Algebras and Representation Theory (2020) 23:2167-2235
https://doi.org/10.1007/510468-019-09929-w

®

Bounded t-Structures on the Bounded Derived Check for
Category of Coherent Sheaves over a Weighted updates
Projective Line

Chao Sun'’

Received: 12 March 2019 / Accepted: 9 October 2019 / Published online: 9 December 2019
© Springer Nature B.V. 2019

Abstract

We use recollement and HRS-tilt to describe bounded t-structures on the bounded derived
category D?(X) of coherent sheaves over a weighted projective line X of domestic or tubu-
lar type. We will see from our description that the combinatorics in the classification of
bounded t-structures on D?(X) can be reduced to that in the classification of bounded
t-structures on the bounded derived categories of finite dimensional right modules over
representation-finite finite dimensional hereditary algebras.
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1 Introduction
1.1 Background and Aim

In an attempt to give a geometric treatment of Ringel’s canonical algebras [43], Geigle and
Lenzing introduced in [17] a class of noncommutative curves, called weighted projective
lines, and each canonical algebra is realized as the endomorphism algebra of a tilting bundle
in the category of coherent sheaves over some weighted projective line. A stacky point of
view to weighted projective lines is that for a weighted projective line X defined over a field
k, there is a smooth algebraic k-stack X with the projective line over k as its coarse moduli
space such that cohX’ =~ cohX and QcohX’ =~ QcohX, where coh (resp. Qcoh) denotes
the category of coherent (resp. quasi-coherent) sheaves. As an indication of the importance
of the notion of weighted projective lines, a famous theorem of Happel [20] states that if
A is a connected hereditary category linear over an algebraically closed field k with finite
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dimensional morphism and extension spaces such that its bounded derived category Db (A)
admits a tilting object then D”(A) is triangle equivalent to the bounded derived category
of finite dimensional modules over a finite dimensional hereditary algebra over k or to the
bounded derived category of coherent sheaves on a weighted projective line defined over k.

The notion of t-structures is introduced by Beilinson, Bernstein and Deligne in [7] to
serve as a categorical framework for defining perverse sheaves in the derived category of
constructible sheaves over a stratified space. Recently, there has been a growing interest in
t-structures ever since Bridgeland [12] introduced the notion of stability conditions. To give
a stability condition on a triangulated category requires specifying a bounded t-structure.
On the other hand, there are many works on bounded t-structures on the bounded derived
category D? (A) of finite dimensional modules over a finite dimensional algebra A in recent
years. Remarkably, Konig and Yang proved the existence of bijective correspondences,
which we call Konig-Yang correspondences, between several concepts among which are
bounded t-structures with length heart on DP(A), equivalence classes of simple-minded
collections in D?(A), equivalence classes of silting objects in X (projA), and bounded co-
t-structures on K?(projA), where K?(projA) denotes the bounded homotopy category of
finite dimensional projective modules over A.

This article is devoted to describing bounded t-structures on the bounded derived cate-
gory of coherent sheaves over a weighted projective line. We mainly combine two classical
tools to describe t-structures: recollement and HRS-tilt. Recollement is introduced at the
same time with t-structures in [7]. A recollement stratifies a triangulated category into
smaller ones and allows us to glue t-structures. HRS-tilt, introduced by Happel, Reiten and
Smalg in [22], constructs a new t-structure from an old one via a torsion pair in the heart
of the old t-structure. We will see that a large class of t-structures are glued from recolle-
ments. Given a t-structure, to build a recollement from which the t-structure can be glued,
we rely on Ext-projectives. This concept was introduced by Auslander and Smalg to inves-
tigate almost split sequences in subcategories [5]. Assem, Salario and Trepode introduced a
triangulated version in [2] to study t-structures. Our small observation is that an exceptional
Ext-projective object helps us to build a desired recollement under some condition (see
Lemma 2.15). Almost all recollements in this article are built in this way (plus induction).
There do exist bounded t-structures without any available Ext-projective. Fortunately, in our
situation, these are up to shift HRS-tilts with respect to some torsion pair in the standard
heart and they can be described explicitly.

1.2 Main Results

Let X be a weighted projective line defined over an algebraically closed field k, and O its
structure sheaf (see Section 3.1). Depending on its weight function w : P! — Z-, where
P! is (the set of closed points of) the projective line over k and Z= is the set of positive
integers, X is of domestic type, of tubular type, or of wild type. Denote by vectX resp. cohgX
the category of vector bundles resp. torsion sheaves over X, by A = cohX the category
of coherent sheaves and by D = DP(X) the bounded derived category of cohX. cohpX
consists exactly of finite length objects in cohX and cohgX decomposes as a coproduct
cohpX = ]_[)\E]pl coh; X, where coh; X consists of those coherent sheaves supported at A.
For P C P!, denote by (Tp, Fp) the torsion pair in cohX

(add{coh, X | A € P}, add{vectX, coh, X | A € IP’I\P}).

The number of isoclasses of simple sheaves in coh; X is w(A). A (possibly empty) collection
S of simple sheaves over X is called proper if for each 2 € P!, S does not contain a complete
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set of simple sheaves in coh, X and if simple sheaves in S are pairwise non-isomorphic.
Two such collections are equivalent if they yield the same isoclasses of simple sheaves. A
t-structure on D’ (X) is said to be compatible with a given a recollement if it is glued from
the recollement (see Section 2.4). See Section 1.4 for the notation (—)p, (=) +4, (=) 1D
and D?(—).

We are ready to state our theorem for a weighted projective line of domestic type.

Theorem 1.1 (Theorem 4.18) Suppose X is of domestic type and let (D=0, DZ0) pe a
bounded t-structure on DP(X) with heart B. Then exactly one of the following holds:

(1) up to the action of the Picard group PicX of X, (D=0, DZ%) is compatible with the

recollement
T T k/"""’j! """ —
Olp is—>D = D"(X) (O)p,
— R D S e

where iy, jy are the inclusion functors, in which case B is of finite length;
(2) for a unique (up to equivalence) proper collection S of simple sheaves and a unique
P c P!, (D=0, D29y 5 compatible with the recollement

— i —
DS LAy =Sip i D = DP(X) (S)p,
~— A

where iy, ji are the inclusion functors, such that the corresponding t-structure on
DY (S LAY is a shift of the HRS-tilt with respect to the torsion pair (SANTp, S+AN
Fp) in STA, in which case B is not of finite length and B is noetherian resp. artinian
iff P =@ resp. P =P

To state our theorem for a weighted projective line of tubular type, we need to introduce
more notation (see Section 3.3). Let R (resp. Q) be the set of real (resp. rational) numbers
and let R = R U {oo}, Q = QU {oo}. Let X be of tubular type. Denote by coh”X the
category of semistable coherent sheaves over X with slope 1« € Q (we deem torsion sheaves
to be semistable and thus coh®X = cohoX). D?(X) admits an exact autoequivalence @/ ,
for each ¢’, g € Q U {00}, which is called a telescopic functor, such that by 4(coh?X) =
coh?'X. For n € Q, denote cohﬁ X = &, (cohy X). The category coh”X decomposes as
coh”*X = [, ;p1 coh}X. For . € R, coh™*X (resp. coh<*X) denotes the subcategory of
cohX consisting of those sheaves whose semistable factors have slope > p (resp. < w).

Theorem 1.2 (Theorem 4.20) Suppose X is of tubular type and let (D=, DZ°) be a
bounded t-structure on DP (X) with heart B. Then exactly one of the following holds:

(1) for a unique p € R\Q, (D=°, D=9) is a shift of the HRS-tilt with respect to the torsion
pair (con”™*X, coh=*X) in cohX, in which case B is neither noetherian nor artinian;

(2) for a unique n € Q and a uniqgue P C P!, (D=0, D= is a shift of the HRS-tilt with
respect to the torsion pair

(add{coh™"X, coh{X | . € P}, add{coh)X, coh<'X | € P'\ P})

in cohX, in which case B is not of finite length and B is noetherian resp. artinian iff
P ={resp. P =P;
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(3) for a unique q € Q a unique (up to equivalence) nonempty proper collection S of
simple sheaves and a unique P C P!, dDOO,q(('DSO, DY) is compatible with the

recollement
e A,/'*""‘j!""‘”\
DHSta) =§tp —ii——= D =D'X) ——— (S)p.
<~ S "

where iy, ji are the inclusion functors, such that the cor};spénding t-structure on
D> (S +A) is a shift of the HRS-tilt with respect to the torsion pair (S*ANTp, S+AN
Fp)in STA, in which case B is not of finite length and B is noetherian resp. artinian
iff P =@ resp. P=P';
4) for some q € Q and some exceptional simple sheaf S, CDOO,q((DSO, D2%) s
compatible with the recollement
- s —

Db(SJ_A):SJ_D i*HD:Db(X —><S>D
e,

)

~—
where iy, ji are the inclusion functors, such that the corresponding t-structure on
DP(S+A) has a length heart, in which case B is of finite length.

We obtain from the two theorems above certain bijective correspondence for those
bounded t-structures whose heart is not of finite length. Note that any group G of
exact autoequivalences of DP(X) acts on the set of bounded t-structures on D?(X) by
& (D0, DY) .= (®(D=9), d(DZ%)) for ® € G and a bounded t-structure (D=0, D=0)
on D?(X). In the following corollary, we deem Z as the group of exact autoequivalences
generated by the translation functor of D?(X), which acts freely on the set of bounded
t-structures on D’ (X).

Corollary 1.3 (Corollary 4.21) (1) If X is of domestic type then there is a bijection
{bounded t-structures on Db (X) whose heart is not of finite length} /7, <—

|_| ({P | P C ]P’l} X {bounded t-structures on (S)D}> , (1.2.1)
S

where S runs through all equivalence classes of proper collections of simple sheaves.
(2) IfXis of tubular type then there is a bijection

{bounded t-structures on Db (X) whose heart is not of finite length} /7, <—
R\Q I_l (Q X I_l ({P | P C Pl} X {bounded t-structures on (S)D}>> , (1.2.2)
S

where S runs through all equivalence classes of proper collections of simple sheaves.

Recall that an equioriented A;-quiver refers to the quiver

1 2 s—1 s
(Since only such an orientation is involved in this article, &S will always denote an equior-
iented As-quiver.) For convenience, we also define Ag to be the empty quiver and define
mod kA to be the zero category. Given a nonempty proper collection S of simple sheaves
on X, there are positive integers m, ky, ..., ky, such that (S) 4 =~ ]_[:.":1 modkAy,, where
modk&l is the category of finite dimensional right modules over the path algebra of the
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equioriented A;-quiver, and we have an exact equivalence (S)p >~ [ [I*, Db (modk&k,. ). By
Corollary 1.3, if X is a weighted projective line of domestic or tubular type then to classify
bounded t-structures on D?(X) whose heart is not of finite length, it sufficies to classify
bounded t-structures on each D? (modkAy,;). Since bounded t-structures on DP (modkA;)
have length hearts, one can achieve this by calculating silting objects or simple-minded col-
lections in D” (modk&ki) by virtue of Kénig-Yang correspondences. We know that D? (X)
is triangle equivalent to the bounded derived category of finite dimensional right modules
over a canonical algebra whose global dimension is at most 2. So to obtain a bijective
correspondence for bounded t-structures on D?(X) with length heart, we can again utilize
Ko6nig-Yang correspondences and try to compute collections of simple objects in the heart
(using Proposition 2.11) or silting objects in D (X) (using [36, Corollary 3.4]) from the
recollements in Theorem 1.1(1) and Theorem 1.2(4). As illustrated after Corollary 4.21 in
Section 4.4, the two theorems reduce the combinatorics in the classification of bounded t-
structures on D?(X) to the combinatorics in the classification of bounded t-structures on
bounded derived categories of finite dimensional modules over representation-finite finite
dimensional hereditary algebras.

To give an application of our description of bounded t-structures, we prove in Section 5 a
characterization of when the heart of a bounded t-structure on D? (X) is derived equivalent to
the standard heart cohX,, which is inspired by the work [44] of Stanley and van Roosmalen.

Theorem 1.4 (Theorem 5.2) Let X be a weighted projective line of domestic or tubular
type and (D=0, DZ%) a bounded t-structure on DP(X) with heart B. Then the inclusion
B — D’(X) extends to a derived equivalence D?(B) S DY(X) iff the Serre functor of
Db (X) is right t-exact with respect to (D=0, DZ0),

Here we say that the inclusion B — D”(X) extends to a derived equivalence D’ (13) =
DP(X) if some realization functor D?(B) — D?(X) is an equivalence (see Section 5). As a
corollary (see Corollary 5.4), a similar assertion holds for the bounded derived category of
finite dimensional right modules over a tubular algebra in the sense of Ringel [43].

1.3 Sketch of this Article

This article is organized as follows.

In Section 2, we collect preliminaries on t-structures and some facts on hereditary
categories. In Section 2.1-2.2, we recall basic definitions and properties of t-structures
and introduce width-bounded t-structures and HRS-tilt. In Section 2.3-2.5, we recall
recollements of triangulated categories, admissible subcategories, gluing t-structures and
properties of glued t-structures. In Section 2.6 we recall Ext-projective objects, and use an
exceptional Ext-projective object to establish a recollement with which the given t-structure
is compatible. In Section 2.7, we recall some facts on hereditary categories, including
Happel-Ringel Lemma. In Section 2.8, we recall and prove some facts on t-structures on
the bounded derived category of finitely generated modules over a finite dimensional alge-
bra, including a part of Konig-Yang correspondences. In Section 2.9, we describe bounded
t-structures on the bounded derived category of finite dimensional nilpotent representations
of a cyclic quiver.

In Section 3, we collect preparatory materials and results on weighted projective lines. In
Section 3.1, we recall basic definitions and facts on weighted projective lines. In Section 3.2,
we recap Auslander-Reiten theory. In Section 3.3, we recall the classification and impor-
tant properties of vector bundles over a weighted projective line of domestic or tubular
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type. In Section 3.4, we recall descriptions of perpendicular categories of some exceptional
sequences. In Section 3.5, we recall and prove the non-vanishing of some morphism spaces
in the category cohX of coherent sheaves over a weighted projective line X. In Section 3.6,
we investigate full exceptional sequences in cohX, and prove the existence of certain nice
terms in some cases. In Section 3.7, we give some preliminary descriptions of some torsion
pairs in coh X, and establish bijections between isoclasses of basic tilting sheaves, certain
torsion pairs in cohX and certain bounded t-structures on the bounded derived category
DP(X) of cohX, and finally we investigate the noetherianness and the artinianness of tilted
hearts given by certain torsion pairs in cohX.

In Section 4, we describe bounded t-structures on the bounded derived category D”(X)
of coherent sheaves over a weighted projective line X of domestic or tubular type. In
Section 4.1, we investigate and describe bounded t-structures that restrict to bounded t-
structures on the bounded derived category Db (cohpX) of the category cohpX of torsion
sheaves. In Section 4.2, we investigate those bounded t-structures on DP(X) that cannot
restrict to t-structures on D? (cohgX) even up to the action of the group of exact autoequiv-
alences of D?(X). In particular, we prove that the heart of such a bounded t-structure is
necessarily of finite length and possesses only finitely many indecomposable objects, all of
which are exceptional. In Section 4.3, we prove some properties possessed by silting objects
in D?(X). This is mainly acquired via properties of full exceptional sequences obtained
earlier and will yield information on bounded t-structures by virtue of Konig-Yang corre-
spondences. In Section 4.4, we complete our description of bounded t-structures on D? (X),
in which we mainly use HRS-tilt and recollement. In Section 4.5, we use our description of
bounded t-structures to give a description of torsion pairs in coh X.

