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Abstract
We use recollement and HRS-tilt to describe bounded t-structures on the bounded derived
category Db(X) of coherent sheaves over a weighted projective line X of domestic or tubu-
lar type. We will see from our description that the combinatorics in the classification of
bounded t-structures on Db(X) can be reduced to that in the classification of bounded
t-structures on the bounded derived categories of finite dimensional right modules over
representation-finite finite dimensional hereditary algebras.
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1 Introduction

1.1 Background and Aim

In an attempt to give a geometric treatment of Ringel’s canonical algebras [43], Geigle and
Lenzing introduced in [17] a class of noncommutative curves, called weighted projective
lines, and each canonical algebra is realized as the endomorphism algebra of a tilting bundle
in the category of coherent sheaves over some weighted projective line. A stacky point of
view to weighted projective lines is that for a weighted projective line X defined over a field
k, there is a smooth algebraic k-stack X with the projective line over k as its coarse moduli
space such that cohX � cohX and QcohX � QcohX, where coh (resp. Qcoh) denotes
the category of coherent (resp. quasi-coherent) sheaves. As an indication of the importance
of the notion of weighted projective lines, a famous theorem of Happel [20] states that if
A is a connected hereditary category linear over an algebraically closed field k with finite
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dimensional morphism and extension spaces such that its bounded derived categoryDb(A)

admits a tilting object then Db(A) is triangle equivalent to the bounded derived category
of finite dimensional modules over a finite dimensional hereditary algebra over k or to the
bounded derived category of coherent sheaves on a weighted projective line defined over k.

The notion of t-structures is introduced by Beilinson, Bernstein and Deligne in [7] to
serve as a categorical framework for defining perverse sheaves in the derived category of
constructible sheaves over a stratified space. Recently, there has been a growing interest in
t-structures ever since Bridgeland [12] introduced the notion of stability conditions. To give
a stability condition on a triangulated category requires specifying a bounded t-structure.
On the other hand, there are many works on bounded t-structures on the bounded derived
categoryDb(�) of finite dimensional modules over a finite dimensional algebra � in recent
years. Remarkably, König and Yang proved the existence of bijective correspondences,
which we call König-Yang correspondences, between several concepts among which are
bounded t-structures with length heart on Db(�), equivalence classes of simple-minded
collections in Db(�), equivalence classes of silting objects in Kb(proj�), and bounded co-
t-structures on Kb(proj�), where Kb(proj�) denotes the bounded homotopy category of
finite dimensional projective modules over �.

This article is devoted to describing bounded t-structures on the bounded derived cate-
gory of coherent sheaves over a weighted projective line. We mainly combine two classical
tools to describe t-structures: recollement and HRS-tilt. Recollement is introduced at the
same time with t-structures in [7]. A recollement stratifies a triangulated category into
smaller ones and allows us to glue t-structures. HRS-tilt, introduced by Happel, Reiten and
Smalø in [22], constructs a new t-structure from an old one via a torsion pair in the heart
of the old t-structure. We will see that a large class of t-structures are glued from recolle-
ments. Given a t-structure, to build a recollement from which the t-structure can be glued,
we rely on Ext-projectives. This concept was introduced by Auslander and Smalø to inves-
tigate almost split sequences in subcategories [5]. Assem, Salario and Trepode introduced a
triangulated version in [2] to study t-structures. Our small observation is that an exceptional
Ext-projective object helps us to build a desired recollement under some condition (see
Lemma 2.15). Almost all recollements in this article are built in this way (plus induction).
There do exist bounded t-structures without any available Ext-projective. Fortunately, in our
situation, these are up to shift HRS-tilts with respect to some torsion pair in the standard
heart and they can be described explicitly.

1.2 Main Results

Let X be a weighted projective line defined over an algebraically closed field k, and O its
structure sheaf (see Section 3.1). Depending on its weight function w : P1 → Z≥1, where
P
1 is (the set of closed points of) the projective line over k and Z≥1 is the set of positive

integers,X is of domestic type, of tubular type, or of wild type. Denote by vectX resp. coh0X
the category of vector bundles resp. torsion sheaves over X, by A = cohX the category
of coherent sheaves and by D = Db(X) the bounded derived category of cohX. coh0X
consists exactly of finite length objects in cohX and coh0X decomposes as a coproduct
coh0X = ∐

λ∈P1 cohλX, where cohλX consists of those coherent sheaves supported at λ.
For P ⊂ P

1, denote by (TP ,FP ) the torsion pair in cohX

(add{cohλX | λ ∈ P }, add{vectX, cohλX | λ ∈ P
1\P }).

The number of isoclasses of simple sheaves in cohλX isw(λ). A (possibly empty) collection
S of simple sheaves overX is called proper if for each λ ∈ P

1, S does not contain a complete
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set of simple sheaves in cohλX and if simple sheaves in S are pairwise non-isomorphic.
Two such collections are equivalent if they yield the same isoclasses of simple sheaves. A
t-structure on Db(X) is said to be compatible with a given a recollement if it is glued from
the recollement (see Section 2.4). See Section 1.4 for the notation 〈−〉D , (−)⊥A , (−)⊥D

and Db(−).
We are ready to state our theorem for a weighted projective line of domestic type.

Theorem 1.1 (Theorem 4.18) Suppose X is of domestic type and let (D≤0,D≥0) be a
bounded t-structure on Db(X) with heart B. Then exactly one of the following holds:

(1) up to the action of the Picard group PicX of X, (D≤0,D≥0) is compatible with the
recollement

O ⊥D i∗ �� D = Db(X)
��
��

�� 〈O〉D,

j!��

��

where i∗, j! are the inclusion functors, in which case B is of finite length;
(2) for a unique (up to equivalence) proper collection S of simple sheaves and a unique

P ⊂ P
1, (D≤0,D≥0) is compatible with the recollement

Db(S ⊥A) = S ⊥D i∗ �� D = Db(X)

��

��
�� 〈S〉D,

j!��

��

where i∗, j! are the inclusion functors, such that the corresponding t-structure on
Db(S ⊥A) is a shift of the HRS-tilt with respect to the torsion pair (S ⊥A∩TP ,S ⊥A∩
FP ) in S ⊥A , in which case B is not of finite length and B is noetherian resp. artinian
iff P = ∅ resp. P = P

1.

To state our theorem for a weighted projective line of tubular type, we need to introduce
more notation (see Section 3.3). Let R (resp. Q) be the set of real (resp. rational) numbers
and let R̄ = R ∪ {∞}, Q̄ = Q ∪ {∞}. Let X be of tubular type. Denote by cohμ

X the
category of semistable coherent sheaves over X with slope μ ∈ Q̄ (we deem torsion sheaves
to be semistable and thus coh∞X = coh0X). Db(X) admits an exact autoequivalence �q ′,q
for each q ′, q ∈ Q ∪ {∞}, which is called a telescopic functor, such that �q ′,q (cohq

X) =
cohq ′

X. For μ ∈ Q, denote cohμ
λX = �μ,∞(cohλX). The category cohμ

X decomposes as
cohμ

X = ∐
λ∈P1 coh

μ
λX. For μ ∈ R̄, coh>μ

X (resp. coh<μ
X) denotes the subcategory of

cohX consisting of those sheaves whose semistable factors have slope > μ (resp. < μ).

Theorem 1.2 (Theorem 4.20) Suppose X is of tubular type and let (D≤0,D≥0) be a
bounded t-structure on Db(X) with heart B. Then exactly one of the following holds:

(1) for a unique μ ∈ R\Q, (D≤0,D≥0) is a shift of the HRS-tilt with respect to the torsion
pair (coh>μ

X, coh<μ
X) in cohX, in which case B is neither noetherian nor artinian;

(2) for a unique μ ∈ Q̄ and a unique P ⊂ P
1, (D≤0,D≥0) is a shift of the HRS-tilt with

respect to the torsion pair

(add{coh>μ
X, cohμ

λX | λ ∈ P }, add{cohμ
λX, coh<μ

X | λ ∈ P
1\P })

in cohX, in which case B is not of finite length and B is noetherian resp. artinian iff
P = ∅ resp. P = P

1;
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(3) for a unique q ∈ Q̄, a unique (up to equivalence) nonempty proper collection S of
simple sheaves and a unique P ⊂ P

1, �∞,q ((D≤0,D≥0)) is compatible with the
recollement

Db(S ⊥A) = S ⊥D i∗ �� D = Db(X)

��

��
�� 〈S〉D,

j!��

��
where i∗, j! are the inclusion functors, such that the corresponding t-structure on
Db(S ⊥A) is a shift of the HRS-tilt with respect to the torsion pair (S ⊥A∩TP ,S ⊥A∩
FP ) in S ⊥A , in which case B is not of finite length and B is noetherian resp. artinian
iff P = ∅ resp. P = P

1;
(4) for some q ∈ Q̄ and some exceptional simple sheaf S, �∞,q ((D≤0,D≥0)) is

compatible with the recollement

Db(S ⊥A) = S ⊥D i∗ �� D = Db(X)

��

��
�� 〈S〉D,

j!��

��
where i∗, j! are the inclusion functors, such that the corresponding t-structure on
Db(S ⊥A) has a length heart, in which case B is of finite length.

We obtain from the two theorems above certain bijective correspondence for those
bounded t-structures whose heart is not of finite length. Note that any group G of
exact autoequivalences of Db(X) acts on the set of bounded t-structures on Db(X) by
�((D≤0,D≥0)) := (�(D≤0),�(D≥0)) for � ∈ G and a bounded t-structure (D≤0,D≥0)
on Db(X). In the following corollary, we deem Z as the group of exact autoequivalences
generated by the translation functor of Db(X), which acts freely on the set of bounded
t-structures on Db(X).

Corollary 1.3 (Corollary 4.21) (1) If X is of domestic type then there is a bijection

{bounded t-structures on Db(X) whose heart is not of finite length}/Z←→
⊔

S

(
{P | P ⊂ P

1} × {bounded t-structures on 〈S〉D}
)

, (1.2.1)

where S runs through all equivalence classes of proper collections of simple sheaves.
(2) If X is of tubular type then there is a bijection

{bounded t-structures on Db(X) whose heart is not of finite length}/Z←→

R\Q
⊔

(

Q̄×
⊔

S

(
{P | P ⊂ P

1} × {bounded t-structures on 〈S〉D}
)
)

, (1.2.2)

where S runs through all equivalence classes of proper collections of simple sheaves.

Recall that an equioriented As-quiver refers to the quiver

•
1
−→ •

2
−→ • . . . • −→ •

s−1 −→ •
s
.

(Since only such an orientation is involved in this article, �As will always denote an equior-
iented As-quiver.) For convenience, we also define �A0 to be the empty quiver and define
mod k �A0 to be the zero category. Given a nonempty proper collection S of simple sheaves
on X, there are positive integers m, k1, . . . , km such that 〈S〉A � ∐m

i=1 modk �Aki
, where

modk �Al is the category of finite dimensional right modules over the path algebra of the
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equioriented Al-quiver, and we have an exact equivalence 〈S〉D �∐m
i=1Db(modk �Aki

). By
Corollary 1.3, if X is a weighted projective line of domestic or tubular type then to classify
bounded t-structures on Db(X) whose heart is not of finite length, it sufficies to classify
bounded t-structures on each Db(modk �Aki

). Since bounded t-structures on Db(modk �Al )

have length hearts, one can achieve this by calculating silting objects or simple-minded col-
lections in Db(modk �Aki

) by virtue of König-Yang correspondences. We know that Db(X)

is triangle equivalent to the bounded derived category of finite dimensional right modules
over a canonical algebra whose global dimension is at most 2. So to obtain a bijective
correspondence for bounded t-structures on Db(X) with length heart, we can again utilize
König-Yang correspondences and try to compute collections of simple objects in the heart
(using Proposition 2.11) or silting objects in Db(X) (using [36, Corollary 3.4]) from the
recollements in Theorem 1.1(1) and Theorem 1.2(4). As illustrated after Corollary 4.21 in
Section 4.4, the two theorems reduce the combinatorics in the classification of bounded t-
structures on Db(X) to the combinatorics in the classification of bounded t-structures on
bounded derived categories of finite dimensional modules over representation-finite finite
dimensional hereditary algebras.

To give an application of our description of bounded t-structures, we prove in Section 5 a
characterization of when the heart of a bounded t-structure onDb(X) is derived equivalent to
the standard heart cohX, which is inspired by the work [44] of Stanley and van Roosmalen.

Theorem 1.4 (Theorem 5.2) Let X be a weighted projective line of domestic or tubular
type and (D≤0,D≥0) a bounded t-structure on Db(X) with heart B. Then the inclusion

B → Db(X) extends to a derived equivalence Db(B)
∼→ Db(X) iff the Serre functor of

Db(X) is right t-exact with respect to (D≤0,D≥0).

Here we say that the inclusion B→ Db(X) extends to a derived equivalence Db(B)
∼→

Db(X) if some realization functorDb(B)→ Db(X) is an equivalence (see Section 5). As a
corollary (see Corollary 5.4), a similar assertion holds for the bounded derived category of
finite dimensional right modules over a tubular algebra in the sense of Ringel [43].

1.3 Sketch of this Article

This article is organized as follows.
In Section 2, we collect preliminaries on t-structures and some facts on hereditary

categories. In Section 2.1–2.2, we recall basic definitions and properties of t-structures
and introduce width-bounded t-structures and HRS-tilt. In Section 2.3–2.5, we recall
recollements of triangulated categories, admissible subcategories, gluing t-structures and
properties of glued t-structures. In Section 2.6 we recall Ext-projective objects, and use an
exceptional Ext-projective object to establish a recollement with which the given t-structure
is compatible. In Section 2.7, we recall some facts on hereditary categories, including
Happel-Ringel Lemma. In Section 2.8, we recall and prove some facts on t-structures on
the bounded derived category of finitely generated modules over a finite dimensional alge-
bra, including a part of König-Yang correspondences. In Section 2.9, we describe bounded
t-structures on the bounded derived category of finite dimensional nilpotent representations
of a cyclic quiver.

In Section 3, we collect preparatory materials and results on weighted projective lines. In
Section 3.1, we recall basic definitions and facts on weighted projective lines. In Section 3.2,
we recap Auslander-Reiten theory. In Section 3.3, we recall the classification and impor-
tant properties of vector bundles over a weighted projective line of domestic or tubular
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type. In Section 3.4, we recall descriptions of perpendicular categories of some exceptional
sequences. In Section 3.5, we recall and prove the non-vanishing of some morphism spaces
in the category cohX of coherent sheaves over a weighted projective line X. In Section 3.6,
we investigate full exceptional sequences in cohX, and prove the existence of certain nice
terms in some cases. In Section 3.7, we give some preliminary descriptions of some torsion
pairs in cohX, and establish bijections between isoclasses of basic tilting sheaves, certain
torsion pairs in cohX and certain bounded t-structures on the bounded derived category
Db(X) of cohX, and finally we investigate the noetherianness and the artinianness of tilted
hearts given by certain torsion pairs in cohX.

In Section 4, we describe bounded t-structures on the bounded derived category Db(X)

of coherent sheaves over a weighted projective line X of domestic or tubular type. In
Section 4.1, we investigate and describe bounded t-structures that restrict to bounded t-
structures on the bounded derived category Db(coh0X) of the category coh0X of torsion
sheaves. In Section 4.2, we investigate those bounded t-structures on Db(X) that cannot
restrict to t-structures on Db(coh0X) even up to the action of the group of exact autoequiv-
alences of Db(X). In particular, we prove that the heart of such a bounded t-structure is
necessarily of finite length and possesses only finitely many indecomposable objects, all of
which are exceptional. In Section 4.3, we prove some properties possessed by silting objects
in Db(X). This is mainly acquired via properties of full exceptional sequences obtained
earlier and will yield information on bounded t-structures by virtue of König-Yang corre-
spondences. In Section 4.4, we complete our description of bounded t-structures onDb(X),
in which we mainly use HRS-tilt and recollement. In Section 4.5, we use our description of
bounded t-structures to give a description of torsion pairs in cohX.

In Section 5, we prove a characterization of when the heart of a bounded t-structure
(D≤0,D≥0) on Db(X) is derived equivalent to cohX for a domestic or tubular X, which
is pertinent to the right t-exactness of the Serre functor of Db(X) and gives an application
of our main result (i.e, description of bounded t-structures). We conjecture that this result
holds for arbitrary weighted projective line and propose a potential approach at the end of
Section 5.

1.4 Notation and Conventions

We denote by R (resp. Q, Z, Z≥1) the set of real numbers (resp. rational numbers, integers,
positive integers). Pose R̄ = R ∪ {∞} and Q̄ = Q ∪ {∞}.

For a finite dimensional algebra � over a field k, mod� denotes the category of finite
dimensional right modules over � and Db(�) the bounded derived category of mod�.

A subcategory of a category is tacitly a full subcategory. If B is a subcategory of a
categoryA (typically abelian or triangulated in our setup), denote

B ⊥0,A = {X ∈ A | HomA(B, X) = 0},
which we will simply write as B ⊥0 if there is no confusion. Dually we have ⊥0,AB or ⊥0B.

For an abelian category A, its bounded derived category is denoted by Db(A). Let B
be an additive subcategory of A. Following [18], we call B an exact subcategory1 of A if
B is an abelian category and the inclusion functor ι : B → A is exact. B is called a thick
subcategory ofA ifB is closed under kernels, cokernels and extensions. A thick subcategory
ofA is an exact subcategory ofA. Given a collection C of objects inA, we denote by 〈C〉A

1Note the difference with a subcategory that is an exact category.
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the smallest thick subcategory of A containing C. The right perpendicular category C ⊥A

and the left perpendicular category ⊥AC of C in the sense of [18] are

C ⊥A = {X ∈ A | HomA(C,X) = 0 = Ext1A(C,X) for all C ∈ C},
⊥AC = {X ∈ A | HomA(X,C) = 0 = Ext1A(X,C) for all C ∈ C}.

It’s shown in [18, Proposition 1.1] that if objects in C have projective dimension at most 1,
that is, Ext2A(X,−) = 0 for all X ∈ C, then C ⊥A and ⊥AC are exact subcategories of A
closed under extensions.

Let D be a triangulated category. We denote by AutD the group of exact autoequiva-
lences ofD. A triangle inD refers always to a distinguished triangle. For two subcategories
D1,D2 of D, define a subcategory D1 ∗D2 of D by

D1 ∗D2 = {X ∈ D | ∃ a triangle Y → X→ Z �, Y ∈ D1, Z ∈ D2}.
By the octahedral axiom, ∗ is associative. Given a triangulated category D and a collection
C of objects in D, we denote by 〈C〉D the thick closure of C in D, that is, the smallest
triangulated subcategory ofD containing C and closed under direct summands. We say that
C classically generates D if 〈C〉D coincides with D. Moreover, we denote

C⊥ = C ⊥D := {X ∈ D | Homn
D(C, X) = 0, ∀n ∈ Z} = 〈C〉 ⊥0

D .

Dually one defines ⊥C = ⊥DC. C ⊥D and ⊥DC are thick subcategories of D. If D is a
triangulated category linear over a field k, we denote

Hom•(X, Y ) = ⊕n∈ZHomn(X, Y )[−n],
where the latter is deemed as a complex of k-spaces with zero differential. D is said to be
of finite type if ⊕n∈ZHomn(X, Y ) is a finite dimensional k-space for each X, Y in D.

If A is a hereditary abelian category and B is an exact subcategory of A closed under
extensions then B is a hereditary abelian category and the inclusion functor ι : B → A
induces a fully faithful exact functor Db(ι) : Db(B) → Db(A) whose essential image
consists of those objects in Db(A) with cohomologies in B.2 Denote D = Db(A). If C is
a collection of objects in A then B := 〈C〉A (resp. B := C ⊥A , resp. B := ⊥AC) is an
exact subcategory of A closed under extensions and the functor Db(ι) : Db(B)→ Db(A)

identifies canonically

Db(〈C〉A) resp. Db(C ⊥A) resp. Db(⊥AC)

with the subcategory

〈C〉D resp. C ⊥D resp. ⊥DC
of D. We will often make this identification in this article.

2One can argue as follows for this simple fact. By [8, Lemma 3.2.3], we have an injection Ext2B(X, Y ) ↪→
Ext2A(X, Y ) for X, Y ∈ B. Since A is hereditary, Ext2B(X, Y ) = 0. So B is hereditary. Since the exact
subcategory B is closed under extensions, the inclusion ι : B → A induces an isomorphism Ext1B(X, Y ) ∼=
Ext1A(X, Y ) for any X, Y ∈ B. Since B classically generates Db(B), the derived functor Db(ι) : Db(B)→
Db(A) is fully faithful. The essential image of Db(ι) is clear.
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2 Preliminaries

2.1 Basics on t-Structures

We recall basic definitions concerning t-structures in this subsection. The standard reference
is [7].

Let D be a triangulated category. A t-structure on D is a pair (D≤0,D≥0) of strictly
(=closed under isomorphisms) full subcategories (D≤n := D≤0[−n],D≥n := D≥0[−n])
• Hom(D≤0,D≥1) = 0;
• D≤−1 ⊂ D≤0, D≥1 ⊂ D≥0;
• D = D≤0 ∗ D≥1, i.e., for any object X in D, there exists a triangle A → X → B �

with A ∈ D≤0 and B ∈ D≥1.
For example, there is a standard t-structure (Db(A)≤0,Db(A)≥0) on the bounded derived
category Db(A) of an abelian categoryA defined by

Db(A)≤n = {K ∈ Db(A) | Hi(K) = 0,∀i > n},
Db(A)≥n = {K ∈ Db(A) | Hi(K) = 0,∀i < n}.

Given a t-structure (D≤0,D≥0) on D, the inclusion of D≤n (resp. D≥n) into D admits
a right (resp. left) adjoint τ≤n (resp. τ≥n), which are called truncation functors. Moreover,
D≤n = ⊥0(D≥n+1), D≥n = (D≤n−1)⊥0 . D≤n is actually characterized by the property
that it is a subcategory closed under suspensions and extensions for which the inclusion
functor admits a right adjoint. A subcategory of D with such a property is called an aisle
[27]. A dual property characterizes D≥n and a subcategory of D with the dual property
is called a co-aisle. There are bijections between t-structures, aisles and co-aisles, whence
these notions are often used interchangeably.

The heart A of (D≤0,D≥0) is defined as the subcategory A := D≤0 ∩ D≥0. A is an
abelian subcategory ofD and we have a system {Hi} of cohomological functors defined by

Hi = τ≥0τ≤0(−[i]) : D −→ A.

D≤0,D≥0 andA are closed under extensions and direct summands. Given a sequence A
f→

B
g→ C of morphisms in A, 0 → A

f→ B
g→ C → 0 is a short exact sequence in A iff

A
f→ B

g→ C
h→ A[1] is a triangle in D for some morphism h : C → A[1] in D.

Denote D[m,n] = D≥m ∩ D≤n. A t-structure (D≤0,D≥0) on D is called bounded if
D = ⋃

m,ninZ D[m,n]. If t-structure tstr is bounded then an object XinD lies in D[m,n] iff
Hl(X) = 0 for l < m and l > n. A bounded t-structure (D≤0,D≥0) is determined by its
heartA. In fact,

D≤0 = ∪n≥0A[n] ∗A[n− 1] ∗ · · · ∗A,

D≥0 = ∪n≤0A ∗ · · · ∗A[n+ 1] ∗A[n].
We will also denote by (D≤0A ,D≥0A ) the bounded t-structure with heartA.

Any group of exact autoequivalences of D acts on the set of t-structures. Given a t-
structure (D≤0,D≥0) on D and an exact autoequivalence � of D,

�((D≤0,D≥0)) := (�(D≤0),�(D≥0))
is a t-structure on D. �((D≤0,D≥0)) is bounded iff so is (D≤0,D≥0).
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Suppose F : D1 → D2 is an exact functor between two triangulated categories Di (i =
1, 2) equipped with t-structures (D≤0i ,D≥0i ). We say that F is right t-exact if F(D≤01 ) ⊂
D≤02 , left t-exact if F(D≥01 ) ⊂ D≥02 , and t-exact if it is both right and left t-exact.

If C is a triangulated subcategory of D and (D≤0,D≥0) is a t-structure on D, the pair

(C≤0, C≥0) := (C ∩D≤0, C ∩D≥0)
gives a t-structure on C iff C is stable under some (equivalently, any) τ≤l , i.e., τ≤lC ⊂ C.
Such a t-structure on C is called an induced t-structure by restriction.

2.2 Width-Bounded t-Structures, HRS-Tilt

Let (D′≤0,D′≥0), (D≤0,D≥0) be two t-structures on a triangulated category D. We say
that (D′≤0,D′≥0) is width bounded3 with respect to (D≤0,D≥0) if D≤m ⊂ D′≤0 ⊂ D≤n

for some m, n. Define a relation ∼ on the set of t-structures: (D′≤0,D′≥0) ∼ (D≤0,D≥0)
if (D′≤0,D′≥0) is width bounded with respect to (D≤0,D≥0).

Lemma 2.1 ∼ is an equivalence relation.

Proof Reflexivity of∼ is clear. One sees the symmetry of∼ by noting thatD≤m ⊂ D′≤0 ⊂
D≤n iff D′≤−n ⊂ D≤0 ⊂ D′≤−m and sees the transitivity of ∼ by noting that D≤m ⊂
D′≤0 ⊂ D≤n iff D≤m ⊂ D′≤0 and D′≥0 ⊃ D≥n.

Obviously, if (D′≤0,D′≥0) is width bounded with respect to (D≤0,D≥0) then
(D′≤0,D′≥0) is a bounded t-structure iff (D≤0,D≥0) is. Hence∼ restricts to an equivalence
relation on the set of bounded t-structures.

Observe that if A and B are the respective hearts of two bounded t-structures on D,
the t-structure (D≤0B ,D≥0B ) is width bounded with respect to the t-structure (D≤0A ,D≥0A ) iff

B ⊂ D[m,n]
A for some m ≤ n. Indeed, if D≤m

A ⊂ D≤0B ⊂ D≤n
A then B ⊂ D≤0B ⊂ D≤n

A ,B ⊂
D≥0B ⊂ D≥m

A and soB ⊂ D[m,n]
A ; conversely, ifB ⊂ D[m,n]

A thenD≤0B ⊂ D≤n
A ,D≥0B ⊂ D≥m

A
since D≤0B (resp. D≥0B ) is the smallest subcategory of D containing B and closed under
extensions and suspensions (resp. desuspensions).

