,
we say that the sequence a1, . . . , an is graded reducible. The second definition was used in
[8, Section 1.8].

Recall that the right stable range (or rank) of R is at most n, written srr (R) ≤ n, if
any right unimodular sequence of more than n elements is reducible. If the smallest such n

exists, srr (R) = n. If the smallest such n does not exist, srr (R) = ∞. The range function
srrgr is defined analogously using graded reducibility instead of reducibility and the left-

sided version srlgr is defined similarly.
In the nongraded case, srr (R) ≤ n if and only if every right unimodular sequence of

n + 1 elements is reducible (originally in [18], see also [13, Proposition 1.3]). The proof
of [13, Proposition 1.3] generalizes step-by-step to the graded case. So, srrgr(R) ≤ n if and
only if every graded right unimodular sequence of n + 1 elements is graded reducible. One
can also show that srr (R) = n iff srl (R) = n (see [18]), so one can denote srl and srr with
sr only. We use the graded version of this result only in the case n = 1 and include a proof
for completeness.

Lemma 4.1 If R is a �-graded ring, then srrgr(R) = 1 if and only if srlgr(R) = 1.

Proof We adapt the proof of [13, Theorem 1.8] to the graded case. Let srrgr(R) = 1 and

let b ∈ Rγ and d ∈ Rδ be such that Rb(γ −1) + Rd(δ−1) = R. Thus, ab + cd = 1 for
some a ∈ Rγ −1 and c ∈ Rδ−1 and so (γ )aR + cdR = R. Hence, there is x ∈ Rγ −1 such
that u = a + cdx ∈ Rγ −1 is right invertible. By [8, Section 1.8], if srrgr(R) = 1, then a
homogeneous element with a right inverse is invertible. Thus, u is invertible. Let v ∈ Rγ be
its inverse. If w = a + x(1 − ba) and y = (1 − bx)v, then w ∈ Rγ −1 and y ∈ Rγ . One
checks that w(1−bx) = (1−xb)u and w(b+ycd) = 1 (for more details see [13, Theorem
1.8]). As y ∈ Rγ , b+ycd is in Rγ also. Since w(b+ycd) = 1, R(b+ycd)(γ −1) = R.

This lemma allows us to shorten srrgr(R) = 1 and srlgr(R) = 1 to srgr(R) = 1 and we say
that R has graded stable range 1 in this case. The next proposition, stated without proof in
[8, Example 1.8.8], relates this condition with graded unit-regularity.

Proposition 4.2 If R is a �-graded ring then R is graded unit-regular if and only if R is
graded regular and srgr(R) = 1.

Proof Assume that R is graded unit-regular and that (γ −1)aR + (δ−1)bR = R for some
a ∈ Rγ , b ∈ Rδ . Let a = aua and b = bvb for some u ∈ Rγ −1 invertible and v ∈ Rδ−1 .

Then au and bv are idempotents in Rε such that (γ −1)aR = auR, (δ−1)bR = bvR (see
Lemma 2.4) so auR + bvR = R. Since bvR/(auR ∩ bvR) ∼=gr R/auR ∼=gr (1 − au)R,

auR ∩ bvR is a graded summand of bvR. Let e ∈ Rε be an idempotent such that bvR =
(auR ∩ bvR) ⊕ eR. Then R = auR ⊕ eR. If Lu−1 is the left multiplication by u−1,

then Lu−1 restricted on uaR is La : uaR ∼=gr aR = (γ )auR. On (1 − ua)R, Lu−1 is
(1 − ua)R ∼=gr (γ )(1 − au)R since u−1(1 − ua)R = (1 − au)u−1R = (1 − au)R. So,
u−1 = Lu−1(1) = Lu−1(ua + 1 − ua) = a + u−1(1 − ua) = a + (1 − au)x for some
x ∈ Rγ . Since (1 − au)x ∈ eR ⊆ bvR, (1 − au)x = bvy holds for some y ∈ Rγ . So,
a + bvy = u−1 ∈ Rγ is invertible.

Conversely, assume that srgr(R) = 1 and that R is graded regular. If a is in Rγ , then
a = aba for some b ∈ Rγ −1 and so ab ∈ Rε is an idempotent. Since 1 = ab + 1 − ab and
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abR = (γ −1)aR, R = (γ −1)aR + (1 − ab)R. By the assumption that srgr(R) = 1, there
is y ∈ Rγ such that a + (1 − ab)y is invertible. If u denotes its inverse, then a = aba =
ab(a + (1 − ab)y)ua = abaua = aua.

In [8, Corollary 1.8.5], it is shown that if � is abelian and R a graded ring with srgr(R) =
1, then R is graded cancellable. In the proof, the relation EndR((γ )R) ∼=gr R has been used.
However, if � is nonabelian, EndR((γ )R) ∼=gr (γ )R(γ −1) may not be graded isomorphic
to R. For example, let � = D3 = 〈a, b|a3 = b2 = 1, ba = a2b〉, � = {1, b} and let
R = K[�] be �-graded by Rγ = Kγ if γ ∈ � and Rγ = 0 otherwise. Then Rb = Kb and
((a)R(a−1))b = Raba−1 = Ra2b = 0 so R and (a)R(a−1) are not graded isomorphic.

The proof of [8, Corollary 1.8.5] can still be modified to hold for nonabelian � if the
proof of the lemma below is used instead of the possibly false relation EndR((γ )R) ∼=gr R.