In Section 5, we prove a characterization of when the heart of a bounded t-structure
(D=9, D=9 on D?(X) is derived equivalent to coh X for a domestic or tubular X, which
is pertinent to the right t-exactness of the Serre functor of D?(X) and gives an application
of our main result (i.e, description of bounded t-structures). We conjecture that this result
holds for arbitrary weighted projective line and propose a potential approach at the end of
Section 5.

1.4 Notation and Conventions

We denote by R (resp. Q, Z, Zx1) the set of real numbers (resp. rational numbers, integers,
positive integers). Pose R=RU{oco}and Q = QU {oo}.

For a finite dimensional algebra A over a field k, modA denotes the category of finite
dimensional right modules over A and D”(A) the bounded derived category of modA.

A subcategory of a category is tacitly a full subcategory. If B is a subcategory of a
category A (typically abelian or triangulated in our setup), denote

BLoA ={X € A | Hom4(B, X) = 0},

which we will simply write as 30 if there is no confusion. Dually we have 0.4 3 or 103.

For an abelian category A, its bounded derived category is denoted by D?(A). Let B
be an additive subcategory of A. Following [18], we call B an exact subcategory' of A if
B is an abelian category and the inclusion functor ¢ : 5 — A is exact. 3 is called a thick
subcategory of A if B is closed under kernels, cokernels and extensions. A thick subcategory
of A is an exact subcategory of 4. Given a collection C of objects in .4, we denote by (C) 4

Note the difference with a subcategory that is an exact category.
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the smallest thick subcategory of A containing C. The right perpendicular category C +A
and the left perpendicular category +AC of C in the sense of [18] are

C*+A ={X € A|Hom4(C, X) = 0 = ExtY (C, X) forall C € C},
1AC = (X € A| Hom(X, C) = 0 = Exty (X, C) forall C € C}.

It’s shown in [18, Proposition 1.1] that if objects in C have projective dimension at most 1,
that is, Exti‘(X ,—) =O0forall X € C, then CLA and LAC are exact subcategories of A
closed under extensions.

Let D be a triangulated category. We denote by AutD the group of exact autoequiva-
lences of D. A triangle in D refers always to a distinguished triangle. For two subcategories
D1, D, of D, define a subcategory D; x D, of D by

D1 Dy ={X €D |JatriangleY - X - Z ~,Y € Dy, Z € D,}.

By the octahedral axiom, * is associative. Given a triangulated category D and a collection
C of objects in D, we denote by (C)p the thick closure of C in D, that is, the smallest
triangulated subcategory of D containing C and closed under direct summands. We say that
C classically generates D if (C)p coincides with D. Moreover, we denote

Ct=C*'P .= {X € D| Homlh(C, X) =0, Vn € Z} = (C)7".

Dually one defines *C = +PC. C1P and 1PC are thick subcategories of D. If D is a
triangulated category linear over a field k, we denote

Hom*(X, Y) = @pezHom" (X, Y)[—n],

where the latter is deemed as a complex of k-spaces with zero differential. D is said to be
of finite type if ®,czHom™ (X, Y) is a finite dimensional k-space for each X, Y in D.

If A is a hereditary abelian category and B is an exact subcategory of A closed under
extensions then B is a hereditary abelian category and the inclusion functor ¢ : B — A
induces a fully faithful exact functor D?(1) : D?(B) — DP(A) whose essential image
consists of those objects in D”(A) with cohomologies in .2 Denote D = DP(A). If C is
a collection of objects in A then B := (C) 4 (resp. B := C1A, resp. B := 1A(C) is an
exact subcategory of A closed under extensions and the functor D? (1) : D?(B) — DP(A)
identifies canonically

DP((C) ) resp. DP(C+A) resp. DP(LAC)
with the subcategory
(C)p resp. CLP resp. +7C

of D. We will often make this identification in this article.

20ne can argue as follows for this simple fact. By [8, Lemma 3.2.3], we have an injection EX[ZB(X, Y) —
Extf4 (X,Y) for X,Y € B. Since A is hereditary, ExtzB(X ,Y) = 0. So B is hereditary. Since the exact
subcategory B is closed under extensions, the inclusion ¢ : B — A induces an isomorphism ExtlB(X, Y)=
Extl‘\ (X,Y) forany X, Y € B. Since B classically generates DP(B), the derived functor D’ (1) : D (B) —
DP(A) is fully faithful. The essential image of D (1) is clear.
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2 Preliminaries
2.1 Basics on t-Structures

We recall basic definitions concerning t-structures in this subsection. The standard reference
is [7].

Let D be a triangulated category. A t-structure on D is a pair (D=0, DZ0) of strictly
(=closed under isomorphisms) full subcategories (D=" := D=0[—n], DZ" := DZ0[—n])

. Hom(D=0, pzl) = 0;

. D=l cp=0 pzl c D0,

. D =D0%«D=! ie., for any object X in D, there exists a triangle A — X — B ~~
with A € D=0 and B € D=!.

For example, there is a standard t-structure (D?(A)=0, D (A)Z0) on the bounded derived
category D”(A) of an abelian category A defined by

DP(A)=" = (K € D’(A) | H(K) =0, Vi > n},

DP(A)Z" = (K € D*(A) | H(K) =0, Vi < n}.

Given a t-structure (D=, D=0) on D, the inclusion of D=" (resp. D=") into D admits
a right (resp. left) adjoint 7<, (resp. t>,), which are called truncation functors. Moreover,
D=t = Lo(pzntly D= = (D="—1)Lo D= is actually characterized by the property
that it is a subcategory closed under suspensions and extensions for which the inclusion
functor admits a right adjoint. A subcategory of D with such a property is called an aisle
[27]. A dual property characterizes D=" and a subcategory of D with the dual property
is called a co-aisle. There are bijections between t-structures, aisles and co-aisles, whence
these notions are often used interchangeably.

The heart A of (D=0, DZ%) is defined as the subcategory A := D=0 N DY Ais an
abelian subcategory of D and we have a system { H'} of cohomological functors defined by

H' = to01<0(—[i]) : D — A.

. . . f
D=9 D=0 and A are closed under extensions and direct summands. Given a sequence A —

B Cof morphisms in 4,0 — A —f> B % C — 0is a short exact sequence in A iff

A —f> B ¢ LY A[1] is a triangle in D for some morphism & : C — A[1]in D.

Denote D"l = Dzm 0 D=1 A t-structure (D=0, DZ%) on D is called bounded if
D = U,y pinz D™ ™. If t-structure str is bounded then an object XinD lies in D™ iff
H'(X) = 0forl < mand! > n. A bounded t-structure (D=°, D=0} is determined by its
heart A. In fact,

D=0 = U0 Aln] s Aln — 1] % --- % A,
DZOZUnEOA**A[n—{—I]*A[n]

We will also denote by (Dio, Dio) the bounded t-structure with heart A.

Any group of exact autoequivalences of D acts on the set of t-structures. Given a t-
structure (D=0, DZ%) on D and an exact autoequivalence ® of D,

@ (D=, DY) := (®(D=’), &(D>"))
is a t-structure on D. (DY, D=%) is bounded iff so is (D=0, D=9).
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Suppose F : D; — D, is an exact functor between two triangulated categories D; (i =
1, 2) equipped with t-structures (Dfo, D?O). We say that F is right t-exact if F (Dlﬁo) -
D50, left t-exact it F(D7%) € D5°, and r-exact if it is both right and left t-exact.

If C is a triangulated subcategory of D and (D=0, DZ9) is a t-structure on D, the pair

c=°,¢z% .= cnD= cnD2Y

gives a t-structure on C iff C is stable under some (equivalently, any) t<, i.e., t<;C C C.
Such a t-structure on C is called an induced t-structure by restriction.

2.2 Width-Bounded t-Structures, HRS-Tilt

Let (D'=0, D=0, (D=0, D=%) be two t-structures on a triangulated category D. We say
that (D'=0, D'Z9) is width bounded?® with respect to (D=0, DZ0) if D= ¢ D'=0 ¢ p=»
for some m, n. Define a relation ~ on the set of t-structures: (D'<0, D'z0) ~ (D=0 Dz0)
if (D'=Y, D'Z0) is width bounded with respect to (D=0, D=0

Lemma 2.1 ~ is an equivalence relation.

Proof Reflexivity of ~ is clear. One sees the symmetry of ~ by noting that D="" ¢ D'=0 ¢
D=" iff D'="" < D=0 ¢ D'="" and sees the transitivity of ~ by noting that D=" C
D'=0 ¢ D="iff D= C D'<% and D'=° > D", O

Obviously, if (D'=0, D'Z%) is width bounded with respect to (D=0, DZ0) then
(D'=9, D'29) is a bounded t-structure iff (D=0, D=0) is. Hence ~ restricts to an equivalence
relation on the set of bounded t-structures.

Observe that if A and B are the respective hearts of two bounded t-structures on D,
the t-structure (DEO, D%O) is width bounded with respect to the t-structure (Dio, Dio) iff

B cC DB‘"‘"] for some m < n. Indeed, if ’Dim C 'Dgo C Di” then B C 'Dgo C Di", BcC
’D%o C ’Di’" andso B C ’D[Af"‘”]; conversely, if B C DB‘"’"] then Dgo C Di", D%O C Dim
since Dgo (resp. Dgo) is the smallest subcategory of D containing B and closed under
extensions and suspensions (resp. desuspensions).

Example 2.2 (1) If D admits a bounded t-structure with length heart containing finitely
many (isoclasses of) simple objects, for example, D = D”(A) for a finite dimensional
algebra A over a field k, then bounded t-structures on D are width bounded with
respect to each other. By Lemma 2.1, it suffices to show that a bounded t-structure
with length heart C containing finitely many simple objects is width-bounded with
respect to any given bounded t-structure (D'=0, D'Z%) on D. Let {S; | 1 <i <t} be a
complete set of simple objects in C. Then S; € D'%i-lil for each i and some &;, [; € Z.
Take k = min{k;, l; | 1 <i < t},] = max{k;,; | 1 <i < t}.C c D! shows our
assertion.

(2) Let X be a smooth projective variety over a field k and Db (X) the bounded derived
category of coherent sheaves over X. Then bounded t-structures on D’(X) are
width bounded with respect to each other. It sufficies to show that the standard t-

structure (thg, Dsztg) is width bounded with respect to any given bounded t-structure

31 learnt this notion from Zeng-Qiang Lin’s lectures on the paper [26] of Keller. Moreover, Example 2.2(1)
strengthens slightly an example presented by him.
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(D=0, D=%) on D’(X). Lett : X — P} be a closed immersion, where P} is the
n-dimensional projective space over k, and let Ox (i) = (*O(i). It follows from Beilin-
son’s theorem (see e.g. [39, Theorem 3.1.4]) that for each j < —n, we have an exact
sequence
0= Ox(j)) >V, @ Ox(—n) »> ... > Vo Ox — 0,
where V; = H"(P?, pr,,, i+ Jj) (Q]’f,n is the i-th wedge product of the cotangent
k k

bundle Qpr). Since ®"_,Ox(—i) lies in some D=, Ox(j) lies in D" for any
j < 0. Now that Dflg is the smallest aisle containing {Ox(j) | j < 0}, we have
Dsflg  D=*"_ On the other hand, applying the duality functor D = RHom(—, Oy),
we obtain a bounded t-structure (D(DZ0°P), D(D=0°PY) on D’ (X). By the discussion
above, D(DEOOP) C Dszt('in for some m. Since Oy admits a finite injective resolution
of quasi-coherent sheaves, we have (]D)DSZHT)OP - thg for some r. So D=0 thg.
D=""C thg c D= shows our assertion.

Given a bounded t-structure (D=, D=%) on D with heart A, [22] gives a useful and
important construction of a class of width-bounded t-structures with respect to (D=0, DZ0)
from torsion pairs in A, which is called HRS-tilt. Now it is well-known (see e.g. [40, §1.1])
that

Proposition 2.3 Torsion pairs in the heart of a t-structure (D=0, DZ%) are in bijective
correspondence with t-structures D= D= onD satisfying D=~! ¢ D'<0 ¢ DO,

Let us explain the correspondence. Assume that (D'=9, D'Z9) is a ¢-structure with heart
B such that D=~! ¢ D’'=0 ¢ D=0 Then (AN B, AN B[—1]) and (A[1]1N B, AN B) are
torsion pairs in A and 13, respectively. Conversely, let (7, F) be a torsion pair in the abelian
category A. Denote

D=0 =D="1xT, D=0=F[1]%D.

Then (D'<0, D'2%) is a t-structure on D with D="! ¢ D'<0 < D=0 and (F[1],T) is a
torsion pair in its heart 3. In particular, B = F[1] % 7. The t-structure (D=~ % T, F[1] %
D=9 is so-called HRS-tilt with respect to the torsion pair (7, F) in Aand B = F[1]* T
is called the tilted heart.

As noted before, such a t-structure (D'=2, D’'Z%) is bounded iff (D=0, D=0) is. More-
over, if (D=2, D=9 is bounded then D="! ¢ D'=" ¢ D=V iff B c A[1] * A.

2.3 Recollement, Admissible Subcategory, Exceptional Sequence

A recollement of triangulated categories [7, §1.4] is a diagram
¥ /l:*—\ . //j;\
1 J
\i!_’/ \j*//
of three triangulated categories D, X', ) and six exact functors i*, iy, i Y Jis J¥, j« between
them such that

Y 2.3.1)

N (A R i, (jr, J*, j«) are adjoint triples;
« Iy, J1, jx are fully faithful;
. kerj* =imi,.
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Given such a recollement, there are two functorial triangles in D:
Gt = id = i e, it id > ) e, (2.3.2)

where the natural transformations between these functors are given by the respective unit or
counit of the relevant adjoint pair.

A well-known equivalent notion is so-called admissible subcategories, due to [9]. Let us
recall some classical results from [9]. For a triangulated category D, a strictly full triangu-
lated subcategory C is called right (resp. left) admissible if the inclusion functor C < D
admits a right (resp. left) adjoint; C is called admissible if it is both left and right admissible.
If C is right admissible then +(C1) = C and the inclusion functor Ct < D admits a left
adjoint. In particular, C is closed under direct summands and thus is a thick subcategory of
D. Moreover, the projection C+ — D/C is an exact equivalence. One has dual results for
left admissible subcategories. Hence if C is admissible then we have

e = pie—ct

and we can form (equivalent) recollements

/‘ \D/ I L
\ / \ - ’
e
e Sp D/C, (2.33)
\ _/ \\__..
/ N T
D oL,

\_/\_/

where i, ji, ]* are the inclusion functors and j * is the Verdier quotient functor.
We will need the following well-known fact. Recall that a Serre functor of a triangulated
category is always exact ([ 10, Proposition 3.3]; see also [41, Proposition 1.1.8]).