Example 2.2 (1) If D admits a bounded t-structure with length heart containing finitely
many (isoclasses of) simple objects, for example,D = Db(�) for a finite dimensional
algebra � over a field k, then bounded t-structures on D are width bounded with
respect to each other. By Lemma 2.1, it suffices to show that a bounded t-structure
with length heart C containing finitely many simple objects is width-bounded with
respect to any given bounded t-structure (D′≤0,D′≥0) on D. Let {Si | 1 ≤ i ≤ t} be a
complete set of simple objects in C. Then Si ∈ D′[ki ,li ] for each i and some ki, li ∈ Z.
Take k = min{ki, li | 1 ≤ i ≤ t}, l = max{ki, li | 1 ≤ i ≤ t}. C ⊂ D′[k,l] shows our
assertion.

(2) Let X be a smooth projective variety over a field k and Db(X) the bounded derived
category of coherent sheaves over X. Then bounded t-structures on Db(X) are
width bounded with respect to each other. It sufficies to show that the standard t-
structure (D≤0std ,D≥0std ) is width bounded with respect to any given bounded t-structure

3I learnt this notion from Zeng-Qiang Lin’s lectures on the paper [26] of Keller. Moreover, Example 2.2(1)
strengthens slightly an example presented by him.
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(D≤0,D≥0) on Db(X). Let ι : X → P
n
k be a closed immersion, where P

n
k is the

n-dimensional projective space over k, and letOX(i) = ι∗O(i). It follows from Beilin-
son’s theorem (see e.g. [39, Theorem 3.1.4]) that for each j < −n, we have an exact
sequence

0→ OX(j)→ Vn ⊗OX(−n)→ . . .→ V0 ⊗OX → 0,

where Vi = Hn(Pn
k ,�

i
P

n
k
(i + j)) (�i

P
n
k
is the i-th wedge product of the cotangent

bundle �P
n
k
). Since ⊕n

i=0OX(−i) lies in some D≤l , OX(j) lies in D≤l+n for any

j ≤ 0. Now that D≤0std is the smallest aisle containing {OX(j) | j ≤ 0}, we have

D≤0std ⊂ D≤l+n. On the other hand, applying the duality functor D = RHom(−,OX),
we obtain a bounded t-structure (D(D≥0 op),D(D≤0 op)) onDb(X). By the discussion
above, D(D≤0 op) ⊂ D≥m

std for some m. Since OX admits a finite injective resolution
of quasi-coherent sheaves, we have (DD≥m

std )op ⊂ D≤r
std for some r . So D≤0 ⊂ D≤r

std .

D≤−r ⊂ D≤0std ⊂ D≤l+n shows our assertion.

Given a bounded t-structure (D≤0,D≥0) on D with heart A, [22] gives a useful and
important construction of a class of width-bounded t-structures with respect to (D≤0,D≥0)
from torsion pairs inA, which is called HRS-tilt. Now it is well-known (see e.g. [40, §1.1])
that

Proposition 2.3 Torsion pairs in the heart of a t-structure (D≤0,D≥0) are in bijective
correspondence with t-structures (D′≤0,D′≥0) on D satisfying D≤−1 ⊂ D′≤0 ⊂ D≤0.

Let us explain the correspondence. Assume that (D′≤0,D′≥0) is a t-structure with heart
B such that D≤−1 ⊂ D′≤0 ⊂ D≤0. Then (A ∩ B,A ∩ B[−1]) and (A[1] ∩ B,A ∩ B) are
torsion pairs inA and B, respectively. Conversely, let (T ,F) be a torsion pair in the abelian
categoryA. Denote

D′≤0 = D≤−1 ∗ T , D′≥0 = F [1] ∗D≥0.
Then (D′≤0,D′≥0) is a t-structure on D with D≤−1 ⊂ D′≤0 ⊂ D≤0 and (F [1],T ) is a
torsion pair in its heart B. In particular, B = F [1] ∗ T . The t-structure (D≤−1 ∗ T ,F [1] ∗
D≥0) is so-called HRS-tilt with respect to the torsion pair (T ,F) in A and B = F [1] ∗ T
is called the tilted heart.

As noted before, such a t-structure (D′≤0,D′≥0) is bounded iff (D≤0,D≥0) is. More-
over, if (D≤0,D≥0) is bounded then D≤−1 ⊂ D′≤0 ⊂ D≤0 iff B ⊂ A[1] ∗A.

2.3 Recollement, Admissible Subcategory, Exceptional Sequence

A recollement of triangulated categories [7, §1.4] is a diagram

X i∗ �� D
i∗		

i!


 j∗ �� Y

j!		

j∗


 (2.3.1)

of three triangulated categories D,X ,Y and six exact functors i∗, i∗, i!, j!, j∗, j∗ between
them such that

• (i∗, i∗, i!), (j!, j∗, j∗) are adjoint triples;
• i∗, j!, j∗ are fully faithful;
• ker j∗ = im i∗.
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Given such a recollement, there are two functorial triangles in D:

j!j∗ → id→ i∗i∗ �, i∗i! → id→ j∗j∗ �, (2.3.2)

where the natural transformations between these functors are given by the respective unit or
counit of the relevant adjoint pair.

A well-known equivalent notion is so-called admissible subcategories, due to [9]. Let us
recall some classical results from [9]. For a triangulated category D, a strictly full triangu-
lated subcategory C is called right (resp. left) admissible if the inclusion functor C ↪→ D
admits a right (resp. left) adjoint; C is called admissible if it is both left and right admissible.
If C is right admissible then ⊥(C⊥) = C and the inclusion functor C⊥ ↪→ D admits a left
adjoint. In particular, C is closed under direct summands and thus is a thick subcategory of
D. Moreover, the projection C⊥ → D/C is an exact equivalence. One has dual results for
left admissible subcategories. Hence if C is admissible then we have

⊥C �−→ D/C �←− C⊥

and we can form (equivalent) recollements

C i∗ �� D
		


 �� ⊥C,

j!��
��

C i∗ �� D
		


 ĵ∗ �� D/C,

��
��

C i∗ �� D
		


 �� C⊥,

��

ǰ∗
��

(2.3.3)

where i∗, j!, ǰ∗ are the inclusion functors and ĵ∗ is the Verdier quotient functor.
We will need the following well-known fact. Recall that a Serre functor of a triangulated

category is always exact ([10, Proposition 3.3]; see also [41, Proposition I.1.8]).

Proposition 2.4 Let D be a Hom-finite k-linear triangulated category with a Serre functor
S, where k is a field, and C an admissible subcategory of D. Denote by i∗ : C → D the
inclusion functor and by i! : D → C (resp. i∗ : D → C) the right (resp. left) adjoint of i∗.
Then

(1) i!Si∗ is a Serre functor of C with a quasi-inverse i∗S−1i∗;
(2) ⊥C and C⊥ admit Serre functors;
(3) C⊥ and ⊥C are admissible subcategories of D.

Proof (1) One easily sees that i!Si∗ (resp. i∗S−1i∗) is a right (resp. left) Serre functor of
C. Thus i!Si∗ is a Serre functor of C with a quasi-inverse i∗S−1i∗.

(2) This is [10, Proposition 3.7].
(3) Recall the well-known fact that if D1,D2 are two Hom-finite k-linear triangulated

categories with Serre functors S1,S2 respectively and F : D1 → D2 is an exact
functor with a left (resp. right) adjoint G then F admits a right (resp. left) adjoint
S1 ◦G ◦ S−12 (resp. S−11 ◦G ◦ S2). Thus (3) follows from (2).
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Important examples of admissible subcategories are those generated by an exceptional
sequence [9]. Recall that a sequence (E1, . . . , En) of objects in a k-linear triangulated
category D of finite type, where k is a field, is called an exceptional sequence if

• each Ei is an exceptional object, i.e., Hom�=0(Ei, Ei) = 0 and End(Ei) = k;
• Hom•(Ej , Ei) = 0 if j > i.

An exceptional sequence (E1, . . . , En) is said to be full if E1, . . . , En classically generate
D.

Let C = 〈E1, . . . , En〉D be the thick closure of {Ei | 1 ≤ i ≤ n} and i∗ : C → D
be the inclusion functor. The left and right adjoint functors of i∗ exist, which we denote by
i∗, i! respectively. Let us recall from [9] how i∗ maps an object. Suppose X ∈ D. Denote
X0 = X. If Xi is defined for 0 ≤ i < n, let

Xi+1 = co-cone(Xi
co-ev−→ DHom•(Xi, Ei+1)⊗ Ei+1).

Then Xi+1 ∈ ⊥{E1, . . . , Ei+1}. Define i∗X = Xn. We have i∗X ∈ ⊥C and i∗X fits into a
triangle i∗X → X → Y � where Y ∈ C. This choice of i∗ on objects actually defines a
unique functor up to a unique isomorphism, which is left adjoint to i∗. Dually one defines i!.

2.4 Gluing t-Structures

Now fix a recollement of triangulated categories of the form (2.3.1). As the following theo-
rem shows, one can obtain a t-structure onD from t-structures on X and Y , which is called
a glued t-structure. Such a glued t-structure on D from the recollement is also said to be
compatible with the recollement.

Theorem 2.5 [7, Théorème 1.4.10] Given t-structures (X≤0,X≥0) and (Y≤0,Y≥0) on X
and Y respectively, denote

D≤0 = {X ∈ D | i∗X ∈ X≤0, j∗X ∈ Y≤0},
D≥0 = {X ∈ D | i!X ∈ X≥0, j∗X ∈ Y≥0}. (2.4.1)

Then (D≤0,D≥0) is a t-structure on D.

With the given t-structures on X ,Y and the glued t-structure on D, i∗, j! becomes right
t-exact, i∗, j∗ t-exact and i!, j∗ left t-exact.

The following proposition answers the natural question when a t-structure on D is
compatible with a given recollement.

Proposition 2.6 [7, Proposition 1.4.12]Given a t-structure (D≤0,D≥0) onD, the following
conditions are equivalent:

(1) j!j∗ is right t-exact;
(2) j∗j∗ is left t-exact;
(3) the t-structure is compatible with the recollement (2.3.1).

Moreover, we have
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Lemma 2.7 [35, Corollary 3.4, Lemma 3.5] There is a bijection

{t-structures on X } × {t-structures on Y} ←→
{t-structures on D compatible with the recollement (2.3.1)}, (2.4.2)

which restricts to a bijection between bounded t-structures.

Indeed, once the equivalent conditions in Proposition 2.6 are satisfied, to obtain
(D≤0,D≥0) using formula (2.4.1), the unique choice of the t-structure on X resp. Y is

(i∗D≤0, i!D≥0) resp. (j∗D≤0, j∗D≥0). (2.4.3)

This t-structure on X resp. Y will be called the corresponding t-structure on X resp. Y to
the t-structure (D≤0,D≥0) on D. Moreover we have

(i∗i∗D≤0, i∗i!D≥0) = (im i∗ ∩D≤0, im i∗ ∩D≥0). (2.4.4)

Since we can identify X with im i∗ via i∗, we know that the t-structure on X is essentially
induced by restriction.

Suppose C is an admissible subcategory of D and (D≤0,D≥0) is a t-structure on D. Let

C i∗ �� D
i∗

		

i!


 j∗ �� C ′

j!		

j∗


 (2.4.5)

be a recollement, where i∗ is the inclusion functor. Since j!j∗X = co-cone(X → i∗i∗X)

for each X ∈ D by Eq. 2.3.2, j!j∗ is right t-exact iff co-cone(X→ i∗i∗X) lies in D≤0 for
each X ∈ D≤0. So given another recollement

C i∗ �� D
i∗

		

i!


 k∗ �� C ′′,

k!		

k∗


 (2.4.6)

(D≤0,D≥0) is compatible with the recollement (2.4.5) iff it is compatible with the (equiv-
alent) recollement (2.4.6). Thus it makes sense to say that (D≤0,D≥0) is compatible with
C if (D≤0,D≥0) is compatible with any recollement of the form Eq. 2.4.5, for example,
any one of the recollements (2.3.3). This is convenient for use. If (D≤0,D≥0) is compatible
with the admissible subcategory C then (D≤0∩C,D≥0∩C) is a t-structure on C. In general,
consider a finite admissible filtration [10, Definition 4.1]

Dn ⊂ Dn−1 ⊂ · · · ⊂ D0 = D
of a triangulated category D. That is, each Di (1 ≤ i ≤ n) is an admissible subcategory
of Di−1, equivalently, each Di is an admissible subcategory of D. We say the t-structure
(D≤0,D≥0) is compatible with the admissible filtration if it is compatible with each Di .

Clearly we have the following two facts.

Lemma 2.8 (D≤0,D≥0) is compatible with the admissible filtration

Dn ⊂ · · · ⊂ D1 ⊂ D0 = D
of D iff the t-structure (D≤0 ∩ Di ,D≥0 ∩ Di ) on Di is compatible with Di+1 for each
1 ≤ i ≤ n− 1.

Here by the statement that the t-structure (D≤0∩Di ,D≥0∩Di ) onDi is compatible with
Di+1 for each 1 ≤ i ≤ n − 1, we actually mean that: (D≤0,D≥0) is compatible with D1
(hence (D≤0∩D1,D≥0∩D1) is a t-structure onD1); (D≤0∩D1,D≥0∩D1) is compatible
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with D2 (hence (D≤0 ∩ D2,D≥0 ∩ D2) is a t-structure on D2); and so on. This situation
arises naturally from reduction/induction argument.

Lemma 2.9 Suppose that the t-structure (D≤0,D≥0) is compatible with the admissible
filtration

Dn ⊂ Dn−1 ⊂ · · · ⊂ D0 = D
and let � be an exact autoequivalence of D. Then the t-structure (�(D≤0),�(D≥0)) is
compatible with the admissible filtration

�(Dn) ⊂ �(Dn−1) ⊂ · · · ⊂ �(D0) = D.

2.5 On the Hearts of the t-Structures in a Recollement Context

Fix a recollement of the form (2.3.1). Each t-structure (X≤0,X≥0) on X induces (up to
shift) two t-structures on D in the following fashion. For each p ∈ Z, since the inclusion
i∗X≤p ↪→ D admits a right adjoint i∗τ≤pi!, i∗X≤p is an aisle in D and

(i∗X≤p, (i∗X≤p)⊥0,D [1])
is a t-structure onD. Denote by τ̌≥p+1 the left adjoint of the inclusion (i∗X≤p)⊥0,D ↪→ D.
Then we have a functorial triangle

i∗τ≤pi! → id→ τ̌≥p+1 �
for each p ∈ Z. Dually, the inclusion i∗X≥p ↪→ D admits a left adjoint i∗τ≥pi∗, and we
have a t-structure

((⊥0,D i∗X≥p)[−1], i∗X≥p)

and a functorial triangle
τ̂≤p−1→ id→ i∗τ≥pi∗ �

for each p ∈ Z, where τ̂≤p−1 is the right adjoint of the inclusion (⊥0,D i∗X≥p) ↪→ D. A
similar argument shows that a t-structure on Y also induces two t-structures on D.

Remark 2.10 In [7, §1.4.13], these induced t-structures are described via gluing.

Suppose (X≤0,X≥0), (Y≤0,Y≥0) are t-structures on X ,Y respectively and let
(D≤0,D≥0) be the glued t-structure. Denote the respective heart by B1,B2 and B. Let ε be
the inclusion functor from B1,B2 resp. B to X ,Y resp. D. For T ∈ {i∗, i∗, i!, j!, j∗, j∗},
denote pT = H 0 ◦ T ◦ ε. Then (pi∗, pi∗, pi!) and (pj!, pj∗, pj∗) are adjoint triples, the
compositions pj∗ ◦ pi∗, pi∗ ◦ pj!, pi! ◦ pj∗ vanish, and pi∗, pj!, pj∗ are fully faithful.
im pi∗ = ker pj∗ is a Serre subcategory of B, the functor pi∗ identifies B1 with im pi∗
and the functor pj∗ identifies the quotient category B/im pi∗ with B2. The composition
pj!pj∗ → id→ pj∗pj∗ provides a unique morphism of functors pj! → pj∗. Define

j!∗ = im (pj!(−)→ pj∗(−)) : B2 −→ B. (2.5.1)

The following proposition describes simple objects in B.

Proposition 2.11 [7, Proposition 1.4.23, 1.4.26]

(1) For X ∈ B2, we have
j!∗X = τ̌≥1j!X = τ̂≤−1j∗X.

(2) Simple objects in B are those pi∗S, for S simple in B1, and those j!∗S, for S simple in
B2.
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For more details, see [7, §1.4], from which the above are taken.
Recall that an abelian categoryA is said to be noetherian (resp. artinian) if for any object

A in A, any infinite ascending (resp. descending) chain of subobjects of A stabilizes; A is
said to be of finite length or simply length if it is both noetherian and artinian. The following
lemma strengthens [35, Proposition 3.9].

Lemma 2.12 B is noetherian (or artinian, or of finite length) iff so are B1,B2.

Proof [14, Lemma 1.3.3] states that if A1 is a Serre subcategory of an abelian category A
then A is noetherian iff A1 and A/A1 are noetherian and if each object in A has a largest
subobject that belongs to A1. We claim that in our setting, each B ∈ B admits a largest
subobject pi∗pi!B in pi∗B1. By [7, Lemme 1.4.19], we have an exact sequence

0→ pi∗pi!B η→ B → pj∗pj∗B → pi∗H 1i!B → 0.

Suppose μ : pi∗Z→ B is a monomorphism in B, where Z ∈ B1. Note that

Hom(pi∗Z, pj∗pj∗B) = Hom(Z, pi!pj∗pj∗B) = 0.

So there exists ν : pi∗Z → pi∗pi!B such that μ = ην. Since μ is a monomorphism, ν is a
monomorphism. So pi∗Z is a subobject of pi∗pi!B. This shows our claim that pi∗pi!B is the
largest subobject of B in pi∗B1. Hence the assertion on noetherianness follows. By duality,
we conclude the assertion on artinianness. Combining these two assertions, we know that B
is of finite length iff B1,B2 are of finite length.

An easy induction argument yields

Corollary 2.13 Suppose a t-structure (D≤0,D≥0) on D is compatible with the admissible
filtration

0 = Dn+1 ⊂ Dn ⊂ · · · ⊂ D1 ⊂ D0 = D.

Then (D≤0,D≥0) has a noetherian resp. artinian resp. length heart iff the corresponding

t-structure on each D ⊥Di

i+1 (or ⊥Di Di+1, or Di/Di+1) (0 ≤ i ≤ n) has a noetherian resp.
artinian resp. length heart.

2.6 Recollement and Ext-Projectives

LetD be a k-linear triangulated category of finite type, where k is a field, and (D≤0,D≥0) a
t-structure onD. Recall from [2, §1] that X ∈ D is Ext-projective inD≤l , orD≤l-projective
for short, if X ∈ D≤l and Hom1(X,D≤l ) = 0; dually, X ∈ D is Ext-injective in D≥l , or
D≥l-injective, if X ∈ D≥l and Hom1(D≥l , X) = 0.

We use the following criterion to identify Ext-projectives (and Ext-injectives) when D
admits a Serre functor.

Lemma 2.14 [2, Lemma 1.5] SupposeD admits a Serre functor S and X is an object inD.
Then X is D≤0-projective iff X ∈ D≤0 with SX ∈ D≥0 iff SX is D≥0-injective.

The following easy observation is essential for us.
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Lemma 2.15 Suppose E ∈ D is an exceptional object. If E is Ext-projective in some D≤l

and E ⊥D is right admissible then (D≤0,D≥0) is compatible with the recollement

E ⊥D i∗ �� D
��

�� j∗ �� 〈E〉D,

j!��
��

where i∗, j! are the inclusion functors.

Proof Since E is an exceptional object, 〈E〉D is admissible and thus E ⊥D is left admissible
with ⊥D (E ⊥D ) = 〈E〉D . If E ⊥D is right admissible then E ⊥D is admissible and the given
diagram is indeed a diagram of recollement. To show that the t-structure is compatible, it
suffices to show that j!j∗ is right t-exact, i.e., for each X ∈ D≤0, j!j∗(X) ∈ D≤0. Note that
for m > −l, Hom(E,D≤0[m]) = 0 since E is D≤l-projective. Therefore

j!j∗(X) = Hom•(E,X)⊗ E

= ⊕Hom(E,X[m])⊗ E[−m]
= ⊕m≤−lHom(E,X[m])⊗ E[−m]
∈ D≤0.

Remark 2.16 (1) There is a dual version for Ext-injectives.
(2) In our application, D has a Serre functor and thus E ⊥D and ⊥DE are indeed

admissible by Proposition 2.4.

Assume thatD has a Serre functor and (En, . . . , E1) is an exceptional sequence such that
each Ei is D≤0-projective. Let D0 = D; for 1 ≤ i ≤ n, let Di = {Ei,Ei−1, . . . , E1} ⊥D .

Note that Di = E
⊥Di−1
i for 1 ≤ i ≤ n. We already know that 〈Ei, Ei−1, . . . , E1〉D is

admissible in D and thus Di is admissible in D by Proposition 2.4. The following fact is
immediate from Lemma 2.15 and Lemma 2.8. (We also have a similar result when each Ei

is D≥0-injective.)

Corollary 2.17 With the above hypotheses and notation, (D≤0,D≥0) is compatible with
the admissible filtration

Dn ⊂ · · · ⊂ Di (= {Ei, . . . , E1} ⊥D = E
⊥Di−1
i ) ⊂ · · · ⊂ D1 ⊂ D.

Now let us be given a recollement of the form (2.3.1). Suppose that X resp. Y is
equipped with a t-structure (X≤0,X≥0) resp. (Y≤0,Y≥0), andD with the glued t-structure
(D≤0,D≥0). One easily verifies the following fact.

Lemma 2.18 (1) If X is D≤0-projective which does not lie in ker i∗ = im j! then i∗X is
nonzero X≤0-projective.

(2) If Y is nonzero Y≤0-projective then j!Y is nonzero D≤0-projective. Moreover, j!
induces a bijection between isoclasses of indecomposable Ext-projectives in Y≤0 and
isoclasses of indecomposable Ext-projectives in D≤0 which lie in ker i∗ = im j!.
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2.7 Some Facts on Hereditary Categories

Let A be a hereditary category linear over an algebraically closed field k with finite-
dimensional morphism and extension spaces. It’s well-known that each object X ∈ Db(A)

decomposes as X ∼= ⊕iH
i(X)[−i]. In particular, each indecomposable object in Db(A) is

a shift of an indecomposable object in A.
The following Happel-Ringel Lemma (see e.g. [31, Proposition 5.1]) is fundamental for

hereditary categories.

Proposition 2.19 (Happel-Ringel Lemma) Let E and F be indecomposable objects of A
such that Ext1(F,E) = 0. Then each nonzero morphism f : E → F is a monomorphism
or an epimorphism. In particular, each indecomposable object in A without self-extension
is exceptional.

Recall that an object T in a triangulated category is a partial silting object if
Hom>0(T , T ) = 0 and T is basic if its indecomposable direct summands are pairwise
non-isomorphic. The following fact shows that a basic partial silting object in Db(A) can
yield an exceptional sequence. Note that Db(A) is a Krull-Schmidt category since A is
Hom-finite.

Proposition 2.20 [1, Proposition 3.11] Let X be a basic partial silting object in Db(A).
Then pairwise non-isomorphic indecomposable direct summands of X can be ordered to
form an exceptional sequence.

Although it is stated for specific hereditary categories in [1, Proposition 3.11], the above
fact follows from Happel-Ringel Lemma.

We will need to relate Ext-projectives to an exceptional sequence.

Proposition 2.21 [2, Theorem (A)] Let (D≤0,D≥0) be a t-structure inDb(A). Then finitely
many pairwise non-isomorphic indecomposableD≤0-projectives can be ordered to form an
exceptional sequence in Db(A).

Proposition 2.21 follows from Proposition 2.20 since the direct sum of finitely many
pairwise non-isomorphic indecomposable D≤0-projectives is a basic partial silting object.

2.8 Bounded t-Structures onDb (�) for a Finite Dimensional Algebra�

Recall from [1, 27, 46] that an object X in a triangulated category D is called silting if
it is partial silting, i.e., Hom>0(X,X) = 0, and if 〈X〉D = D. It is tilting if additionally
Hom<0(X,X) = 0. Two silting objects X and Y are said to be equivalent if addX = addY .

Let � be a finite dimensional algebra over a field k. Denote by Kb(proj�) the bounded
homotopy category of finite dimensional projective right modules over �. The following
part of König-Yang correspondences will be used repeatedly in the sequel. See [28] for
bijective correspondences between more concepts.

Theorem 2.22 [28, Theorem 6.1] Equivalence classes of silting objects in Kb(proj�) are
in bijective correspondence with bounded t-structures on Db(�) with length heart.
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Let us recall this correspondence from [28]. For a silting object M in Kb(proj�), the
associated t-structure on Db(�) is given by the pair

D≤0 = {N ∈ Db(�) | Hom>0(M,N) = 0},
D≥0 = {N ∈ Db(�) | Hom<0(M,N) = 0}.

Moreover, the heart of (D≤0,D≥0) is equivalent to modEnd(M) [28, Lemma 5.3]. We
refer the reader to [28, §5.6] for the general construction (essentially due to Rickard [42])
of a silting object associated to a given bounded t-structure (D≤0,D≥0) on Db(�) with
length heart. When � has finite global dimension, in which case the natural inclu-
sion Kb(proj�) → Db(�) is an exact equivalence, the associated basic silting object
in Kb(proj�) = Db(�) is just the direct sum of a complete set of indecomposable
Ext-projectives in the aisle D≤0.

Lemma 2.23 [35, Lemma 6.7] If � is a representation-finite hereditary algebra then each
bounded t-structure on Db(�) has a length heart.

Hence by Theorem 2.22, to classify bounded t-structures on Db(�), where � is a
representation-finite hereditary algebra, it sufficies, say, to classify silting objects inDb(�),
which is indeed computable.

The following fact characterizes when a silting object is a tilting object in the presence
of a Serre functor.

Lemma 2.24 [36, Lemma 4.6] Assume that � has finite global dimension and S is a Serre
functor of Db(�). Let T be a silting object in Db(�) and B the heart of the corresponding
t-structure (D≤0,D≥0). Then T is tilting iff S is right t-exact with respect to (D≤0,D≥0) iff
ST lies in B.

We will also need the next two facts.

Lemma 2.25 Let k �As be the path algebra of the equioriented As-quiver. Suppose
(D≤0,D≥0) is a bounded t-structure on Db(k �As). Then some simple k �As-module is
Ext-projective in some D≤l .