Lemma 4.3 If R is a �-graded ring and srgr(R) = 1, then srgr(EndR((γ )R)) = 1 for every
γ ∈ �.

Proof Since EndR((γ )R) ∼=gr (γ )R(γ −1), we show that srgr((γ )R(γ −1)) = 1. Let a and b

be homogeneous elements of (γ )R(γ −1) (and hence of R as well) such that ac+bd = 1 for
some homogeneous c, d ∈ (γ )R(γ −1). So, a, b, c, d are homogeneous elements of R such
that ac + bd = 1. By the assumption that srgr(R) = 1, there is a homogeneous element y

such that a+by is homogeneous and invertible. However, this also implies that y and a+by

are homogeneous as elements of (γ )R(γ −1) and that a + by is invertible as an element of
(γ )R(γ −1).

As a direct corollary of the lemma, [8, Corollary 1.8.5] holds even if � is not abelian.
In Corollary 4.5, we improve this statement by showing that the conclusion holds if the
assumption srgr(R) = 1 is replaced by the weaker condition sr(Rε) = 1. This shows that
the conclusion of [8, Corollary 1.8.5] also holds under this weaker assumption and without
assuming that � is abelian.

The implication srgr(R) = 1 ⇒ srgr(Mn(R)(γ )) = 1 for n = 1 any γ ∈ � shown in
Lemma 4.3 does not hold for n > 1. Indeed, if R is M2(K)(0, 1) for a trivially Z-graded
field K , then srgr(K) = 1 and R is a graded regular ring which is not graded unit-regular so
srgr(R) > 1. This property of srgr differs from the well-known property of sr that sr(R) =
1 ⇒ sr(Mn(R)) = 1. Thus,

sr(R) = 1 ⇒ sr(Mn(R)) = 1 and srgr(R) = 1 � srgr(Mn(R)(γ1, . . . , γn)) = 1.

4.2 Substitution

A module has substitution if and only if its endomorphism ring has stable range 1. We
show the graded version of this statement in Theorem 4.4. This enables us to weaken the
conditions of the Graded Cancellation Theorem ([8, Theorem 1.8.4]) and [8, Corollary
1.8.5].

Theorem 4.4 LetR be a �-graded ring andA a gradedR-module. Then sr(ENDR(A)ε) =
1 if and only if A has graded substitution.

Proof We adapt the proof of the nongraded case (see, for example, [13, Theorem 4.4]).
Assume that sr(ENDR(A)ε) = 1 first, and let A ⊕ B = A′ ⊕ B ′ = M for some graded
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modules M,A′, B, B ′ such that A ∼=gr A′. Let φ and ψ denote the graded isomorphism
A → A′ and its inverse, π denote the natural graded projection A ⊕ B onto A and ι denote
the natural graded injection A → A ⊕ B. Let (f, g) denote the projection π with respect

to the decomposition A′ ⊕ B ′ so that π(a′, b′) = f (a′) + g(b′), and let

(
f ′
g′

)
denote

the injection ι with respect to the decomposition A′ ⊕ B ′ so that ι(a) = (f ′(a), g′(a)).
The relation πι = 1A implies that f φψf ′ + gg′ = ff ′ + gg′ = 1A. By the assumption
sr(ENDR(A)ε) = 1, there are h, u ∈ ENDR(A)ε such that u is invertible and f φ + gg′h =
u. Let C = {(φ(a), g′h(a)) ∈ A′⊕B ′ | a ∈ A} =Im

(
φ

g′h

)
. Then C is a graded submodule

of A′ ⊕ B ′ such that (a′, b′) = (φψ(a′), g′hψ(a′)) + (0, b′ − g′hψ(a′)) ∈ C ⊕ B ′ for
every (a′, b′) ∈ A′ ⊕ B ′. On the other hand, C ⊕ B = A′ ⊕ B ′ also since B = ker(f, g)

and C = {(a′, b′)|b′ = g′hψ(a′)} so that (a′, b′) ∈ C implies that 0 = f (a′) + g(b′) =
f (a′) + gg′hψ(a′) = uψ(a′) iff a′ = 0.

Conversely, if the relation ff ′ + gg′ = 1A holds in ENDR(A)ε, then π = (f, g) :
A ⊕ A → A and ι =

(
f ′
g′

)
: A → A ⊕ A are graded homomorphisms such that πι = 1A

so that A ⊕ A splits as ker π⊕ Im π . Since Im π = A and A has graded substitution, there
is a graded module C such that A ⊕ C = ker π ⊕ C. Let φ be any graded isomorphism of

A and C. View φ as a map A → C ⊆ C ⊕ A and represent it by

(
f1
g1

)
for some graded

maps f1 : A → C, g1 : A → ker π . Since C is a complement of A, f1 is invertible. Since
C is a complement of ker π, πφ is invertible. By construction, πφ = ff1 + gg1 and so
πφf −1

1 = f + gg1f
−1
1 . Hence, if h = g1f

−1
1 , then f + gh is an invertible element of

ENDR(A)ε .