Proposition 2.4 Let D be a Hom-finite k-linear triangulated category with a Serre functor
S, where k is a field, and C an admissible subcategory of D. Denote by iy : C — D the
inclusion functor and by i* : D — C (resp. i* : D — C) the right (resp. left) adjoint of i.
Then

(1) i'Siy is a Serre functor of C with a quasi-inverse i*S™i,;
2) L+C and Ct admit Serre functors;
(3) C*t and*C are admissible subcategories of D.

Proof (1) One easily sees that i'Si, (resp. i*S™1i,) is a right (resp. left) Serre functor of
C. Thus i'Siy is a Serre functor of C with a quasi-inverse i*S™!i

(2) Thisis [10, Proposition 3.7].

(3) Recall the well-known fact that if Dy, D, are two Hom-finite k-linear triangulated
categories with Serre functors S;, S, respectively and F : D; — D is an exact
functor with a left (resp. right) adjoint G then F admits a right (resp. left) adjoint
S10GoS;! (resp. S;' 0 G 0S)). Thus (3) follows from (2). O
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Important examples of admissible subcategories are those generated by an exceptional
sequence [9]. Recall that a sequence (Ej, ..., E,) of objects in a k-linear triangulated
category D of finite type, where k is a field, is called an exceptional sequence if

. each E; is an exceptional object, i.e., Hom7%(E;, E;) = 0 and End(E;) = k;
. Hom®(E;, E;) =0if j > i.
An exceptional sequence (E1, ..., E,) is said to be full if Eq, ..., E, classically generate
D.

Let C = (Eq,..., E;)p be the thick closure of {E; | 1 <i <n}andiy, : C — D
be the inclusion functor. The left and right adjoint functors of i, exist, which we denote by

i*, i' respectively. Let us recall from [9] how i* maps an object. Suppose X € D. Denote
Xo = X.If X; is defined for 0 < i < n, let

Xi+1 = co-cone(X; —> DHom®(X;, Ei11) ® Eis1).

Then Xi+1 € “{E1, ..., Ei11}. Define i*X = X,. We have i*X € +C and i*X fits into a
triangle i*X — X — Y ~» where Y € C. This choice of i* on objects actually defines a
unique functor up to a unique isomorphism, which is left adjoint to i,. Dually one defines i*.

2.4 Gluing t-Structures

Now fix a recollement of triangulated categories of the form (2.3.1). As the following theo-
rem shows, one can obtain a t-structure on D from t-structures on X and )/, which is called
a glued t-structure. Such a glued t-structure on D from the recollement is also said to be
compatible with the recollement.

Theorem 2.5 [7, Théoréme 1.4.10] Given t-structures (X<, XZ%) and (=0, Y= on X
and Y respectively, denote

DO = (X eD|i*X € X0, j*X € Y=0},

D20 = (X eD|i'X € X20, j*X € Y=0). 2.4.1)

Then (D=°, D=%) is g t-structure on D.

With the given t-structures on X, ) and the glued t-structure on D, i*, j, becomes right
t-exact, iy, j* t-exact and it Js left t-exact.

The following proposition answers the natural question when a t-structure on D is
compatible with a given recollement.

Proposition 2.6 [7, Proposition 1.4.12] Given a t-structure (D=0, DZ%) on D, the following
conditions are equivalent:

(1) jij* is right t-exact;
(2)  Jjuj* is left t-exact;
(3) the t-structure is compatible with the recollement (2.3.1).

Moreover, we have
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Lemma 2.7 [35, Corollary 3.4, Lemma 3.5] There is a bijection

{t-structures on X'} x {t-structures on Y} <—

{t-structures on D compatible with the recollement (2.3.1)}, (2.4.2)

which restricts to a bijection between bounded t-structures.

Indeed, once the equivalent conditions in Proposition 2.6 are satisfied, to obtain
(D=°, D=9 using formula (2.4.1), the unique choice of the t-structure on X’ resp. ) is

(i*D=°,i'DZ%) resp. (j*D=0, j*D=7). (2.4.3)

This t-structure on X resp. ) will be called the corresponding t-structure on X resp. ) to
the t-structure (D=9, D=9 on D. Moreover we have

(ixi*D=0, i,i'D=") = (imi, N D=, imi, N D=7). (2.4.4)
Since we can identify X with im i, via i,, we know that the t-structure on &’ is essentially
induced by restriction.
Suppose C is an admissible subcategory of D and (D=°, D=9 is a t-structure on D. Let
/ \ D el J; T
J
be a recollement, where i, is the 1nclu51on functor. Since jij*X = co-cone(X — i i*X)

for each X € D by Eq.2.3.2, jij* is right t-exact iff co-cone(X — i,i*X) lies in D=C for
each X € D=Y. So given another recollement

-k~ \
C TS D il c (2.4.6)

\ _ \k* ’

(D=9, D% is compatible with the recollement (2.4.5) iff it is compatible with the (equiv-
alent) recollement (2.4.6). Thus it makes sense to say that (D=0, D=9 is compatible with
C if (D=0, D=9 is compatible with any recollement of the form Eq. 2.4.5, for example,
any one of the recollements (2.3.3). This is convenient for use. If (D=%, DZ%) is compatible
with the admissible subcategory C then (D=NC, D=°N() is a t-structure on C. In general,
consider a finite admissible filtration [10, Definition 4.1]

DnCDn—IC"'CDO=D

of a triangulated category D. That is, each D; (1 < i < n) is an admissible subcategory

of D;_1, equivalently, each D; is an admissible subcategory of D. We say the t-structure

(D=0, D=9 is compatible with the admissible filtration if it is compatible with each D;.
Clearly we have the following two facts.

c (2.4.5)

se

Lemma 2.8 (D=0, DZ%) is compatible with the admissible filtration
D,Cc---CDiCcDy=D
of D iff the t-structure (DN D;, D= N D;) on D; is compatible with Dj 41 for each

l1<i<n-1

Here by the statement that the t-structure (D=°ND;, D=°ND;) on D; is compatible with
Diqq foreach 1 <i < n — 1, we actually mean that: (DSO, DzO) is compatible with D;
(hence (D=0ND;, DZ0ND)) is a t-structure on Dy); (D=0NDy, DZ°ND)) is compatible
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with Dy (hence (D=0 N Dy, D0 N D») is a t-structure on D5); and so on. This situation
arises naturally from reduction/induction argument.

Lemma 2.9 Suppose that the t-structure (D=0, D=%) is compatible with the admissible
filtration

D,cDy_1cCc---CcDy=D
and let ® be an exact autoequivalence of D. Then the t-structure (P (D=9, &(D29)) is
compatible with the admissible filtration

®(D,) c®D,_1)) C---C P(Dy) =D.
2.5 On the Hearts of the t-Structures in a Recollement Context

Fix a recollement of the form (2.3.1). Each t-structure (X'=%, XZ%) on X" induces (up to
shift) two t-structures on D in the following fashion. For each p € Z, since the inclusion
i+ X=P < D admits a right adjoint is7<pi', i, X'=P is an aisle in D and

(i X=P, (i, X=P) L0 [1])
is a t-structure on D. Denote by 7> 541 the left adjoint of the inclusion (i X'=F) 0D s P,
Then we have a functorial triangle

ixT<pi' = id = Topig ~

for each p € Z. Dually, the inclusion i, X=? <> D admits a left adjoint I4T>pl * and we
have a t-structure

(0P XZP)[—1], i X=P)
and a functorial triangle

T<pi = 1d = iy Tspi™ ~
for each p € Z, where <,_ is the right adjoint of the inclusion (1027, X=P) < D. A
similar argument shows that a t-structure on ) also induces two t-structures on D.

Remark 2.10 In [7, §1.4.13], these induced t-structures are described via gluing.

Suppose (X=0, x=0) (Y= =0y are t-structures on X, respectively and let
(D=0, D=0) be the glued t-structure. Denote the respective heart by B;, B and B. Let € be
the inclusion functor from By, By resp. Bto X, Y resp. D. For T € {i*, s, i', ji, j*, je},
denote PT = HY o T o €. Then (Pi*, Pi,, Pi') and P j1,Pj*, Pj,) are adjoint triples, the
compositions ? j* o Piy, Pi* o P j, ril o P j, vanish, and Pi,, ? ji, P j, are fully faithful.
imPi, = ker”j* is a Serre subcategory of B3, the functor 7i, identifies 3} with im?i,
and the functor ? j* identifies the quotient category B/im ?i, with B;. The composition
PP j* — id — P j,P j* provides a unique morphism of functors ? j; — ? j,. Define

Ju =im (P ji(=) = P ju(=) : By — B. (2.5.1)

The following proposition describes simple objects in B.

Proposition 2.11 [7, Proposition 1.4.23, 1.4.26]

(1) For X € By, we have
JuX = =1 i X = T<—1 ) X.
(2) Simple objects in B are those Pi,S, for S simple in 31, and those .S, for S simple in
Bs.
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For more details, see [7, §1.4], from which the above are taken.

Recall that an abelian category A is said to be noetherian (resp. artinian) if for any object
A in A, any infinite ascending (resp. descending) chain of subobjects of A stabilizes; A is
said to be of finite length or simply length if it is both noetherian and artinian. The following
lemma strengthens [35, Proposition 3.9].

Lemma 2.12 B is noetherian (or artinian, or of finite length) iff so are By, B;.

Proof [14, Lemma 1.3.3] states that if A; is a Serre subcategory of an abelian category .4
then A is noetherian iff 4, and .A/.A| are noetherian and if each object in A has a largest
subobject that belongs to A;. We claim that in our setting, each B € B admits a largest
subobject Pi . Pi'Bin Pi, B. By [7, Lemme 1.4.19], we have an exact sequence

0— ?i,’i'BL B—"?jPj*B— Pi,H'i'B—0.
Suppose u : Pi,Z — B is a monomorphism in 3, where Z € Bj. Note that
Hom(?i,Z,? j,” j*B) = Hom(Z, Pi'? j,? j*B) = 0.

So there exists v : Pi,Z — Pi,Pi'B such that = nv. Since w is a monomorphism, v is a
monomorphism. So ?i, Z is a subobject of Pi Pi'B. This shows our claim that i, ”i'B is the
largest subobject of B in 7i,3|. Hence the assertion on noetherianness follows. By duality,
we conclude the assertion on artinianness. Combining these two assertions, we know that 5
is of finite length iff By, 3, are of finite length. O

An easy induction argument yields

Corollary 2.13 Suppose a t-structure (D=0, DZ%) on D is compatible with the admissible
filtration

Then (D=°, DZ%) has a noetherian resp. artinian resp. length heart iff the corresponding

1p, . .
t-structure on each Di+l’ (or 1p; Dit1, or D;/Diy1) (0 < i < n) has a noetherian resp.
artinian resp. length heart.

2.6 Recollement and Ext-Projectives

Let D be a k-linear triangulated category of finite type, where  is a field, and (D=0, D=0) a
t-structure on D. Recall from [2, §1] that X € D is Ext-projective in D=, or D=! -projective
for short, if X € D=! and Hom' (X, D=!) = 0; dually, X € D is Ext-injective in D!, or
DZ!injective, if X € DZ! and Hom!(DZ, X) = 0.

We use the following criterion to identify Ext-projectives (and Ext-injectives) when D
admits a Serre functor.

Lemma 2.14 [2, Lemma 1.5] Suppose D admits a Serre functor S and X is an object in D.
Then X is D=O-projective iff X € D=0 with SX € D=0 iff SX is D= -injective.

The following easy observation is essential for us.
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Lemma 2.15 Suppose E € D is an exceptional object. If E is Ext-projective in some D=
and ELD is right admissible then (D=0, D=9 is compatible with the recollement

i
i D j*
<~ \j____x/

where iy, jy are the inclusion functors.

(E)p,

Proof Since E is an exceptional object, (E)p is admissible and thus E 1D is left admissible
with P (E1D) = (E)p. If E 17 is right admissible then E 1P is admissible and the given
diagram is indeed a diagram of recollement. To show that the t-structure is compatible, it
suffices to show that jy j* is right t-exact, i.e., for each X € D=0, jij*(X) € D=°. Note that
for m > —I, Hom(E, D=[m]) = 0 since E is D=/-projective. Therefore

Jij¥(X) =Hom®*(E, X)® E
= @Hom(E, X[m]) @ E[—m]
= ®pn<—Hom(E, X[m]) ® E[—m]

e DY

Remark 2.16 (1) There is a dual version for Ext-injectives.
(2) In our application, D has a Serre functor and thus E-L?P and *PE are indeed
admissible by Proposition 2.4.

Assume that D has a Serre functor and (E,, ..., E|) is an exceptional sequence such that

each E; is D=0-projective. Let Dy = D; for 1 <i < n,letD; = {E;, Ei_1, ..., E;}1D.
1p.

Note that D; = E, Pi-1 for 1 < i < n. We already know that (E;, E;_1,..., E1)p is

admissible in D and thus D; is admissible in D by Proposition 2.4. The following fact is
immediate from Lemma 2.15 and Lemma 2.8. (We also have a similar result when each E;
is D% injective.)

Corollary 2.17 With the above hypotheses and notation, (D=9, D=%) is compatible with
the admissible filtration

1 D
D,cC---CDi(=({Ei ..., E1}"P =E, yc---cDycD.

Now let us be given a recollement of the form (2.3.1). Suppose that X" resp. ) is
equipped with a t-structure (X'=0, X=0) resp. (¥=0, =0, and D with the glued t-structure
(D=9, D=9 One easily verifies the following fact.

Lemma 2.18 (1) If X is D=-projective which does not lie in keri* = im ji then i*X is
nonzero X fo—pmjective.

(2) If Y is nonzero Y=-projective then jiY is nonzero D=-projective. Moreover, j
induces a bijection between isoclasses of indecomposable Ext-projectives in Y=° and
isoclasses of indecomposable Ext-projectives in D=0 which lie in keri* = im ji.
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2.7 Some Facts on Hereditary Categories

Let A be a hereditary category linear over an algebraically closed field k with finite-
dimensional morphism and extension spaces. It’s well-known that each object X € Db (A)
decomposes as X = @; H HX)[=i]. In particular, each indecomposable object in Db (A) is
a shift of an indecomposable object in A.

The following Happel-Ringel Lemma (see e.g. [31, Proposition 5.1]) is fundamental for
hereditary categories.

Proposition 2.19 (Happel-Ringel Lemma) Let E and F be indecomposable objects of A
such that Ext'(F, E) = 0. Then each nonzero morphism f : E — F is a monomorphism
or an epimorphism. In particular, each indecomposable object in A without self-extension
is exceptional.

Recall that an object 7 in a triangulated category is a partial silting object if
Hom>%(T, T) = 0 and T is basic if its indecomposable direct summands are pairwise
non-isomorphic. The following fact shows that a basic partial silting object in D’(A) can
yield an exceptional sequence. Note that D?(A) is a Krull-Schmidt category since A is
Hom-finite.

Proposition 2.20 [1, Proposition 3.11] Let X be a basic partial silting object in D?(A).
Then pairwise non-isomorphic indecomposable direct summands of X can be ordered to
form an exceptional sequence.