Proof Denote A = modk �As ,D = Db(k �As) for short. It is well-known that A is a unise-
rial hereditary abelian category, each indecomposable object inA is exceptional, andD has
a Serre functor (isomorphic to the Nakayama functor). We use induction on s to show our
assertion. If s = 1, we have modk �A1 = modk and the assertion obviously holds. Suppose
s > 1. By Lemma 2.23, the heart B of (D≤0,D≥0) is of finite length. Take an indecom-
posable direct summand N [p] (N ∈ A) of the corresponding silting object. Then N is
D≤p-projective. If N is a simple module then N is the desired. Otherwise, let

A1 = 〈τm(top(N)) | 1 ≤ m < l(N)〉A, Ā1 = 〈τm(top(N)) | 0 ≤ m < l(N)〉A,

where τ = DTr represents the Auslander-Reiten translation and l(N) is the length of
N . For a simple module S, denote by [l]S the unique indecomposable module with top
S and of length l. Since ⊕0≤i<l(N)

[l(N)−i]τ i top(N) is a projective generator for Ā1 with
endomorphism algebra isomorphic to k �Al(N), we have Ā1 � modk �Al(N).
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We know that N ⊥A is an exact subcategory ofA closed under extensions. Take

A2 = add{M ∈ N ⊥A | M is indecomposable and M /∈ A1}.
We claim N ⊥A = A1

∐A2, which implies that A2 is an exact subcategory of A closed
under extensions. Since N ⊥A = addA1 ∪ A2, it sufficies to show that Hom(A1,A2) =
0 = Hom(A2,A1). Note that

A1 = add{[l]τ i top(N) | 1 ≤ i < l(N), 1 ≤ l ≤ l(N)− i},
N ⊥A = {M ∈ N ⊥A | Hom(N,M) = 0 = Ext1(N,M)}

= {M ∈ N ⊥A | Hom(N,M) = 0 = Hom(M, τN)}.
Let M be an indecomposable k �As-module. Suppose Hom([l]τ i top(N),M) �= 0 for some
1 ≤ i < l(N), 1 ≤ l ≤ l(N) − i. Then for some 1 ≤ k ≤ l, [k]τ i top(N) is a subob-
ject of M . If M /∈ A1 then [k+i]top(N) is a subobject of M . Meanwhile, [k+i]top(N) is a
quotient object of N and thus Hom(N,M) �= 0. This shows that if Hom(N,M) = 0 then
Hom(A1, M) = 0. Simlarly, if Hom(M, [l]τ i top(N)) �= 0 for some 1 ≤ i < l(N), 1 ≤ l ≤
l(N) − i, then M has a nonzero quotient object which is moreover a subobject of τN ; so
Hom(M,A1) = 0 if Hom(M, τN) = 0. It follows that Hom(A1,M) = 0 = Hom(M,A1)

for an indecomposable module M ∈ A2. This shows our claim.
By Proposition 2.4, N ⊥D is admissible in D. Since N is an exceptional Ext-projective

object inD≤p, by Lemma 2.15, (D≤0,D≥0) is compatible with the admissible subcategory
N ⊥D and (D≤0 ∩ N ⊥D ,D≥0 ∩ N ⊥D ) is a bounded t-structure on N ⊥D . Obviously, this
t-structure is compatible with the admissible subcategory Db(A2) of N ⊥D = Db(N ⊥A).
Hence by Lemma 2.8, (D≤0,D≥0) is compatible with the recollement

Db(A2) i∗ �� D
i∗��

i!
��

j∗ �� ⊥DDb(A2),

j!


j∗
��

where i∗, j! are the inclusion functors. Note that

⊥DDb(A2) = 〈N, τm(top(N)) | 1 ≤ m < l(N)〉D
= 〈τm(top(N)) | 0 ≤ m < l(N)〉D
= Db(Ā1)

� Db(k �Al(N)).

Consider the bounded t-structure (j∗D≤0, j∗D≥0) on Db(Ā1) � Db(k �Al(N)). By the
induction hypothesis, some τm(top(N)) (0 ≤ m < l(N)) is Ext-projective in some j∗D≤l .
Hence the simple module τm(top(N)) = j!τm(top(N)) is D≤l-projective by Lemma 2.18,
as desired.

Corollary 2.26 Let k �As be the path algebra of the equioriented As-quiver. Each silting
object in Db(k �As) contains a shift of some simple module as its direct summand. Each full
exceptional sequence in modk �As contains a simple module.

Proof The first assertion follows from Lemma 2.25. For a full exceptional sequence
(E1, . . . , En) in modk �As , it is observed in [1, Proposition 3.5] that we can take suitable li
(1 ≤ i ≤ n), say li = i here, such that ⊕n

i=1Ei[li] is a silting object in Db(k �As). So the
second assertion follows.
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2.9 Bounded t-Structures onDb (nilpk Ãt−1)

Let k be a field. Denote by Ãt−1 the quiver which is an oriented cycle with t vertices and by
At = nilpkÃt−1 the category of finite dimensional nilpotent k-representations of Ãt−1. Let
us recall some standard facts on At . At is a connected hereditary uniserial length abelian
category and admits an autoequivalence τ of period t such that τ(−)[1] is the Serre func-
tor of Db(At ). Moreover, At has almost split sequences with Auslander-Reiten translation
given by [M] ��� [τM], and its Auslander-Reiten quiver is a tube of rank t (see Section 3.2
if one is unfamiliar with Auslander-Reiten theory). If S is a simple object in At then each
simple object is of the form τ iS for some i ∈ Z/tZ. Denote by S[n] (resp. [n]S) the unique
(up to isomorphism) indecomposable object in At of length n and with socle (resp. top)
S. For an indecomposable object X in At , its length is denoted by l(X), and its simple
socle resp. top by soc(X) resp. top(X). Then X = (soc(X))[l(X)] = [l(X)](top(X)). X is
exceptional iff l(X) < t .

Recall from [22] that for a torsion pair (T ,F) in an abelian categoryA, T is called a tilt-
ing torsion class if T is a cogenerator forA, i.e, for each A ∈ A, there is a monomorphism
A ↪→ T with T ∈ T ; dually, F is called a cotilting torsion-free class if F is a generator for
A.

Lemma 2.27 For a torsion pair (T ,F) inAt , exactly one of the following holds

(1) T is a tilting torsion class, equivalently, T contains a non-exceptional indecompos-
able object;

(2) F is a cotilting torsion-free class, equivalently, F contains a non-exceptional inde-
composable object.

Proof Since there exists a nonzero morphsim between two non-exceptional indecompos-
able objects in At , T and F cannot contain non-exceptional indecomposable objects
in the meantime. If T is a tilting torsion class then it’s easy to see that T contains a
non-exceptional indecomposable object. Conversely, if T contains a non-exceptional inde-
composable object T then [l]top(T ) ∈ T for all l ∈ Z≥1 since T is closed under quotients
and extensions. Since any indecomposable object inAt is an subobject of [l]top(T ) for some
l, T is a tilting torsion class. Dual argument applies to conclude the asserted equivalence
for F .

We will need the following criterion to make sure that certain subcategory of Db(At )

contains a non-exceptional indecomposable object.

Lemma 2.28 Let C be a subcategory of At closed under extensions and direct summands.
If each simple object in At occurs as a composition factor of some indecomposable object
in C, equivalently, there is a sequence

(X0, X1, . . . , Xn−1, Xn = X0)

of indecomposable objects in At with Ext1(Xi, Xi−1) �= 0 (1 ≤ i ≤ n), then C contains a
non-exceptional indecomposable object.

Proof We claim that if Y,Z are two exceptional objects in At with Ext1(Z, Y ) �= 0, then
C contains an indecomposable object C such that Y is a subobject of C in At and Z a
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quotient object of C in At . Indeed, if Ext1(Z, Y ) �= 0 then there are two objects A,B

in At such that B is indecomposable, A is a quotient object of Y and A,B fit into the
exact sequence 0 → A → Z → B → 0. Let C be the unique (up to isomorphism)
indecomposable object which fits into the exact sequence 0 → Y → C → B → 0. Then
Y (resp. Z) is a subobject (resp. quotient object) of C. Since Y is an exceptional object in
At , soc(τC) = soc(τY ) is not a composition factor of Y ; on the other hand, if A �= 0
then A is exceptional and each composition factor of A is a composition factor of Y . Thus
Ext1(C,A) ∼= DHom(A, τC) = 0, where D = Homk(−, k). Then we have a pullback
diagram

0

��

0

��
A

��

A

��
0 �� Y �� A⊕ C

��

�� Z

��

�� 0

0 �� Y �� C ��

��

B ��

��

0.

0 0

Hence C ∈ C. This shows our claim.
Now suppose that C contains a sequence (X0, X1, . . . , Xn−1, Xn = X0) with the given

property. Assume for a contradiction that C contains no non-exceptional indecomposable
object. In particular, each Xi is exceptional. Applying our claim to Y = X1, Z = X2, we
obtain an indecomposable object C1 ∈ C such that X1 (resp. X2) is a subobject (resp. quo-
tient object) of C1. Then Ext1(X1, X0) �= 0 implies Ext1(C1, X0) �= 0; Ext1(X3, X2) �= 0
implies Ext1(X3, C1) �= 0. Hence we have a sequence (X0, C1, X3, . . . , Xn) of length
(n − 1) in C which also satisfies the given property. By assumption, C1 is exceptional.
Then repeating the above argument for n times will eventually give us a sequence (C)

of length 1 with C indecomposable and Ext1(C, C) �= 0, whence C is a non-exceptional
indecomposable object in C, a contradiction. Hence C must contain a non-exceptional
object.

We show an analogue of Lemma 2.25 to perform induction.

Lemma 2.29 For a bounded t-structure (D≤0,D≥0) on Db(At ), which is not a shift of the
standard t-structure, there is some simple object in At that is Ext-projective in some D≤l .

Proof Let B be the heart of (D≤0,D≥0). Each bounded t-structure on Db(At ) is
width-bounded with respect to the standard t-structure (see Example 2.2). Hence, B ⊂
D[m,n]

At
for some m, n. We take m to be maximal and n minimal. Since there exists a

nonzero morphism between two non-exceptional indecomposable objects in At and since
Hom(B[−m],B[−n]) = 0, either i) B[−m] ∩ At or ii) B[−n] ∩ At contains no non-
exceptional indecomposable object. Suppose case i) occurs. ThenB[−m]∩At contains only
finitely many indecomposables. Moreover, Lemma 2.28 implies that there is some indecom-
posable object X such that Ext1(X, Y ) = 0 for indecomposable object Y ∈ B[−m] ∩ At
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non-isomorphic to X. Then we have Hom>0(X[m],B) = 0, whence X is D≤m-projective.
If case ii) happens then similarly we find an indecomposable object Y ∈ At which is D≥n-
injective. This gives us aD≤n-projective τ−1Y [−1]. Anyway we have an exceptional object
B ∈ At that is Ext-projective in some D≤l .

Similarly as in the proof of Lemma 2.25, one can show that B ⊥At decomposes as
B ⊥At = B1

∐B2, where

B1 = 〈τm(top(B)) | 1 ≤ m < l(B)〉At

and B2 is an exact subcategory ofAt closed under extensions, that

B̄1 := 〈τm(top(B)) | 0 ≤ m < l(B)〉At � modk �Al(B),

and that (D≤0,D≥0) is compatible with the recollement

Db(B2) i∗ �� D
i∗��

i!
��

j∗ �� 〈B̄1〉D = Db(B̄1),

j!


j∗
��

where i∗, j! are inclusion functors. Moreover, we have a bounded t-structure
(j∗D≤0, j∗D≥0) on Db(B̄1) � Db(k �Al(B)). We know from Lemma 2.25 that some
τm(top(B)) is Ext-projective in some j∗D≤l , which gives us the desired Ext-projective
object τm(top(B)) in D≤l by Lemma 2.18.

Let S be a (possibly empty) proper collection of simple objects inAt , where properness
means that S does not contain a complete set of simple objects in At and simple objects in
S are pairwise non-isomorphic. Two such collections are said to be equivalent if they yield
the same isoclasses of simple objects. If S is nonempty then there exist uniquely determined
{S1, . . . , Sn} ⊂ S and positive integers l1, . . . , ln such that

S =
n⊔

i=1
{τ jSi | 0 ≤ j < li}. (2.9.1)

Since ⊕1≤i≤n ⊕0≤j<li
[li−j ]τ jSi is a projective generator for 〈S〉At whose endomorphism

algebra is isomorphic to k �Al1 × · · · × k �Aln , we have an equivalence

〈S〉At �
n∐

i=1
modk �Ali , (2.9.2)

where k �Al is the path algebra of the equioriented Al-quiver. In the sequel, we will also write
in the form (2.9.2) when S is empty by defining the right hand side of Eq. 2.9.2 to be the
zero category. Since S ⊥At is a uniserial length abelian k-category whose Ext-quiver is an
oriented cycle with t − �S vertices and trivial valuation and since each simple object in
S ⊥At has endomorphism algebra k, we have an equivalence

S ⊥At � At−�S . (2.9.3)

Bounded t-structures on Db(At ) can be described as follows.

Proposition 2.30 Given a bounded t-structure (D≤0,D≥0) on Db(At ), there is a unique
(up to equivalence) proper collection S of simple objects inAt such that
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• (D≤0,D≥0) is compatible with the recollement

Db(S ⊥At ) = S ⊥D i∗ �� D = Db(At )

��

��
�� 〈S〉D,

j!��

��

where i∗, j! are the inclusion functors;
• the corresponding t-structure on S ⊥D has heart S ⊥At [m] for some m.

In particular, each bounded t-structure on Db(At ) has a length heart.

Proof Since each bounded t-structure on 〈S〉D = Db(〈S〉At ) � Db(
∐n

i=1 modk �Ali ) has a

length heart (by Lemma 2.23) and S ⊥At [m] is of finite length, by Lemma 2.12, the second
assertion follows from the first. We use induction on t to prove the first assertion.

Suppose t = 1. We have a unique (up to isomorphism) simple object S in A1. So the
asserted S is the empty set. We need show that any bounded t-structure on Db(A1), whose
heart is denoted by B, is a shift of the standard one. Note that each indecomposable object
in Db(A1) is of the form S[r][l] for some r ∈ Z≥1, l ∈ Z. Since Hom(S[r][l], S[r ′][l′]) �= 0
for l ≤ l′, we have B ⊂ A1[l] for some l. Then B = A1[l], as desired.

Now consider t > 1. If B is a shift of At , just take S = ∅. Suppose that B is not a
shift of At . By Lemma 2.29 and Lemma 2.15, for some simple S in At , (D≤0,D≥0) is
compatible with the admissible subcategory D1 := S ⊥D = Db(S ⊥At ). A := S ⊥At is
equivalent to At−1, and simple objects in A are τS[2] and those S′, which are simple in At

and non-isomorphic to τS and S. By the induction hypothesis, for a proper collection S1 of
simple objects in S ⊥At , the corresponding t-structure on D1 = Db(S ⊥At ) is compatible

with the admissible subcategory S ⊥D1
1 and the corresponding t-structure on S ⊥D1

1 has heart

S ⊥A
1 [m] for some m. If τS[2] ∈ S1, take S = {τS, S} ∪ (S1\τS[2]); if τS[2] /∈ S1, take

S = S1 ∪ {S}. Then S ⊥D1
1 = S ⊥D and S ⊥A

1 = S ⊥At . By Lemma 2.8, (D≤0,D≥0)
is compatible with the admissible subcategory S ⊥D and the corresponding t-structure on
S ⊥D has heart S ⊥At [m].

Let (D≤01 ,D≤01 ) and (D≤02 ,D≥02 ) be the corresponding t-structures on S ⊥D and 〈S〉D ,

respectively. Note that D≤01 contains no nonzero Ext-projective object. Let T be the direct
sum of a complete set of indecomposableD≤0-projectives. Then by Lemma 2.18, T ∈ 〈S〉D
and T is the direct sum of a complete set of indecomposable D≤02 -projectives. Thus T is
a silting object in 〈S〉D = Db(〈S〉At ). In particular, 〈T 〉D = Db(〈S〉At ). As a complete
set of simple objects in 〈S〉At , the collection S is uniquely determined. This finishes the
proof.

3 Weighted Projective Lines

For self-containedness, we review the basic theory of weighted projective lines in details
in Sections 3.1–3.4. The materials in Section 3.1 are taken from the original article [17],
which introduced the notion of weighted projective lines. For a recent survey of the theory,
see [30]. We fix an algebraically closed field k in this section.
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3.1 Basic Definitions and Properties

Given a sequence p = (p1, . . . , pt )(t > 2) of positive integers, define an abelian group
L(p) of rank one by

L(p) = 〈 �x1, . . . , �xt , �c | p1 �x1 = · · · = pt �xt = �c〉.
Denote �ω = (t − 2)�c−∑t

i=1 �xi , which is called the dualizing element. Each �x ∈ L(p) can
be written uniquely in the form

�x =
t∑

i=1
li �xi + l�c, 0 ≤ li < pi, li , l ∈ Z.

L(p) is an ordered group if we define �x ≥ 0 iff �x ∈∑t
i=1 Z≥0 �xi . Let p = lcm(p1, . . . , pt ).

We have a group homomorphism, called a degree map,

δ : L(p)→ Z, �xi �→ p

pi

.

Let P1 = P
1(k) be (the set of closed points of) the projective line over k. Given a

sequence p = (p1, . . . , pt ) of positive integers and a sequence λ = (λ1, . . . , λt ) of distinct

points in P
1 (normalized such that λ1 = ∞, λ2 = 0, λ3 = 1), we define an algebra

S = S(p, λ) = k[X1, . . . , Xt ]/(Xpi

i −X
p2
2 + λiX

p1
1 , 3 ≤ i ≤ t).

Write xi = X̄i ∈ S. S becomes L(p)-graded with the assignment deg(xi) = �xi and thus
S = ⊕�x∈L(p)S�x , where S�x consists of those homogeneous elements of degree �x. Using S

as the homogeneous coordinate algebra, [17] introduced a weighted projective line X =
X(p, λ). X is defined to be the L(p)-graded projective spectrum of S, which is the set

ProjL(p)S := {L(p)-graded prime ideal p of S | p � S+ := ⊕�x>0S�x}
equipped with the Zariski topology and a L(p)-graded structure sheaf O = OX. There is a
bijection

X(k) −→ P
1, [x1, . . . , xt ] �→ [xp1

1 , x
p2
2 ] (3.1.1)

between the set of closed points of X and P
1. By virtue of this bijection, the weighted pro-

jective line X is understood to be the usual projective line P
1, where weights p1, . . . , pt

are attached respectively to the t points λ1, . . . , λt . We can define L(p)-graded OX-
modules and coherent L(p)-graded OX-modules. The category cohX of L(p)-graded
coherent OX-modules over X = X(p, λ) is a noetherian hereditary abelian category with
finite dimensional morphism and extension spaces. In particular, cohX is a Krull-Schmidt
category. We have an analogue of Serre’s theorem, that is, we have an equivalence

cohX � modL(p)S

mod
L(p)

0 S

,

where modL(p)S is the abelian category of L(p)-graded finite generated modules over S

and mod
L(p)

0 S is the Serre subcategory of modL(p)S consisting of modules of finite length.
One may as well take the latter quotient category as the definition of cohX.

For �x ∈ L(p), we have a natural k-linear autoequivalence of modL(p)S given by degree
shifting by �x ∈ L(p) on L(p)-graded S-modules M: M(�x)�y = M�x+�y . And this induces a k-
linear autoequivalence −(�x) of cohX: F �→ F(�x), F ∈ cohX. We denote by τ the k-linear
autoequivalence −( �ω) of cohX, where �ω is the dualizing element.
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Theorem 3.1 (Serre duality) For X, Y ∈ cohX, we have an isomorphism

DExt1(X, Y ) ∼= Hom(Y, τX)

functorial in X, Y , where D = Homk(−, k).

Consequently, the bounded derived category Db(X) = Db(cohX) of cohX has a Serre
functor τ(−)[1].

There is a linear form rk : K0(X) → Z on the Grothendieck group K0(X) of cohX,
called rank, which is preserved under the action of L(p). As usual, we have the notion of a
locally free sheaf, or a vector bundle. A line bundle is a vector bundle of rank 1. A coherent
sheaf F over X is called torsion if it is of finite length in cohX, equivalently, if rk(F ) = 0.
Each coherent sheaf over X decomposes as the direct sum of a torsion sheaf and a vector
bundle. The subcategory of vector bundles resp. torsion sheaves over X is denoted by vectX
resp. coh0X. We have Hom(coh0X, vectX) = 0.

The function w : P1 → Z≥1, λ �→
{
1 if λ �= λi,∀i
pi if λ = λi

is called the weight function

of X. A weight function of X obviously shares the same data as that given by the pair
(p, λ). (p1, . . . , pt ) is called the weight sequence of X. For λ ∈ P

1, by virtue of the
bijection (3.1.1), we denote by cohλX the category of those torsion sheaves supported at λ.

Proposition 3.2 The category coh0X of torsion sheaves decomposes into a coproduct∐
λ∈P1 cohλX of uniserial categories. The number of simple objects in cohλX is w(λ).

λi’s are called exceptional points and the remaining points of P1 ordinary points. For an
ordinary point λ, the unique simple sheaf S supported at λ fits into the exact sequence

0 −→ O
X

p2
2 −λX

p1
1−→ O(�c) −→ S −→ 0.

For an exceptional point λi , the exact sequences

0 −→ O(j �xi)
Xi−→ O((j + 1)�xi) −→ Si,j −→ 0, j ∈ Z/piZ

characterize the pi pairwise non-isomorphic simple sheaves Si,j supported at λi . The simple
sheaf S supported at an ordinary point satisfies S(�x) ∼= S for any �x ∈ L(p); the simple
sheaves Si,j supported at λi satisfies Si,j (�x) ∼= Si,j+li if �x = ∑n

i=1 li �xi . In particular,
τSi,j

∼= Si,j−1. Si,j is an exceptional object iff pi > 1.

Remark 3.3 As a uniserial length abelian k-category whose Ext-quiver is an oriented cycle
with w(λ) verticies and trivial valuation, cohλX is equivalent to the category nilpkÃw(λ)−1
of nilpotent finite dimensional k-representations of the cyclic quiver Ãw(λ)−1 with w(λ)

vertices. So the algebra kÃt−1 provides a local study of a weighted projective line. This
accounts for the presence of Section 2.9.

Denote by PicX the Picard group of X, i.e., the group of isoclasses of line bundles under
tensor product.

Proposition 3.4 (1) The mapping

L(p) −→ PicX, �x �→ O(�x)
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is a group isomorphism. In particular, each line bundle over X is isomorphic to O(�x)

for some �x ∈ L(p).
(2) Each nonzero bundle over X admits a line bundle filtration. That is, for a nonzero

bundle E, there is a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

with line bundle factors Li = Ei/Ei−1 (0 < i ≤ n).

The Grothendieck group K0(X) of cohX (and thus the Grothendieck group K0(Db(X))

of Db(X)) is a finitely generated free abelian group of rank
∑t

i=1(pi − 1)+ 2 with a basis
{[O(�x)] | 0 ≤ �x ≤ �c}. We have a linear form deg : K0(X) → Z, called degree, such that
degO(�x) = δ(�x) for �x ∈ L(p). The Euler form on K0(X) is given by

χ(E, F ) = dimkHom(E, F )− dimkExt
1(E, F )

and the averaged Euler form is defined by χ̄(E, F ) =∑p−1
j=0 χ(τ jE, F ).

Theorem 3.5 (Riemann-Roch Theorem) For E,F ∈ Db(X), we have

χ̄(E, F ) = p(1− gX) rk(E) rk(F )+ deg(F )rk(E)− deg(E)rk(F ).

Here gX = 1+ 1
2δ( �ω) is the virtual genus of X. X is said to be of domestic (resp. tubular,

resp. wild) type if gX < 1 (resp. gX = 1, resp. gX > 1), equivalently, δ( �ω) < 0 (resp.
δ( �ω) = 0, resp. δ( �ω) > 0). X is of domestic type iff the weight sequence is (1, p1, p2),
(2, 2, n) (n ≥ 2), (2, 3, 3), (2, 3, 4), (2, 3, 5), up to permutation; X is of tubular type iff
the weight sequence is (2, 2, 2, 2), (3, 3, 3), (2, 3, 6), (2, 4, 4), up to permutation; weighted
projective lines of wild type correspond to the remaining weight sequences.

A coherent sheaf T over X is called a tilting sheaf if it is a tilting object as an object in
Db(X). A tilting sheaf T yields a derived equivalence Db(X) � Db(EndT ) and induces a
torsion pair (T ,F) in cohX, where

T = {E ∈ cohX | Ext1(T ,E) = 0}, F = {E ∈ cohX | Hom(T ,E) = 0}.

Theorem 3.6 There is a canonical tilting bundle T = ⊕0≤�x≤�cO(�x) over X, whose endo-
morphism algebra is isomorphic to a canonical algebra � with the same parameter (p, λ)

in the sense of Ringel [43]. In particular, we have a derived equivalence Db(�) � Db(X).

Recall from [43] that a canonical algebra � with parameter (p, λ) is the path algebra of
the quiver

�x1 x1 �� 2�x1 x1 �� . . . x1 �� (p1 − 2)�x1 x1 �� (p1 − 1)�x1 x1

�������
0

x1 �������� x2 ��
xt

���
��

��
��

�x2 x2 �� 2�x2 x2 �� . . . x2 �� (p2 − 2)�x2 x2 �� (p2 − 1)�x2 x2 �� �c
...

...
...

...
�xt

xt �� 2�xt

xt �� . . . xt �� (pt − 2)�xt
xt �� (pt − 1) �xt

xt

�����������

with relations x
pi

i = x
p2
2 − λix

p1
1 (i = 3, . . . , t).
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3.2 A Glimpse of Auslander-Reiten Theory

Auslander-Reiten (=AR) theory is introduced by Auslander and Reiten to study represen-
tations of artin algebras. The standard reference is [4] (see also [3]). The central concept
(i.e. an almost split sequence, or an Auslander-Reiten sequence) makes sense in any Krull-
Schmidt category with short exact sequences (in the sense of [43, §2.3]) but there is a
problem of existence. Later Happel introduced in [21] the notion of an Auslander-Reiten
triangle, a triangulated version of Auslander-Reiten sequence. Reiten and Van den Bergh
[41] investigated the close relationship between Serre duality (in the sense of [41]) and
Auslander-Reiten sequences (as well as Auslander-Reiten triangles).

Here we recall some basic definitions and we follow [43]. Let A be an essentially small
Hom-finite abelian k-category. If X and Y are indecomposable, rad(X, Y ) denotes the k-
subspace of Hom(X, Y ) consisting of non-invertible morphisms. If X = ⊕m

j=1Xj , Y =
⊕n

i=1Yi , where Xj , Yi’s are indecomposable, then rad(X, Y ) denotes the k-subspace of
Hom(X, Y ) consisting of those f = (fij ) with fij ∈ rad(Xj , Yi). rad2(X, Y ) denotes the
k-subspace of Hom(X, Y ) consisting of morphisms of the form gf with f ∈ rad(X,M),
g ∈ rad(M, Y ) for some M . Let

Irr(X, Y ) = rad(X, Y )/rad2(X, Y ).