The Graded Cancellation Theorem ([8, Theorem 1.8.4]) states that srgr(EndR(A)) = 1
implies Cgr(A) if � is abelian and A finitely generated. Since Sgr(A) ⇒ Cgr(A), Theorem
4.4 shows that it is not necessary to require that � is abelian and if A is not finitely gen-
erated, ENDR(A) can be considered instead of EndR(A). Theorem 4.4 also shows that the
conclusion of [8, Theorem 1.8.4] holds if the assumption srgr(ENDR(A)) = 1 is replaced
by the weaker condition sr(ENDR(A)ε) = 1.

Taking R for A in Theorem 4.4, we have that sr(Rε) = 1 if and only if R has graded sub-
stitution. Thus, Theorem 4.4 has the following corollary showing that [8, Corollary 1.8.5]
holds if the assumption srgr(R) = 1 is replaced by the weaker condition sr(Rε) = 1.

Corollary 4.5 If R is a �-graded ring with sr(Rε) = 1, then R is graded cancellable.

4.3 Graded Directly Finite Rings

Recall that an R-module A is directly finite (or Dedekind finite) if A ⊕ B ∼= A implies
B = 0 for any module B. In this case, we say that DF(A) holds. If DF denotes the ring
property (∀x)(∀y)(xy = 1 ⇒ yx = 1), then DF(A) holds if and only if DF holds for
EndR(A) (see [6, Lemma 5.1]). A ring R is said to be directly finite if R is a directly finite
left (equivalently right) R-module and this requirement holds if and only if DF holds for R.

If R is a graded ring and A a graded R-module, consider the graded versions of DF(A)

and DF.

DFgr(A): A ⊕ B ∼=gr A implies B = 0 for any graded module B.
DFgr: (∀x ∈ H)(∀y ∈ H)(xy = 1 ⇒ yx = 1)
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Then ENDR(A)ε has DF iff DFgr(A) holds. Indeed, if ENDR(A)ε has DF, A = B ⊕ C,

and y : A → C is a graded isomorphism, then y−1 can be extended to an element x of
ENDR(A)ε by mapping B identically to zero. Since xy = 1A, yx is equal to 1A by the
assumption and so b = yx(b) = y(0) = 0 for all b ∈ B. Conversely, if DFgr(A) holds and
x, y ∈ ENDR(A)ε are such that xy = 1A, then yA = yxA and y is a graded isomorphism
of A = xyA and yxyA = yA. Thus, A = yA ⊕ (1A − yx)A implies that (1A − yx)A = 0
by DFgr(A), and so yx = 1A.

By [9, Proposition 3.2], DFgr holds for ENDR(A) if and only if the condition below
holds.

DFs
gr(A): A ⊕ B ∼=gr (γ )A for some γ ∈ � implies B = 0 for any graded module B.

If DFs
gr(A) holds, the authors of [9] say that A is graded directly finite. A graded ring R

satisfies DFgr if and only if any of the equivalent conditions DFs
gr(RR) and DFs

gr(RR) holds
and Rε satisfies DF if and only if any of the equivalent conditions DFgr(RR) and DFgr(RR)

holds. By [9, Example 3.3], DFs
gr(A) is strictly stronger than DFgr(A).

The condition IC(A) clearly implies DF(A) and, by the same argument, we have the
following.

ICs
gr( ) =⇒ DFs

gr( )

⇓ ⇓
ICgr( ) =⇒ DFgr( )

We also note that ICw
gr( ) is sufficient to imply DFs

gr( ). Indeed, if ICw
gr(A) holds for

a graded module A and if A ⊕ B ∼=gr (γ )A, then (γ )(B) ∼= 0. So, (γ )B = 0 and hence
B = 0.

In contrast to the rows of the above diagram, we have that ICgr � DFgr. For example,
consider the algebra R from part (3) of Example 3.7. By this example, Reggr+URε holds
and so ICgr holds by Theorem 3.5. However, R is graded isomorphic to a Leavitt path
algebra of a graph which has a cycle with an exit and so DFgr fails by [9, Theorem 3.7].

We use the following proposition in the proofs of Theorem 5.3 and Proposition 5.4.

Proposition 4.6 If R is a �-graded ring with srgr(R) = 1, then R is graded directly finite.

Proof The proof is the graded version of the proof of [13, Lemma 1.7]. Let x ∈ Rγ , y ∈
Rγ −1 be such that xy = 1 and let e = 1−yx. Then (γ )yR = yxR and so R = (γ )yR+eR.
By srgr(R) = 1, there is z ∈ Rγ such that y + ez is invertible. Since xe = 0, x(y + ez) =
xy = 1 which implies that x = (y + ez)−1 is invertible. So, xy = 1 implies that y is the
inverse of x and that yx = 1.

4.4 Cancellation Properties of Strongly Graded Rings

If R is strongly graded (Rγ Rδ = Rγδ for every γ, δ ∈ �), the category of graded R-modules
and the category of Rε-modules are equivalent by A ∼=gr Aε ⊗Rε R �→ Aε with the inverse
B ∼= (B ⊗Rε R)ε �→ B ⊗Rε R ([8, Theorem 1.5.1]).

Proposition 4.7 Let R be a strongly �-graded ring and A a graded R-module. The
following hold.

(1) A is graded internally cancellable if and only if Aε is internally cancellable.
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(2) A is graded cancellable if and only if Aε is cancellable.
(3) A has graded substitution if and only if Aε has substitution.
(4) DFgr(A) holds if and only if Aε is directly finite.