Although it is stated for specific hereditary categories in [1, Proposition 3.11], the above
fact follows from Happel-Ringel Lemma.
We will need to relate Ext-projectives to an exceptional sequence.

Proposition 2.21 [2, Theorem (A)] Let (D=0, DZ%) be a t-structure in D? (A). Then finitely
many pairwise non-isomorphic indecomposable D=-projectives can be ordered to form an
exceptional sequence in D?(A).

Proposition 2.21 follows from Proposition 2.20 since the direct sum of finitely many
pairwise non-isomorphic indecomposable D=0-projectives is a basic partial silting object.

2.8 Bounded t-Structures on D (A) for a Finite Dimensional Algebra A

Recall from [1, 27, 46] that an object X in a triangulated category D is called silting if
it is partial silting, i.e., H0m>0(X, X) = 0, and if (X)p = D. It is tilting if additionally
Hom<%(X, X) = 0. Two silting objects X and Y are said to be equivalent if add X = add Y.

Let A be a finite dimensional algebra over a field k. Denote by K’ (projA) the bounded
homotopy category of finite dimensional projective right modules over A. The following
part of Konig-Yang correspondences will be used repeatedly in the sequel. See [28] for
bijective correspondences between more concepts.

Theorem 2.22 [28, Theorem 6.1] Equivalence classes of silting objects in K? (projA) are
in bijective correspondence with bounded t-structures on DP(A) with length heart.
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Let us recall this correspondence from [28]. For a silting object M in KC?(projA), the
associated t-structure on D?(A) is given by the pair

=0 — (N € D’(A) | Hom” (M, N) = 0},

D=0 = (N € D’(A) | Hom=°(M, N) = 0}.

Moreover, the heart of (D=0, DZ9) s equivalent to mod End(M) [28, Lemma 5.3]. We
refer the reader to [28, §5.6] for the general construction (essentially due to Rickard [42])
of a silting object associated to a given bounded t-structure (D=0, DZ%) on D?(A) with
length heart. When A has finite global dimension, in which case the natural inclu-
sion K’ (projA) — DP(A) is an exact equivalence, the associated basic silting object
in KP(projA) = DP(A) is just the direct sum of a complete set of indecomposable
Ext-projectives in the aisle D=0

Lemma 2.23 [35, Lemma 6.7] If A is a representation-finite hereditary algebra then each
bounded t-structure on D (A) has a length heart.

Hence by Theorem 2.22, to classify bounded t-structures on Do (A), where A is a
representation-finite hereditary algebra, it sufficies, say, to classify silting objects in D?(A),
which is indeed computable.

The following fact characterizes when a silting object is a tilting object in the presence
of a Serre functor.

Lemma 2.24 [36, Lemma 4.6] Assume that A has finite global dimension and S is a Serre
functor of DP(A). Let T be a silting object in D?(A) and B the heart of the corresponding
t-structure (D=0, DZ0). Then T is tilting iff'S is right t-exact with respect to (D=0, DZ9) jff
ST liesin B.

We will also need the next two facts.

Lemma 2.25 Let kA be the path algebra of the equioriented As-quiver. Suppose
(D=9, D% s a bounded t-structure on Db(kA ). Then some simple kA -module is
Ext-projective in some D=!.

Proof Denote A = modk&s, D ="DP (k&;) for short. It is well-known that A is a unise-
rial hereditary abelian category, each indecomposable object in A is exceptional, and D has
a Serre functor (isomorphic to the Nakayama functor). We use induction on s to show our
assertion. If s = 1, we have modkAl = modk and the assertion obviously holds. Suppose
s > 1. By Lemma 2.23, the heart B of (D=0, DY) is of finite length. Take an indecom-
posable direct summand N[p] (N € A) of the corresponding silting object. Then N is
D=P_projective. If N is a simple module then N is the desired. Otherwise, let

Ai = (" (@op(N) | 1 <m <I(N)a, A= (t"(top(N)) | 0 <m < I(N))a

where t = DTr represents the Auslander-Reiten translation and /(N) is the length of
N. For a simple module S, denote by 1§ the unique indecomposable module with top
S and of length /. Since ®o<; <1(N)[I(N =il top(N) is a pl'O]eCthe generator for A, with
endomorphism algebra isomorphic to kAl( Ny, We have A~ modkAl( N)-
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We know that N 14 is an exact subcategory of A closed under extensions. Take
As = add{M € N *A | M is indecomposable and M ¢ A, }.

We claim N +4 = A; [ ] Ay, which implies that A; is an exact subcategory of A closed
under extensions. Since N -4 = add.A; U A, it sufficies to show that Hom(A,, Ay) =
0 = Hom(A;, A;). Note that

Ay = add{""t'top(N) | 1 <i <I(N),1 <1 <I(N)—i},
N+A ={M e N*A |Hom(N, M) =0 = Ext' (N, M)}
={M € N*+A | Hom(N, M) = 0 = Hom(M, TN)}.

Let M be an indecomposable k&s—module. Suppose Hom(!!Izitop(N), M) # 0 for some
1 <i <I(N),1 <1 < I(N)—i.Then forsome 1l < k < [, Flzitop(N) is a subob-
ject of M. If M ¢ A; then ¥+iltop(N) is a subobject of M. Meanwhile, *Tiltop(N) is a
quotient object of N and thus Hom(N, M) # 0. This shows that if Hom(~N, M) = O then
Hom(A;, M) = 0. Simlarly, if Hom(M, 1titop(N)) # 0 forsome 1 <i < [(N),1 <[ <
I(N) — i, then M has a nonzero quotient object which is moreover a subobject of T N; so
Hom(M, A;) = 0 if Hom(M, tN) = 0. It follows that Hom(A;, M) = 0 = Hom(M, A,)
for an indecomposable module M € Aj. This shows our claim.

By Proposition 2.4, N 1D is admissible in D. Since N is an exceptional Ext-projective
object in D=P, by Lemma 2.15, (D=°, D=9) is compatible with the admissible subcategory
NP and (D=0 N N L+P, DZ0 N N +P) is a bounded t-structure on N 1P . Obviously, this
t-structure is compatible with the admissible subcategory Db (A,) of N1D = DP(N LA4).
Hence by Lemma 2.8, (Dfo, DzO) is compatible with the recollement

i* i
Db (Ay) 5*\ D ca J*—= LoDl Ay),
S T
where iy, ji are the inclusion functors. Note that

TPDP (A = (N, 7" (top(N)) | L <m < I(N))p
= (t"(top(N)) | 0 <m < I(N))p
=D"(A)
~ Db (kAywy).-
Consider the bounded t-structure (j*D=9, j*D=0) on D’(A;) =~ Db(k&l(N)). By the
induction hypothesis, some 7" (top(N)) (0 < m < I(N)) is Ext-projective in some j *D=L,

Hence the simple module ™ (top(N)) = jit™ (top(N)) is p=! -projective by Lemma 2.18,
as desired. O

Corollary 2.26 Let k:&s be the path algebra of the equioriented Ag-quiver. Each silting
object in DP(kAy) contains a shift of some simple module as its direct summand. Each full
exceptional sequence in modkA; contains a simple module.

Proof The first assertion follows from Lemma 2.25. For a full exceptional sequence

(Ey, ..., Ey)in modk&s, it is observed in [1, Proposition 3.5] that we can takeﬁsuitable l;
(1 =i < n),sayl; =i here, such that ®"_, E;[/;] is a silting object in Db (kA,). So the
second assertion follows. O
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2.9 Bounded t-Structures on DP (nilpkA¢_q)

Let k be a field. Denote by A, the quiver which is an oriented cycle with ¢ vertices and by
A; = nilpkA,_; the category of finite dimensional nilpotent k-representations of A,_;. Let
us recall some standard facts on A;. A, is a connected hereditary uniserial length abelian
category and admits an autoequivalence 7 of period ¢ such that T(—)[1] is the Serre func-
tor of D?(A,). Moreover, A, has almost split sequences with Auslander-Reiten translation
given by [M] --» [t M], and its Auslander-Reiten quiver is a tube of rank ¢ (see Section 3.2
if one is unfamiliar with Auslander-Reiten theory). If S is a simple object in .4, then each
simple object is of the form 7! S for some i € Z/t7Z. Denote by S"! (resp. "1§) the unique
(up to isomorphism) indecomposable object in A, of length n and with socle (resp. top)
S. For an indecomposable object X in A, its length is denoted by /(X), and its simple
socle resp. top by soc(X) resp. top(X). Then X = (soc(X NI = ”(X)](top(X)). X is
exceptional iff [(X) < .

Recall from [22] that for a torsion pair (7, F) in an abelian category A, 7 is called a tilt-
ing torsion class if T is a cogenerator for A, i.e, for each A € A, there is a monomorphism
A < T with T € T; dually, F is called a cotilting torsion-free class if F is a generator for

A.

Lemma 2.27 For a torsion pair (T, F) in A;, exactly one of the following holds

(1) T is a tilting torsion class, equivalently, T contains a non-exceptional indecompos-
able object;

(2) F is a cotilting torsion-free class, equivalently, F contains a non-exceptional inde-
composable object.

Proof Since there exists a nonzero morphsim between two non-exceptional indecompos-
able objects in A;, 7 and F cannot contain non-exceptional indecomposable objects
in the meantime. If 7 is a tilting torsion class then it’s easy to see that 7 contains a
non-exceptional indecomposable object. Conversely, if 7 contains a non-exceptional inde-
composable object T then Ultop(T') € T for all [ € Zx since T is closed under quotients
and extensions. Since any indecomposable object in .4, is an subobject of 1top(T") for some
I, T is a tilting torsion class. Dual argument applies to conclude the asserted equivalence
for F. O

We will need the following criterion to make sure that certain subcategory of D?(A,)
contains a non-exceptional indecomposable object.

Lemma 2.28 Let C be a subcategory of A; closed under extensions and direct summands.
If each simple object in A; occurs as a composition factor of some indecomposable object
in C, equivalently, there is a sequence

(Xo0, X1, ..., Xu—1, Xn = Xo)
of indecomposable objects in A; with Ext! (Xi, Xi—1) #0 (1 < i < n), then C contains a

non-exceptional indecomposable object.

Proof We claim that if Y, Z are two exceptional objects in A, with Ext! (Z,Y) # 0, then
C contains an indecomposable object C such that Y is a subobject of C in A, and Z a
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quotient object of C in A,. Indeed, if Extl(Z ,Y) # O then there are two objects A, B
in A; such that B is indecomposable, A is a quotient object of ¥ and A, B fit into the
exact sequence 0 - A — Z — B — 0. Let C be the unique (up to isomorphism)
indecomposable object which fits into the exact sequence 0 - ¥ — C — B — 0. Then
Y (resp. Z) is a subobject (resp. quotient object) of C. Since Y is an exceptional object in
A;, soc(zrC) = soc(rY) is not a composition factor of ¥; on the other hand, if A # 0
then A is exceptional and each composition factor of A is a composition factor of Y. Thus
Ext!(C, A) = DHom(A, tC) = 0, where D = Homy(—, k). Then we have a pullback
diagram

0 0
A A
0 Y Ao C z 0
0 Y C B 0
0 0

Hence C € C. This shows our claim.

Now suppose that C contains a sequence (Xo, X1, ..., X,—1, X, = Xo) with the given
property. Assume for a contradiction that C contains no non-exceptional indecomposable
object. In particular, each X; is exceptional. Applying our claim to ¥ = X, Z = X;, we
obtain an indecomposable object C; € C such that X (resp. X») is a subobject (resp. quo-
tient object) of Cy. Then Ext! (X1, X¢) # 0 implies Ext!(Cy, X¢) # 0; Ext!(X3, X2) # 0
implies Ext!(X3, C)) # 0. Hence we have a sequence (Xg, C1, X3, ..., X;) of length
(n — 1) in C which also satisfies the given property. By assumption, C; is exceptional.
Then repeating the above argument for n times will eventually give us a sequence (C)
of length 1 with C indecomposable and Ext!(C, C) # 0, whence C is a non-exceptional
indecomposable object in C, a contradiction. Hence C must contain a non-exceptional
object. O

We show an analogue of Lemma 2.25 to perform induction.

Lemma 2.29 For a bounded t-structure (D=0, DZ%) on DP(A,), which is not a shift of the
standard t-structure, there is some simple object in A, that is Ext-projective in some D='.

Proof Let B be the heart of (D=, DZ0). Each bounded t-structure on D’(A;) is
width-bounded with respect to the standard t-structure (see Example 2.2). Hence, B C
D%’"] for some m,n. We take m to be maximal and » minimal. Since there exists a
nonzero morphism between two non-exceptional indecomposable objects in A, and since
Hom(B[—m], B[—n]) = 0, either i) B[-m] N A, or ii) B[-n] N A; contains no non-
exceptional indecomposable object. Suppose case 1) occurs. Then B[—m]N.A; contains only
finitely many indecomposables. Moreover, Lemma 2.28 implies that there is some indecom-
posable object X such that Ext! (X, Y) = 0 for indecomposable object Y € B[—m] N A,
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non-isomorphic to X. Then we have Hom>%(X[m], B) = 0, whence X is D="_projective.
If case ii) happens then similarly we find an indecomposable object Y € .A; which is D="-
injective. This gives us a D="-projective 7~ Y[—1]. Anyway we have an exceptional object
B € A, that is Ext-projective in some D=/
Similarly as in the proof of Lemma 2.25, one can show that B -4/ decomposes as
BLAa =B LI B2, where

By = (t"(top(B)) | | =<m <1(B))a4,
and B3; is an exact subcategory of 4, closed under extensions, that
By = (t"(top(B)) | 0 < m < I(B)) 4, ~ modkA;(p),

and that (D=0, D=9) is compatible with the recollement

\ /Wﬂm
D (By) ix = \ s (BI)D =D’ (By),
[ Y

i e

where iy, ji are inclusion functors. qMoreover, we have a bounded t-structure
(*D=0, j*D=% on D*(By) =~ DP(kAsp)). We know from Lemma 2.25 that some
" (top(B)) is Ext-projective in some j*D=', which gives us the desired Ext-projective
object " (top(B)) in D=/ by Lemma 2.18. O

Let S be a (possibly empty) proper collection of simple objects in A;, where properness
means that S does not contain a complete set of simple objects in .4, and simple objects in
S are pairwise non-isomorphic. Two such collections are said to be equivalent if they yield
the same isoclasses of simple objects. If S is nonempty then there exist uniquely determined
{S1,..., Sy} C S and positive integers /1, . . ., I, such that

n
$=L|{eri [0<j <) (2.9.1)
i=1
Since D1<i<n Bo<;j<; Ui=jlgi§; is a prOJectlve generator for (S) 4, whose endomorphism
algebra is isomorphic to kAll X oo X kAl,, we have an equivalence
n
(S)a, = | [ modkA,. (2.9.2)
i=1
where k&l is the path algebra of the equioriented A;-quiver. In the sequel, we will also write
in the form (2.9.2) when S is empty by defining the right hand side of Eq. 2.9.2 to be the
zero category. Since S LA is a uniserial length abelian k-category whose Ext-quiver is an
oriented cycle with ¢+ — S vertices and trivial valuation and since each simple object in
S 41 has endomorphism algebra k, we have an equivalence

Sta~ A s, (2.9.3)

Bounded t-structures on D (A;) can be described as follows.