A morphism h : X → Y is called irreducible if h is neither a split monomorphism nor
a split epimorphism and if h = ts for some s : X → Z and t : Z → Y , then s is
a split monomorphism or t is a split epimorphism. h : X → Y is irreducible iff h ∈
rad(X, Y )\rad2(X, Y ).

A morphism f : B → C in A is called a sink map (or a minimal right almost split
morphism) if

(1) f is right almost split, that is, f is not an split epimorphism and any morphismX→ C

which is not a split epimorphism factors through f , and
(2) f is right minimal, that is, γ ∈ End(B) satisfying f γ = f is an automorphism.

Dually, one defines a source map (or a minimal left almost split morphism). Sink (resp.
source) maps with a fixed target (resp. source), if they exist, are obviously unique up to
isomorphism. If f : B → C is a sink (resp. source) map then C (resp. B) is indecompos-

able. An exact sequence 0 → A
g→ B

f→ C → 0 in A is called an AR sequence (or an
almost split sequence) if g is a source map, equivalently, if f is a sink map (see [43, §2.2,
Lemma 2] for the equivalence). If such an AR sequence exists, then each irreducible map
f1 : A→ B1 (or g1 : B1 → C) fits into an AR sequence

0 −→ A
(f1,f2)

t

−→ B1 ⊕ B2
(g1,g2)−→ C −→ 0.

We say thatA has sink (resp. source) maps if for each indecomposable object A ∈ A, there
exists a sink map B → A (resp. a source map A → C). We say that A has AR sequences
(or almost split sequences) ifA has both sink and source maps.

If A has AR sequences then the AR quiver (�A, σ ) of A, which turns out to be a trans-
lation quiver, is defined as follows. The vertex set of �A is in bijection with a complete set
of representatives of isoclasses of indecomposable objects in A. Denote the vertex corre-
sponding to an indecomposable object M by [M]. The number of arrows from a vertex [M]
to another vertex [N ] is dimkIrr(M,N). By [43, §2.2, Lemma 3], if A→ B is a source map
then there are d arrows from [A] to [D] iff the multiplicity of D as a direct summand of B

is d . There is a dual fact for a sink map. So if 0→ A→ B → C → 0 is an AR sequence
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then there are d arrows from [A] to [D] iff there are d arrows from [D] to [C]. The transla-
tion σ , called the AR translation of A, is such that σ [C] = [A] if 0→ A→ B → C → 0
is an AR sequence.

The existence of AR sequences as well as the existence of AR triangles is closely related
to the existence of a Serre functor. We refer the reader to [41] and here we only record the
following fact (see [41, Theorem I.3.3]): if A is a hereditary abelian k-category with finite
dimensional morphism and extension spaces, then the existence of a Serre functor ofDb(A)

implies the existence of AR sequences in A. Consequently, if X is a weighted projective
line then cohX admits AR sequences.

Proposition 3.7 [17, Corollary 2.3] Let X be a weighted projective line. cohX has AR
sequences with AR translation given by [M] ��� [τM].

AR sequences are obtained in the following way. For each indecomposable sheaf E over
X, we have a distinguished exact sequence ηE : 0 → τE → F → E → 0 whose class
in Ext1(E, τE) corresponds to idτE under Serre duality DExt1(E, τE) ∼= Hom(τE, τE).
The exact sequence ηE is an AR sequence. Since τ is an autoequivalence of cohX, 0 →
E→ τ−1F → τ−1E→ 0 is also an AR sequence.

An additive subcategory C of cohX closed under direct summands is said to be closed
under the formation of AR sequences if for any AR sequence 0 → τE → F → E → 0,
E ∈ C implies F ∈ C and τ iE ∈ C for all i ∈ Z. In this case, we can talk about the AR
quiver of C and the AR quiver of C is a union of certain components of the AR quiver of
cohX. For each λ ∈ P

1, cohλX is closed under the formation of AR sequences and the AR
quiver of cohλX is a tube of rank w(λ), where w is the weight function of X, and thus the
AR quiver of coh0X is a family of tubes parametrized by P1. vectX is also closed under the
formation of AR sequences. We will see in the next subsection the shape of the AR quiver
of vectX for a domestic or tubular weighted projective line X. We mention that for a wild
weighted projective line X, each AR component of vectX has the shape ZA∞ [34].

We introduce more definitions for the sake of the next subsection. Let E be an indecom-
posable object in cohX lying in a component which is a tube of finite rank. The quasi-length
of E is the largest integer l such that there exists a sequence

E = Al � Al−1 � . . . � A2 � A1 = A

of irreducible epimorphisms, equivalently, there exists a sequence

B = B1 ↪→ B2 ↪→ . . . ↪→ Bl−1 ↪→ Bl = E

of irreducible monomorphisms. In this case, we sayA (resp.B) is the quasi-top (resp. quasi-
socle) of E. E is called quasi-simple if E is of quasi-length one, i.e., E lies at the bottom of
the tube. Note that the quasi-length of an indecomposable finite length sheaf coincides with
its length and a quasi-simple torsion sheaf is just a simple sheaf. The τ -period of E is the
minimal positive integer n such that τnE ∼= E, which equals the rank of the tube.

3.3 Vector Bundles over a Domestic or Tubular Weighted Projective Line

We first recall the notion of stability of a vector bundle. For a nonzero bundle F over a
weighted projective line X, its slope μ(F) is defined as μ(F) = deg(F )/rk(F ).

Lemma 3.8 [30, Lemma 2.5] We have μ(F(�x)) = μ(F) + δ(�x). In particular, μ(τF ) =
μ(F)+ δ( �ω).
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F is called semistable (resp. stable) if μ(E) ≤ (resp. <) μ(F) for any subbundle E of F

with rk(E) < rk(F ). For μ ∈ Q, denote by cohμ
X the subcategory of cohX consisting of

semistable bundles of slope μ. cohμ
X is a length abelian category whose simple objects are

precisely stable bundles of slope μ. For a torsion sheaf T , we define μ(T ) = ∞ and denote
coh∞X = coh0X. We have Hom(cohμ

X, cohμ′
X) = 0 for μ > μ′.

Recall that a subsheaf E of a nonzero bundle F on X is called a maximal destabilizing
subsheaf if for any subsheaf G of F , we have μ(E) ≥ μ(G) and μ(E) = μ(G) implies
G is a subsheaf of E. As in the case of smooth projective curves, a maximal destabilizing
subsheaf exists in our case, and the existence is unique up to isomorphism. It follows that
each nonzero bundle admits a Harder-Narasimhan filtration, that is, a sequence

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = F

such that all the factors Ai = Fi/Fi−1 (0 < i ≤ m) are semistable bundles and

μ(A1) > μ(A2) > · · · > μ(Am).

Such a filtration is unique up to isomorphism. Ai are called the semistable factors of F . We
will denote

μ+(F ) = μ(A1), μ−(F ) = μ(Am).

Let μ ∈ R̄ = R ∪ {∞}. Denote
coh≥μ

X = {E ∈ cohX | μ−(E) ≥ μ}, coh<μ
X = {E ∈ cohX | μ+(E) < μ}.

Similarly one defines coh>μ
X, coh≤μ

X. Then we have torsion pairs

(coh≥μ
X, coh<μ

X), (coh>μ
X, coh≤μ

X)

for each μ ∈ R̄.
Suppose X is a weighted projective line of domestic type with weight sequence

(p1, p2, p3). Then up to permutation,

(p1, p2, p3) = (1, p2, p3), (2, 2, n)(n ≥ 2), (2, 3, 3), (2, 3, 4), or (2, 3, 5).

Let � = �(p1, p2, p3) be the Dynkin diagram

(1,p1−1)•
(1,p1−2)•

(1,2)• (1,1)•
���

��

(2,p2−1)•
(2,p2−2)•

(2,2)• (2,1)• •

(3,p3−1)•
(3,p3−2)•

(3,2)• (3,1)•

�����

Let �̃ be the extended Dynkin diagram attached to �. We collect well-known and basic
properties of vector bundles over a domestic weighted projective line in the following
theorem.

Theorem 3.9 Let X be a weighted projective line of domestic type with weight sequence
(p1, p2, p3).

(1) Each indecomposable bundle over X is stable and exceptional. The rank function
rk is bounded on indecomposable bundles over X. If some pi equals 1 then each
indecomposable bundle is a line bundle.

(2) The direct sum of a complete set of indecomposable bundles with slope in the interval

(δ( �ω), 0] is a tilting bundle and its endomorphism algebra is the path algebra k
�̃
� of an
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extended Dynkin quiver �̃� with underlying graph �̃. In particular, we have a derived

equivalence Db(X) � Db(k
�̃
�). If each pi ≥ 2, then �̃� has a bipartite orientation.

(3) The Auslander-Reiten quiver of vectX consists of a single component having the form
Z�̃.

Proof The first statement in (1) is [17, Proposition 5.5(i)]. The last statement in (1) is [30,
Corollary 3.8]. (2) and (3) are due to [23] (see also [30, Theorem 3.5], [29, Proposition
5.1]). It remains to show the second statement in (1). In fact, the underlying graph � of the
AR quiver of vectX is determined by the following observations:

(1) rk is an additive function on the full sub-graph �0 of � consisting of vertices
corresponding to indecomposable bundles with slope in (δ( �ω), 0];

(2) the number of vertices of �0 is equal to the rank
∑3

i=1(pi − 1) + 2 of K0(X) (since
the direct sum of pairwise non-isomorphic indecomposable bundles with slope in the
interval (δ( �ω), 0] is a tilting bundle);

(3) the number of line bundles with slope in the interval (δ( �ω), 0] is [L(p) : Z �ω] (by
Proposition 3.4(1)), which is equal to p2+p3 (4, 3, 2, 1, respectively) if (p1, p2, p3) =
(1, p2, p3) ((2, 2, n) (n ≥ 2), (2, 3, 3), (2, 3, 4), (2, 3, 5), respectively).

In particular, rank of indecomposable bundles are explicitly known and form a bounded set
since τ preserves rank.

Remark 3.10 (1) To show that the endomorphism algebra End(T ) of the tilting bundle T

given in Theorem 3.9(2) is a hereditary algebra, instead of using the argument in [29],
we can also argue as follows. By Proposition 3.33, there are a bounded t-structure
with heart B ⊂ cohX[1] ∗ cohX and an equivalence B � modEnd(T ). Clearly
we have Hom2

Db(X)
(B,B) = 0. Since there is a monomorphism Ext2B(X, Y ) ↪→

Hom2
Db(X)

(X, Y ) for X, Y ∈ B, we have Ext2B(B,B) = 0, that is, B is hereditary. So
End(T ) is a hereditary algebra.

(2) We remark why �̃� has a bipartite partition if each pi ≥ 2. This is obtained via a case-
by-case analysis using AR-sequences and starting from line bundles with slope in the
interval (δ( �ω), 0]. For example, if (p1, p2, p3) = (2, 3, 4), then the full subquiver
of the AR quiver of vectX consisting of those indecomposable bundles with slope in
(δ( �ω), 0] can be depicted as follows

[E2]

[O] [E1]�� �� [F ] [G]��

��

�� [F( �x1 − 2 �x3)] [E1( �x1 − 2 �x3)]�� �� [O( �x1 − 2 �x3)],
where E1, E2, F, G are determined by the following AR sequences

0 −→ τO −→ E1 −→ O −→ 0

0 −→ E1 −→ O ⊕ F −→ τ−1E1 −→ 0
0 −→ τF −→ E1 ⊕G −→ F −→ 0

0 −→ G −→ F ⊕ E2 ⊕ F(�x1 − 2�x3) −→ τ−1G −→ 0.

It follows that �̃� has a bipartite partition.

Now suppose X is of tubular type. We have an interesting and extremely useful class of
exact autoequivalences of Db(X), called telescopic functors. These functors are introduced
in [33] as equivalences between subcategories of cohX and extended in [38] as exact
autoequivalences of Db(X). Meltzer [37] is a good reference for these functors.
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Theorem 3.11 [37, Theorem 5.2.6] Let X be a weighted projective line of tubular type.
For each q, q ′ ∈ Q̄, there is an exact autoequivalence �q,q ′ of Db(X), called a telescopic

functor, such that �q,q ′(coh
q ′
X) = cohq

X. Moreover, these functors satisfy the conditions
�q ′′,q = �q ′′,q ′ ◦�q ′,q and �q,q = id.

Denote cohμ
λX = �μ,∞(cohλX). The next theorem summarizes well-known and basic

properties of vector bundles over a tubular weighted projective line.

Theorem 3.12 Let X be a weighted projective line of tubular type.

(1) We have cohμ
λX � cohλX and cohμ

X decomposes as cohμ
X = ∐

λ∈P1 coh
μ
λX. In

particular, each cohμ
λX as well as cohμ

X is a uniserial abelian category.
(2) Each indecomposable bundle over X is semistable. cohμ

λX is closed under the for-
mation of Auslander-Reiten sequences and the Auslander-Reiten quiver of cohμ

λX

is a tube of rank w(λ), where w is the weight function of X. In particular, the
Auslander-Reiten quiver of vectX is a family of tubes parametrized by Q× P

1.
(3) An indecomposable bundle in cohμ

λX is exceptional iff its quasi-length is less than
w(λ). An indecomposable bundle overX is stable iff it is quasi-simple. A stable bundle
in cohμ

λX has τ -period w(λ).

Proof The assertion that each indecomposable bundle is semistable is [17, Proposition
5.5(ii)]. The remaining assertions follow from facts on coh0X by applying a suitable tele-
scopic functor. We remark that a telescopic functor commutes with τ since any exact
autoequivalence commutes with a Serre functor.

Here we make an observation needed in the following two lemmas. Let (p1, . . . , pt ) be
the weight sequence of X. Recall that we denote by p = lcm(p1, . . . , pt ). Since X is of
tubular type, there is some pi equal to p. So there exists a simple sheaf S with τ -period p.

For F ∈ coh(X) and n ∈ Z, we define the slope μ(F [n]) of the object F [n] ∈ Db(X)

to be μ(F [n]) = μ(F). We will need to know the effect of the telescopic functor �∞,q on
slope and the essential image of cohμ

X under �∞,q .

Lemma 3.13 (1) There is a fractional linear map

φq : R̄→ R̄, μ �→ aμ+ b

cμ+ d
, (3.3.1)

where

(
a b

c d

)

∈ SL(2,Z), such that

μ(�∞,q (E)) = φq(μ(E))

for an indecomposable sheaf E.
(2) For μ ∈ Q̄, we have

�∞,q (cohμ
X) =

{
cohφq(μ)

X if μ ≤ q,

cohφq(μ)
X[1] if μ > q.

(3.3.2)

Proof Recall from [37, Chapter 5] that for a quasi-simple sheaf E over X with τ -period
pE , the tubular mutation functor Tτ •E with respect to the τ -orbit of E, which is an exact
autoequivalence of Db(X), fits into a triangle

⊕pE−1
j=0 Hom•(τ jE,−)⊗ τ jE→ id→ Tτ •E � .
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Define an action of SL(2,Z) on Q̄ by
(

a b

c d

)

.q = aq + b

cq + d
.

By [37, Corollary 5.2.3], Tτ •O(cohq
X) is a shift of coh

q
1−q X for each q ∈ Q̄. Let S be a

simple sheaf with τ -period p. From the triangle

⊕p−1
j=0Hom

•(τ j S,−)⊗ τ jS → id→ Tτ •S �,

we see that Tτ •S(cohq
X) = coh1+q

X for q ∈ Q̄. So Tτ •S (T −1τ •S , Tτ •O , respectively) acts

on slopes by

(
1 1
0 1

)

(

(
1 −1
0 1

)

,

(
1 1
0 1

)

, respectively). By definition, �q,∞ = �−1∞,q is a

composition of a sequence of the functors Tτ •S, T −1τ •S, Tτ •O (see [37, Theorem 5.2.6]). So we

have a unique function φq : Q̄→ Q̄ such that φq(μ) = aq+b
cq+d

for some

(
a b

c d

)

∈ SL(2,Z)

and such that �∞,q (cohμ
X) is a shift of cohφq(μ)

X for each μ ∈ Q̄. We extend φq to be the
function

φq : R̄→ R̄, r �→ ar + b

cr + d
.

By Riemann-Roch Theorem, we have Hom(cohμ
X, cohμ′

X) �= 0 for μ < μ′. Now that
�∞,q (cohq

X) = coh∞X, (2) follows immediately.

It’s well-known that a stable bundle over an elliptic curve defined over an algebraically
closed field has coprime rank and degree. We have the following analogue4 for a stable
bundle over a tubular weighted projective line, which is implicit in [33]. Actually, there is a
parallel proof for an elliptic curve.

Lemma 3.14 Let X be a weighted projective line of tubular type and E a stable vector
bundle over X with τ -period pE . Then

gcd(rk(E), deg(E)) = p

pE

.

Proof Let S be a simple sheaf with τ -period p. By Riemann-Roch Theorem, the linear
form deg : K0(X)→ Z coincides with χ̄ (O,−) and the linear form rk : K0(X)→ Z with
χ̄ (−, S). So we have

deg(E) = χ̄(O, E) = p

pE

pE−1∑

i=0
χ(τ iO, E),

rk(E) = χ̄(E, S) = p

pE

pE−1∑

i=0
χ(τ iE, S),

whence
p

pE

| gcd(deg(E), rk(E)).

4Prof. Lenzing informed me of this fact as an answer to my question.
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Let S′ = �∞,μ(E)(E). S′ is a simple sheaf with τ -period pS′ = pE . Observe that there
exists �x ∈ L(p) such that χ̄(O(�x), S′) = p

pE
. Take F = �μ(E),∞(O(�x)). Then we have

deg(F )rk(E)− deg(E)rk(F ) = χ̄ (F,E) = χ̄(O(�x), S′) = p

pE

.

Hence gcd(rk(E), deg(E)) = p
pE

.

3.4 Perpendicular Categories

Let X = X(p, λ) be a weighted projective line with weight sequence p = (p1, . . . , pt ). For

convenience, we will denoteA = cohX,D = Db(X). For a collection S of objects in cohX,
we have S ⊥A = ⊥AτS by Serre duality. So it sufficies to describe right perpendicular
categories. We are concerned about perpendicular categories of an exceptional sequence.

A (possibly empty) collection of simple sheaves over X is called proper if it does not
contain a complete set of simple sheaves supported at λ for each λ ∈ P

1 and simple sheaves
in the collection are pairwise non-isomorphic. In particular, it contains only exceptional
simple sheaves.

Theorem 3.15 [18] Let S = ⋃t
i=1 Si be a collection of simple sheaves, where Si is a

proper collection of simple sheaves supported at λi .

(1) We have an equivalence S ⊥A � cohX′ preserving rank, where X
′ = X(p′, λ) is a

weighted projective line with weight sequence

p′ = (p1 − �S1, . . . , pi − �Si , . . . , pt − �St ).

(2) The inclusion of the exact subcategory S ⊥A into A = cohX admits an exact left
adjoint and an exact right adjoint, both of which preserve rank.

Lemma 3.16 Let E be an exceptional torsion sheaf. Denote

SE = {τ i top(E) | 0 ≤ i < l(E)}, S ′E = SE\{top(E)}. (3.4.1)

Then E ⊥A decomposes as

E ⊥A = S ⊥A
E

∐
〈S ′E〉A,

and we have an equivalence S ⊥A
E � cohX′ preserving rank, where X

′ = X(p′, λ) is a
weighted projective line with weight sequence

p′ = (p1, . . . , pi − l(E), . . . , pt ),

and an equivalence 〈S ′E〉A � modk �Al(E)−1, where k �Al is the path algebra of the equi-
oriented Al-quiver.

Note that if X is of tubular type then X
′ is of domestic type.

Proof Suppose E is supported at λ. We have a decomposition

E ⊥A ∩ cohλX = E ⊥cohλX = (S ⊥A
E ∩ cohλX)

∐
〈S ′E〉A.
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The argument for showing this is similar to that in showing N⊥ = A1
∐A2 in the proof of

Lemma 2.25. For λ �= λ′ ∈ P
1, since Hom(cohλX, cohλ′X) = 0, we have

E ⊥A ∩ cohλ′X = cohλ′X = S ⊥A
E ∩ cohλ′X.

We continue to show
E ⊥A ∩ vectX = S ⊥A

E ∩ vectX.

It sufficies to show that each nonzero bundle F lying in E ⊥A lies in S ⊥A
E . Assume

for a contradiction that F /∈ S ⊥A
E . Then for some S ∈ SE , Ext1(S, F ) �= 0,

whence Hom(F, τS) �= 0 by Serre duality. Since τS is a composition factor of τE and
since Hom(F,−) : cohλX → modk is an exact functor, Hom(F, τS) �= 0 implies
Hom(F, τE) �= 0. Hence Ext1(E, F ) �= 0, a contradiction to F ∈ E ⊥A . So indeed we have

E ⊥A ∩ vectX = S ⊥A
E ∩ vectX.

By Serre duality, this implies Hom(E ⊥A ∩ vectX, 〈S ′E〉A) = 0. Now that each coherent
sheaf overX is a direct sum of a bundle and a torsion sheaf and that coh0X =∐

λ∈P1 cohλX,
we can conclude

E ⊥A = S ⊥A
E

∐
〈S ′E〉A.

One easily sees 〈S ′E〉A � modk �Al(E)−1. By Theorem 3.15, we have an equivalence S ⊥A
E �

cohX′ preserving rank, where X′ has a weight sequence as asserted.

Theorem 3.17 (1) ([25]; see also [24, Kapitel 5]) Let E be an exceptional bundle over X.
Then E ⊥A � mod� for some finite dimensional hereditary algebra �.

(2) ([25]; see also [30, Proposition 2.14]) Let L be a line bundle in cohX. Then

L⊥A � modk[p1, . . . , pt ],
where k[p1, . . . , pt ] is the path algebra of the equioriented star quiver [p1, . . . , pt ].

Here, an equioriented star quiver [p1, . . . , pt ] refers to the quiver

(1,p1−1)•
�� (1,p1−2)•

(1,2)•
�� (1,1)•

���
��

��
�

(2,p2−1)•
�� (2,p2−2)•

(2,2)•
�� (2,1)•

�����
�

...
...

...
•

•
(t,pt−1) �� •

(t,pt−2)
•

(t,2) �� •
(t,1)

������

In certain cases, forming a perpendicular category can yield the module category of a
representation-finite finite dimensional hereditary algebra.

Lemma 3.18 (1) If X is of domestic type and E is an indecomposable bundle then E ⊥A

is equivalent tomod� for a representation-finite finite dimensional hereditary algebra
�.

(2) If X is of tubular type and (E, F ) is an exceptional pair in cohX with μ(E) �= μ(F)

then {E,F } ⊥A is equivalent to mod� for a representation-finite finite dimensional
hereditary algebra �.

Proof (1) Let (p1, p2, p3) be the weight sequence of X. If some pi = 1, say i = 1, then
E is a line bundle and by Theorem 3.17(2) we have E ⊥A � modk[p2, p3]. Otherwise
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pi ≥ 2 for all i. Up to the action of some power of τ , we can suppose δ( �ω) < μ(E) ≤
0. Let T be the direct sum of a complete set of indecomposable bundles with slope
in the interval (δ( �ω), 0] and suppose T = T1 ⊕ E. Recall that T is a tilting bundle
and its endomorphism algebra � = End(T ) is a tame hereditary algebra whose quiver
has a bipartite orientation. Hence �1 = End(T1) is a representation-finite hereditary
algebra. We already know E ⊥A � mod� for a finite dimensional hereditary algebra
�. Now that T1 is a tilting object in E ⊥D , we have exact equivalences Db(�) �
Db(E ⊥A) = E ⊥D � Db(�1). Hence � is a representation-finite hereditary algebra,
the underlying graph of whose quiver is the same as that of the quiver of �1.

(2) By applying Lemma 3.16, we have an equivalence

F ⊥D � �∞,μ(F )(F )⊥D � Db(X′)
∐

Db(k �Al(F )−1),

under which E ∈ F ⊥A corresponds to E′[m] for some exceptional bundle E′ over X′
and some m ∈ Z. Thus there are exact equivalences

Db({E,F } ⊥A) = {E,F } ⊥D � E
′⊥Db(cohX′)

∐
Db(k �Al(F )−1) � Db(�)

for a representation-finite finite dimensional hereditary algebra �. It follows that
{E,F } ⊥A is equivalent to mod� for a representation-finite finite dimensional hered-
itary algebra �.

Remark 3.19 (1) There is a more direct proof of (1) using Theorem 3.22. The current
proof has the advantage that it gives us additional information on the quiver of �.

(2) It can be shown that if X is of tubular type and E is an exceptional bundle with quasi-
length l then E ⊥A � mod�

∐
modk �Al−1 for a tame hereditary algebra � and an

equioriented Al−1-quiver.

3.5 Some Nonvanishing Hom Spaces

The following two lemmas are well-known.

Lemma 3.20 Let E be a nonzero bundle overX and F an non-exceptional indecomposable
torsion sheaf. Then Hom(E, F ) �= 0, Ext1(F,E) �= 0.

Proof Suppose F is supported at λ ∈ P
1. Take a line bundle L such that there is an epimor-

phism E � L and also a simple sheaf S supported at λ such that Hom(L, S) �= 0. Then
Hom(E, S) �= 0. Since F is a non-exceptional indecomposable sheaf supported at λ, S is a
composition factor of F . Then there exist two exact sequences

0→ F1 → F → F2 → 0, 0→ S → F2 → F3 → 0,

where Fi ∈ cohλX (i = 1, 2, 3). Applying Hom(E,−), one has Hom(E, S) ↪→
Hom(E, F2) and Hom(E, F ) � Hom(E, F2) therefore Hom(E, F ) �= 0. Note that τF

is also a non-exceptional indecomposable sheaf and thus Hom(E, τF ) �= 0. This gives
Ext1(F,E) �= 0 by Serre duality.
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Lemma 3.21 LetX be of tubular type. Suppose E,F are two nonzero bundles with μ(E) <

μ(F). Then Hom(E, τ iF ) �= 0 for some i. If E or F is a non-exceptional indecomposable
bundle, Hom(E, F ) �= 0 always holds.

Proof By Riemann-Roch Theorem, we have

p−1∑

j=0
(dimkHom(τ jE, F )−dimkExt

1(τ jE, F ))= χ̄ (E, F )= rk(E)rk(F )(μ(F )−μ(E))>0.

Since Ext1(τ jE, F ) = 0 for each j , Hom(τmE, F ) �= 0 for some 0 ≤ m < p, whereby
Hom(E, τ iF ) �= 0 for some i. If E is non-exceptional indecomposable bundle then E has
a filtration with factors τ iG (0 ≤ i < pE), where G is the quasi-top of E and pE is the
τ -period of E. Now that Hom(τ iG, F ) �= 0 for some i, Hom(E, F ) �= 0. Similar argument
applies to the case when F is a non-exceptional indecomposable bundle.