Proof All four statements are shown similarly, using the equivalence of categories. We
provide more details for the first condition and note that the proofs of (2), (3), and (4) are
similar.

Assuming that ICgr(A) holds, ICgr(Aε⊗Rε R) also holds since A and Aε⊗Rε R are graded
isomorphic. If Aε = Bε ⊕ Cε = Dε ⊕ Eε for some right Rε-modules Bε, Cε,Dε, and Eε

with f : Bε
∼= Dε, then Aε ⊗Rε R = Bε ⊗Rε R⊕Cε ⊗Rε R = Dε ⊗Rε R⊕Eε ⊗Rε R and f

can be extended to the graded isomorphism Bε ⊗Rε R → Dε ⊗Rε R by a ⊗ r �→ f (a) ⊗ r .
By ICgr(A), Cε ⊗Rε R ∼=gr Eε ⊗Rε R. Considering the ε-components, we obtain that
Cε

∼= (Cε ⊗Rε R)ε ∼= (Eε ⊗Rε R)ε ∼= Eε .
Assume that IC(Aε) holds and that A = B ⊕ C = D ⊕ E for some graded R-modules

B, C,D, E with B ∼=gr D. Then Aε = Bε ⊕ Cε = Dε ⊕ Eε and Bε
∼= Dε . By IC(Aε),

f : Cε
∼= Eε for some f . Such f induces

−
f : Cε ⊗Rε R ∼=gr Eε ⊗Rε R so that C ∼=gr

Cε ⊗Rε R ∼=gr Eε ⊗Rε R ∼=gr E.

The implications URgr ⇒ URε, srgr(R) = 1 ⇒ sr(Rε) = 1 and DFgr ⇒ (DF holds for
Rε) are strict even for strongly graded rings. Indeed, if R is the ring from part (3) of Example
3.7, then R is strongly graded by [8, Theorem 1.6.13]. By Example 3.7, R is graded regular
and Rε is unit-regular. Thus, sr(Rε) = 1 and Rε is directly finite. However, DFgr fails for
R as we noted in Section 4.3 (by [9, Theorem 3.7]). Hence, srgr(R) > 1 by Proposition 4.6
and URgr fails for R by Proposition 4.2.

4.5 Summary of Relations

The graded module properties we considered are related as follows.

Sgr( ) =⇒ Cgr( ) =⇒ ICgr( ) =⇒ DFgr( )

Note that these relations match the relations of the nongraded analogues in the diagram in
[13, Formula (4.2)]. Considering rings from [13, Examples 3.2(3) and 4.7] and [6, Example
5.10] and grading them trivially by any group shows that the implications are strict.

We also note that the diagram in Section 4.3 illustrates that our use of s in the superscript
of the module properties is consistent: the absence of s indicates that the property is obtained
only by replacing “module” by “graded module” and “homomorphism” by “graded homo-
morphism” without considering the graded module shifts. So, for any graded module A,

graded module-theoretic properties of A correspond to properties of ENDR(A)ε and strong
graded module-theoretic properties of A correspond to graded properties of ENDR(A).

The graded ring properties are related as follows by Proposition 4.2 and Corollary 4.5.

URgr =⇒ srgr(R) = 1 =⇒ sr(Rε) = 1 =⇒ Cgr(R)

The implications are also strict. To see that the first implication is strict, consider any ring
which has stable range 1 and which is not unit-regular (e.g. the ring K[[x]] of power series
of one variable over any field K , see [13, Examples 1.6]) and grade it trivially by any group.
To see that the third implication is strict, consider the ring R = Z trivially graded by Z.
Then sr(R0) = sr(Z) = 2 > 1 and Cgr(R) holds by part (4) of Example 3.7. To see that
the second implication is strict, consider any graded regular ring R which is not graded
unit-regular and such that Rε is unit-regular (e.g. the ring from part (1) of Example 3.7).

641Graded Cancellation Properties of Graded Rings and Graded...



This example also shows that the middle implication in the diagram below, which holds by
Proposition 4.2 and Theorem 3.5, is strict.

Reggr =⇒ ( URgr ⇐⇒ srgr(R) = 1 =⇒ sr(Rε) = 1 ⇐⇒ Cgr(R) )

5 Graded Unit-regularity of SomeMatrix and Leavitt Path Algebras

In this section, K is a field, trivially graded by the group of integers Z, and K[xm, x−m]
is the ring of Laurent polynomials naturally Z-graded by K[xm, x−m]mk = Kxmk and
K[xm, x−m]n = 0 if m does not divide n. Note that this makes K[xm, x−m] into a graded
field.

5.1 Graded Unit-regularityZ-gradedmatrix algebras over K and K [xm, x−m ]
Proposition 5.1 Let m and n be positive and γ1, γ2, . . . , γn arbitrary integers.

(1) Mn(K)(γ1, γ2 . . . , γn) is graded unit-regular if and only if n = 1 or γ1 = γ2 = . . . =
γn.

(2) If the list γ1, . . . , γn is such that all of 0, 1, . . . , m−1 appear on it when it is considered
modulo m, then Mn(K[xm, x−m])(γ1, . . . , γn) is graded unit-regular if and only if
n = km for some positive integer k and the list γ1, . . . , γn, considered modulo m, is
such that each i = 0, 1, . . . , m − 1 appears exactly k times.