Proposition 2.30 Given a bounded t-structure (D=0, DZ%) on DP(A,), there is a unique
(up to equivalence) proper collection S of simple objects in A, such that
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. (D30, D% is compatible with the recollement

U i —
Db(SJ-A,) =Sip i D =DA) (S)p,
~— S e

where iy, j) are the inclusion functors;
. the corresponding t-structure on S P has heart S At [m] for some m.

In particular, each bounded t-structure on D?(A,) has a length heart.

Proof Since each bounded t-structure on (S)p = DP((S) 4,) =~ DP(] ['_, modkA,,) has a

length heart (by Lemma 2.23) and S +4: [m] is of finite length, by Lemma 2.12, the second
assertion follows from the first. We use induction on ¢ to prove the first assertion.

Suppose ¢ = 1. We have a unique (up to isomorphism) simple object S in A;. So the
asserted S is the empty set. We need show that any bounded t-structure on D?(A;), whose
heart is denoted by B, is a shift of the standard one. Note that each indecomposable object
in D’ (A, ) is of the form SU1[1] for some r € Z=1, 1 € Z. Since Hom(SU1[1], SU1[1']) # 0
for [ <1, we have B C A;[l] for some [. Then B = A;[[], as desired.

Now consider ¢ > 1. If B is a shift of A, just take S = @. Suppose that B is not a
shift of A;. By Lemma 2.29 and Lemma 2.15, for some simple S in A;, (D=0, D=9) is
compatible with the admissible subcategory D := S1P = DP(S+A). A = St js
equivalent to .4;_1, and simple objects in .4 are 7 S[?! and those ', which are simple in A,
and non-isomorphic to 7§ and S. By the induction hypothesis, for a proper collection S; of
simple objects in §+A:, the corresponding t-structure on Dy = D’ (S +4:) is compatible

1

. . . iD . LDI
with the admissible subcategory S, and the corresponding t-structure on S, has heart

SIJ‘A[m] for some m. If S € S|, take S = {rS, S} U (S1\r S if 8P ¢ Sy, take

S = S; U {S}. Then SILD' = S1p and SIJ‘A = S1A . By Lemma 2.8, (D=0, D=0)
is compatible with the admissible subcategory S P and the corresponding t-structure on
S-1D has heart S A [m].

Let (leo, DISO) and (Dfo, DZEO) be the corresponding t-structures on S P and (S)p,
respectively. Note that DISO contains no nonzero Ext-projective object. Let T be the direct
sum of a complete set of indecomposable D=0-projectives. Then by Lemma 2.18, T € (S)p
and T is the direct sum of a complete set of indecomposable szo—projectives. Thus T is
a silting object in (S)p = D((S).4,). In particular, (T)p = Db((S)AI). As a complete
set of simple objects in (S) 4,, the collection S is uniquely determined. This finishes the
proof. O

3 Weighted Projective Lines
For self-containedness, we review the basic theory of weighted projective lines in details
in Sections 3.1-3.4. The materials in Section 3.1 are taken from the original article [17],

which introduced the notion of weighted projective lines. For a recent survey of the theory,
see [30]. We fix an algebraically closed field k in this section.

@ Springer



2190 C.Sun

3.1 Basic Definitions and Properties

Given a sequence p = (p1,..., pr)(t > 2) of positive integers, define an abelian group
L(p) of rank one by

L(p)=(X1,....%,C| p1X] =+ = piX; =C).
Denote & = (t —2)¢ — Y i_ X;, which is called the dualizing element. Each ¥ € L(p) can
be written uniquely in the form
t
X = Zlifi +1¢, 0<I <pililel.
L(p) is an ordered group if we define ¥ > 0iff ¥ € Y Zsoxi. Let p = lem(py, . .., py).
We have a group homomorphism, called a degree map,

5:L(p) > Z, i L.

pi
Let P! = Pl(k) be (the set of closed points of) the projective line over k. Given a
sequence p = (pi, ..., py) of positive integers and a sequence A = (A1, ..., A;) of distinct

points in P! (normalized such that A; = 0o, A, = 0, A3 = 1), we define an algebra
S=58(p. V) =k[X1,....X; /(X[ = X* + L X{' 3 <i <)

Write x; = X; € S. S becomes L(p)-graded with the assignment deg(x;) = x; and thus
S = @xrer(p) Sz, Where S consists of those homogeneous elements of degree x. Using §
as the homogeneous coordinate algebra, [17] introduced a weighted projective line X =
X(p, L). X is defined to be the L(p)-graded projective spectrum of S, which is the set

ProjL(E)S := {L(p)-graded prime ideal p of S | p D Sy = ®z-05:)

equipped with the Zariski topology and a L(p)-graded structure sheaf O = Ox. There is a
bijection n

Xtk)y — P!, [x1,....x] [xf', x22] 3.1.1)
between the set of closed points of X and P!. By virtue of this bijection, the weighted pro-
jective line X is understood to be the usual projective line P!, where weights py, ..., p;
are attached respectively to the 7 points Aj, ..., A;. We can define L(p)-graded Ox-
modules and coherent L(p)-graded Ox- modules The category cohX of L(p)-graded
coherent Ox-modules over X = X(p, 1) is a noetherian hereditary abelian category with
finite dimensional morphism and extension spaces. In particular, cohX is a Krull-Schmidt
category. We have an analogue of Serre’s theorem, that is, we have an equivalence

cohX ~~ M,

L
mod, ?'s

where mod-?)§ is the abelian category of L(p)-graded finite generated modules over §

and modé @ S is the Serre subcategory of mod-®'§ consisting of modules of finite length.
One may as well take the latter quotient category as the definition of cohX.

For X € L( P), we have a natural k-linear autoequivalence of mod-®§ given by degree
shifting by X € L(p) on L(p)-graded S-modules M: M(x)} = M5 5. And this induces a k-
linear autoequlvalence —(X) of cohX: F — F(X), F € cohX. We denote by t the k-linear
autoequivalence — () of cohX, where @ is the dualizing element.
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Theorem 3.1 (Serre duality) For X,Y € cohX, we have an isomorphism
DExt' (X, Y) = Hom(Y, tX)

functorial in X, Y, where D = Homy (—, k).

Consequently, the bounded derived category D?(X) = D?(cohX) of cohX has a Serre
functor t(—)[1].

There is a linear form rk : Ko(X) — Z on the Grothendieck group Ko(X) of cohX,
called rank, which is preserved under the action of L(p). As usual, we have the notion of a
locally free sheaf, or a vector bundle. A line bundle is a vector bundle of rank 1. A coherent
sheaf F' over X is called forsion if it is of finite length in cohX, equivalently, if rk(F) = 0.
Each coherent sheaf over X decomposes as the direct sum of a torsion sheaf and a vector
bundle. The subcategory of vector bundles resp. torsion sheaves over X is denoted by vectX
resp. cohpX. We have Hom(cohoX, vectX) = 0.

1 if X # A, Vi
Di if A = )‘i

of X. A weight function of X obviously shares the same data as that given by the pair
(p. M. (p1. ..., ps) is called the weight sequence of X. For » € P!, by virtue of the
bijection (3.1.1), we denote by coh; X the category of those torsion sheaves supported at A.

The function w : P! — Zs1, A — is called the weight function

Proposition 3.2 The category cohgX of torsion sheaves decomposes into a coproduct
[1,cpt cohy X of uniserial categories. The number of simple objects in coh) X is w(}).

A:’s are called exceptional points and the remaining points of P! ordinary points. For an
ordinary point A, the unique simple sheaf S supported at A fits into the exact sequence

szka‘lal

0—0 °"—"' 0@ — S —0.

For an exceptional point A;, the exact sequences

0 — O(iF) =5 O + DF) —> Sij — 0. j € Z/piZ

characterize the p; pairwise non-isomorphic simple sheaves S;, ; supported at A;. The simple
sheaf S supported at an ordinary point satisfies S(X) = S for any X € L( p); the simple

sheaves S; ; supported at A; satisfies S; j(X) = S; jy;, if ¥ = Y7, L;x;. In particular,
©S8;,; = Si,j—1. Si,j is an exceptional object iff p; > 1.

Remark 3.3 As a uniserial length abelian k-category whose Ext-quiver is an oriented cycle
with w(A) verticies and trivial valuation, coh, X is equivalent to the category nilpkAyw)—1
of nilpotent finite dimensional k-representations of the cyclic quiver AW(A)_1 with w(A)
vertices. So the algebra kA,_| provides a local study of a weighted projective line. This
accounts for the presence of Section 2.9.

Denote by PicX the Picard group of X, i.e., the group of isoclasses of line bundles under
tensor product.

Proposition 3.4 (1) The mapping

L(p) — PicX, X~ O®)
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is a group isomorphism. In particular, each line bundle over X is isomorphic to O(X)
for some X € L(p).

(2) Each nonzero bundle over X admits a line bundle filtration. That is, for a nonzero
bundle E, there is a filtration

O0=EyCEC---CE,=F
with line bundle factors L; = E; JE;_1 (0 <i < n).

The Grothendieck group K¢(X) of cohX (and thus the Grothendieck group Ky (Db X))
of D?(X)) is a finitely generated free abelian group of rank Zle (pi — 1) + 2 with a basis
{[IOX)] ] 0 < X < ¢}. We have a linear form deg : Ko(X) — Z, called degree, such that
degO(X) = §(X) for X € L(p). The Euler form on K¢(X) is given by

x(E, F) = dimgHom(E, F) — dimyExt'(E, F)
and the averaged Euler form is defined by ¥ (E, F) = Zﬁ:& x(t/E, F).
Theorem 3.5 (Riemann-Roch Theorem) For E, F € D?(X), we have
X(E, F) = p(1 — gx) tk(E) tk(F) + deg(F)rk(E) — deg(E)rk(F).

Here gx = 1+ %8 (@) is the virtual genus of X. X is said to be of domestic (resp. tubular,
resp. wild) type if gx < 1 (resp. gx = 1, resp. gx > 1), equivalently, §(o) < O (resp.
8(w) = 0, resp. 8(w) > 0). X is of domestic type iff the weight sequence is (1, p1, p2),
2,2,n)(n > 2), (2,3,3), (2,3,4), (2,3,5), up to permutation; X is of tubular type iff
the weight sequence is (2, 2, 2, 2), (3, 3, 3), (2, 3, 6), (2, 4, 4), up to permutation; weighted
projective lines of wild type correspond to the remaining weight sequences.

A coherent sheaf T over X is called a filting sheaf if it is a tilting object as an object in
D (X). A tilting sheaf T yields a derived equivalence Db (X) ~ DP(EndT) and induces a
torsion pair (7, F) in cohX, where

T ={E € cohX | Extl(T, E)=0}, JF ={E € cohX|Hom(T, E) = 0}.

Theorem 3.6 There is a canonical tilting bundle T = @®o<z<zO(X) over X, whose endo-
morphism algebra is isomorphic to a canonical algebra A with the same parameter (p, 1)

in the sense of Ringel [43). In particular, we have a derived equivalence D?(A) ~ DP(X).

Recall from [43] that a canonical algebra A with parameter (p, A) is the path algebra of
the quiver

- X1 - X1
X1 X1 2x1
/‘2/’ - X2 - X2

0 X2 2X> R (P =Dy — s (g — Dy =2

X /
Xt Xt

% 2% (pr — 2% ——> (p; — DX,

X1 - X1 -
(p1 —2)x1 ——(p1 — Dx1 x

with relations x”" = xé’z — )Lixf" i=3,...,0.

i
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3.2 AGlimpse of Auslander-Reiten Theory

Auslander-Reiten (=AR) theory is introduced by Auslander and Reiten to study represen-
tations of artin algebras. The standard reference is [4] (see also [3]). The central concept
(i.e. an almost split sequence, or an Auslander-Reiten sequence) makes sense in any Krull-
Schmidt category with short exact sequences (in the sense of [43, §2.3]) but there is a
problem of existence. Later Happel introduced in [21] the notion of an Auslander-Reiten
triangle, a triangulated version of Auslander-Reiten sequence. Reiten and Van den Bergh
[41] investigated the close relationship between Serre duality (in the sense of [41]) and
Auslander-Reiten sequences (as well as Auslander-Reiten triangles).

Here we recall some basic definitions and we follow [43]. Let A be an essentially small
Hom-finite abelian k-category. If X and Y are indecomposable, rad(X, Y) denotes the k-
subspace of Hom(X, Y) consisting of non-invertible morphisms. If X = 69’;.121)( Y =
69;7: Yi, where X, Y;’s are indecomposable, then rad(X, Y) denotes the k;subspace of
Hom(X, Y) consisting of those f = (fi;) with f;; € rad(X;, Y;). radz(X, Y) denotes the
k-subspace of Hom(X, Y) consisting of morphisms of the form gf with f € rad(X, M),
g erad(M, Y) for some M. Let

Irr(X, Y) = rad(X, Y)/rad*(X, Y).

A morphism & : X — Y is called irreducible if h is neither a split monomorphism nor
a split epimorphism and if # = ts forsome s : X — Zand¢ : Z — Y, then s is
a split monomorphism or ¢ is a split epimorphism. 2 : X — Y is irreducible iff 4 €
rad(X, Y)\rad*(X, Y).

A morphism f : B — C in A is called a sink map (or a minimal right almost split
morphism) if

(1) fisrightalmost split, that is, f is not an split epimorphism and any morphism X — C
which is not a split epimorphism factors through f, and
(2) f isright minimal, that is, y € End(B) satisfying fy = f is an automorphism.

Dually, one defines a source map (or a minimal left almost split morphism). Sink (resp.
source) maps with a fixed target (resp. source), if they exist, are obviously unique up to
isomorphism. If f : B — C is a sink (resp. source) map then C (resp. B) is indecompos-

able. An exact sequence 0 — A £ B EA C — 0in A is called an AR sequence (or an
almost split sequence) if g is a source map, equivalently, if f is a sink map (see [43, §2.2,
Lemma 2] for the equivalence). If such an AR sequence exists, then each irreducible map
fi:A— Bjp(org: By — C)fits into an AR sequence

0 A Bgp @8 c o
We say that A has sink (resp. source) maps if for each indecomposable object A € A, there
exists a sink map B — A (resp. a source map A — C). We say that A has AR sequences
(or almost split sequences) if A has both sink and source maps.

If A has AR sequences then the AR quiver (T 4, o) of A, which turns out to be a trans-
lation quiver, is defined as follows. The vertex set of I" 4 is in bijection with a complete set
of representatives of isoclasses of indecomposable objects in .A. Denote the vertex corre-
sponding to an indecomposable object M by [M]. The number of arrows from a vertex [M]
to another vertex [N] is dimgIrr(M, N). By [43, §2.2, Lemma 3], if A — B is a source map
then there are d arrows from [A] to [ D] iff the multiplicity of D as a direct summand of B
is d. There is a dual fact for a sink map. Soif 0 - A — B — C — 0is an AR sequence
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then there are d arrows from [A] to [ D] iff there are d arrows from [D] to [C]. The transla-
tion o, called the AR translation of A, is such that 6[C] = [A]if0 > A —- B — C — 0
is an AR sequence.