Using stability argument, [34] showed the following fact.

Theorem 3.22 [34, Theorem 2.7] Let F,G be nonzero bundles on X with μ(G)−μ(F) >

δ(�c + �ω) = p + δ( �ω) then Hom(F,G) �= 0.

For E[n] ∈ Db(X) (E ∈ cohX), we defined the slope of E[n] by μ(E[n]) = μ(E). For
a nonzero subcategory C of D closed under nonzero direct summands, define

μ(C) = {μ(E) | E an indecomposable object in C}. (3.5.1)

We emphasize that we only count in indecomposables. In the sequel, we will need to con-
sider limit points5 of μ(C) in R̄, where R̄ is equipped with the topology obtained via one
point compactification of R.

If X is of tubular type, by Lemma 3.13, for each q ∈ Q̄, there is a fractional linear
function φq on R̄ with integer coefficients such that μ(�∞,q (E)) = φq(μ(E)), where
�∞,q is a telescopic functor. Evidently, φq is a homeomorphism of R̄ and restricts to a
homeomorphism of the subspace Q̄.

Lemma 3.23 Suppose X is of tubular type and let E be an exceptional sheaf over X. Then
μ(E) is the unique limit point of μ(E ⊥A) (and μ(⊥AE)).

Proof First suppose that E is an exceptional torsion sheaf. By Lemma 3.16 (and with the
notation there), we have

E ⊥A = S ⊥A
E

∐
〈S ′E〉A � cohX′

∐
modk �Al(E)−1,

where X′ is a weighted projective line of domestic type, and the equivalence S ⊥A
E � cohX′

preserves rank. By Theorem 3.9, the rank function rk is bounded on indecomposable sheaves
in E ⊥A . Moreover, L(n�c) ∈ E ⊥A for a line bundle L ∈ E ⊥A and n ∈ Z. Thus∞ is the
unique limit point of μ(E ⊥A).

5Recall that if A is a subset of a topological space X and if x is a point of X, x is called a limit point of A in
X if every neighborhood of x intersects A in some point other than x itself.
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Now consider an exceptional bundle E with slope q. Since �∞,q (E) is an exceptional

torsion sheaf,∞ is the unique limit point of μ(�∞,q (E)⊥A). Now that

μ(E ⊥A) = μ(E ⊥D ) = φ−1q (μ(�∞,q (E)⊥D )) = φ−1q (μ(�∞,q (E)⊥A)),

q = φ−1q (∞) is the unique limit point of μ(E ⊥A).

Recall that ⊥AE = (τ−1E)⊥A . Hence μ(E) = μ(τ−1E) is the unique limit point of
μ(⊥AE) = μ((τ−1E)⊥A).

Corollary 3.24 Suppose X is of tubular type. Let E be an indecomposable sheaf and E =
{Ei | i ∈ I } a collection of indecomposable sheaves with μ(E) a bounded subset of R.
Suppose μ is a limit point of μ(E). If μ < μ(E) then there is some Ei with Hom(Ei, E) �=
0; if μ > μ(E) then there is some Ei with Hom(E,Ei) �= 0.

Proof We will consider the case μ < μ(E) and the other case is similar. If E is non-
exceptional then our assertion follows from Lemma 3.20 and Lemma 3.21. So we consider
exceptional E. We can assume that μ(Ei) < μ(E) for all i by dropping the other Ei’s.
Then Ext1(Ei, E) = 0 for all i. If Hom(Ei, E) = 0 for all i then Ei ∈ ⊥AE for all i and
thus μ is a limit point of μ(⊥AE). This is a contradiction to Lemma 3.23. Thus we have
Hom(Ei, E) �= 0 for some i.

3.6 Full Exceptional Sequences in cohX

It’s well-known that if a k-linear essentially small triangulated category D of finite type
contains an exceptional sequence of length n then the rank rkK0(D) of the Grothendieck
group K0(D) of D satisfies rkK0(D) ≥ n. In general, the exceptional sequence is not full
even if n = rkK0(D). But this is the case in our setup.

Lemma 3.25 An exceptional sequence (E1, . . . , En) in Db(X) is full iff n = rkK0(X).

Proof We always have n ≤ rkK0(Db(X)) = rkK0(X). Meltzer [37, Lemma 4.1.2]
showed that an exceptional sequence in Db(X) of length rkK0(X) generates Db(X). So an
exceptional sequence (E1, . . . , En) in Db(X) is full iff n = rkK0(X).

Observe that by Serre duality, if (E1, . . . , En) is a full exceptional sequence in cohX then

(τEi+1, . . . , τEn, E1, . . . , Ei)

is also a full exceptional sequence. We show that a full exceptional sequence in cohX can
possess certain nice term.

Lemma 3.26 If a full exceptional sequence in cohX contains a torsion sheaf then it contains
a simple sheaf.

Proof Let (E1, . . . , En) be a full exceptional sequence with Ei a torsion sheaf. We can

suppose i = n. Note that (E1, . . . , En−1) is a full exceptional sequence in E
⊥A
n . If En is

already simple then there is nothing to prove. Suppose l(En) > 1. Then by Lemma 3.16,
we have an equivalence

E ⊥A
n � cohX′

∐
modk �Al(En)−1 (3.6.1)
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for some weighted projective line X
′ and an equioriented Al(En)−1-quiver. Via this

equivalence, a subsequence of (E1, . . . , En−1) yields a full exceptional sequence in
modk �Al(En)−1, which contains a simple module by Corollary 2.26. Note that a simple
k �Al(En)−1-module maps to a simple sheaf under the equivalence (3.6.1), which is clear from
Lemma 3.16. So some Ei is a simple sheaf.

Proposition 3.27 For X of domestic type, each full exceptional sequence in cohX contains
a line bundle.

Proof Let (E1, . . . , En) be a full exceptional sequence in cohX. We use induction to show
our assertion. Consider the weight type (1, p1, p2), in which case each indecomposable
bundle over X is a line bundle. Since (E1, . . . , En) classically generates Db(X), some Ei

is an indecomposable bundle and thus a line bundle. We continue to consider a domestic
weight type different than (1, p1, p2) even up to permutation. We claim that if each Ei is a
bundle then the assertion holds, which is proved later. So consider the case that some Ei is
a torsion sheaf. We can assume that i = n. Moreover, (E1, . . . , En−1) is a full exceptional
sequence in E

⊥A
n . By Lemma 3.16 (and with the notation there), we have

E ⊥A
n = S ⊥A

En

∐
〈S ′En
〉 � cohX′

∐
modk �Al(En)−1,

where X
′ is a weighted projective line with a weight function dominated by the weight

function of X (in the sense of [18]), and the equivalence S ⊥A
En
� cohX′ preserves rank. By

induction, we know that some Ei (i ∈ {1, . . . , n− 1}) is a line bundle.
It remains to prove our claim that if each Ei is a bundle then some Ei is a line bundle.

The proof is inspired by the proof of [37, Proposition 4.3.6]. As in [37, §4.3.6], for an
exceptional sequence E = (E1, . . . , En), define

‖E‖ = (rk(Eπ(1)), . . . , rk(Eπ(n))),

where π is a permutation on {1, . . . , n} such that rk(Eπ(1)) ≥ · · · ≥ rk(Eπ(n)).
Suppose for a contradiction that rk(Ei) ≥ 2 for each i. In particular, ⊕Ei is not a

tilting bundle since each tilting bundle contains a line bundle summand for X of domes-
tic type by [30, Corollary 3.7] (reproved with Corollary 3.36(1)). Hence for some i < j ,
Ext1(Ei, Ej ) �= 0. We can assume that Ext1(Ek,El) = 0 for i ≤ k < l ≤ j . By
[37, Lemma 3.2.4], Hom(Ei, Ej ) = 0.

Consider i < k < j such that Hom(Ei, Ek) �= 0. Let f : Ei → Ek be a nonzero
morphism, which is either a monomorphism or an epimorphism by Happel-Ringel Lemma
(see Proposition 2.19). f being a monomorphism implies

0 = Ext1(Ek, Ej ) � Ext1(Ei, Ej ) �= 0,

a contradiction. Hence f is an epimorphism. Thus Hom(Ei, Ej ) = 0 implies
Hom(Ek,Ej ) = 0.

Let P be the subsequence of (Ei+1, . . . , Ej−1) consisting of those Ek satisfying
Hom(Ei, Ek) �= 0. Then for each term Ek in P , we have an epimorphism in Hom(Ei, Ek)

and Hom(Ek, Ej ) = 0. Let Q be the subsequence of (Ei+1, . . . , Ej−1) consisting of
the remaining terms, i.e., those El satisfying Hom(Ei, El) = 0. We want to show that
Hom(Ek,El) = 0 for Ek ∈ P,El ∈ Q. Each nonzero morphism g : Ek → El is either
a monomorphism or an epimorphism by Happel-Ringel Lemma. If g is a monomorphism
then Hom(Ei, Ek) �= 0 implies Hom(Ei, El) �= 0, a contradiction to Hom(Ei, El) = 0; if

2204



Bounded t-Structures on the Bounded Derived Category of Coherent...

g is an epimorphism then composing with an epimorphism in Hom(Ei, Ek) yields an epi-
morphism in Hom(Ei, El), again a contradiction to Hom(Ei, El) = 0. These show that
Hom(Ek,El) = 0 for Ek ∈ P, El ∈ Q. Moreover, Hom(Ek,Ej ) = 0 for Ek ∈ P .
Therefore the sequence

(E1, . . . , Ei−1,Q,Ei, Ej , P,Ej+1, . . . , En)

is a full exceptional sequence. This gives us a full exceptional sequence (F1, F2, . . . , Fn)

such that rk(Fi) ≥ 2 for all 1 ≤ i ≤ n, Ext1(Fj , Fj+1) �= 0 and Hom(Fj , Fj+1) = 0 for
some 1 ≤ j ≤ n− 1. Without loss of generality, we can assume j = 1.

Now we use mutation of an exceptional sequence. Let LF1F2 be the universal extension:

0→ F2 → LF1F2→ Ext1(F1, F2)⊗ F1→ 0.

Then
F ′ = (LF1F2, F1, F3, . . . , Fn)

is a full exceptional sequence with ‖F ′‖ > ‖F‖. As before, since each bundle in the
sequence has rank ≥ 2, the direct sum of bundles in F ′ is not a tilting bundle. This allows
us to repeat the argument above. Successive repeating will give us indecomposable bundles
with arbitrary large rank. This is a contradiction to the fact that the rank function is bounded
on indecomposable bundles over a weighted projective line of domestic type. We have thus
shown our claim that each full exceptional sequence (E1, . . . , En) with each Ei a bundle
indeed contains a line bundle.

Corollary 3.28 Suppose X is of tubular type. If a full exceptional sequence in cohX
contains a torsion sheaf then it contains a line bundle and a simple sheaf.

Proof Let (E1, . . . , En) be a full exceptional sequence in cohX. By Lemma 3.26, if some
Ei is torsion then some Ej is simple. Suppose j = n. Since (E1, . . . , En−1) is a full

exceptional sequence in E
⊥A
n � cohX′, where X′ is a weighted projective line of domestic

type and the equivalence preserves rank, it follows from Proposition 3.27 that some Ek is a
line bundle.

3.7 Torsion Pairs in cohX

In this subsection, we discuss some properties of torsion pairs in cohX and also give some
preparatory descriptions of torsion pairs (see Section 4.5 for the final description). We first
describe two simple classes of torsion pairs in cohX. Obviously, any torsion pair in cohX
restricts to a torsion pair in cohλX for each λ ∈ P

1.

Lemma 3.29 Let (T ,F) be a pair of subcategories of cohX.

1. (T ,F) is a torsion pair in cohX with T ⊂ coh0X iff for each λ ∈ P
1, there is a torsion

pair (Tλ,Fλ) in cohλX such that

T = add{Tλ | λ ∈ P
1}, F = add{vectX,Fλ | λ ∈ P

1}.
2. (T ,F) is a torsion pair in cohX with F ⊂ coh0X iff

F = add{Fλ | λ ∈ P
1}, T = {E ∈ cohX | Hom(E,F) = 0},

where each Fλ is a torsion-free class in cohλX without non-exceptional indecompos-
able object.
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Proof We prove (2) as (1) is clear.
(⇒) Suppose F ⊂ coh0X. F restricts to a torsion-free class Fλ in cohλX for each

λ ∈ P
1. If Fλ contains a non-exceptional indecomposable sheaf then by Lemma 3.20, T

contains no nonzero bundle and thus vectX ⊂ F , a contradiction. Hence each Fλ contains
no non-exceptional indecomposable sheaf.

(⇐)By the definition of T , T is closed under quotients and extensions. Therefore T
is a torsion class in cohX since cohX is noetherian. Then (T ,T ⊥0) is a torsion pair in
cohX and thus we need to show F = T ⊥0 . Hom(T ,F) = 0 implies F ⊂ T ⊥0 and it

remains to show T ⊥0 ⊂ F . For each λ ∈ P
1, T ∩ cohλX = ⊥0,cohλXFλ is the torsion class

in cohλX corresponding to the torsion-free class Fλ, which implies T ⊥0 ∩ cohλX ⊂ Fλ.
Hence T ⊥0 ∩ coh0X ⊂ F . We claim that T ⊥0 contains no nonzero bundle, which implies
T ⊥0 ⊂ F . Suppose for a contradiction that T ⊥0 contains a nonzero bundle E. For each
λ ∈ P

1, by Lemma 2.28, it is impossible that each simple sheaf in cohλX occurs as a
composition factor of some indecomposable sheaf in Fλ. Hence we have a line bundle L

such that L(n�c) ∈ T for all n ∈ Z. But Hom(L(n�c), E) �= 0 for n # 0, a contradiction.
This shows our claim.

Remark 3.30 For an ordinary point λ, either Tλ = 0 or Fλ = 0.

Recall that for each μ ∈ R̄, we have torsion pairs

(coh≥μ
X, coh<μ

X), (coh>μ
X, coh≤μ

X).

These are very useful for our analysis.
A torsion pair in cohX is either tilting or cotilting.

Lemma 3.31 Let (T ,F) be a torsion pair in cohX.

(1) If F contains a nonzero bundle then F is a cotilting torsion-free class and coh≤μ
X ⊂

F for some μ ∈ R.
(2) If T contains a nonzero bundle then T is a tilting torsion class. If coh0X � T then

coh≥ν
X ⊂ T for some ν ∈ R.

Proof Suppose that F contains a nonzero bundle A. If T contains no nonzero bundle, then
vectX ⊂ F . Now suppose that T contains a nonzero bundle T . Let μ = μ(A)− δ(�c + �ω).
Then for each bundleB ∈ T , we haveμ(B) > μ. Indeed, ifμ(B) ≤ μ thenμ(A)−μ(B) ≥
δ(�c+ �ω) and Hom(B,A) �= 0 by Theorem 3.22, a contradiction to Hom(T ,F) = 0. Since
T is closed under quotients, for each nonzero bundle E in T , the last semistable factor of E

lies in T and hence μ−(E) > μ. This shows vectX ∩ T ⊂ coh>μ
X. Recall that a coherent

sheaf over X decomposes as a direct sum of a torsion sheaf and a vector bundle. So we have
T ⊂ coh>μ

X and thus coh≤μ
X ⊂ F . Similarly one shows that if T contains a nonzero

bundle then vectX ∩ F ⊂ coh<ν
X for some ν ∈ R, which implies coh≥ν

X ⊂ T provided
coh0X � T .

Now we show thatF is a cotilting torsion-free class ifF contains a nonzero bundle. That
is, we need to show that for each sheaf E, there is some sheaf F ∈ F and an epimorphism
F � E. We do induction on rk(E). We already have coh≤μ

X ⊂ F for some μ ∈ R. If E is
an indecomposable torsion sheaf then we can take a line bundle L ∈ F such that L � E. If
rk(E) > 0, take a line bundle L1 ∈ F with μ(L)# μ(E). Then we have an exact sequence
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0 → L1 → E → E1 → 0 with rk(E1) < rk(E). By the induction hypothesis, there is
some F1 ∈ F and an epimorphism F1 � E1. The pullback diagram

0 �� L1 �� F ��

��

F1 ��

��

0

0 �� L1 �� E ���� E1 �� 0

gives us an object F ∈ F and an epimorphism F � E, as desired.
If T contains a nonzero bundle, we show that T is a tilting torsion class. For each λ ∈ P

1,
consider the torsion pair (Tλ,Fλ) = (T ∩ cohλX,F ∩ cohλX) in cohλX. By Lemma 3.20,
Fλ contains no non-exceptional object and thus Tλ contains a non-exceptional object. Then
S ∈ T for a simple sheaf S supported at an ordinary point. Moreover, Tλ is a tilting torsion
class in cohλX by Lemma 2.27. Hence each indecomposable torsion sheaf in cohλX is a
subobject of some object in Tλ. Since T is closed under quotients, T contains a line bundle
L by Proposition 3.4(2). L, S ∈ T implies L(n�c) ∈ T for n ≥ 0. By [17, Corollary 2.7],
for each E ∈ vectX, E is a subbundle of ⊕m

i=1Li for some line bundles L1, . . . , Lm. Now
that Li is a subbundle of L(n�c) for n$ 0, E is a subbundle of⊕m

i=1L(n�c) ∈ T . This shows
that T is a tilting torsion class if T contains a nonzero bundle.

Lemma 3.32 Let (T ,F) be a torsion pair in cohX with coh0X � T � cohX.

(1) If X is of domestic type then the τ -orbit of each line bundle contains some line bundle
L such that L ∈ T and τL ∈ F .

(2) If X is of tubular type then exactly one of the following holds:

(a) there exists some quasi-simple bundle E in T with τE ∈ F ;
(b) for some μ ∈ R\Q, (T ,F) = (coh>μ

X, coh<μ
X);

(c) for some μ ∈ Q and some P ⊂ P
1,

(T ,F) = (add{coh>μ
X, cohμ

λX | λ ∈ P }, add{cohμ
λX, coh<μ

X | λ /∈ P }).
Proof Note that coh0X � T � cohX implies {0} � F � vectX. By Lemma 3.31,
coh≤μ0X ⊂ F for some μ0 ∈ R and coh≥ν0X ⊂ T for some ν0 ∈ R.

(1) By Lemma 3.38, μ(τnL) = μ(L) + nδ( �ω). Since δ( �ω) < 0, for each line bundle L,
τnL ∈ F for n$ 0 and τnL ∈ T for n# 0. Moreover coh0X � T implies that each
line bundle lies in T or F and therefore there must be a line bundle τnL ∈ T with
τn+1L ∈ F .

(2) Obviously, the three types of torsion pairs are disjoint. We shall show that if (T ,F)

is not of type (a) then (T ,F) is of type (b) or (c). Suppose that for any quasi-simple
bundle E ∈ T , we have τE /∈ F . Note that we have coh≥ν0X ⊂ T ⊂ coh>μ0X.
Define

μ1 = inf{μ−(E) | E ∈ T }
= inf{μ−(E) | quasi-simple bundleE ∈ T },

which lies in R. We have two cases to consider: i) there exists a quasi-simple bundle
E in T with μ(E) = μ1; 2) T contains no quasi-simple bundle with slope μ1 but
there exists a sequence (Ei) of quasi-simple bundles in T such that μ(Ei)→ (μ1)+
as i →∞.

First we consider case ii). In this case, we have T ⊂ coh>μ1X and thus coh≤μ1X ⊂ F .
Moreover, for indecomposable F ∈ F , if μ(F) > μ1 then by Corollary 3.24 there exists
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someEi with Hom(Ei, F ) �= 0, a contradiction to Hom(T ,F) = 0. In particular,μ+(F ) ≤
μ1 for F ∈ F since F is closed under subobjects. So F ⊂ coh≤μ1X and thus

(T ,F) = (coh>μ1X, coh≤μ1X),

which is of type (b) or (c).
Now we consider case i). We claim that for any quasi-simple bundleE ∈ T with μ(E) =

μ1 we have τE ∈ T . Let 0→ A→ τE→ B → 0 be an exact sequence with A ∈ T , B ∈
F . Since we are assuming τE /∈ F , we have A �= 0. Since A ∈ T , we have μ−(A) ≥ μ1;
since Hom(A, τE) �= 0 and since τE is a semistable bundle with μ(τE) = μ1, we have
μ−(A) = μ1. Let C be the last semi-stable factor of A, which lies in T and has slope μ1.
Then Hom(C, τE) �= 0. Since τE is a simple object in cohμ1X, E is a quotient object of
C. So τE ∈ T . Thus our claim is proved. It follows that the τ -orbit of any quasi-simple
bundle E ∈ T is contained in T . Take a quasi-simple bundle E in T . For indecomposable
F ∈ F , if μ(F) > μ1 then by Lemma 3.21 there exists some τ jE with Hom(τ jE, F ) �= 0,
a contradiction to Hom(T ,F) = 0. So F ⊂ coh≤μ1X. It follows that

coh>μ1X ⊂ T ⊂ coh≥μ1X, coh<μ1X ⊂ F ⊂ coh≤μ1X.

Let λ ∈ P
1. For an indecomposable semistable bundle T ∈ cohμ1

λ X, if T lies in T then
the quasi-top of T as a quotient of T lies in T , which implies cohμ1

λ X ⊂ T . Hence if
cohμ1

λ X ∩ T �= 0 then cohμ1
λ X ⊂ T . Denote

P = {λ ∈ P
1 | cohμ1

λ X ∩ T �= 0}.
Then we have

(T ,F) = (add{coh>μ1X, cohμ1
λ X | λ ∈ P }, add{cohμ1

λ X, coh<μ1X | λ ∈ P
1\P }),

which is of type (c).

We establish bijective correspondences between tilting sheaves, certain bounded t-
structures on Db(X) and certain torsion pairs in cohX.

Proposition 3.33 DenoteA = cohX. There are bijective correspondences between

(1) torsion pairs (T ,F) in A such that the tilted heart F [1] ∗ T is a length category;
(2) bounded t-structures whose heart is a length category contained inA[1] ∗A;
(3) isomorphism classes of basic tilting sheaves in A;
(4) torsion pairs (T ,F) such that there is n = rkK0(X) pairwise non-isomorphic

indecomposable sheaves E1, . . . , En in T with τEi ∈ F for all i.

Moreover, torsion pairs (T ,F) in (1) with the additional assumption coh0X � T � cohX
are in bijection with isoclasses of basic tilting bundles.

Proof The second assertion follows readily from the first one. We show the first assertion.
The bijection between (1) and (2) follows from Proposition 2.3. Note that for those Ei’s in
(4), we have Hom(⊕Ei,⊕τEi) = 0. By Serre duality, we have Ext1(⊕Ei,⊕Ei) = 0. Thus
Ei’s can be ordered to be a full exceptional sequence by Proposition 2.20 and Lemma 3.25.
So ⊕Ei is a tilting sheaf. Then the obvious associations between (3) and (4) are evidently
inverse to each other.

Now we establish the bijection between (2) and (3). By Theorem 3.6, A = cohX is
derived equivalent to mod� for a canonical algebra�. Hence we can apply Theorem 2.22 to
conclude that bounded t-structures on Db(A) with length heart are in bijection with equiv-
alence classes of silting objects in Db(X). Note that if a bounded t-structure (D≤0,D≥0)
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has heart B ⊂ A[1] ∗ A then D≤−1A ⊂ D≤0 ⊂ D≤0A and thus the Serre functor τ(−)[1]
of Db(A) is right t-exact with respect to (D≤0,D≥0). By Lemma 2.24, in this bijection, a
bounded t-structure with length heart B ⊂ A[1] ∗A corresponds to some equivalence class
of tilting objects in Db(X). It remains to show that such a tilting object T is a sheaf. By
Lemma 2.24, T , τT [1] ∈ B ⊂ A[1] ∗A. This forces T to be a sheaf.

Remark 3.34 Recall that we have a torsion pair (T ,F) induced by a tilting sheaf T , where

T = {E ∈ cohX | Ext1(T ,E) = 0}, F = {E ∈ cohX | Hom(T , E) = 0}.
Since T ∈ T , τT ∈ F , this torsion pair is just the one corresponding to T .

Example 3.35 Consider the torsion pair (T ,F) = (coh≥μ
X, coh<μ

X) for μ ∈ R. If X
is of domestic type, similar argument to that in the proof of [30, Theorem 3.5] shows
that the direct sum of a complete set of indecomposable bundles with slope in the inter-
val [μ, μ − δ( �ω)) is a tilting bundle, whose endomorphism algebra turns out to be a
tame hereditary algebra. The induced torsion pair is exactly (coh≥μ

X, coh<μ
X). If X is

not of domestic type then T (resp. F ) is closed under τ (resp. τ−1) since δ( �ω) ≥ 0.
Therefore (coh>μ

X, coh≤μ
X) cannot be induced by a tilting sheaf and the tilted heart

coh≤μ
X[1] ∗ coh>μ

X is not a length category.

We obtain the following known results as a corollary of Proposition 3.33.

Corollary 3.36 (1) ([30, Corollary 3.7]). If X is of domestic type then each tilting bundle
T contains at least [L(p) : Z �ω] pairwise nonisomorphic line bundles as its direct
summands.

(2) ([32, Corollary 3.5]). If X is of tubular type then each tilting bundle T contains a
quasi-simple bundle direct summand. For some q ∈ Q̄, �∞,q (T ) is a tilting sheaf with
an exceptional simple sheaf as its direct summand.

Proof Let (T ,F) be the torsion pair corresponding to T . Since T is a bundle, coh0X �

T � cohX.

(1) By Lemma 3.32, each τ -orbit of a line bundle contains a line bundle L ∈ T with
τL ∈ F . Each such L is a direct summand of T . By Proposition 3.4, we have precisely
[L(p) : Z �ω] τ -orbits of line bundles. So T contains at least [L(p) : Z �ω] pairwise
nonisomorphic line bundles.

(2) Note that in Lemma 3.32, a torsion pair (U ,V) in cohX of type 3.32(2b) or 3.32(2c)
contains no nonzero sheaf F with F ∈ U and τF ∈ V . So (T ,F) is of type 3.32(2a),
i.e., there exists a quasi-simple bundle E with E ∈ T , τE ∈ F . E is then a direct
summand of T . Let q be the maximal slope of indecomposable direct summands of
T . Then �∞,q (T ) is a tilting sheaf with a nonzero torsion direct summand. Since its
indecomposable direct summands can be ordered to be a full exceptional sequence,
by Lemma 3.26, one of the direct summands is a simple sheaf. This finishes the
proof.

We end this subsection by determining whether certain torsion pairs yield a noetherian
or artinian tilted heart. For P ⊂ P

1, denote by (TP ,FP ) the torsion pair in cohX

(add{cohλX | λ ∈ P }, add{vectX, cohλX | λ ∈ P
1\P }). (3.7.1)
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Lemma 3.37 Let P ⊂ P
1.