Proof (1) We prove direction ⇒ by contrapositive. Assume that n > 1 and that not all
γ1, γ2 . . . , γn are equal. If γi is the smallest of γ1 . . . , γn, then δ1 = γ1−γi, . . . , δn = γn−γi

is a list of nonnegative integers such that at least one is positive by the assumption that
not all γ1, . . . , γn are equal and at least one is zero by construction. By permuting the
entries, we can assume that δ1 is zero and δ2 is positive. Consider the δ2-component of
Mn(K)(0, δ2, . . . , δn). It is nonzero since the matrix unit e21 is in it. The first row of any
element of this component consists of zeros since δ2 + δi > 0 and so K−0+δ2+δi

= 0
for all i = 1, . . . , n. Hence, the determinant of any matrix in the δ2-component is zero
and so Mn(K)(0, δ2, . . . , δn)δ2 does not contain an invertible element. By Lemma 2.5,
Mn(K)(0, δ2, . . . , δn) ∼=gr Mn(K)(γ1, γ2 . . . , γn) is not graded unit-regular.

For the converse, note that the algebras Mn(K)(γ1, γ1, . . . , γ1) and Mn(K)(0, 0, . . . , 0)

are equal by part (2) of Lemma 2.1. The algebra Mn(K)(0, 0, . . . , 0) is graded unit-regular
since it is trivially graded and Mn(K) is unit-regular.

(2) We prove direction ⇒ by contrapositive. Assume that m does not divide n or that
n = km for some k but that the list γ1, . . . , γn, considered modulo m, is such that some
i, j = 0, 1, . . . , m − 1 appear different number of times. We show that there is a nonzero
component of Mn = Mn(K[xm, x−m])(γ1, . . . , γn) such that all its elements have determi-
nant zero and, consequently, are not invertible. By Lemma 2.5, this shows that Mn is not
graded unit-regular.

Using part (3) of Lemma 2.1, it is sufficient to consider the case 0 ≤ γj < m for
j = 1, . . . , n. Let di be the number of times i appears on the list γ1, . . . , γn for all i =
0, . . . , m−1. Since every i = 0, . . . , m−1 appears in the list by the assumption, di > 0 for
every i. Let j be such that dj = min{d0, . . . , dm−1}. Using part (2) of Lemma 2.1, we can
add m − j − 1 to all the entries of the list and use part (3) of Lemma 2.1 again to consider
the elements in the new list modulo m again. By doing this, we can assume that j = m − 1.
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Permuting the entries using part (1) of Lemma 2.1 and relabeling d0, . . . , dm−1 if necessary,
we can assume that Mn is

Mn(K[xm, x−m])(0, 0 . . . , 0, 1, 1, . . . , 1, . . . . . . . . . , m − 1, m − 1, . . . , m − 1)

where every i appears di times on the above list, dm−1 ≤ dj for all j = 0, . . . , m − 1,

and dm−1 < di for at least one i = 0, . . . , m − 1. The (i + 1)-component is nonzero since
the matrix unit es1 where s = 1 + ∑i

j=0 di is in it. An arbitrary element A of the (i + 1)-
component of Mn can be divided into m×m blocks of sizes dj ×dl for j, l = 0, . . . , m−1.
All of the blocks are zero except possibly

d0×dm−1−i , d1×dm−i , . . . , di ×dm−1 and di+1×d0, di+2×d1, . . . , dm−1×dm−2−i .

Note that the block di × dm−1 is the only nonzero block in di rows of A and the last dm−1
columns of A and that there are more rows than columns in this block since di > dm−1.
Compute the determinant of A using expansion with respect to the row of A corresponding
to the first row of this block. Continue computing the minors of this minor. In each step, use
the row corresponding to the first row of the remaining portion of this block. The condition
di > dm−1 implies that every minor of the di − dm−1-th step is zero. Thus, all the minors
computed in the previous steps are zero also and, as a consequence, the determinant of A is
zero as well.

To prove the converse, let R = Mm

(
Mk(K[xm, x−m])(0, 0, . . . , 0)

)
(0, 1, . . . , m − 1).

By Lemma 2.1, R ∼=gr Mn(K[xm, x−m])(γ1, . . . , γn), so it is sufficient to show that R is
graded unit regular.

An element A of the l-component for l = k′m + i′ with 0 ≤ i′ < m can be written as
m×m blocks of k×k matrices

[[ast ]ij
]

with exactly m possibly nonzero blocks. The blocks
at the (i′ + 1, 1), (i′ + 2, 2), . . . (m,m − i′) spots are elements of

Mk(K[xm, x−m])(0, 0, . . . , 0)k′m = Mk(K)xk′m

and the blocks at (1,m − i′ + 1), (2,m − i′ + 2), . . . (i′,m) spots are elements of

Mk(K[xm, x−m])(0, 0, . . . , 0)(k′+1)m = Mk(K)x(k′+1)m.