The existence of AR sequences as well as the existence of AR triangles is closely related
to the existence of a Serre functor. We refer the reader to [41] and here we only record the
following fact (see [41, Theorem 1.3.3]): if A is a hereditary abelian k-category with finite
dimensional morphism and extension spaces, then the existence of a Serre functor of D?(A)
implies the existence of AR sequences in A. Consequently, if X is a weighted projective
line then cohX admits AR sequences.

Proposition 3.7 [17, Corollary 2.3] Let X be a weighted projective line. conX has AR
sequences with AR translation given by [M] --+ [T M].

AR sequences are obtained in the following way. For each indecomposable sheaf E over
X, we have a distinguished exact sequence ng : 0 - tE — F — E — 0 whose class
in Ext!(E, tE) corresponds to id; g under Serre duality DExt!(E, TE) = Hom(<E, TE).
The exact sequence ng is an AR sequence. Since T is an autoequivalence of cohX, 0 —
E — t7'F - t='E — 01is also an AR sequence.

An additive subcategory C of cohX closed under direct summands is said to be closed
under the formation of AR sequences if for any AR sequence 0 - tE — F — E — 0,
E € Cimplies F € C and t'E € C for all i € Z. In this case, we can talk about the AR
quiver of C and the AR quiver of C is a union of certain components of the AR quiver of
cohX. For each A € P!, coh, X is closed under the formation of AR sequences and the AR
quiver of cohy X is a tube of rank w(X), where w is the weight function of X, and thus the
AR quiver of cohpX is a family of tubes parametrized by P'. vectX is also closed under the
formation of AR sequences. We will see in the next subsection the shape of the AR quiver
of vectX for a domestic or tubular weighted projective line X. We mention that for a wild
weighted projective line X, each AR component of vectX has the shape ZA, [34].

We introduce more definitions for the sake of the next subsection. Let E be an indecom-
posable object in cohX lying in a component which is a tube of finite rank. The quasi-length
of E is the largest integer / such that there exists a sequence

E=A>A_1—>»...»A)>»A =A
of irreducible epimorphisms, equivalently, there exists a sequence
B:B]C—>Bzc—>...<—>Bl_1c—>BIZE

of irreducible monomorphisms. In this case, we say A (resp. B) is the quasi-top (resp. quasi-
socle) of E. E is called quasi-simple if E is of quasi-length one, i.e., E lies at the bottom of
the tube. Note that the quasi-length of an indecomposable finite length sheaf coincides with
its length and a quasi-simple torsion sheaf is just a simple sheaf. The t-period of E is the
minimal positive integer n such that t” E = E, which equals the rank of the tube.

3.3 Vector Bundles over a Domestic or Tubular Weighted Projective Line

We first recall the notion of stability of a vector bundle. For a nonzero bundle F over a
weighted projective line X, its slope @ (F) is defined as u(F) = deg(F)/rk(F).

Lemma 3.8 [30, Lemma 2.5] We have w(F (X)) = w(F) + 8(X). In particular, w(t F) =
w(F) + 8().
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F is called semistable (resp. stable) if W (E) < (resp. <) w(F) for any subbundle E of F
with rk(E) < rk(F). For u € Q, denote by coh”X the subcategory of cohX consisting of
semistable bundles of slope 1. coh*X is a length abelian category whose simple objects are
precisely stable bundles of slope 1. For a torsion sheaf 7', we define (7)) = oo and denote
coh®X = cohyX. We have Hom(coh*X, coh” X) = 0 for . > p'.

Recall that a subsheaf E of a nonzero bundle F on X is called a maximal destabilizing
subsheaf if for any subsheaf G of F, we have u(E) > w(G) and u(E) = n(G) implies
G is a subsheaf of E. As in the case of smooth projective curves, a maximal destabilizing
subsheaf exists in our case, and the existence is unique up to isomorphism. It follows that
each nonzero bundle admits a Harder-Narasimhan filtration, that is, a sequence

O=FCFkhcC---CF,=F
such that all the factors A; = F;/F;—1 (0 < i < m) are semistable bundles and
w(A) > p(A2) > - > u(Am).

Such a filtration is unique up to isomorphism. A; are called the semistable factors of F. We
will denote

pF(F) = (A1), = (F) = pu(Ap).
Letu € R=RU {oco}. Denote

cohZ*X = {E € cohX | u (E) > pn}, coh™*X = {E € cohX | uT(E) < u}.
Similarly one defines coh™*X, coh=*X. Then we have torsion pairs
(coh=#*X, coh*#X), (coh™*X, coh=tX)

for each i € R.
Suppose X is a weighted projective line of domestic type with weight sequence
(p1, P2, p3)- Then up to permutation,

(p1, p2, p3) = (1, p2, p3), (2,2, n)(n = 2),(2,3,3),(2,3,4),0r(2, 3,5).
Let A = A(p1, p2, p3) be the Dynkin diagram

(Lpy=1) —— (Lpy=2) o (1,2) —— (1,1

@.p3=1) —— @.p2=2) 22—

(3.p3=1) —— G.p3=2) (32 —— G,

Let A be the extended Dynkin diagram attached to A. We collect well-known and basic
properties of vector bundles over a domestic weighted projective line in the following
theorem.

Theorem 3.9 Let X be a weighted projective line of domestic type with weight sequence

(p1, P2, P3)-

(1) Each indecomposable bundle over X is stable and exceptional. The rank function
tk is bounded on indecomposable bundles over X. If some p; equals 1 then each

indecomposable bundle is a line bundle.
(2) The direct sum of a complete set of indecomposable bundles with slope in the interval

(8(), 0] is a tilting bundle and its endomorphism algebra is the path algebra kA of an
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extended Dynkin quiver A with underlying graph A.In particular, we have a derived
equivalence D?(X) ~ D?(kA). If each p; > 2, then A has a bipartite orientation.
(3)  The Auslander-Reiten quiver of vectX consists of a single component having the form
ZA.
Proof The first statement in (1) is [17, Proposition 5.5(i)]. The last statement in (1) is [30,
Corollary 3.8]. (2) and (3) are due to [23] (see also [30, Theorem 3.5], [29, Proposition

5.1]). It remains to show the second statement in (1). In fact, the underlying graph €2 of the
AR quiver of vectX is determined by the following observations:

(1) rk is an additive function on the full sub-graph € of 2 consisting of vertices
corresponding to indecomposable bundles with slope in (§ (o), 0];

(2) the number of vertices of g is equal to the rank Z?zl(p,- — 1) 4+ 2 of Ko(X) (since
the direct sum of pairwise non-isomorphic indecomposable bundles with slope in the
interval (§(®), 0] is a tilting bundle);

(3) the number of line bundles with slope in the interval (§(®), 0] is [L(p) : Zd] (by
Proposition 3.4(1)), which is equal to po+ p3 (4, 3, 2, 1, respectively) if (;1, D2, p3) =
(1, p2, p3) ((2,2,n) (n > 2), (2,3, 3), (2,3,4), (2, 3,5), respectively).

In particular, rank of indecomposable bundles are explicitly known and form a bounded set
since T preserves rank. O

Remark 3.10 (1) To show that the endomorphism algebra End(T') of the tilting bundle T
given in Theorem 3.9(2) is a hereditary algebra, instead of using the argument in [29],
we can also argue as follows. By Proposition 3.33, there are a bounded t-structure
with heart B C cohX[1] % cohX and an equivalence B >~ modEnd(T). Clearly
we have Hom%b ) (B, B) = 0. Since there is a monomorphism Ext%s(X YY) —
Homéh(x)(X, Y) for X,Y € B, we have Exté(B, B) = 0, that is, B is hereditary. So
End(T)is a hereéitary algebra.

(2) We remark why A has a bipartite partition if each p; > 2. This is obtained via a case-
by-case analysis using AR-sequences and starting from line bundles with slope in the
interval (§(@), 0]. For example, if (p1, p2, p3) = (2,3,4), then the full subquiver
of the AR quiver of vectX consisting of those indecomposable bundles with slope in
(8(w), 0] can be depicted as follows

[£2]

!

[O] <= [E1] = [F]=<—[G] — [F (5] — 2x3)] == [E1 (X1 — 2x43)] = [O(x] — 2x3)],

where E1, E;, F, G are determined by the following AR sequences

0—10—E —0O—70
0—>E1—>O@F—>I_IE1—>O
0O—1tF —E ®&dG—F —0
0—G— FOE®FF —2%3) — 16— 0.
It follows that A has a bipartite partition.

Now suppose X is of tubular type. We have an interesting and extremely useful class of
exact autoequivalences of Db(X), called telescopic functors. These functors are introduced

in [33] as equivalences between subcategories of cohX and extended in [38] as exact
autoequivalences of Db (X). Meltzer [37] is a good reference for these functors.
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Theorem 3.11 [37, Theorem 5.2.6] Let X be a weighted projective line of tubular type.
For each q,q" € Q, there is an exact autoequivalence 4 o of D (X), called a telescopic
functor, such that CDq,q/(cohq/X) = coh?X. Moreover, these functors satisfy the conditions
Dy g =Py g0 Dy 4 and Oy 4 = id.

Denote cohf\L X = @, o (coh; X). The next theorem summarizes well-known and basic
properties of vector bundles over a tubular weighted projective line.

Theorem 3.12 Let X be a weighted projective line of tubular type.

(1) We have coh‘f X ~ cohyX and coh*X decomposes as coh*X = [, pi cohf X In
particular, each coth as well as coh*X is a uniserial abelian category.

(2) Each indecomposable bundle over X is semistable. cohf X is closed under the for-
mation of Auslander-Reiten sequences and the Auslander-Reiten quiver of COhéf X
is a tube of rank w(L), where w is the weight function of X. In particular, the
Auslander-Reiten quiver of vectX is a family of tubes parametrized by Q x P

(3) An indecomposable bundle in cohﬁf X is exceptional iff its quasi-length is less than
w(A). An indecomposable bundle over X is stable iff it is quasi-simple. A stable bundle
in coth has t-period w(A).

Proof The assertion that each indecomposable bundle is semistable is [17, Proposition
5.5(i1)]. The remaining assertions follow from facts on cohpX by applying a suitable tele-
scopic functor. We remark that a telescopic functor commutes with 7 since any exact

autoequivalence commutes with a Serre functor. O
Here we make an observation needed in the following two lemmas. Let (py, ..., p;) be
the weight sequence of X. Recall that we denote by p = lem(py, ..., p;). Since X is of

tubular type, there is some p; equal to p. So there exists a simple sheaf S with t-period p.

For F € coh(X) and n € Z, we define the slope w(F[n]) of the object F[n] € D (X)
to be w(F[n]) = u(F). We will need to know the effect of the telescopic functor @, , on
slope and the essential image of coh X under ®o 4.

Lemma 3.13 (1) There is a fractional linear map

- - apw+b
‘R — R, , 33.1
®q g H= citd ( )
ab
where (c d) € SL(2,7Z), such that
W(Poo,q(E)) = ¢g(u(E))
Jfor an indecomposable sheaf E.
(2) Forp € Q, we have
@q (1) ;
usey _ | coh®X i < g,
D4 (coh”X) = { coh® WX1] if 1 = q. (3.3.2)

Proof Recall from [37, Chapter 5] that for a quasi-simple sheaf E over X with t-period
PE, the tubular mutation functor T« with respect to the t-orbit of E, which is an exact
autoequivalence of D” (X), fits into a triangle

&" "Hom* (E, =) ® T/ E — id — Trep .
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Define an action of SL(2, Z) on Q by

ab\ aqg+b

cd 4= cq + d’
By [37, Corollary 5.2.3], T+ (coh?X) is a shift of CohﬁX for each g € Q Let S be a
simple sheaf with t-period p. From the triangle

&7 Hom* (1S, —) @ 11§ — id — Tyeg ~~,
we see that Tyeg(coh?X) = coh't9X for g € Q. So Tres (T;.ng, T:+0, respectively) acts
11 1 -1 11 . L o
on slopes by (0 1) (<O 1 ), (0 1), respectively). By definition, @y o = P, is a

composition of a sequence of the functors T;eg, TT_.1 , Treo (see [37, Theorem 5.2.6]). So we

have a unique function ¢, : Q — Q such that ¢, (u) = if;’idb for some <Ccl Z) € SL(2,7Z)

and such that @, ,(coh”X) is a shift of coh® WX for each u € Q. We extend ¢, to be the

function
ar + b

cr+d’

By Riemann-Roch Theorem, we have Hom(coh”X, coh*'X) # 0 for u < u'. Now that
Do, (coh?X) = coh™X, (2) follows immediately. O

qquﬂ_%—)]f%, 7

It’s well-known that a stable bundle over an elliptic curve defined over an algebraically
closed field has coprime rank and degree. We have the following analogue* for a stable
bundle over a tubular weighted projective line, which is implicit in [33]. Actually, there is a
parallel proof for an elliptic curve.

Lemma 3.14 Let X be a weighted projective line of tubular type and E a stable vector
bundle over X with t-period pg. Then

gcd(tk(E), deg(E)) = £-.
PE

Proof Let S be a simple sheaf with t-period p. By Riemann-Roch Theorem, the linear
form deg : Ko(X) — Z coincides with x (O, —) and the linear form rk : Ko(X) — Z with
X (—, S). So we have
P PE—1 '
®ﬂD=X@JD=;EE:ﬂﬂOEL
i=0

pE—1
K(E) = R(E,$) = 2= Y x(@E,$),
PE 5o

whence »
— | ged(deg(E), tk(E)).
PE

4Prof. Lenzing informed me of this fact as an answer to my question.
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Let S = ®oo u(p)(E). S’ is a simple sheaf with t-period pgr = pg. Observe that there
exists X € L(p) such that x (O(X), §') = PLE' Take F = ®(g),00(O(X)). Then we have

deg(F)tk(E) — deg(E)k(F) = x(F, E) = x(O(x), ') = pLE

Hence ged(rk(E), deg(E)) = pLF_ .

3.4 Perpendicular Categories

Let X = X(p, 1) be a weighted projective line with weight sequence p = (p1, . .., p;). For

convenience, we will denote A = cohX, D = D?(X). For a collection S of objects in cohX,

we have S1tA4 = 1ArS by Serre duality. So it sufficies to describe right perpendicular

categories. We are concerned about perpendicular categories of an exceptional sequence.
A (possibly empty) collection of simple sheaves over X is called proper if it does not

contain a complete set of simple sheaves supported at A for each A € P! and simple sheaves

in the collection are pairwise non-isomorphic. In particular, it contains only exceptional
simple sheaves.

Theorem 3.15 [18] Let S = U§=1 S; be a collection of simple sheaves, where S; is a
proper collection of simple sheaves supported at A;.

(1) We have an equivalence S A ~ cohX' preserving rank, where X' = X(p', D) isa
weighted projective line with weight sequence

P =1 =881, ..., pi —Si, ..., pr — 1S)).

(2) The inclusion of the exact subcategory S+A into A = cohX admits an exact left
adjoint and an exact right adjoint, both of which preserve rank.