(1) The tilted heart B = FP [1] ∗ TP is noetherian resp. artinian iff P = ∅ resp. P = P
1.

(2) Suppose X is of tubular type. If μ ∈ R\Q then the tilted heart B = coh<μ
X[1] ∗

coh>μ
X is neither noetherian nor artinian. If μ ∈ Q̄, the tilted heart B = F [1] ∗ T is

noetherian resp. artinian iff P = ∅ resp. P = P
1, where

(T ,F) = (add{coh>μ
X, cohμ

λX | λ ∈ P }, add{cohμ
λX, coh<μ

X | λ /∈ P }).

Proof (1) If P = ∅ then B = cohX[1], which is noetherian. If P = P
1 then B =

vectX[1] ∗ coh0X � (cohX)op is artinian, where the equivalence is induced by the
duality functor RHom(−,O). Otherwise, ∅ �= P �= P

1. Take λ ∈ P, λ′ /∈ P . To
see that B = F [1] ∗ T is not artinian, we take an indecomposable torsion sheaf F

supported at λ′ such that F fits into an exact sequence

0 −→ O(n�c) −→ O((n+ 1)�c) −→ F → 0

in cohX. Then for each n ∈ Z, we have an exact sequence

0 −→ O(n�c)[1] −→ O((n+ 1)�c)[1] −→ F [1] → 0

in B. This implies the existence of a strict infinite descending chain of subobjects of
O[1] in B, which shows B is not artinian. Now we show that B is not noetherian.
There exists a simple sheaf S ∈ cohλX such that for each l ∈ Z≥1, the unique inde-
composable sheaf S[lw(λ)] ∈ cohλX with socle S and of length lw(λ), where w is the
weight function, fits into an exact sequence

0 −→ O −→ O(l�c) −→ S[lw(λ)] −→ 0

in cohX. In particular, S[lw(λ)] is a subobject of O[1] in B. Note also that S[lw(λ)] is a
subobject of S[(l+1)w(λ)] in B. The infinite ascending chain

S[w(λ)] ↪→ S[2w(λ)] ↪→ S[3w(λ)] ↪→ . . .

of subobjects of O[1] shows that B is not noetherian. Hence B is neither noetherian
nor artinian in this case.

(2) The assertion for μ ∈ Q̄ is reduced to (1) by using the telescopic functor �∞,μ. So we
consider μ ∈ R\Q. By applying the duality functor RHom(−,O), we know that

B = coh<μ
X[1] ∗ coh>μ

X � (coh<−μ
X[1] ∗ coh>−μ

X)op.

To show that B is neither noetherian nor artinian, it sufficies to show that B is not
artinian, which in turn follows readily from our claim that each nonzero bundle F ∈
coh>μ

X fits into an exact sequence 0 → E → G → F → 0, where E ∈ coh<μ
X

and G ∈ coh>μ
X.

Let us show our claim. Let F ∈ coh>μ
X be a nonzero bundle. By [45, Corollary 1.9],

there exists a pair of coprime integers (h, k) such that

0 <
h

k
− μ <

1

k2
.

We can assume further

k > rk(F ),
h

k
+ 1

k2
< μ−(F )

since k can actually be taken to be arbitrarily large. By Lemma 3.14, there is a quasi-

simple bundle A ∈ coh
h
k X with coprime rank and degree. In particular, we have rk(A) =
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k, deg(A) = h. Now let F1, . . . , Fm be the semistable factors of F . Denote F0 = F . Let
F

j
l be an indecomposable direct summand of Fl . Consider the evaluation map

ev :
pA−1⊕

i=0
Hom(τ iA, F

j
l )⊗ τ iA −→ F

j
l ,

where pA is the τ -period of A. By [37, Theorem 5.1.3], ev is either a monomorphism or an
epimorphism. Since

rk

⎛

⎝
pA−1⊕

i=0
Hom(τ iA, F

j
l )⊗ τ iA

⎞

⎠ > rkF ≥ rkFj
l ,

ev is an epimorphism. In particular, the evaluation map

ev :
pA−1⊕

i=0
Hom(τ iA, Fl)⊗ τ iA −→ Fl

is an epimorphism, whose kernel is denoted by El . For 1 ≤ l ≤ m, El is a semistable bundle
whose slope μ(El) satisfies

μ(El) = χ̄(A, Fl)deg(A)− deg(Fl)

χ̄(A, Fl)rk(A)− rk(Fl)

=
(μ(Fl)− μ(A))μ(A)− 1

rk(A)2
μ(Fl)

(μ(Fl)− μ(A))− 1
rk(A)2

(by Riemann-Roch theorem)

< μ.

Let Tτ •A be the tubular mutation functor with respect to the τ -orbit of A as recalled in the
proof of Lemma 3.13. Note that El

∼= Tτ •A(Fl)[−1] for 0 ≤ l ≤ m. Since F0 = F has
a filtration with factors F1, . . . Fm, E := E0 has a filtration with factors E1, . . . , Em. In
particular, μ+(E) < μ. Hence

0 −→ E −→
pA−1⊕

i=0
Hom(τ iA, F )⊗ τ iA −→ F −→ 0

is the desired exact sequence. We are done.

4 Bounded t-Structures onDb(X)

Throughout this section,Xwill denote a weighted projective line,A = cohX the category of
coherent sheaves over X andD = Db(X) the bounded derived category of cohX. Moreover,
(D≤0,D≥0) will denote a bounded t-structure onD and its heart will be denoted by B. The
standard t-structure on Db(X) is denoted by (D≤0A ,D≥0A ).

Lemma 4.1 Each bounded t-structure on Db(X) is width-bounded with respect to the
standard t-structure. In particular, B ⊂ D[m,n]

A for some m, n ∈ Z.

Proof Recall that for each X, there is a canonical algebra � such that Db(X) � Db(�).
Henceforth we have a bounded t-structure on Db(X) with heart equivalent to mod�. So
bounded t-structures are width-bounded with respect to each other (see Example 2.2).
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4.1 Bounded t-Structures which Restrict to t-Structures onDb (coh0X)

In this subsection, we characterize when a bounded t-structure on Db(X) restricts to a t-
structure on Db(coh0X) and then describe this class of t-structures.

The following fact is very useful in analyzing direct summands of truncations of an
object.

Lemma 4.2 Let T be a triangulated category. Assume that A
f→ B

g→ C � is a triangle
in T with Hom−1(A,C) = 0. If A = A1 ⊕ A2 and correspondingly f = (f1, f2) then
f1 = 0 implies A1 = 0. If C = C1 ⊕ C2 and g = (g1, g2)

t then g1 = 0 implies C1 = 0.

Proof f1 = 0 implies C ∼= cone(f2)⊕A1[1] and then Hom(A1, A1) ⊂ Hom−1(A,C) = 0
thus A1 = 0. Similarly one shows the second assertion.

Lemma 4.3 If D[m,n] contains a nonzero bundle then for some m ≤ l ≤ n, B[−l] contains
a nonzero bundle.

Proof We use induction on n−m. If n = m then there is nothing to prove. Assume n > m.
Let E be a nonzero bundle lying inD[m,n]. Consider the triangle E1 → E→ E2 �, where
E1 = τ≤n−1E ∈ D[m,n−1], E2 = τ≥nE ∈ B[−n]. Recall that since cohX is hereditary, each
object X inDb(X) decomposes as X ∼= ⊕Hi (X)[−i], whereHi (X) is the i-th cohomology
ofX. Since Hom−1(E1, E2) = 0, by Lemma 4.2,Hi (E1) = 0 for i �= 0, 1 andHj (E2) = 0
for j �= 0,−1. Hence E1 decomposes as a direct sum A ⊕ B[−1] and E2 as a direct sum
C⊕D[1], where A,B,C, D are sheaves. Taking cohomology yields a long exact sequence

0 −→ D −→ A −→ E −→ C −→ B −→ 0.

If A = 0 then D = 0 and thus rk(C) > 0, that is, C contains a nonzero bundle
direct summand. Since C ∈ B[−n], such a direct summand gives a desired bundle. Since
Hom(coh0X, vectX) = 0, if A �= 0 then A cannot be a torsion sheaf by Lemma 4.2. Thus
A contains a nonzero bundle direct summand F . Now that F ∈ D[m,n−1], the induction
hypothesis assures the existence of the desired bundle.

Let us make our basic observation on bounded t-structures on Db(X).

Lemma 4.4 The following are equivalent:

(1) {i | vectX[i] ∩ B �= 0} ⊂ {j, j + 1} for some j ∈ Z;
(2) (D≤0,D≥0) restricts to a bounded t-structure on Db(cohλX) for each λ ∈ P

1;
(3) B contains a shift of some non-exceptional indecomposable torsion sheaf.

Proof (2)⇒ (3) Take an ordinary point λ. The induced bounded t-structure on
Db(cohλX) has heart Bλ = B∩Db(cohλX). Since λ is ordinary, each bounded
t-structure on Db(cohλX) is a shift of the standard one by Proposition 2.30.
Hence a shift of the simple torsion sheaf S supported at λ lies in Bλ ⊂ B.

(3)⇒ (1) Suppose T is a non-exceptional indecomposable torsion sheaf such that T [j ] ∈
B. By Lemma 3.20, for each nonzero bundle E, Ext1(T ,E) �= 0 and
Hom(E, T ) �= 0. Now that T [j ] ∈ B, if E[i] ∈ B then i �= j, j + 1 will yield
a contradiction to Homn(B,B) = 0 for n < 0. Hence {i | vectX[i] ∩B �= 0} ⊂
{j, j + 1}.
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(1)⇒ (2) We will show that (1) implies that (D≤0,D≥0) restricts to a bounded t-structure
on Db(coh0X). Then (2) follows since coh0X = ∐

λ∈P1 cohλX. Suppose that
(D≤0,D≥0) does not restrict to a t-structure on Db(coh0X). Then for some
torsion sheaf T and some l ∈ Z, τ≤lT /∈ Db(coh0X). By Lemma 4.2, τ≤lT

decomposes as A⊕ B[−1] with A ∈ cohX, B ∈ coh0X and τ>lT decomposes
as C ⊕ D[1] with C ∈ coh0X, D ∈ cohX. τ≤lT /∈ Db(coh0X) implies that A

contains a nonzero bundle E as its direct summand. Since rk(A) = rk(D), D

also contains such a direct summand F . Now thatE ∈ D≤l , F ∈ D≥l+2 and the
t-structure is bounded, by Lemma 4.3, both B[−r] and B[−s] contain nonzero
bundles for some r ≤ l, s ≥ l+2. It is then impossible that {i | vectX[i]∩B �=
0} ⊂ {j, j + 1} for some j .

We are going to give a description of bounded t-structures on Db(X) satisfying the con-
ditions in the above lemma. Recall the definition of a proper collection of simple sheaves in
Section 3.4. Two such collections are said to be equivalent if they yield the same isoclasses
of simple sheaves. Recall also that for P ⊂ P

1, the pair (TP ,FP ) denotes the torsion pair
(3.7.1) in cohX. Moreover, we have a split torsion pair (S ⊥A ∩ TP ,S ⊥A ∩FP ) in S ⊥A .

Proposition 4.5 Suppose {i ∈ Z | vectX[i] ∩ B �= 0} = {j} or {j − 1, j} for some j ∈ Z.
Then there is a unique (up to equivalence) proper collection S of simple sheaves such that

• (D≤0,D≥0) is compatible with the recollement

Db(S ⊥A) = S ⊥D i∗ �� Db(X)

i∗��

i!
��

j∗ �� 〈S〉D,

j!��

j∗
��

where i∗, j! are the inclusion functors;
• if {i | vectX[i]∩B �= 0} = {j} then for a unique P ⊂ P

1, the corresponding t-structure
on S ⊥D is a shift of the HRS-tilt with respect to the torsion pair (S ⊥A ∩ TP ,S ⊥A ∩
FP ) in S ⊥A ;

• if {i | vectX[i] ∩ B �= 0} = {j − 1, j} then the corresponding t-structure on S ⊥D is
a shift of the HRS-tilt with respect to some torsion pair (T ,F) in S ⊥A with S ⊥A ∩
coh0X � T � S ⊥A .

Proof By Lemma 4.4, (D≤0,D≥0) restricts to a bounded t-structure onDb(cohλX) for each
λ ∈ P

1. Denote
Aλ = cohλX, Dλ = 〈cohλX〉D = Db(cohλX),

D≤0λ = D≤0 ∩Dλ, D≥0λ = D≥0 ∩Dλ, Bλ = B ∩Dλ.

Then (D≤0λ ,D≥0λ ) is a bounded t-structure on Dλ with heart Bλ. Observe that each Ext-

projective object in D≤0λ is Ext-projective in D≤0. Indeed, if X ∈ D≤0λ ⊂ D≤0 is D≤0λ -

projective then τX[1] ∈ D≥0λ ⊂ D≥0, which implies X is D≤0-projective.
For each λ ∈ P

1, by Proposition 2.30, there is a unique proper collection Sλ of simple
sheaves supported at λ such that (D≤0λ ,D≥0λ ) is compatible with

S ⊥Dλ

λ
f∗ �� Dλ = Db(cohλX)

f ∗��

f !
�� g∗ �� 〈Sλ〉Dλ ,

g!��

g∗
��
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where f∗, g! are the inclusion functors, and the corresponding t-structure on S ⊥Dλ

λ has

heart Bλ ∩ S ⊥Dλ

λ = S ⊥Aλ

λ [mλ] for some mλ. If Sλ = ∅ (say when λ is an ordinary
point), let Tλ = 0. Otherwise, 〈Sλ〉Dλ is triangle equivalent to Db(

∐nλ

i=1 modk �Ali,λ ) for

some positive integers nλ, li,λ, where k �Al is the path algebra of the equioriented Al-quiver.
By Theorem 2.22, the t-structure (g∗D≤0λ , g∗D≥0λ ) on 〈Sλ〉Dλ corresponds to a basic silting

object Tλ in 〈Sλ〉Dλ so that 〈Tλ〉Dλ = 〈Sλ〉Dλ and Tλ is g∗D≤0λ -projective. By Lemma 2.18,

Tλ = g!Tλ is D≤0λ -projective and hence Tλ is D≤0-projective. By Proposition 2.21, the
indecomposable direct summands of Tλ can be ordered to form an exceptional sequence. Let
T = ⊕λTλ, S = ∪λSλ. We have 〈T 〉D = 〈S〉D and the indecomposable direct summands
of T can be ordered to form an exceptional sequence. Then by Lemma 2.17, (D≤0,D≥0) is
compatible with the recollement

S ⊥D = T ⊥D i∗ �� D
i∗��

i!
��

j∗ �� 〈T 〉D = 〈S〉D,

j!


j∗
��

where i∗, j! are the inclusion functors.
Now let us show that the corresponding t-structure on S ⊥D takes the asserted form. Let

B1 = B∩S ⊥D be its heart. We have S ⊥Aλ

λ [mλ] = B1 ∩Dλ ⊂ B1. Hence for each λ ∈ P
1,

there is a nonexceptional indecomposable torsion sheaf Fλ such that Fλ[mλ] ∈ B. Up to a
shift ofB, we can suppose {i | vectX[i]∩B �= 0} = {1} or {0, 1}. If {i | vectX[i]∩B �= 0} =
{1}, let E be a nonzero bundle such that E[1] ∈ B. Hom(E, Fλ) �= 0 and Ext1(Fλ,E) �= 0
imply that mλ ∈ {0, 1}. If {i | vectX[i] ∩ B �= 0} = {0, 1} then we have nonzero bundles
E1, E2 with E1, E2[1] ∈ B. Hom(Ei, Fλ) �= 0 and Ext1(Fλ,Ei) �= 0 (i = 1, 2) imply
mλ = 0. Consequently, in either case, we have B1 ⊂ S ⊥A [1] ∗ S ⊥A and thus B1 =
F [1] ∗ T for some torsion pair (T ,F) in S ⊥A . Moreover, if {i | vectX[i] ∩ B �= 0} = {1}
then T = add{S ⊥Aλ

λ | λ ∈ P } = S ⊥A ∩ TP , where P = {λ ∈ P
1 | mλ = 0}; if

{i | vectX[i] ∩ B �= 0} = {0, 1} then S ⊥A ∩ coh0X � T � S ⊥A .
Finally, the uniqueness of S follows from the uniqueness of Sλ; the uniqueness of P

follows from Lemma 2.7.

Remark 4.6 Actually, for each bounded t-structure (D≤0,D≥0) on D, there exists a unique
maximal proper collection S of simple sheaves such that (D≤0,D≥0) is compatible with the
admissible subcategory S ⊥D . The crucial point to show this is that 〈T 〉D = 〈S〉D , where
T is the direct sum of a complete set of indecomposable D≤0-projectives of the form E[n]
with E a torsion sheaf.

Remark 4.7 Recall from Theorem 3.15 that we have an equivalence S ⊥A � cohX′ for
some weighted projective line X

′. Via such an equivalence, the torsion pair (S ⊥A ∩
TP , S ⊥A ∩FP ) in S ⊥A corresponds to the torsion pair (T ′P ,F ′P ) in cohX′; a torsion pair
(T ,F) in S ⊥A with S ⊥A ∩ coh0X � T � S ⊥A corresponds to a torsion pair (T ′,F ′) in
cohX′ with coh0X′ � T ′ � cohX′.

Here we characterize when the heart of a bounded t-structure just described is noetherian,
artinian or of finite length.
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Corollary 4.8 With the notation in Proposition 4.5, in the case {i | vectX[i]∩B �= 0} = {j},
the heart B is not of finite length and B is noetherian resp. artinian iff P = ∅ resp. P = P

1;
in the case {i | vectX[i] ∩ B �= 0} = {j − 1, j}, the heart B is noetherian (artianian or of
finite length) iff so is the tilted heart F [1] ∗ T .

Proof Recall that there exist integers n, l1, . . . , ln such that 〈S〉A � ∐n
i=1 modk �Ali . By

Lemma 2.23, each bounded t-structure on 〈S〉D = Db(〈S〉A) � Db(
∐n

i=1 modk �Ali ) has a
length heart. So the assertion for the case {i | vectX[i] ∩B �= 0} = {j − 1, j} follows from
Lemma 2.12. For the case {i | vectX[i]∩B �= 0} = {j}, by virtue of the equivalence S ⊥A �
cohX′ in Theorem 3.15, the assertion follows from Lemma 3.37(1) and Lemma 2.12.

4.2 Bounded t-Structures which do not Restrict to t-Structures onDb (coh0X) Even
up to Action of AutDb (X)

Now we deal with bounded t-structures on Db(X) which does not satisfy the condi-
tion considered above even up to the action of AutDb(X). We only have results for the
domestic and tubular cases and we rely heavily on the telescopic functors in the tubular
case.

The key feature of this class of t-structures is given in the following lemma.

Lemma 4.9 (1) If X is of domestic type then each indecomposable object in B is
exceptional iff {i | vectX[i] ∩ B �= 0} � {j, j + 1} for any j ∈ Z.

(2) X is of tubular type then each indecomposable object in B is exceptional iff {i |
vectX[i] ∩�∞,q (B) �= 0} � {j, j + 1} for any q ∈ Q̄ and j ∈ Z.

Proof Each indecomposable object in B is of the form E[n] for some n ∈ Z and some
indecomposable bundle or some indecomposable torsion sheaf E.

(1) By Theorem 3.9, if X is of domestic type then each indecomposable bundle is excep-
tional. So B contains a non-exceptional indecomposable object iff B contains a shift
of a non-exceptional torsion sheaf, which is equivalent to {i | vectX[i] ∩ B �= 0} ⊆
{j, j + 1} for some j ∈ Z by Lemma 4.4. So our assertion holds.

(2) By Theorem 3.12, if X is of tubular type then each indecomposable sheaf is semistable
and thus lies in cohμ

X for some μ ∈ Q̄. B contains a non-exceptional indecom-
posable object E[n], where E is a sheaf with slope q, iff the heart �∞,q (B)[−n]
contains the non-exceptional torsion sheaf �∞,q (E). Thus our assertion follows from
Lemma 4.4.

We show that B contains no cycle if each indecomposable object in B is exceptional.

Lemma 4.10 Suppose X is of dometic or tubular type. If each indecomposable object in B
is exceptional then a complete set of pairwise non-isomorphic indecomposable objects in B
can be totally ordered as {Xi}i∈I such that Hom(Xi,Xj ) = 0 if i < j .

Proof Each indecomposable object inB is of the formE[n] for some indecomposable sheaf
E. Since Hom(E[n], F [m]) = 0 for E,F ∈ A and n > m, it sufficies to order indecompos-
ables in B ∩A[n], or rather, indecomposables in B[−n] ∩A. For X of domestic or tubular
type, each idecomposable sheaf is semistable and Hom(E, F ) = 0 for indecomposable
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sheaves E,F with μ(E) > μ(F). Thus we only need to consider indecomposable sheaves
with the same slope, i.e., those in B[−n]∩cohμ

X. We have assumed these indecomposables
to be exceptional.

We consider μ = ∞ at first. If indecomposables in B[−n] ∩ coh∞X = B[−n] ∩ coh0X
cannot be totally ordered as desired thenB[−n]∩coh0Xwill contain a cycle of indecompos-
ables in some cohλX. By Lemma 2.28, B contains a non-exceptional object, a contradiction.
Hence indecomposables in B[−n]∩ coh∞X can be totally ordered as desired. Now we con-
sider μ ∈ Q. If X is of domestic type then indecomposable bundles in cohμ

X are stable and
thus the morphism spaces between each other vanish, whence any order is satisfying. If X
is of tubular type then using the telescopic functor �∞,μ, we know from the conclusion for
μ = ∞ that the desired ordering also exists.

Recall the definition of μ(B) from Eq. 3.5.1. Observe that each limit point in μ(B) is a
limit point of μ(B[l] ∩A) for some l since A is hereditary and since B ⊂ D[m,n]

A for some
m, n ∈ Z by Lemma 4.1.

Lemma 4.11 ∞ is a limit point of μ(B) iff {i | vectX[i] ∩ B �= 0} ⊂ {j, j + 1} for some
j ∈ Z.

Proof (⇒) If∞ is a limit point of μ(B) then there is a sequence (Ei)
∞
i=1 of objects in some

B[l], where Ei’s are indecomposable bundles, such that

μ(Ei)→+∞ or μ(Ei)→−∞ as i →+∞.

If μ(Ei) → +∞ then by Theorem 3.22, for each nonzero bundle F , Hom(F,Ei) �= 0
and Ext1(Ei, F ) �= 0 for i $ 1. Consequently, F [k] ∈ B implies k ∈ {l, l + 1}. Similar
arguments apply to the case μ(Ei)→−∞.

(⇐) Suppose {i | vectX[i] ∩ B �= 0} = {j} or {j, j + 1}. By Proposition 4.5, we can
take a line bundle L such that L ∈ B[−j ]. Moreover, for a simple sheaf S supported at an
ordinary point, i) S ∈ B[−j ] or ii) S[1] ∈ B[−j ]. If case i) happens, L(n�c) ∈ B[−j ] for
n ≥ 0; if case ii) happens, L(n�c) ∈ B[−j ] for n ≤ 0. In either case,∞ is a limit point of
μ(B).

The following lemma allows us to apply a telescopic functor in the next proposition.

Lemma 4.12 If X is of tubular type and μ(B) has an irrational number as its limit point
then for some q ∈ Q̄, �∞,q (B) coincides with a shift of the tilted heart with respect to some
torsion pair inA.

Proof Suppose that for some l ∈ Z,μ(B∩A[l]) has an irrational number r as its limit point.
Then there is a sequence (Ei)

∞
i=1 of indecomposable bundles such that Ei ∈ B[−l] and

μ(Ei) converges to r . LetE be an indecomposable sheaf withμ(E) < r . By Corollary 3.24,
there are some Ei with Hom(E,Ei) �= 0 and some Ej with Hom(τ−1E,Ej ) �= 0, which
implies Ext1(Ej , E) �= 0. Thus for h ∈ Z, E[h] ∈ B implies h ∈ {l, l + 1}. Similarly, if
F is an indecomposable sheaf with μ(F) > r , then for some Ei,Ej , Hom(Ei, F ) �= 0,
Ext1(F,Ej ) �= 0. For h ∈ Z, F [h] ∈ B implies h ∈ {l, l−1}. Consequently, if μ(B∩A[l])
has an irrational limit point r then

{k ∈ Z | B ∩A[k] �= 0} ⊂ {l − 1, l, l + 1}
and an indecomposable sheaf in B[−1− l] (resp. B[1− l]) has slope < r (resp. > r).
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If μ(B∩A[l+ 1]) also has an irrational number as its limit point then similar arguments
as before show that {k | B ∩A[k] �= 0} ⊂ {l, l+ 1}, that is, B ⊂ A[l+ 1] ∗A[l]. Thus B is
a shift of the tilted heart with respect to some torsion pair in A. Consider the case that the
set of limit points of μ(B ∩A[l + 1]) is contained in Q̄. Since each indecomposable sheaf
in B[−l − 1] ∩A has slope less than r , there is some rational number q < r such that each
indecomposable sheaf E ∈ B[−l − 1] ∩A has slope μ(E) ≤ q. Then

�∞,q (B ∩A[l + 1]) ⊂ A[l + 1].
Since an indecomposable object E ∈ B[1− l] ∩A has slope μ(E) > r > q, we have

�∞,q (B ∩A[l − 1]) ⊂ A[l].
It follows that

�∞,q (B) = �∞,q (add{B ∩A[l − 1],B ∩A[l],B ∩A[l + 1]}) ⊂ A[l + 1] ∗A[l],
as desired.

The class of bounded t-structures on Db(X) under consideration is reminiscent of
bounded t-structures on Db(�), where � is a representation-finite finite dimensional
hereditary algebra, as the following proposition indicates.

Proposition 4.13 If one of the following cases occurs:

• X is of domestic type and {i | vectX[i] ∩ B �= 0} � {j, j + 1} for any j ∈ Z,
• X is of tubular type and {i | vectX[i] ∩�∞,q (B) �= 0} � {j, j + 1} for any q ∈ Q̄ and

j ∈ Z,

then B is a length category with finitely many (isoclasses of) indecomposables and each
indecomposable object in B is exceptional.