For each (i, j) ∈ {(i′ + 1, 1), (i′ + 2, 2), . . . (m, m − i′)}, ast = bst x
k′m ∈ Kxk′m for

all s, t = 1, . . . , k. For such (i, j), let [vst ]ij be an invertible matrix in Mn(K) such
that [bst ]ij [vst ]ij [bst ]ij = [bst ]ij and let ust = vst x

−k′m for s, t = 1, . . . , k. For each
(i, j) ∈ {(1,m − i′ + 1), (2,m − i′ + 2), . . . (i′,m)}, ast = bst x

(k′+1)m ∈ Kx(k′+1)m for
all s, t = 1, . . . , k. For such (i, j), let [vst ]ij be an invertible matrix in Mn(K) such that
[bst ]ij [vst ]ij [bst ]ij = [bst ]ij and let ust = vst x

−(k′+1)m for s, t = 1, . . . , k. For all other
(i, j), let [ust ]ij = 0k×k . Finally, let Uij = [ust ]ij and U = [

Uji

]
. By construction, U is

in the −l-component of Rk and AUA = A. If U−1
ij is the inverse of Uij for Uij �= 0 and

U−1
ij = 0 for Uij = 0, then U is invertible with U−1 = [U−1

ij ].
If K is a trivially Z-graded field, Proposition 5.1 can be used to readily

conclude that URgr holds for M9(K[x3, x−3])(0, 0, 0, 1, 1, 1, 2, 2, 2) and fails for
M9(K[x3, x−3])(0, 0, 0, 0, 1, 1, 1, 2, 2) for example. Proposition 5.1 also generalizes the
example from the introduction stating that M2(K)(0, 1) is not graded unit-regular and
implies that Mn(K[x, x−1])(γ1, . . . , γn) ∼=gr Mn(K[x, x−1])(0, . . . , 0) is graded unit-
regular for any n and any γ1, . . . , γn ∈ Z.

Proposition 5.1 can also be used in the following example showing that graded unit-
regularity is not necessarily passed to graded corners.
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Example 5.2 Let R = M3(K[x3, x−3])(0, 1, 2) and S = M2(K[x3, x−3])(0, 1). By
Proposition 5.1, R is graded unit-regular and S is not graded unit-regular. Let e = e11 + e22
where e11 and e22 are the standard matrix units. Then eRe ∼=gr S and so eRe is not graded
unit-regular.

5.2 Leavitt Path Algebras

We briefly review some relevant definitions. Let E be a directed graph. The graph E is
row-finite if every vertex emits finitely many edges and it is finite if it has finitely many
vertices and edges. A sink of E is a vertex which does not emit edges. A vertex of E

is regular if it is not a sink and if it emits finitely many edges. A cycle is a closed path
such that different edges in the path have different sources. A cycle has an exit if a vertex
on the cycle emits an edge outside of the cycle. The graph E is acyclic if there are no
cycles. We say that graph E is no-exit if v emits just one edge for every vertex v of every
cycle.

Let E0 denote the set of vertices, E1 the set of edges and s and r denote the source and
range maps of a graph E. If K is any field, the Leavitt path algebra LK(E) of E over K is
a free K-algebra generated by the set E0 ∪E1 ∪ {e∗ | e ∈ E1} such that for all vertices v, w

and edges e, f,

(V) vw = 0 if v �= w and vv = v, (E1) s(e)e = er(e) = e,

(E2) r(e)e∗ = e∗s(e) = e∗, (CK1) e∗f =0 if e �=f and e∗e=r(e),
(CK2) v = ∑

e∈s−1(v) ee∗ for each regular vertex v.

By the first four axioms, every element of LK(E) can be represented as a sum of the
form

∑n
i=1 aipiq

∗
i for some n, paths pi and qi , and elements ai ∈ K, for i = 1, . . . , n.

Using this representation, it is direct to see that LK(E) is a unital ring if and only if E0 is
finite in which case the sum of all vertices is the identity. For more details on these basic
properties, see [1].

If we consider K to be trivially graded by Z, LK(E) is naturally graded by Z so that
the n-component LK(E)n is the K-linear span of the elements pq∗ for paths p, q with
|p| − |q| = n where |p| denotes the length of a path p. While one can grade a Leavitt path
algebra by any group � (see [8, Section 1.6.1]), we always consider the natural grading
by Z.

By [11, Proposition 5.1], if E is a finite no-exit graph, then LK(E) is graded isomor-
phic to

R =
k⊕

i=1

Mki
(K)(γi1 . . . , γiki

) ⊕
n⊕

j=1

Mnj
(K[xmj , x−mj ])(δj1, . . . , δjnj

) (Rep)

where k is the number of sinks, ki is the number of paths ending in the sink indexed by i for
i = 1, . . . , k, and γil is the length of the l-th path ending in the i-th sink for l = 1, . . . , ki

and i = 1, . . . , k. In the second term, n is the number of cycles, mj is the length of the j -th
cycle for j = 1, . . . , n, nj is the number of paths which do not contain the cycle indexed by
j and which end in a fixed but arbitrarily chosen vertex of the cycle, and δjl is the length of
the l-th path ending in the fixed vertex of the j -th cycle for l = 1, . . . , nj and j = 1, . . . , n.
This representation is not necessarily unique (see [17, Example 2.2]), but it is unique up to
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a graded isomorphism by Lemma 2.1. We refer to the graded algebra R above as a graded
matricial representation of LK(E).

5.3 Characterization of Graded Unit-regular Leavitt Path Algebras of Finite Graphs

We use graded matricial representations and Proposition 5.1 to prove the main result of this
section. The notation EDL below is supposed to shorten “equally distributed lenghts”.

Theorem 5.3 If K is a field and E is a finite graph, the following conditions are equivalent.