Lemma 3.16 Let E be an exceptional torsion sheaf. Denote
Sg = {t'top(E) | 0 <i < I(E)}, Sy = Sg\{top(E)}. (3.4.1)
Then E +A decomposes as

E*a =S4 [ a.

and we have an equivalence S ;‘ A ~ cohX' preserving rank, where X' = X(p',2) is a
weighted projective line with weight sequence

B/:(pls"'5pi_I(E)a”"pl)s

and an equivalence (Sy) A ~ modk&l(g)_l, where k&[ is the path algebra of the equi-
oriented A;-quiver.

Note that if X is of tubular type then X’ is of domestic type.

Proof Suppose E is supported at A. We have a decomposition

E*A ncoh X = Eeom = (S;4 N eohy X) [ [(Sp) a-
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The argument for showing this is similar to that in showing N+ = A; | | A3 in the proof of
Lemma 2.25. For A # A\’ € P!, since Hom(coh, X, cohy/X) = 0, we have

E 4 N cohy X = cohyX = S;‘A N cohy/X.
We continue to show
E+ANvecetX = SELA N vectX.
It sufficies to show that each nonzero bundle F lying in E A lies in S EL A, Assume

for a contradiction that F ¢ SEJ‘A. Then for some S € Sg, Ext!(S,F) # 0,
whence Hom(F, 7S) # 0 by Serre duality. Since 7§ is a composition factor of T E and
since Hom(F, —) : coh)X — modk is an exact functor, Hom(F, tS) # 0 implies

Hom(F, tE) # 0. Hence Ext!(E, F) # 0, a contradictionto F € E L4 Soindeed we have
E+ANvectX = SELA N vectX.

By Serre duality, this implies Hom(E L4 N veetX, <S;5> 4) = 0. Now that each coherent
sheaf over X is a direct sum of a bundle and a torsion sheaf and that cohgX = [ ], .p1 coh; X,
we can conclude

E*A =84  [(Sk)a.

One easily sees (S 1’5) A modkf%[( £)—1. By Theorem 3.15, we have an equivalence S El A~
cohX' preserving rank, where X has a weight sequence as asserted. O

Theorem 3.17 (1) ([25]; see also [24, Kapitel 5]) Let E be an exceptional bundle over X.

Then E A ~ modA for some finite dimensional hereditary algebra A.
(2) ([25]; see also [30, Proposition 2.14]) Let L be a line bundle in cohX. Then

LA ~modk[py, ..., pil,

where k[p1, ..., pi]is the path algebra of the equioriented star quiver [p1, ..., pi].
Here, an equioriented star quiver [pj, ..., p;] refers to the quiver
Lp1=1) —> (Lp1=2) o (1,2) —> (1,1)

@p2=l) — @.p2=2) i (2,2) — QLDX

A7

(Op—1) = (t,p—2) (t2) —> (1.1)

In certain cases, forming a perpendicular category can yield the module category of a
representation-finite finite dimensional hereditary algebra.

Lemma 3.18 (1) IfX is of domestic type and E is an indecomposable bundle then E LA
is equivalent to mod A for a representation-finite finite dimensional hereditary algebra
A.

2) IfXis of tubular type and (E, F) is an exceptional pair in cohX with u(E) # wu(F)
then {E, F}1TA is equivalent to modA for a representation-finite finite dimensional
hereditary algebra A.

Proof (1) Let (p1, pa, p3) be the weight sequence of X. If some p; = 1, say i = 1, then
E is a line bundle and by Theorem 3.17(2) we have E LA ~ modk[ P2, p3]. Otherwise
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pi > 2 forall i. Up to the action of some power of T, we can suppose 8(®) < u(E) <
0. Let T be the direct sum of a complete set of indecomposable bundles with slope
in the interval (§(), 0] and suppose T = T; @ E. Recall that T is a tilting bundle
and its endomorphism algebra I' = End(T’) is a tame hereditary algebra whose quiver
has a bipartite orientation. Hence I'1 = End(7}) is a representation-finite hereditary
algebra. We already know E -4 ~ modA for a finite dimensional hereditary algebra
A. Now that Ty is a tilting object in E -7, we have exact equivalences D?(A) ~
DP(ELA) = ELD ~ DP(I'y). Hence A is a representation-finite hereditary algebra,
the underlying graph of whose quiver is the same as that of the quiver of T';.
(2) By applying Lemma 3.16, we have an equivalence

FAP o~ & ) (F) 22 = DY (X) | [ PP (kdsry ).

under which E € F -4 corresponds to E'[m] for some exceptional bundle E’ over X
and some m € Z. Thus there are exact equivalences

DY(E, F)H4) = (E, F} P o Eoben | [ DY (khycr)-1) = D)

for a representation-finite finite dimensional hereditary algebra I'. It follows that

{E, F} 1A is equivalent to modA for a representation-finite finite dimensional hered-
itary algebra A. O

Remark 3.19 (1) There is a more direct proof of (1) using Theorem 3.22. The current
proof has the advantage that it gives us additional information on the quiver of A.

(2) It can be shown that if X is of tubular type and E is an exceptional bundle with quasi-
length [ then E+A ~ modA ]_[modk&l_l for a tame hereditary algebra A and an
equioriented A;_1-quiver.

3.5 Some Nonvanishing Hom Spaces
The following two lemmas are well-known.

Lemma 3.20 Let E be a nonzero bundle over X and F an non-exceptional indecomposable
torsion sheaf. Then Hom(E, F) # 0, Ext'(F, E) # 0.

Proof Suppose F is supported at A € P!. Take a line bundle L such that there is an epimor-
phism £ — L and also a simple sheaf S supported at A such that Hom(L, §) # 0. Then
Hom(E, S) # 0. Since F is a non-exceptional indecomposable sheaf supported at A, S is a
composition factor of F'. Then there exist two exact sequences

O—-F—>F—>F—>0, 0>S—>Fh—>F—>0,

where F; € compX (i = 1,2,3). Applying Hom(E, —), one has Hom(E, S) —
Hom(E, F>) and Hom(E, F) — Hom(E, F,) therefore Hom(E, F) # 0. Note that t F
is also a non-exceptional indecomposable sheaf and thus Hom(E, T F) # 0. This gives
Ext!(F, E) # 0 by Serre duality. O
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Lemma 3.21 Let X be Qf tubular type. Suppose E, F are two nonzero bundles with u(E) <
W(F). Then Hom(E, t' F) # O for some i. If E or F is a non-exceptional indecomposable
bundle, Hom(E, F) # 0 always holds.

Proof By Riemann-Roch Theorem, we have

p—1

> (dim¢Hom(x/ E, F)—dimExt! (t/ E, F)) =X (E, F) =tk(E)tk(F) (1(F)—p(E)) > 0.
j=0

Since Ext! (rjE, F) = 0 for each j, Hom(¢™E, F) # 0 for some 0 < m < p, whereby
Hom(E, ' F) # 0 for some i. If E is non-exceptional indecomposable bundle then E has
a filtration with factors /G (0 < i < pg), where G is the quasi-top of E and pg is the

t-period of E. Now that Hom(z'G, F) # 0 for some i, Hom(E, F) # 0. Similar argument
applies to the case when F is a non-exceptional indecomposable bundle. O

Using stability argument, [34] showed the following fact.

Theorem 3.22 [34, Theorem 2.7] Let F, G be nonzero bundles on X with u(G) — u(F) >
8(C+ @) = p + 8(®) then Hom(F, G) # 0.

For E[n] € D(X) (E € cohX), we defined the slope of E[n] by u(E[n]) = w(E). For
a nonzero subcategory C of D closed under nonzero direct summands, define

w(C) = {u(E) | E an indecomposable object in C}. (3.5.1)

We emphasize that we only count in indecomposables. In the sequel, we will need to con-
sider limit points® of x(C) in R, where R is equipped with the topology obtained via one
point compactification of R.

If X is of tubular type, by Lemma 3.13, for each g € Q, there is a fractional linear
function ¢, on R with integer coefficients such that (@ 4(E)) = ¢y (u(E)), where
®oo 4 1s a telescopic functor. Evidently, ¢, is a homeomorphism of R and restricts to a
homeomorphism of the subspace Q.

Lemma 3.23 Suppose X is of tubular type and let E be an exceptional sheaf over X. Then
W(E) is the unique limit point of n(E LAY (and u( LAE)).

Proof First suppose that E is an exceptional torsion sheaf. By Lemma 3.16 (and with the
notation there), we have

E*A =85 A ] [(Sk)a = cohX! | [ modkA,g)—1.

where X' is a weighted projective line of domestic type, and the equivalence S EL A ~ cohX/
preserves rank. By Theorem 3.9, the rank function rk is bounded on indecomposable sheaves
in E +A. Moreover, L(n¢) € E 1A for a line bundle L € E +A and n € Z. Thus oo is the
unique limit point of u(E LAy,

SRecall that if A is a subset of a topological space X and if x is a point of X, x is called a limit point of A in
X if every neighborhood of x intersects A in some point other than x itself.
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Now consider an exceptional bundle E with slope g. Since ® 4(E) is an exceptional
torsion sheaf, co is the unique limit point of p(®eo 4 (E) +A4). Now that

H(ETA) = W(EFP) = ¢, (11(Poo g (E) 1P)) = ¢ (11(Poo 4 (E) T4)),

q = qﬁq_l(oo) is the unique limit point of w(E Lay,
Recall that YAE = (t—'E) LA, Hence w(E) = u(r~'E) is the unique limit point of
W(HAE) = p((t 1 E) ). O

Corollary 3.24 Suppose X is of tubular type. Let E be an indecomposable sheaf and £ =
{E; | i € I} a collection of indecomposable sheaves with (£) a bounded subset of R.
Suppose 1 is a limit point of w(E). If u < w(E) then there is some E; with Hom(E;, E) #
0; if © > u(E) then there is some E; with Hom(E, E;) # 0.

Proof We will consider the case © < w(E) and the other case is similar. If E is non-
exceptional then our assertion follows from Lemma 3.20 and Lemma 3.21. So we consider
exceptional E. We can assume that u(E;) < w(E) for all i by dropping the other E;’s.
Then Ext!(E;, E) = 0 for all i. If Hom(E;, E) = O for all i then E; € LAE for all i and
thus  is a limit point of (A E). This is a contradiction to Lemma 3.23. Thus we have
Hom(E;, E) # 0 for some i. O

3.6 Full Exceptional Sequencesin cohX

It’s well-known that if a k-linear essentially small triangulated category D of finite type
contains an exceptional sequence of length n then the rank tkKo (D) of the Grothendieck
group Ko(D) of D satisfies tkKo(D) > n. In general, the exceptional sequence is not full
even if n = rkKy(D). But this is the case in our setup.

Lemma 3.25 An exceptional sequence (Ey, ..., E,) in D (X) is full iff n = 1kKo(X).

Proof We always have n < kKo(D?(X)) = rkKo(X). Meltzer [37, Lemma 4.1.2]
showed that an exceptional sequence in D*(X) of length rkKo(X) generates DP?(X). So an

exceptional sequence (Eq, ..., E,) in Db(X) is full iff n = kKo (X). O
Observe that by Serre duality, if (E1, ..., E,) is a full exceptional sequence in cohX then
(tEi—‘y-la R} tEnv Ela LR} El)

is also a full exceptional sequence. We show that a full exceptional sequence in cohX can
possess certain nice term.

Lemma 3.26 [f a full exceptional sequence in cohX contains a torsion sheaf then it contains
a simple sheaf.

Proof Let (Eq, ..., E,) be a full exceptional sequence with E; a torsion sheaf. We can

suppose i = n. Note that (Ey, ..., E,_1) is a full exceptional sequence in E,,lA. If E, is
already simple then there is nothing to prove. Suppose [(E,) > 1. Then by Lemma 3.16,
we have an equivalence

E;A ~ cohX' | [ modkA;(g,)-1 (3.6.1)
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for some weighted projective line X’ and an equioriented Ajg,)—_i-quiver. Via this
equivalence, a subsequence of (Ey,..., E,—1) yields a full exceptional sequence in
modkA;(g,)—1, which contains a simple module by Corollary 2.26. Note that a simple
k&l( E,)—1-module maps to a simple sheaf under the equivalence (3.6.1), which is clear from
Lemma 3.16. So some E; is a simple sheaf. O

Proposition 3.27 For X of domestic type, each full exceptional sequence in cohX contains
a line bundle.

Proof Let (Eq, ..., E,) be a full exceptional sequence in cohX. We use induction to show
our assertion. Consider the weight type (1, p1, p2), in which case each indecomposable
bundle over X is a line bundle. Since (Eq, ..., E,) classically generates Db (X), some E;
is an indecomposable bundle and thus a line bundle. We continue to consider a domestic
weight type different than (1, py, p») even up to permutation. We claim that if each E; is a
bundle then the assertion holds, which is proved later. So consider the case that some E; is
a torsion sheaf. We can assume that i = n. Moreover, (E1, ..., E,_1) is a full exceptional

sequence in EnJ‘A. By Lemma 3.16 (and with the notation there), we have
ElA = S;;A LI(SI’E”) ~ cohX’ ]_[modk&;(En)_l,

where X’ is a weighted projective line with a weight function dominated by the weight

function of X (in the sense of [18]), and the equivalence S ;}‘1 “ ~ cohX' preserves rank. By
induction, we know that some E; (i € {1,...,n — 1}) is a line bundle.

It remains to prove our claim that if each E; is a bundle then some E; is a line bundle.
The proof is inspired by the proof of [37, Proposition 4.3.6]. As in [37, §4.3.6], for an

exceptional sequence £ = (Eq, ..., E,), define
IEII = @k(Ex 1)), - - - » TK(Ezm))),
where 77 is a permutation on {1, ..., n} such that tk(Ez (1)) > - -+ = tk(Ez(n)).

Suppose for a contradiction that tk(E;) > 2 for each i. In particular, @E; is not a
tilting bundle since each tilting bundle contains a line bundle summand for X of domes-
tic type by [30, Corollary 3.7] (reproved with Corollary 3.36(1)). Hence for some i < j,
Ext!(E;, Ej) # 0. We can assume that Ext!(Ex, E;)) = Ofori < k <[ < j. By
[37, Lemma 3.2.4], Hom(E;, E;) = 0.