Proof It has been shown in Lemma 4.9 that each indecomposable object in B is exceptional
under the given condition. We show that B contains finitely many indecomposables. If B
contains infinitely many indecomposables then for some n, B[n] ∩ A contains infinitely
many indecomposables. But for each μ ∈ Q̄, cohμ

X contains finitely many exceptional
indecomposables. Thus μ(B[n] ∩ A) has a limit point in R̄. Note that an indecomposable
object inA is either a torsion sheaf or a vector bundle. ForX of domestic type, since rank on
indecomposables is bounded,∞ is the unique limit point of μ(B[n] ∩A). By Lemma 4.11,
{i | vectX[i]∩B �= 0} ⊂ {j, j+1} for some j , a contradiction. For X of tubular type, under
the given assumption, by Lemma 4.12, μ(B) contains at most limit points in Q̄. If q ∈ Q̄ is
a limit point of μ(B),∞ is a limit point of μ(�∞,q (B)), whereby yielding a contradiction
to our assumption by Lemma 4.11. Thus in either case, B contains only finitely many inde-
composables. It remains to show that B is of finite length. Let {X1, . . . , Xn} be a complete
set of indecomposable objects in B. We have End(Xi) = k. Moreover, by Lemma 4.10, we
can suppose Hom(Xi,Xj ) = 0 for i < j . Then one sees that if ⊕n

i=1X
⊕si
i is a proper sub-

object of ⊕n
i=1X

⊕ti
i then (s1, . . . , sn) < (t1, . . . , tn), where < refers to the lexicographic

order. It follows immediately that B must be of finite length. This finishes the proof.

As a corollary, we obtain a characterization of when a bounded t-structure on Db(X),
where X is of domestic type, has a length heart.

Corollary 4.14 If X is of domestic type then B is of finite length iff �{i | vectX[i] ∩ B �=
0} > 1.
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Proof Proposition 4.13 tells us that if {i | vectX[i] ∩ B �= 0} � {j, j + 1} for any j then B
is of finite length. So consider those B with {i | vectX[i] ∩ B �= 0} = {j} or {j − 1, j} for
some j . By Corollary 4.8, if {i | vectX[i] ∩ B �= 0} = {j} then B is not of finite length. So
consider the case {i | vectX[i] ∩ B �= 0} = {j − 1, j}. We shall apply Proposition 4.4 and
keep the notation there. By Theorem 3.15, we have an equivalence S ⊥A � cohX′, where
X
′ is also a weighted projective line of domestic type. By Remark 4.7, the corresponding

t-structure on Db(X′) � Db(S ⊥A) has up to shift the tilted heart F ′[1] ∗ T ′ for some
torsion pair (T ′,F ′) in cohX′ with coh0X′ � T ′ � cohX′. By Lemma 3.32(1), we have a
line bundle L ∈ T ′ with τL ∈ F ′. Let (D≤01 ,D≥01 ) be the bounded t-structure on D1 :=
Db(X′) with heart F ′[1] ∗ T ′. By Lemma 2.14, L is D≤01 -projective. By Lemma 2.15,

(D≤01 ,D≥01 ) is compatible with the admissible subcategory L
⊥D1 = Db(L⊥cohX′ ) of D1 =

Db(X′). We know from Lemma 3.18(1) that L⊥cohX′ � mod� for a representation-finite
finite dimensional hereditary algebra. Then by Lemma 2.23, each bounded t-structure of

L
⊥D1 = Db(L⊥cohX′ ) has a length heart. Moreover, ⊥D1 (L

⊥D1 ) = 〈L〉D1 � Db(k). Thus
the tilted heart F ′[1] ∗ T ′ is o f finite length by Lemma 2.12. So is B. In conclusion, B is
of finite length iff �{i | vectX[i] ∩ B �= 0} > 1.

4.3 Some Properties of Silting Objects

Recall König-Yang correspondence (see Theorem 2.22) that equivalent classes of silting
objects in Db(X) are in bijective correspondence with bounded t-structures on Db(X) with
length heart. So we continue to describe some properties of silting objects inDb(X), which
in turn give information on bounded t-structures with length heart.

We obtain the following information on direct summands of T from our previous
conclusions on full exceptional sequences. This holds particularly for a tilting object in
Db(X).

Proposition 4.15 Let T be a silting object in Db(X).

(1) If T contains a shift of a torsion sheaf as its direct summand then T contains a shift of
an exceptional simple sheaf as its direct summand.

(2) If X is of domestic type then T contains a shift of some line bundle as its direct
summand.

(3) If X is of tubular type then for a suitable q ∈ Q̄, �∞,q (T ) contains a shift of some
exceptional simple torsion sheaf and a shift of a line bundle as its direct summands.

Proof By Proposition 2.20, if A = ⊕l
i=1Ai[ni] is a basic partial silting object in Db(X),

whereAi ∈ A, then the sequence (A1[n1], . . . ,Al[nl]) can be reordered to form an excep-
tional sequence. So can the sequence (A1, . . . ,Al ). Morover, the obtained exceptional
sequence is full. Indeed, since mod End(A) is equivalent to the heart B of the correspond-
ing bounded t-structure, we have l = rkK0(mod End(A)) = rkK0(B) = rkDb(X). We
know from Lemma 3.25 that the obtained exceptional sequence is full.

Thus (1) follows immediately from Lemma 3.26, (2) from Proposition 3.27 and (3) from
Corollary 3.28.
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A silting object T in Db(X) is called concentrated if T contains nonzero direct sum-
mands in vectX[m] for a unique m. This is a generalization of the notion of a concentrated
tilting complex [37, Definition 9.3.3].

Lemma 4.16 A silting object T in Db(X) is concentrated iff the corresponding bounded
t-structure (D≤0,D≥0) satisfies the property {i ∈ Z | vectX[i] ∩ B �= 0} ⊂ {j, j + 1} for
some j ∈ Z.

Proof Recall that in König-Yang correspondence, the t-structure (D≤0,D≥0) correspond-
ing to T has heart

B = {X ∈ Db(X) | Hom�=0(T , X) = 0}.
Let T be a concentrated silting object, say T = T1 ⊕ T2 with T1 ∈ vectX[l] and
T2 ∈ Db(coh0X). By Happel-Ringel Lemma (see Proposition 2.19), the indecompos-
able direct summands of T2 are exceptional. Hence T2 is supported at exceptional points.
For a simple sheaf S supported at an ordinary point, we have Hom�=0(T1, S[l]) = 0 and
Homk(T2, S[l]) = 0 for any k ∈ Z and thus S[l] lies in B. It follows from Lemma 4.4 that
{i ∈ Z | vectX[i] ∩ B �= 0} ⊂ {j, j + 1} for some j .

Conversely, suppose {i | vectX[i] ∩B �= 0} ⊂ {j, j + 1} for some j . By Proposition 4.5
and Remark 4.7, there is a proper collection S of simple sheaves such that the t-structure
(D≤0,D≥0) is compatible with the admissible subcategory Db(S ⊥A) of Db(X) and up to
shift the corresponding t-structure (D≤01 ,D≥01 ) onDb(X′) � Db(S ⊥A) has heartF ′[1]∗T ′
for some torsion pair (T ′,F ′) in cohX′ with coh0X′ � T ′ � cohX′. Since B is of finite
length, so is F ′[1] ∗ T ′ by Lemma 2.12 and thus (T ′,F ′) is induced by a tilting bundle
in cohX′ by Proposition 3.33. Hence indecomposable Ext-projectives in D≤01 are bundles.
If X[n] is an indecomposable direct summand of T with X a bundle then X[n] is D≤0-
projective and thus i∗X[n] is nonzero D≤01 -projective by Lemma 2.18, where i∗ is the left
adjoint of the composition Db(X′) ∼→ Db(S⊥A) ↪→ Db(X). This implies that i∗X[n] is a
nonzero bundle. By Theorem 3.15(2), i∗ is t-exact with respect to the standard t-structures.
So we have n = 0. Hence T is concentrated.

We now give some properties of the endomorphism algebra of a silting object in Db(X).
This generalizes parts of [37, Theorem 9.4.1, 9.5.3].

Proposition 4.17 Let T be a silting object in Db(X) and � = End(T ).

(1) The quiver of � has no oriented cycle. In particular, � has finite global dimension.
(2) If X is of domestic or tubular type then � is either representation infinite or

representation directed.
(3) For X of domestic type, � is representation infinite iff T is concentrated.
(4) ForX of tubular type, � is representation infinite iff�∞,q (T ) is concentrated for some

q ∈ Q̄.

Proof Let (D≤0,D≥0) be the bounded t-structure corresponding to T in König-Yang
correspondence. Its heart B is equivalent to mod�.

(1) We can assume T is basic. Then by Proposition 2.20, indecomposable direct sum-
mands of T can be ordered to form an exceptional sequence. Hence the quiver of
� = End(T ) has no oriented cycle.

(2) If � is not representation infinite then B � mod� contains finitely many indecompos-
ables. Thus B contains no non-exceptional object by Lemma 4.4 (for the tubular case,
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we may need an additional application of a telescopic functor to apply Lemma 4.4.).
By Lemma 4.10, each object in mod� � B is directed. So � is representation directed.

(3) Suppose T is concentrated. By Lemma 4.16, we have {i ∈ Z | vectX[i] ∩ B �= 0} ⊂
{j, j + 1} for some j ∈ Z. By Lemma 4.11, B contains infinitely many indecom-
posables. Since mod� � B, � is representation infinite. Conversely, suppose � is
representation infinite, then B contains infinitely many indecomposables. By Proposi-
tion 4.13, we have {i ∈ Z | vectX[i] ∩ B �= 0} ⊂ {j, j + 1} for some j ∈ Z. Then
Lemma 4.16 implies that T is concentrated.

(4) The argument is similar to that for (3), except that we need to take into account the
action of a suitable telescopic functor �∞,q . We remark that �∞,q (T ) corresponds to
the bounded t-structure with heart �∞,q (B).

4.4 Description of Bounded t-Structures onDb (X)

We are in a position to formulate our description of bounded t-structures on Db(X) using
HRS-tilt and recollement. Recall once again that for P ⊂ P

1, (TP ,FP ) denotes the torsion
pair (3.7.1) in cohX.

We begin with the domestic case.

Theorem 4.18 Let X be a weighted projective line of domestic type. Suppose (D≤0,D≥0)
is a bounded t-structure on Db(X) with heart B. Then exactly one of the following holds:

(1) up to the action of PicX, (D≤0,D≥0) is compatible with the recollement

O ⊥D i∗ �� D = Db(X)
��
��

�� 〈O〉D,

j!��

��
where i∗, j! are the inclusion functors, in which case B is of finite length;

(2) for a unique (up to equivalence) proper collection S of simple sheaves and a unique
P ⊂ P

1, (D≤0,D≥0) is compatible with the recollement

Db(S ⊥A) = S ⊥D i∗ �� D = Db(X)

��

��
�� 〈S〉D,

j!��

��

where i∗, j! are the inclusion functors, such that the corresponding t-structure on S ⊥D

is a shift of the HRS-tilt with respect to the torsion pair (S ⊥A ∩ TP ,S ⊥A ∩ FP )

in S ⊥A , in which case B is not of finite length and B is noetherian resp. artinian iff
P = ∅ resp. P = P

1.

Proof If B is of finite length then the corresponding basic silting object is the direct sum
of a complete set of indecomposable Ext-projectives in D≤0. By Lemma 4.15, D≤0 has an
Ext-projective object which is a shift of a line bundle and thus up to the action of PicX,
(D≤0,D≥0) is compatible with the recollement given in (1). Conversely, if (D≤0,D≥0) is
compatible with the recollement in (1), then B is of finite length since bounded t-structures
onO ⊥D and 〈O〉D have length hearts. If B is not of finite length then by Proposition 4.13,
B satisfies the assumption of Proposition 4.5. By Corollary 4.14, B is not of finite length
iff {i | vectX[i] ∩ B �= 0} = {j} for some j ∈ Z and thus (D≤0,D≥0) fits into type (2) by
Proposition 4.5. The assertion on the noetherianness or artianness of B in this case is shown
in Corollary 4.8.

For the tubular case, we need one more lemma characterizing when the heart B is of
finite length.
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Lemma 4.19 Suppose X is of tubular type. Then B is of finite length iff there are two inde-
composable sheaves E,F with μ(E) �= μ(F) for which E[m], F [n] are D≤0-projectives
for some m, n.

Proof (⇒)Let T be a corresponding silting object. Then by Proposition 4.15, for some
q ∈ Q̄, �∞,q (T ) contains a shift of some simple sheaf and a shift of some line bundle as its
direct summands. The assertion follows immediately.

(⇐)By Proposition 2.21, either (E, F ) or (F,E) is an exceptional pair. We only
consider the case that (F,E) is an exceptional pair since the other case is similar. By
Corollary 2.17, (D≤0,D≥0) is compatible with the admissible filtration

Db({E,F } ⊥A) = {E,F } ⊥D ⊂ E ⊥D ⊂ D.

If μ(E) �= μ(F) then by Lemma 3.18(2), {E,F } ⊥A � mod� for some representation-
finite finite dimensional hereditary algebra �. It follows from Corollary 2.13 and
Lemma 2.23 that B is of finite length.

Here comes our description of bounded t-structures in the tubular case.

Theorem 4.20 Let X be a weighted projective line of tubular type. Suppose (D≤0,D≥0) is
a bounded t-structure on Db(X) with heart B. Then exactly one of the following holds:

(1) for a unique μ ∈ R\Q, (D≤0,D≥0) is a shift of the HRS-tilt with respect to the torsion
pair (coh>μ

X, coh<μ
X) in cohX, in which case B is neither noetherian nor artinian;

(2) for a unique μ ∈ Q̄ and a unique P ⊂ P
1, (D≤0,D≥0) is a shift of the HRS-tilt with

respect to the torsion pair

(add{coh>μ
X, cohμ

λX | λ ∈ P }, add{cohμ
λX, coh<μ

X | λ ∈ P
1\P })

in cohX, in which case B is not of finite length and B is noetherian resp. artinian iff
P = ∅ resp. P = P

1;
(3) for a unique q ∈ Q̄, a unique (up to equivalence) nonempty proper collection S of

simple sheaves and a unique P ⊂ P
1, �∞,q ((D≤0,D≥0)) is compatible with the

recollement

Db(S ⊥A) = S ⊥D i∗ �� D = Db(X)

��

��
�� 〈S〉D,

j!��

��

where i∗, j! are the inclusion functors, such that the corresponding t-structure on
Db(S ⊥A) is a shift of the HRS-tilt with respect to the torsion pair (S ⊥A∩TP ,S ⊥A∩
FP ) in S ⊥A , in which case B is not of finite length and B is noetherian resp. artinian
iff P = ∅ resp. P = P

1;
(4) for some q ∈ Q̄ and some exceptional simple sheaf S, �∞,q ((D≤0,D≥0)) is

compatible with the recollement

Db(S ⊥A) = S ⊥D i∗ �� D = Db(X)

��

��
�� 〈S〉D,

j!��

��

where i∗, j! are the inclusion functors, such that the corresponding t-structure on
Db(S ⊥A) has a length heart, in which case B is of finite length.
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Proof If B is of finite length then by Proposition 4.15, for some q ∈ Q̄, there is some excep-
tional simple sheaf S which is�∞,q (D≤l )-projective for some l. Hence�∞,q ((D≤0,D≥0))
is compatible with the recollement of the form in (4). The corresponding t-structure on
Db(S ⊥A) has a length heart by Lemma 2.12. Suppose B is not of finite length. By Propo-
sition 4.13, for some q ∈ Q̄ and some j ∈ Z, {i | vectX[i] ∩�∞,q (B) �= 0} ⊂ {j, j + 1}.
Thus Proposition 4.5 applies. Moreover, by Lemma 4.10, either (I) �∞,q (D≤0) contains
no nonzero Ext-projective or (II) all indecomposable �∞,q (D≤0)-projectives has the same
slope.

First consider the case (I): �∞,q (D≤0) contains no nonzero Ext-projective. Then the
asserted collection S of simple sheaves in Proposition 4.5 is empty by Lemma 2.18. Hence
up to shift we have two cases: 1) �∞,q (B) = FP [1] ∗ TP for some P ⊂ P

1, or 2) (T ,F)

is a torsion pair in cohX with coh0X � T � cohX. Moreover, for case 2), there exists no
nonzero sheaf E ∈ T with τE ∈ F since �∞,q (D≤0) contains no nonzero Ext-projective.
By Lemma 3.32, we have either 2.1) (T ,F) = (coh>μ

X, coh<μ
X) for some μ ∈ R\Q, or

2.2) for some μ ∈ Q and some P ⊂ P
1,

(T ,F) = (add{coh>μ
X, cohμ

λX | λ ∈ P }, add{cohμ
λX, coh<μ

X | λ /∈ P }).
If case 2.1) occurs then �∞,q ((D≤0,D≥0)) is of type (1); if 1) or 2.2) occurs,
�∞,q ((D≤0,D≥0)) is of type (2). Observe that the class of t-structures of type (1) or (2) is
closed under the action of the telescopic functor �q,∞ = �−1∞,q . Hence (D≤0,D≥0) is of
type (1) or (2). It is evident that types (1) and (2) are disjoint and the assertion on uniqueness
is also obvious. The assertion on noetherianness or artinianness is proved in Lemma 3.37.

Now consider the case (II): all indecomposable �∞,q (D≤0)-projectives has the same
slope, which we denote by μ. By Lemma 2.18, the compatibility of �∞,q ((D≤0,D≥0))
with the recollement in Proposition 4.5 implies that there is a torsion sheaf which is Ext-
projective in some �∞,q (D≤l ). Thus μ = ∞. It follows that if an indecomposable sheaf
E is Ext-projective in some D≤l then μ(E) = q. This enforces the uniqueness of q. The
uniqueness of S and P is then asserted in Proposition 4.5. To show that (D≤0,D≥0) is of
type (3), we will show that it is impossible that {i | vectX[i] ∩�∞,q (B) �= 0} = {j, j + 1}.
It sufficies to show that the corresponding t-structure on Db(X′) � Db(S ⊥A) is not a shift
of HRS-tilt with respect to any torsion pair (T ′,F ′) in cohX′ with coh0X′ � T ′ � cohX′
(see Remark 4.7). Assume for a contradiction that it was. Since X′ is a weighted projective
line of domestic type, by Corollary 4.23,F ′[1]∗T ′ would be of finite length. Then so would
�∞,q (B), a contradiction. This finishes the proof.

In light of Lemma 2.7, we can already see certain bijective correspondence from our
theorems for bounded t-structures whose heart is not of finite length. In the following corol-
lary, we identify Z as the group of autoequivalences of Db(X) generated by the translation
functor, which acts freely on the set of bounded t-structures on Db(X).

Corollary 4.21 (1) If X is of domestic type then there is a bijection

{bounded t-structures on Db(X) whose heart is not of finite length}/Z←→
⊔

S

(
{P | P ⊂ P

1} × {bounded t-structures on 〈S〉D}
)

, (4.4.1)

where S runs through all equivalence classes of proper collections of simple sheaves.
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(2) If X is of tubular type then there is a bijection

{bounded t-structures on Db(X) whose heart is not of finite length}/Z←→

R\Q
⊔

(

Q̄×
⊔

S

(
{P | P ⊂ P

1} × {bounded t-structures on 〈S〉D}
)
)

, (4.4.2)

where S runs through all equivalence classes of proper collections of simple sheaves.

Suppose X is of domestic or tubular type. Corollary 4.21 reduces the classification of
bounded t-structures on Db(X) whose heart is not of finite length to the classification of
bounded t-structures on 〈S〉D = Db(〈S〉A). Recall that if S �= ∅ then there are positive
integers m, k1, . . . , km such that 〈S〉A � ∐m

i=1 modk �Aki
. By Lemma 2.23, each bounded

t-structure on Db(modk �Al ) has a length heart. So we can achieve the latter classification
by calculating silting objects or simple-minded collections in Db(modk �Aki

) by virtue of
König-Yang correspondences.

For bounded t-structures onDb(X) with length heart, there is no obvious bijective corre-
spondence from the recollement in Theorem 4.18(1) or Theorem 4.20(4). Recall thatDb(X)

is triangle equivalent to Db(�) for a canonical algebra �, whose global dimension is at
most 2. So the powerful König-Yang correspondences are still applicable. We can try to
compute the collections of simple objects in the heart from the recollements using Proposi-
tion 2.11. Instead, we can try to compute silting objects in Db(X) from these recollements
using [36, Corollary 3.4].

Anyway, for X of tubular type, since S ⊥A � cohX′ for some weighted projective line
of domestic type, Theorem 4.20(4) reduces the combinatorics in classification of bounded
t-structures on Db(X) with length heart to that in the classification of bounded t-structures
on Db(X′) with length heart; for X of domestic type with weight seqence (p1, p2, p3),
Theorem 4.18(1) reduces the combinatorics in the classification of bounded t-structures on
Db(X) with length heart to that in the classification of bounded t-structures on O ⊥D =
Db(O ⊥A) � Db(k[p1, p2, p3]) (by Theorem 3.17(2)), where k[p1, p2, p3] is the path
algebra of the equioriented star quiver [p1, p2, p3] (a Dynkin quiver here).

All in all, for X of domestic or tubular type, the combinatorics in the classifiction of
bounded t-structures on Db(X) can be reduced to that in the classification of bounded t-
structures on Db(�) for representation-finite finite dimensional hereditary algebras �.

The following example recovers the description of bounded t-structures on Db(P1) in
[19, §6.10].

Example 4.22 Let X be of trivial weight type (p1, . . . , pt ), that is, each pi = 1, and thus
cohX � cohP1. Then each indecomposable object in A = cohX is isomorphic to either
a torsion sheaf S[m] supported at some point λ ∈ P

1 for some m ∈ Z≥1, or a line bundle
O(n�c) for some n ∈ Z. By Theorem 4.18, a bounded t-structure whose heart is not a length
category is up to shift of the form (D≤−1A ∗ TP ,FP [1] ∗D≥0A ) for some P ⊂ P

1, where

(TP ,FP ) = (add{cohλX | λ ∈ P }, add{O(n�c), cohλX | n ∈ Z, λ /∈ P }).
To obtain bounded t-structures with length heart, we can compute silting objects directly.
Each basic silting object is up to shift of the form O(n�c) ⊕ O((n + 1)�c)[l] for some
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n ∈ Z, l ≥ 0. Such an object is a tilting object iff l = 0. The t-structure corresponding to
the silting objectO(n�c)⊕O((n+ 1)�c)[l] has heart

{
add{O(n�c),O((n− 1)�c)[l + 1]} � modk

∐
modk if l > 0,

add{coh0X ∪ {O(q�c)[1],O(m�c) | q < n, m ≥ n}} � modk(•⇒ •) if l = 0.

4.5 Torsion Pairs in cohX Revisited

We can now give a more clear description of torsion pairs in cohX since torsion pairs are in
bijective correspondence with certain t-structures.

Proposition 4.23 Suppose X is of domestic type. Each torsion pair (T ,F) in cohX fits into
exactly one of the following types:

(1) (T ,F) is induced by some tilting sheaf, that is, there is a tilting sheaf T such that

T = {E ∈ coh(X) | Ext1(T ,E) = 0}, F = {E ∈ coh(X) | Hom(T , E) = 0}.
(2) either T ⊂ coh0X or F ⊂ coh0X, and thus (T ,F) is of the form given in

Lemma 3.29.

Proof Note that T � coh0X and F � coh0X iff both T and F contain nonzero bundles.
So in this case the tilted heart B = F [1] ∗ T satisfies {i | vectX[i] ∩ B �= 0} = {0, 1}.
By Corollary 4.14, B is of finite length. Then by Proposition 3.33, (T ,F) corresponds to a
tilting sheaf T , which is exactly the one induced by T .

Proposition 4.24 Suppose X is of tubular type. Each torsion pair (T ,F) in cohX fits into
exactly one of the following types:

(1) (T ,F) is induced by a tilting sheaf, that is, there is a tilting sheaf T such that

T = {E ∈ coh(X) | Ext1(T ,E) = 0}, F = {E ∈ coh(X) | Hom(T , E) = 0}.
(2) for some μ ∈ R\Q, (T ,F) = (coh>μ

X, coh<μ
X);

(3) for some μ ∈ Q̄, there exists a torsion pair (Tλ,Fλ) in cohμ
λX for each λ ∈ P

1 such
that

T = add{coh>μ
X,Tλ | λ ∈ P

1}, F = add{Fλ, coh
<μ

X | λ ∈ P
1};

(4) F ⊂ coh0X and thus (T ,F) is of the form given in Lemma 3.29(2).

Proof Consider the HRS-tilt (D≤0B ,D≥0B ) with heart B = F [1] ∗ T . Obviously types (2),
(3) and (4) form disjoint classes. If (T ,F) is a torsion pair of type (2) or (3) or (4) then
either there is no nonzero D≤0B -projective or all indecomposable D≤0B -projectives have the
same slope and hence F [1] ∗ T is not of finite length by Lemma 4.10. Thus types (2), (3)
and (4) are disjoint from type (1) by Proposition 3.33. Conversely, suppose that (T ,F) is a
torsion pair in cohX such that B is not of finite length. We want to show that (T ,F) is of
type (2), (3) or (4).

We apply Theorem 4.20. If (D≤0B ,D≥0B ) is a t-structure of type Theorem 4.20(1) resp.

Theorem 4.20(2) then obviously (T ,F) is of type (2) resp. (3). Otherwise, (D≤0B ,D≥0B ) is
of type Theorem 4.20(3). Denote

B̃ = �∞,q (B) = �∞,q (F [1] ∗ T ),

where q is the unique element in Q̄ asserted in Theorem 4.20(3). From the proof of Theo-
rem 4.20, we see that {i | vectX[i] ∩ B̃ �= 0} = {j} for some j . If F ⊂ coh0X then (T ,F)
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is of type (4). Suppose F contains nonzero bundles. Then by Lemma 3.31, cohμ
X ⊂ F for

μ # q. Now that cohμ
X[1] ⊂ F [1] ⊂ B, we have vectX[1] ∩ B̃ �= 0 by Lemma 3.13(2).

Hence j = 1. Moreover, an indecomposable sheaf E such that �∞,q (E) ∈ Db(coh0X) has
slope μ(E) = q. It follows that B̃ ⊂ A[1] ∗coh0X ⊂ A[1] ∗A. Thus B̃ = F̃ [1] ∗ T̃ , where
(T̃ , F̃) is the torsion pair

(add{T̃λ | λ ∈ P
1}, add{vectX, F̃λ | λ ∈ P

1})
for some torsion pair (T̃λ, F̃λ) in cohλX. Let

(Tλ,Fλ) = (�q,∞(T̃λ),�q,∞(F̃λ)),

which is a torsion pair in cohq
λX. Then we have

(T ,F) = (add{coh>q
X,Tλ | λ ∈ P

1}, add{Fλ, coh
<q

X | λ ∈ P
1}),

which is of type (3). We are done.