(1) LK(E) is graded unit-regular.
(2) E is a no-exit graph without sinks which receive edges such that Condition (EDL)

below holds.

(EDL) For every cycle of length m, the lengths, considered modulo m, of all paths
which do not contain the cycle and which end in an arbitrary vertex of the
cycle, are

0, 0, . . . , 0, 1, 1, . . . , 1, . . . . . . . . . , m − 1,m − 1 . . . m − 1

where each i is repeated the same number of times in the above list for i =
0, . . . , m − 1.

Proof If (1) holds, then LK(E) is graded directly finite by Propositions 4.2 and 4.6. So, E is
a no-exit graph by [9, Theorem 3.7]. Let R be a graded matricial representation as in (Rep).
Since R is graded unit-regular, each graded direct summand of R is graded unit-regular. If
ki > 1, then not all γi1 . . . , γiki

are equal since one of them is zero (corresponding to the
trivial path of length zero to the i-th sink) and the others are positive (corresponding to the
lengths of nontrivial paths to the i-th sink). So, Proposition 5.1 and Lemma 2.1 imply that
ki = 1 for all i = 1, . . . , k which means that the trivial path is the only one ending in the
i-th sink for all i = 1, . . . , k.

For every j = 1, . . . , n, each l = 0, . . . mj − 1 appears on the list δj1, . . . , δjnj
because

there is a path of length l which is a subpath of the j -th cycle and which ends at the selected
vertex vj of the j -th cycle. Thus, Proposition 5.1 and Lemma 2.1 imply that nj is a multiple
of mj and that the integers δj1, . . . , δjnj

, considered modulo mj and permuted if necessary,
produce a list as in Condition (EDL). Thus, the lengths, considered modulo mj , of paths
which do not contain the j -th cycle and which end at vj are as listed in Condition (EDL).

Conversely, assume that E is such that (2) holds. Since E is no-exit, a graded matricial
representation R of LK(E) has the form as in (Rep). By the assumption that no sink receives
an edge, ki = 1 for every i = 1, . . . , k. By the assumption that (EDL) holds, we can apply
Lemma 2.1 to permute the shifts and to replace each δjl by the remainder of the division by
mj for l = 1, . . . , nj and j = 1, . . . , n. This produces a graded isomorphism of R and the
algebra

Kk⊕
n⊕

j=1

Mkj mj
(K[xmj , x−mj ])(0, 0, . . . , 0, 1, 1, . . . , 1, . . . . . . . . . , mj −1, mj −1, . . . , mj −1)

where each i = 0, . . . , mj−1 appears kj times in the list of shifts above for all j = 1, . . . , n.
By Proposition 5.1, every direct summand of this last algebra is graded unit-regular so R is
graded unit-regular also. Hence, LK(E) is graded unit-regular.
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Theorem 5.3 enables one to readily conclude that the Leavitt path algebras of the first two
graphs below are not graded unit-regular while the opposite holds for the last two graphs.

• ��• • ��• ��•�� • ��• ��• ��•�� • ��• ��•�� •��

Indeed, the first graph has a sink which receives an edge so condition (2) of Theorem 5.3
fails. For the second graph, 0, 1, 1 are the lengths (modulo 2) of paths which end at any
vertex of the cycle and which do not contain the cycle. So, (EDL) fails. For the last two
graphs, 0, 0, 1, and 1 are the lengths (modulo 2) of the relevant paths and condition (2) of
Theorem 5.3 holds.

5.4 Characterizations of Other Cancellation Properties of Leavitt Path Algebras

Proposition 5.4 Let K be a field and E be a graph such that E0 is finite. For part (1), (2)
and (3), we also assume that E1 is finite.

(1) The following conditions are equivalent.

(a) srgr(LK(E)) = 1. (b) ICgr holds for LK(E). (c) Condition (2) of Theorem
5.3 holds.

(2) sr(LK(E)) = 1 if and only if E is acyclic.
(3) LK(E) is graded weakly unit-regular if and only if E is no-exit.
(4) IC holds for LK(E) if and only if E is no-exit.
(5) Conditions Reggr+URε and Sgr(LK(E)) holds for LK(E).

Proof Note that the assumption that E0 is finite ensures that LK(E) is unital. The assump-
tion that E1 is also finite in part (1) enables us to use Theorem 5.3 and in parts (2) and
(3) ensures that a graded matricial representation of a no-exit graph has the form as in
Section 5.2.

(1) Since LK(E) is graded regular ([7, Theorem 9]), Propositions 4.2, 3.4, and Theorem
5.3 imply that each of (a), (b) and (c) is equivalent with the condition that URgr holds
for LK(E).

(2) If sr(LK(E)) = 1, then LK(E) is directly finite by Proposition 4.6 in the nongraded
case. Thus, E is no-exit by [15, Theorem 4.12] and so LK(E) is isomorphic to a direct
sum of matricial algebras over K and K[x, x−1] (which is a matricial representation if
we ignore the grading). Since sr(K[x, x−1]) > 1 and sr(LK(E)) = 1, there cannot be
matrix algebras over K[x, x−1] present. Thus, E is acyclic. Conversely, if E is acyclic,
then LK(E) is unit-regular by [2, Theorem 2] and so sr(LK(E)) = 1 by Proposition
4.2 in the nongraded case.