5 Derived Equivalence

5.1 Serre Functor and Derived Equivalence

The main theorem of [44] states that given a finite dimensional hereditary algebra � and
a bounded t-structure (D≤0,D≥0) with heart B on Db(�), the inclusion B ↪→ Db(�)

extends to a derived equivalence Db(B) � Db(�) iff the Serre functor of Db(�) is right t-
exact with respect to the t-structure (D≤0,D≥0). This motivates us to consider the following

Assertion 5.1 For a Hom-finite k-linear triangulated category D with a Serre functor and
a bounded t-structure (D≤0,D≥0) on D with heart B, the inclusion of B into D extends to
an exact equivalence Db(B) � D iff the Serre functor is right t-exact.

The necessity of Assertion 5.1 always holds by [44, Corollary 4.13] whereas [44, Exam-
ple 9.4, Example 9.5] show that the sufficiency does not hold in general. We put it in the
form only to stress the role of the Serre functor. Hopefully there would exist more classes
of triangulated categories such that Assertion 5.1 hold. Observe that if T is a k-linear trian-
gulated category that is triangle equivalent to D then Assertion 5.1 holds for T iff it holds
for D.

To give an application of our results on bounded t-structures on the bounded derived
category Db(X) of coherent sheaves over a weighted projective line X, we will prove the
following

Theorem 5.2 If X is of domestic or tubular type then Assertion 5.1 holds for D = Db(X).

Since the result of [44] embraces the wild case, it is tempting to make the following

Conjecture 5.3 Given an arbitrary weighted projective lineX, Assertion 5.1 holds forD =
Db(X).

Wewill see in Lemma 5.13 that this does hold for a certain class of t-structures onDb(X).
Recall that for X of domestic type, cohX is derived equivalent to mod� for a tame

hereditary algebra �. Thus the conclusion for this case is already covered by [44]. The new
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part of Theorem 5.2 is for the tubular case. Recall that a tubular algebra �, introduced
by Ringel in [43], can be realized as the endomorphism algebra of a tilting sheaf over a
weighted projective line of tubular type. In particular,Db(�) is triangle equivalent toDb(X)

for some weighted projective line X of tubular type. So Theorem 5.2 yields the following

Corollary 5.4 Assume that k is an algebraically closed field. Assertion 5.1 holds for D =
Db(�) where � is a tubular algebra over k.

Here let us review some necessary background. Let D be a triangulated category
equipped with a bounded t-structure whose heart is denoted by B. An exact functor F :
Db(B)→ D is called a realization functor if F is t-exact and the restriction F|B : B → B
is isomorphic to the identity functor of B. This is a reasonable functor but the existence
of such a functor is a problem. By virtue of the filtered derived category, [7, §3.1] con-
structed a realization functor for arbitrary bounded t-structure on a triangulated subcategory
of D+(A), whereA is an abelian category with enough injectives. Beilinson [6] abstracted
this theme and introduced the notion of a filtered triangulated category. Given a triangulated
category D with a filtered triangulated category over it (see [6, Appendix] for the precise
definition), [6, Appendix] constructed a realization functor for arbitrary bounded t-structure
on D. Recently, [16, §3] showed that an algebraic triangulated category indeed admits a
filtered triangulated category over it and so generally we have

Proposition 5.5 [16] A realization functor exists for any bounded t-structure on an
algebraic triangulated category.

A realization functor is not necessarily an equivalence. For example, Example 4.22 tells
us that there is a bounded t-structure on Db(P1) with heart equivalent to modk

∐
modk but

definitely modk
∐

modk is not derived equivalent to cohP1. The following lemma helps us
determine when a realization functor is an equivalence.

Lemma 5.6 [6, Lemma 1.4] Let D1,D2 be two triangulated categories with bounded t-
structures. Suppose A1,A2 are the hearts respectively. Let F : D1 → D2 be an exact
functor such that F is t-exact and F|A1 : A1 → A2 is an equivalence. The following are
equivalent:

(1) F : D1 → D2 is an equivalence;
(2) For each A,B ∈ A1, the map F : Homn

D1
(A,B) → Homn

D2
(F (A), F (B)) is an

isomorphism.
If D1 = Db(A1) then there is an additional equivalent condition:

(3) For any A,B ∈ A1, n > 0 and f ∈ Homn
D2

(F (A), F (B)), there exists a
monomorphism B ↪→ B ′ inA1 effacing f .

As remarked in [7, Remarque 3.1.17], we have always

Homn
Db(A1)

(A,B)
∼→ Homn

D2
(F (A), F (B))

for A,B ∈ A1 and n ≤ 1.
Although we don’t know the uniqueness of a realization functor, if some realization

functor F1 : Db(B)→ D is an equivalence then any realization functor F2 : Db(B)→ D
is an equivalence by Lemma 5.6. So it makes sense to say that the inclusionB ↪→ D extends
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to an exact equivalence Db(B) � D if some realization functor F : Db(B) → D is an
equivalence.

If there exists an exact equivalence H : Db(B)
∼→ D which is moreover t-exact then any

realization functor F : Db(B) → D is an equivalence; given an exact autoequivalence �

ofD, there exists a realization functor F : Db(B)→ D iff there exists a realization functor
G : Db(�(B)) → D and F is an equivalence iff so is G. We will use these trivial facts
implicitly.

A remarkable instance of a realization functor being an equivalence is that for a tilted
heart with respect to a (co-)tilting torsion theory introduced in [22].

Proposition 5.7 Suppose that A is an abelian category and (T ,F) a torsion pair in A. If
T is a tilting torsion class or F is a co-tilting torsion-free class then the inclusion of the
tilted heartF [1]∗T intoDb(A) extends to an exact equivalenceDb(F [1]∗T )

∼→ Db(A).

Remark 5.8 (1) Proposition 5.7 is proved originally in [22] requiring enough projectives
or enough injectives inA (see [22, Theorem 3.3]). The additional condition is removed
in [11] using the derived category of an exact category (see [11, Proposition 5.4.3]).
See also [15] for a short proof via an explicit construction of the equivalence functor.

(2) Generalizing Proposition 5.7, [13] contains a characterization of when the inclusion
of the tilted heart F [1] ∗ T into Db(A) extends to an exact equivalence for a torsion
pair (T ,F) inA.

5.2 Reduction via Ext-Projectives

In [44], one step of the proof of the main theorem (i.e., Assertion 5.1 holds for Db(�) for
a finite dimensional hereditary algebra �) is reduction via Ext-projectives (more precisely,
the simple top of an Ext-projective). The reduction relies on [44, Proposition 8.6], but we
don’t know whether there is a corresponding version in our setup.

Nevertheless, we have a similar but not exactly the same version, i.e., Proposition 5.9 to
perform reduction. Although Proposition 5.9 works for a more general class of triangulated
categories, we have additional assumption on our Ext-projectives to do reduction and so we
have to make efforts to assure the existence of such an Ext-projective object.

LetD be a k-linear algebraic triangulated category of finite type admiting a Serre functor
S. Let (D≤0,D≥0) be a bounded t-structure on D with heart B. These hypothesis will be
retained through this subsection.

Let X ∈ D≤0 be an exceptional object such that SX ∈ D≥0. By Lemma 2.14, X isD≤0-
projective. Denote D1 := X ⊥D = ⊥DSX. By Lemma 2.15, (D≤0,D≥0) is compatible
with the recollement

D1 i∗ �� D
i∗��

i!
�� j∗ �� 〈X〉D,

j!��

j∗
�� (5.2.1)

where i∗, j! are the inclusion functors. We have j∗X = SX; for Y ∈ D, we have j∗Y =
Hom•(X, Y )⊗X. There are triangles

Hom•(X, Y )⊗X
ev→ Y → i∗i∗Y �, i∗i!Y → Y

co-ev→ DHom•(Y,SX))⊗ SX � .

D1 has a Serre functor S1 = i!Si∗ by Proposition 2.4. Moreover, we have an induced
t-structure

(D≤01 ,D≥01 ) = (D1 ∩D≤0,D1 ∩D≥0)
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on D1 with heart B1 = D1 ∩ B. We keep these notation in the following proposition.

Proposition 5.9 Let X ∈ D≤0 be an exceptional object. Suppose that X and SX lie in B
and that either X or SX is simple in B. Then
(1) S is right t-exact with respect to (D≤0,D≥0) iff so is S1 with respect to the t-structure

(D≤01 ,D≥01 ) on D1;
(2) the inclusion B ↪→ D extends to an exact equivalence Db(B) � D iff the inclusion

B1 ↪→ D1 extends to an exact equivalence Db(B1) � D1.

Proof Since X is D≤0-projective, we have Ext1B(X, Y ) ∼= Hom1
D(X, Y ) = 0 for all Y ∈ B,

and thus X is a projective object in B. Similarly, since SX is Ext-injective inD≥0, SX is an
injective object in B.
(1) First we show that the right t-exactness of S1 implies that of S. Let Y ∈ D≤0. Then

i∗Y ∈ D≤01 , i∗i∗Y ∈ D≤0
and we have a triangle

i∗i!Si∗i∗Y → Si∗i∗Y → DHom•(Si∗i∗Y,SX)⊗ SX � .

Note that for n < 0, we have X[n] ∈ D≥1 and
Homn(Si∗i∗Y,SX) = Homn(i∗i∗Y,X) = 0.

Thus

DHom•(Si∗i∗Y,SX)⊗ SX = ⊕n≥0DHomn(Si∗i∗Y,SX)⊗ SX[n] ∈ D≤0.
If S1 is right t-exact then

i∗i!Si∗i∗Y = i∗S1i∗Y ∈ D≤0.
Hence Si∗i∗Y ∈ D≤0. Since X is D≤0-projective, we have

S(Hom•(X, Y )⊗X) = S(⊕n≤0Homn(X, Y )⊗X[−n])
= ⊕n≤0Homn(X, Y )⊗ SX[−n]
∈ D≤0.

Then using the triangle

S(Hom•(X, Y )⊗X→ Y → i∗i∗Y �),

one knows that SY ∈ D≤0. This shows that S is right t-exact.

Now we suppose S is right t-exact and deduce the equivalence between the right
t-exactness of S1 and the condition that for each Y ∈ B1, the co-evaluation map

H 0(Si∗Y ) −→ DHom(H 0(Si∗Y ),SX)⊗ SX

is an epimorphism in B. This equivalence will yield the desired implication, as we will see.
For Y ∈ B1, S1Y = i!Si∗Y fits into the triangle

i∗S1Y → Si∗Y → DHom•(Si∗Y,SX)⊗ SX � .

Since i∗Y,X ∈ B, we have
DHom•(Si∗Y,SX)⊗ SX = ⊕m≥0DHom(i∗Y,X[m])⊗ SX[m] ∈ D≤0;
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since S is right t-exact, we have Si∗Y ∈ D≤0. Consider the commutative diagram

Z1 ��

��

τ≤−1Si∗Y ��

��

⊕m>0Hom(Si∗Y,SX[m])⊗ SX[m]

��
i∗S1Y ��

��

Si∗Y
co-ev ��

��

DHom•(Si∗Y,SX)⊗ SX

��
Z2 �� H 0(Si∗Y )

co-ev �� DHom(H 0(Si∗Y ),SX)⊗ SX,

where rows and columns are distinguished triangles. Then Z1 ∈ D≤0 and hence i∗S1Y ∈
D≤0 iff Z2 ∈ D≤0. By the triangle

Z2→ H 0(Si∗Y )→ DHom(H 0(Si∗Y ),SX))) �,

we have Z2 ∈ D[0,1]. Taking cohomology tells us that Z2 ∈ B iff the morphism
H 0(Si∗Y ) → DHom(H 0(Si∗Y ),SX) ⊗ SX is epic in B. Hence we have the claimed
equivalence that S1 is right t-exact iff for each Y ∈ B1, the co-evaluation map

H 0(Si∗Y )→ DHom(H 0(Si∗Y ),SX)⊗ SX

is epic in B.
If SX is simple in B then clearly the co-evaluation map is an epimorphism. If X is simple

in B then X is a simple projective. Hence for Y ∈ B1,

Hom(H 0(Si∗Y ),SX) ∼= Hom(Si∗Y,SX) ∼= Hom(i∗Y,X) = 0

and so the co-evaluation map is also an epimorphism.

(2) If X is simple in B then for Y ∈ B, the evaluation map Hom(X, Y ) ⊗ X → Y is a
monomorphism in B. Therefore

i∗i∗Y = cone(Hom•(X, Y )⊗X→ Y ) = cone(Hom(X, Y )⊗X→ Y )

coincides with the cokernel of the evaluation map

Hom(X, Y )⊗X→ Y

in B, whence i∗Y ∈ B1. It follows that i∗ is t-exact and restricts to an exact functor
i∗|B : B → B1, which is left adjoint to the inclusion ι = i∗|B1 : B1 ↪→ B. This
implies that the inclusion ι : B1 ↪→ B extends to a fully faithful exact functor Db(ι) :
Db(B1) ↪→ Db(B). Similarly, if SX is simple in B then i! is t-exact and restricts to an
exact functor i!|B : B→ B1. This also implies that the inclusion ι = i∗|B1 : B1 ↪→ B
extends to a fully faithful embedding Db(ι) : Db(B1) ↪→ Db(B). In either case, we
have a fully faithful functor Db(ι) : Db(B1) ↪→ Db(B).

Let F : Db(B) → D be a realization functor. Note that F maps the essential image of
Db(B1) in Db(B) into D1 and F1 := F ◦ Db(ι) : Db(B1) → D1 is a realization functor.
We now show our assertion.

(⇒) If F is an equivalence then for any Y1, Y2 ∈ B1, we have

Homn
Db(B1)

(Y1, Y2)
∼→ Homn

Db(B)
(Y1, Y2)

∼→ Homn
D(Y1, Y2) = Homn

D1
(Y1, Y2).

Hence F1 is an equivalence.
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(⇐)Assume that F1 : Db(B1) → D1 is an equivalence. Since both Db(B) and D are
generated by {X} ∪B1 and also by {SX} ∪B1, to show that F is an equivalence, it sufficies
to show that F induces an isomorphism

(∗) Homn
Db(B)

(Y1, Y2)
∼→ Homn

D(Y1, Y2)

for each Y1 ∈ {X} ∪ B1, Y2 ∈ {SX} ∪ B1. (∗) always holds for n ≤ 1 and so we need to
show that (∗) holds for n ≥ 2. Since F1 : Db(B1) → D1 is an equivalence, (∗) holds for
Y1, Y2 ∈ B1. Since X is Ext-projective in D≤0 and projective in B,

Homn
D(X, Y2) = 0 = Homn

Db(B)
(X, Y2)

for Y2 ∈ {SX}∪B1 and n ≥ 1; since SX is Ext-injective inD≥0 and injective in B, we have
Homn

D(Y1,SX) = 0 = Homn
Db(B)

(Y1, SX)

for Y1 ∈ {X} ∪ B1 and n ≥ 1. This finishes the proof.

We use the following fact to find an object satisfying the assumption of Proposition 5.9.

For an exceptional object X ∈ D, denote MX = co-cone(X
η→ SX), where η is a

nonzero morphism. Since Hom(X,SX) ∼= DHom(X,X) = k, MX is up to isomorphism
independent of the choice of η.

Lemma 5.10 Let X be an exceptional Ext-projective object in D≤0. With the above nota-
tion, if MX ∈ D≤0 then SX is a simple object in B; if MX ∈ D≥1 then X is a simple object
in B. In particular, if MX[l] ∈ B for some l then either X or SX is simple in B.

Proof We will use the recollement (5.2.1), with which the t-structure (D≤0,D≥0) is com-
patible. Denote by (D≤02 ,D≥02 ) the corresponding t-structure on 〈X〉D � Db(k). Since

j∗X = X ∈ D≤02 and j∗SX = X ∈ D≥02 , we know that the heart of (D≤02 ,D≥02 ) is addX.
Then by Proposition 2.11, j!∗X is simple in B and j!∗X fits into the two triangles

i∗τ≤0i!j!X→ j!X→ j!∗X �, j!∗X→ j∗X→ i∗τ≥0i∗j∗X � .

If MX ∈ D≥1 then
MX = i!MX ∈ D≥11

thus
i∗τ≤0i!j!X = i∗τ≤0MX = 0, j!∗X ∼= j!X = X;

if MX ∈ D≤0 then
MX = i∗MX ∈ D≤01

thus
i∗τ≥0i∗j∗X = i∗τ≥0(MX[1]) = 0, j!∗X = SX.

These show our first assertion and the second assertion follows easily.

Remark 5.11 If X,SX lie in B then by the definition of j!∗, we have j!∗(X) = im(η : X→
SX), which is the simple top (resp. socle) of X (resp. SX).

5.3 Proof of Theorem 5.2

We prove Theorem 5.2 in this subsection. At first, we consider again the category At of
finite dimensional nilpotent k-representations of the cyclic quiver Ãt−1 with t vertices. The
following lemma refines Lemma 2.29 and makes feasible our induction process.
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Lemma 5.12 For a bounded t-structure (D≤0,D≥0) onDb(At ) with heart B, which is not
a shift of the standard one, there exists a simple object X ∈ At such that for some some
n ∈ Z, X[n] isD≤0-projective and either X[n] or SX[n] is a simple object in B, where S is
the Serre functor of Db(At ).

Proof We will use freely the notation introduced at the start of Section 2.9. Let S be the
proper collection of simple objects inAt asserted in Proposition 2.30. Then for some S ∈ S ,
(D≤0,D≥0) is compatible with the recollement

S ⊥D i∗ �� D = Db(At )

i∗��

i!
�� j∗ �� 〈S〉D,

j!��

j∗
��

where i∗, j! are the inclusion functors. Denote

D1 = S ⊥D ,D≤01 = D1 ∩D≤0,D≥0 = D1 ∩D≥0,B1 = D1 ∩ B.
Then (D≤01 ,D≥01 ) is a bounded t-structure on D1 with heart B1.

We will use induction on the pair (t, �S) to prove our assertion. As the first step of
induction, we consider arbitrary t and �S = 1. Then S = {S} and, up to a shift of B,
the corresponding t-structure on S ⊥D has heart S ⊥At . In particular, τS[2] ∈ B. Since we
have a triangle τS[2] → S → τS[1] �, S is the desired object by Lemma 5.10. Now
suppose �S > 1. In particular, t > 2. By the induction hypothesis, there exist some simple
S′ ∈ S ⊥At and some l ∈ Z such that S′[l] is simple in B1 and is moreover D≤01 -projective

orD≥01 -injective. Note that a simple object in S ⊥At is isomorphic to τS[2] or to some simple
object in At nonisomorphic to τS, S. If S′ ∼= τS[2] then we have τS[2][l] ∈ B and S is the
desired object by Lemma 5.10. It remains to consider the case when S′ is a simple object in
At nonisomorphic to τS or S. Up to a shift of B, we can suppose l = 0. Then S′ is either
D≤01 -projective or D≥01 -injective.

If S′ is D≤01 -projective then S1S
′ ∈ D≥01 ⊂ D≥0, where S1 = i!Si∗ is the Serre functor

of D1 = S ⊥D . Easy computation shows that

S1S
′ =

{
τS′[1] if S′ � τ−1S;
τS[2][1] if S′ ∼= τ−1S.

If S′ � τ−1S then τS′[1] ∈ D≥0 and thus S′ isD≤0-projective. Moreover S′ is simple in B1
thus simple in B, whence S′ is the desired object. If S′ ∼= τ−1S then τS[2] ∈ D≥1. Suppose
j∗B = add S[n]. Then S ∈ D≤n, τS[1] ∈ D≥n. If n ≥ 1 then using the triangle τS[2] →
S → τS[1] �, τS[1] ∈ D≥n and τS[2] ∈ D≥1 imply S ∈ D≥1. Then S′ ∼= τ−1S is D≤0-
projective. Now that τ−1S is simple in B, τ−1S is the desired. If n ≤ 0 then τS[2] ∈ D≥1
and τS[1] ∈ D≥n imply S[n] ∈ D≥n, whereby yielding S[n] ∈ B since we already have
S[n] ∈ D≤0. Now that S[n] ∈ B and τS[n+ 1] ∈ D≥0, S[n] is D≤0-projective. Moreover,
we have τS[2][n] ∈ D≥1 and thus S[n] is simple in B by Lemma 5.10. Therefore S is the
desired.

Similar arguments apply to the case when S′ is D≥01 -injective. The following are some
sketchy arguments. Since t > 2, τ 2S � S. We have

S
−1
1 S′ = i∗S−1i∗S′ =

{
τ−1S′[−1] if S′ � τ 2S;
τS[2][−1] if S′ ∼= τ 2S.
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Suppose j∗B = add S[n]. If S′ � τ 2S then τ−1S′ is the desired. If S′ ∼= τ 2S then τS is the
desired when n ≤ −2 and S is the desired when n > −2. We are done.

We show that Assertion 5.1 holds for a class of bounded t-structures onDb(X), where X
is a weighted projective line of arbitrary type.

Lemma 5.13 LetX = X(p, λ) be a weighted projective line. Let (D≤0,D≥0) be a bounded
t-structure on D = Db(X) whose heart B satisfies {i | vectX[i] ∩ B �= 0} ⊂ {j, j + 1}.
Then Assertion 5.1 holds under these additional assumptions.

Proof We have only to show the sufficiency. Let S be the proper collection of simple
sheaves asserted in Proposition 4.5. If S = ∅ then up to a shift of B we have B = F [1] ∗ T
for some torsion pair (T ,F) in cohX. By Lemma 3.31, either T is a tilting torsion class or
F is a cotilting torsion-free class. Then it follows from Proposition 5.7 that the inclusion
B ↪→ Db(X) extends to an exact equivalence Db(B)

∼→ Db(X). In particular, if the weight
sequence p is trivial then there is no exceptional simple sheaves and S = ∅ and so the asser-
tion also holds in this case. Now we use induction on the weight sequence p and consider a
nontrivial weight sequence p = (p1, . . . , pn). We suppose S �= ∅.

Take λ ∈ P
1 such that Sλ = S ∩ cohλX �= ∅. By Lemma 4.4, (D≤0,D≥0) restricts to

a bounded t-structure (D≤0λ ,D≥0λ ) on Db(cohλX). Let Bλ = Db(cohλX) ∩ B be its heart.
Recall that cohλX � Apλ . By Lemma 5.12, for some exceptional simple sheaf S ∈ Sλ

and some n ∈ Z, S[n] is D≤0λ -projective and either S[n] or τS[n + 1] is simple in Bλ.
S[n] ∈ D≤0, τS[n + 1] ∈ D≥0 imply that S[n] is D≤0-projective. Then (D≤0,D≥0) is
compatible with the recollement

Db(X′) � Db(S ⊥A) i∗ �� D = Db(X)

i∗��

i!
��

j∗ �� 〈S〉D,

j!��

j∗
��

(5.3.1)

where i∗, j! are the inclusion functors, X′ = X(p′, λ) is a weighted projective line with
weight sequence

p′ = (p1, . . . , pi−1, pi − 1, pi+1, . . . , pn)

and the exact equivalence Db(X′) � Db(S ⊥A) is induced by the equivalence S ⊥A �
cohX′ (see Theorem 3.15). If the Serre functor S = τ(−)[1] is right t-exact then
S[n], τS[n+ 1] ∈ B. One easily shows

j!∗(S[n]) = im(η : S[n] → τS[n+ 1]) =
{

S[n] if S[n] is simple in Bλ

τS[n+ 1] if τS[n+ 1] is simple in Bλ
,

where η : S[n] → τS[n + 1] is any nonzero morphism. Hence either S[n] or τS[n + 1]
is simple in B. Then by Proposition 5.9(1), the right t-exactness of the Serre functor S of
Db(X) implies the right t-exactness of the Serre functor S1 of Db(X′).

Let B1 be the heart of the corresponding t-structure onDb(X′). Since the essential image
of vectX′[i] ∩ B1 under the sequence of functors Db(X′) � Db(S ⊥A) ↪→ Db(X) is
contained in vectX[i] ∩ B,
{i | vectX[i] ∩ B �= 0} ⊂ {j, j + 1} implies {i | vectX′[i] ∩ B1 �= 0} ⊂ {j, j + 1}.

By the induction hypothesis, the right t-exactness of S1 implies that the inclusion of B1 into
Db(X′) extends to a derived equivalence Db(B1) � Db(X′). Then by Proposition 5.9(2),
the inclusion B ↪→ Db(X) extends to an exact equivalence Db(B) � Db(X).
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We eventually arrive at our proof of Assertion 5.1 for D = Db(X), where X is of
domestic or tubular type.

Proof of Theorem 5.2 We show the sufficiency. Assume that the Serre functor S is right t-
exact. We have shown in Lemma 5.13 that if {i | vectX[i] ∩ B �= 0} ⊂ {j, j + 1} then
Assertion 5.1 holds. If X is of domestic or tubular type and B does not satisfy the condition
even up to the action of AutDb(X) then B is of finite length by Proposition 4.13. The
remaining argument goes as in [44, §4]. By Theorem 2.22, (D≤0,D≥0) corresponds to a
silting object T in Db(X). In particular, we have an equivalence F : B ∼→ modEnd(T ). If
S is right t-exact then T is a tilting object by Lemma 2.24, whose endomorphism algebra
has finite global dimension by Proposition 4.17. The composition

Db(B)
Db(F )−→ Db(End(T ))

−⊗LT−→ Db(X)

is an exact equivalence which maps B into B. Thus the inclusion B ↪→ Db(X) extends to
an exact equivalence Db(B) � Db(X).

Remark 5.14 We make a final remark on a potential approach to Conjecture 5.3, based on
the validity of the following

Conjecture 5.15 Let X be a weighted projective line of arbitrary type. For any bounded t-
structure (D≤0,D≥0) on Db(X), D≤0 contains no nonzero Ext-projective iff it is a shift of
the HRS-tilt with respect to some torsion pair (T ,F) in cohX such that there is no nonzero
sheaf E ∈ T with τE ∈ F .

The sufficiency obviously holds. The necessity holds in the domestic and tubular case by
our description of bounded t-structures.

The aforementioned potential approach is as follows. Let (D≤0,D≥0) be a bounded t-
structure on Db(X) with heart B. We can first try to show that Assertion 5.1 holds when
D≤0 contains no nonzero Ext-projective. For example, if Conjecture 5.15 holds, then Asser-
tion 5.1 holds by Lemma 3.31 and Proposition 5.7. Then we consider the case when D≤0
contains a nonzero Ext-projective. Suppose all indecomposable Ext-projectives are torsion
sheaves and suppose Conjecture 5.15 is true. Then the heart B satisfies {i | vectX[i] ∩ B �=
0} ⊂ {j, j + 1} for some j ∈ Z and Assertion 5.1 holds by Lemma 5.13. It remains to
consider the case when some indecomposable bundle E is D≤0-projective (up to a shift of
B). On one hand, it’s possible that our previous approach still works, i.e., we can still apply
Proposition 5.9 in some way. On the other hand, since E is exceptional, by Proposition 3.17,
E ⊥cohX � modH for some hereditary algebra H . Stanley and van Roosmalen’s result [44]
may apply here.
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