(3) If LK(E) is graded weakly unit-regular, ICw
gr(LK(E)) holds by Proposition 3.4. The

condition ICw
gr(LK(E)) implies DFs

gr(LK(E)) as we showed in Section 4.3. By the

assumption that E0 is finite, LK(E) is unital and so LK(E) ∼=gr EndLK(E)(LK(E)).
Thus, the condition DFs(LK(E)) implies that LK(E) is graded directly finite. By
[9, Theorem 3.7], E is a no-exit graph. Conversely, if E is a no-exit graph, then a
graded matricial representation of LK(E) is graded semisimple, and hence weakly
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graded unit-regular. Here we make use of the fact that the implication “semisimple ⇒
UR” directly implies “graded semisimple ⇒ URw

gr”. Thus, LK(E) is weakly graded
unit-regular.

(4) If IC(P ) holds for every finitely generated projective LK(E)-module P , then
IC(LK(E)) holds. Since IC( ) ⇒ DF( ), DF(LK(E)) holds. Using the same argu-
ment as in the proof of (3), the assumption that E0 is finite ensures that the condition
DF(LK(E)) implies that LK(E) is directly finite. By [15, Theorem 4.12], E is a
no-exit graph. Conversely, if E is no-exit, then LK(E) is cancellable by [4, Lemma
5.5]. So, C(P ) holds for every finitely generated projective LK(E)-module P which
implies that IC(P ) holds for every such module P .

(5) Since E0 is finite, the algebra LK(E)0 is a matricial algebra over K (see [8, Section
3.9.3]). So, LK(E)0 is unit-regular and sr(LK(E)0) = 1. Hence, URε holds and
Sgr(LK(E)) holds by Theorem 4.4. Reggr holds by [7, Theorem 9].

The diagram below summarizes the statements above for finite graphs.

URgr, ICgr
srgr = 1

=
E satisfies (2)

of Thm 5.3
=⇒ URw

gr, DFgr,
IC, C, DF

=
E is

no-exit
⇐= UR, Reg,

sr = 1
=

E is
acyclic

⇓
Reggr+URε ,

Sgr(LK(E))
=

E is any
finite graph

5.5 Possible Generalizations

A local version of a ring-theoretic property P is typically obtained by requiring that for
every finite set F, there is an idempotent e such that F ⊆ eRe and eRe has property P . If
R is non-unital, this definition enables one to consider local versions of properties whose
definitions require the existence of the ring identity.

The properties of being unit-regular and directly finite can be generalized to non-unital
rings in this way. This approach has been used in [2] for unit-regularity and in [15] for
direct finiteness. While the condition (∀a, b)(aR + bR = R ⇒ (∃x)(a + bx)R = R)

does not specifically include the identity, it is just a shorter version of the condition
(∀a, b)((∃c, d)ac + bd = 1 ⇒ (∃x, u)(a + bx)u = 1) where the identity does appear. So,
sr(R) = 1 should also be treated as a property of unital rings.

In the graded case, properties of unital graded rings can be generalized to non-unital case
in the same way. In particular, a graded, possibly non-unital, ring R is graded locally unit-
regular if for every finite set F , there is a homogeneous idempotent u such that F ⊆ uRu

and uRu is graded unit-regular. A graded ring having graded locally stable range 1, a graded
locally directly finite ring, and a graded locally weakly unit-regular ring can be defined
analogously.

Using these definitions, it is possible to consider graded local cancellability properties
of Leavitt path algebras over graphs without any restrictions on their cardinality. Given this
fact, we wonder whether the requirements that E is finite can be dropped from the results
of Sections 5.3 and 5.4. In particular, we wonder about the following.

Question 5.5 What graph-theoretic condition is equivalent to the condition that the Leavitt
path algebra of an arbitrary graph is graded locally unit-regular?
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Graded regularity passes to graded corners so the local version of Proposition 4.2 holds.
Hence, an answer to the above question would provide characterization of graded locally
stable range 1 also because every Leavitt path algebra is graded regular.

5.6 More on Question 1.2

As mentioned in the introduction, considering the graded version of Handelman’s Conjec-
ture provides further evidence that Reggr+URε is more suited as a graded analogue of UR
than URgr. Recall that Handelman’s Conjecture states that a ring with involution which is
∗-regular (see [5] or [3] for definition and basic properties) is necessarily directly finite and
unit-regular. While the part on direct finiteness has been shown to hold, the part on unit-
regularity is still open. In [3], the authors note that this conjecture holds for Leavitt path
algebras. In [10], the authors consider the graded version of ∗-regularity and note that every
Leavitt path algebra over a field K with a positive definite involution (for any n and any
k1, . . . , kn ∈ K ,

∑n
i=1 kik

∗
i = 0 implies ki = 0 for i = 1, . . . , n) is graded ∗-regular. They

also note that if E is the graph from part (3) of Example 3.7, then LK(E) is not graded
unit-regular for any K so the graded version of Handelman’s Conjecture fails. However, as
we argued in the introduction, Question 1.2 is more relevant as a graded version of Han-
delman’s Conjecture. For unital Leavitt path algebras, the answer to this question is “yes”
since unital Leavitt path algebras satisfy Reggr+URε by Proposition 5.4.
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16. Vaš, L.: Simplicial and dimension groups with group action and their realization, submitted for

publication, preprint arXiv:1805.07636 [math.KT]

648 L. Vaš
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