Consider i < k < j such that Hom(E;, E;) # 0. Let f : E; — Ej} be a nonzero
morphism, which is either a monomorphism or an epimorphism by Happel-Ringel Lemma
(see Proposition 2.19). f being a monomorphism implies

0 = Ext!(E, E;) — Ext'(E;, E;) #0,

a contradiction. Hence f is an epimorphism. Thus Hom(E;, E;) = 0 implies
Hom(Ey, Ej) = 0.
Let P be the subsequence of (E;yi,..., E;_1) consisting of those Ej satisfying

Hom(E;, Ex) # 0. Then for each term Ej in P, we have an epimorphism in Hom(E;, E)
and Hom(Ey, Ej) = 0. Let Q be the subsequence of (E;4q,..., E;—1) consisting of
the remaining terms, i.e., those E; satisfying Hom(E;, E;) = 0. We want to show that
Hom(Ey, E;) = 0 for Ex € P, E; € Q. Each nonzero morphism g : Ex — E; is either
a monomorphism or an epimorphism by Happel-Ringel Lemma. If g is a monomorphism
then Hom(E;, Ey) # 0 implies Hom(E;, E;) # 0, a contradiction to Hom(E;, E;) = 0; if
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g is an epimorphism then composing with an epimorphism in Hom(E;, E}) yields an epi-
morphism in Hom(E;, E;), again a contradiction to Hom(E;, E;) = 0. These show that
Hom(Ey, E;) = O for E; € P,E; € Q. Moreover, Hom(Ey, E;) = 0 for Ex € P.
Therefore the sequence

(Eys. ... Eim1, Q, Ei, Ej, P, Ejty, ..., Ep)
is a full exceptional sequence. This gives us a full exceptional sequence (Fy, F», ..., Fy,;)
such that tk(F;) > 2 forall 1 < i < n, Ext!(F}, Fj4+1) # 0 and Hom(F}, Fj41) = O for

some 1 < j < n — 1. Without loss of generality, we can assume j = 1.
Now we use mutation of an exceptional sequence. Let L , F> be the universal extension:

0> F—> LpF,— Ext!(F|, F>) ® F| — 0.
Then
L/:(LFleiFlsF:;’"'an)

is a full exceptional sequence with ||F’|| > || F|. As before, since each bundle in the
sequence has rank > 2, the direct sum of bundles in F’ is not a tilting bundle. This allows
us to repeat the argument above. Successive repeating will give us indecomposable bundles
with arbitrary large rank. This is a contradiction to the fact that the rank function is bounded
on indecomposable bundles over a weighted projective line of domestic type. We have thus

shown our claim that each full exceptional sequence (Eq, ..., E,) with each E; a bundle
indeed contains a line bundle. O

Corollary 3.28 Suppose X is of tubular type. If a full exceptional sequence in cohX
contains a torsion sheaf then it contains a line bundle and a simple sheaf.

Proof Let (Ey, ..., E,) be a full exceptional sequence in cohX. By Lemma 3.26, if some
E; is torsion then some E; is simple. Suppose j = n. Since (Ey, ..., E,—1) is a full

exceptional sequence in E ,,l““ ~ cohX'’, where X' is a weighted projective line of domestic
type and the equivalence preserves rank, it follows from Proposition 3.27 that some Ej is a
line bundle. O

3.7 Torsion Pairs in cohX

In this subsection, we discuss some properties of torsion pairs in cohX and also give some
preparatory descriptions of torsion pairs (see Section 4.5 for the final description). We first
describe two simple classes of torsion pairs in cohX. Obviously, any torsion pair in cohX
restricts to a torsion pair in coh; X for each A € P!,

Lemma 3.29 Ler (T, F) be a pair of subcategories of conX.

1. (T, F) isatorsion pair in cohX with T C cohoX iff for each ) € P, there is a torsion
pair (Ty, F)) in coh, X such that

T =add{T; | » € P!}, F =add{vectX, F | » € P'}.
2. (T.F)isatorsion pair in cohX with F C cohpX iff
F =add{F;, | » P}, T ={E ecohX|Hom(E, F) =0},

where each F) is a torsion-free class in cohy X without non-exceptional indecompos-
able object.
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Proof We prove (2) as (1) is clear.

(=) Suppose F C cohgX. F restricts to a torsion-free class F, in coh,X for each
A € PL.If F; contains a non-exceptional indecomposable sheaf then by Lemma 3.20, T~
contains no nonzero bundle and thus vectX C F, a contradiction. Hence each JF; contains
no non-exceptional indecomposable sheaf.

(<) By the definition of T, 7 is closed under quotients and extensions. Therefore 7
is a torsion class in cohX since cohX is noetherian. Then (7,7 10) is a torsion pair in
cohX and thus we need to show F = T 0. Hom(7, F) = 0 implies F C 7 0 and it
remains to show 7 10 ¢ F.Foreach > € P!, T Ncoh; X = J‘O“’hxx}} is the torsion class
in coh, X corresponding to the torsion-free class JF,, which implies T+oncoh, X C Fi.
Hence 710N cohpX C F. We claim that T Lo contains no nonzero bundle, which implies
T Lo ¢ F. Suppose for a contradiction that 7 10 contains a nonzero bundle E. For each
A € P!, by Lemma 2.28, it is impossible that each simple sheaf in coh,X occurs as a
composition factor of some indecomposable sheaf in F;. Hence we have a line bundle L
such that L(nc) € T for all n € Z. But Hom(L(nc), E) # 0 for n <« 0, a contradiction.
This shows our claim. O

Remark 3.30 For an ordinary point A, either 7, = 0 or F) = 0.

Recall that for each u € R, we have torsion pairs
(coh®*X, coh“*X), (coh™X, coh=\X).

These are very useful for our analysis.
A torsion pair in cohX is either tilting or cotilting.

Lemma 3.31 Let (7T, F) be a torsion pair in cohX.

(1) If F contains a nonzero bundle then F is a cotilting torsion-free class and coh=HX C
F for some u € R.

(2) If T contains a nonzero bundle then T is a tilting torsion class. If congX C T then
coh="X c T for some v € R.

Proof Suppose that F contains a nonzero bundle A. If 7 contains no nonzero bundle, then
vectX C F. Now suppose that 7 contains a nonzero bundle 7. Let © = u(A) — §(c + o).
Then for each bundle B € 7T, we have u(B) > . Indeed, if u(B) < uthen w(A)—u(B) >
8(¢ + @) and Hom(B, A) # 0 by Theorem 3.22, a contradiction to Hom(7, F) = 0. Since
T is closed under quotients, for each nonzero bundle E in 7, the last semistable factor of E
lies in 7 and hence = (E) > w. This shows vectX N7 C coh”™ X, Recall that a coherent
sheaf over X decomposes as a direct sum of a torsion sheaf and a vector bundle. So we have
T C coh™”X and thus coh=*X C F. Similarly one shows that if 7 contains a nonzero
bundle then vectX N F C coh="X for some v € R, which implies coh="X C T provided
cohpX ¢ 7.

Now we show that F is a cotilting torsion-free class if F contains a nonzero bundle. That
is, we need to show that for each sheaf E, there is some sheaf F' € F and an epimorphism
F — E.We do induction on rk(E). We already have coh=*X C F for some u € R. If E is
an indecomposable torsion sheaf then we can take a line bundle L € F such that L — E.If
tk(E) > 0, take a line bundle L| € F with u(L) < u(E). Then we have an exact sequence
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00— Ly - E - E{ — 0withrk(E) < rk(E). By the induction hypothesis, there is
some F] € F and an epimorphism F; — E. The pullback diagram

0 L1 F F 0
0 L E Eq 0

gives us an object F' € F and an epimorphism F — E, as desired.

If 7 contains a nonzero bundle, we show that 7 is a tilting torsion class. For each A € P!,
consider the torsion pair (73, F;.) = (7 N cohy X, F N coh; X) in cohy X. By Lemma 3.20,
JF;. contains no non-exceptional object and thus 7 contains a non-exceptional object. Then
S € T for a simple sheaf S supported at an ordinary point. Moreover, 7, is a tilting torsion
class in cohy X by Lemma 2.27. Hence each indecomposable torsion sheaf in coh, X is a
subobject of some object in 7. Since T is closed under quotients, 7 contains a line bundle
L by Proposition 3.4(2). L, S € T implies L(nc) € T for n > 0. By [17, Corollary 2.7],

for each E € vectX, E is a subbundle of @ | L; for some line bundles Ly, ..., L,,. Now
that L; is a subbundle of L(nc) forn >> 0, E is a subbundle of @, L(n¢) € T . This shows
that 7 is a tilting torsion class if 7 contains a nonzero bundle. O

Lemma 3.32 Ler (T, F) be a torsion pair in cohX with cohoX C T C cohX.

(1) IfXis of domestic type then the t-orbit of each line bundle contains some line bundle
L suchthat L € T andtL € F.
(2) IfXis of tubular type then exactly one of the following holds:

(a) there exists some quasi-simple bundle E in T withtE € F;
(b) for some u € R\Q, (T, F) = (coh™"X, coh~*X);
(c) forsome u € Q and some P C P!,

(T, F) = (add{coh™"X, coh{ X | A € P}, add{coh} X, con"'X |1 ¢ P}).
Proof Note that cohgX € 7 C cohX implies {0} € F < vectX. By Lemma 3.31,

=

coh=H0X C F for some o € R and coh="X C T for some vy € R.

(1) By Lemma 3.38, u(z"L) = u(L) + nd(»). Since §(o) < 0, for each line bundle L,
™L € Fforn>» 0and "L € T forn <« 0. Moreover cohpX C T implies that each
line bundle lies in 7 or F and therefore there must be a line bundle t"L € T with
"t e F.

(2) Obviously, the three types of torsion pairs are disjoint. We shall show that if (7", F)
is not of type (a) then (7, F) is of type (b) or (c). Suppose that for any quasi-simple
bundle E € T, we have TE ¢ F. Note that we have coh="X C T C coh™"0X,
Define

p1 =inf{u (E) | E € T}
= inf{~ (E) | quasi-simple bundle E € T},
which lies in R. We have two cases to consider: i) there exists a quasi-simple bundle
E in T with w(E) = p1; 2) T contains no quasi-simple bundle with slope 1 but
there exists a sequence (E;) of quasi-simple bundles in 7 such that w(E;) — (u1)+
asi — oo.

First we consider case ii). In this case, we have 7 C coh”™#!X and thus coh=*1X C F.
Moreover, for indecomposable F € F, if w(F) > i then by Corollary 3.24 there exists
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some E; with Hom(E;, F) # 0, a contradiction to Hom(7", ) = 0. In particular, u ™ (F) <
w1 for F € F since F is closed under subobjects. So F C coh=*1X and thus

(T, F) = (coh™™ X, coh=HFIX),

which is of type (b) or (c).

Now we consider case i). We claim that for any quasi-simple bundle E € T with u(E) =
n1 wehave tE € T.Let0 > A — TE — B — 0 be an exact sequence with A € 7, B €
F. Since we are assuming TE ¢ F, we have A # 0. Since A € T, we have u~ (A) > u1;
since Hom(A, T E) # 0 and since T E is a semistable bundle with u(tE) = w1, we have
1~ (A) = u1. Let C be the last semi-stable factor of A, which lies in 7 and has slope .
Then Hom(C, T E) # 0. Since tE is a simple object in coh' X, E is a quotient object of
C.So tE € T. Thus our claim is proved. It follows that the t-orbit of any quasi-simple
bundle E € 7T is contained in 7. Take a quasi-simple bundle E in 7. For indecomposable
F € F,if w(F) > 1 then by Lemma 3.21 there exists some 7/ E with Hom(z/ E, F) # 0,
a contradiction to Hom(7, F) = 0. So F C coh=H#X. It follows that

coh™X ¢ T c coh®*'X, coh<“'X c F C coh=H#X.

Let » € P!. For an indecomposable semistable bundle 7 coh’; 'X, if T lies in T then
the quasi-top of T as a quotient of T lies in 7, which implies cohf 'X ¢ 7. Hence if
coh{"X NT # 0 then coh}' X C T Denote

P={reP'|coh'XNT #0}.
Then we have
(T, F) = (add{coh™ X, coh}'X | A € P}, add{coh}'X, con*"X |1 € P\ P}),
which is of type (c). O

We establish bijective correspondences between tilting sheaves, certain bounded t-
structures on D?(X) and certain torsion pairs in cohX.

Proposition 3.33 Denote A = cohX. There are bijective correspondences between

(1) torsion pairs (T, F) in A such that the tilted heart F[1] * T is a length category;

(2) bounded t-structures whose heart is a length category contained in A[1] * A;

(3) isomorphism classes of basic tilting sheaves in A;

4) torsion pairs (T, F) such that there is n = 1tkKo(X) pairwise non-isomorphic
indecomposable sheaves E, ..., E, inT withtE; € F foralli.

Moreover, torsion pairs (T, F) in (1) with the additional assumption cohopX C T C cohX
are in bijection with isoclasses of basic tilting bundles.

Proof The second assertion follows readily from the first one. We show the first assertion.
The bijection between (1) and (2) follows from Proposition 2.3. Note that for those E;’s in
(4), we have Hom(®E;, @t E;) = 0. By Serre duality, we have Ext{(®E;, ®E;) = 0. Thus
E;’s can be ordered to be a full exceptional sequence by Proposition 2.20 and Lemma 3.25.
So @E; is a tilting sheaf. Then the obvious associations between (3) and (4) are evidently
inverse to each other.

Now we establish the bijection between (2) and (3). By Theorem 3.6, A = cohX is
derived equivalent to modA for a canonical algebra A. Hence we can apply Theorem 2.22 to
conclude that bounded t-structures on D?(A) with length heart are in bijection with equiv-
alence classes of silting objects in D?(X). Note that if a bounded t-structure (D=0, DZ0)
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has heart B C A[1] x A then Di_l c D=0 ¢ D=° and thus the Serre functor T(—)[1]
of DP(A) is right t-exact with respect to (D=, D=0). By Lemma 2.24, in this bijection, a
bounded t-structure with length heart B C A[1] % A corresponds to some equivalence class
of tilting objects in D?(X). It remains to show that such a tilting object T is a sheaf. By
Lemma 2.24, T, tT[1] € B c A[1] % A. This forces T to be a sheaf. O

Remark 3.34 Recall that we have a torsion pair (7, F) induced by a tilting sheaf T, where
T = {E € cohX | Extl(T, E)=0}, F ={E € cohX|Hom(T, E) =0}.

Since T € T, tT € F, this torsion pair is just the one corresponding to T .

Example 3.35 Consider the torsion pair (7, F) = (coh=*X, coh**X) for u € R. If X
is of domestic type, similar argument to that in the proof of [30, Theorem 3.5] shows
that the direct sum of a complete set of indecomposable bundles with slope in the inter-
val [, u — 8(w)) is a tilting bundle, whose endomorphism algebra turns out to be a
tame hereditary algebra. The induced torsion pair is exactly (coh=*X, coh*#X). If X is
not of domestic type then T (resp. JF) is closed under 7 (resp. 771 since 8(&) > 0.
Therefore (coh™X, coh=FX) cannot be induced by a tilting sheaf and the tilted heart
coh=*X[1] * coh™#X is not a length category.

We obtain the following known results as a corollary of Proposition 3.33.

Corollary 3.36 (1) ([30, Corollary 3.7]). If X is of domestic type then each tilting bundle
T contains at least [L(p) : Zw) pairwise nonisomorphic line bundles as its direct
summands. N

(2) ([32, Corollary 3.5]). If X is of tubular type then each tilting bundle T contains a
quasi-simple bundle direct summand. For some q € Q Doo,q(T) is a tilting sheaf with
an exceptional simple sheaf as its direct summand.

Proof Let (T, F) be the torsion pair corresponding to 7. Since T is a bundle, cohgX C
T < cohX.

(1) By Lemma 3.32, each t-orbit of a line bundle contains a line bundle L € T with
tL € F.Each such L is a direct summand of 7. By Proposition 3.4, we have precisely
[L(p) : Zd)] t-orbits of line bundles. So T contains at least [L(p) : Zw)] pairwise
nonisomorphic line bundles. N

(2) Note that in Lemma 3.32, a torsion pair (I, V) in cohX of type 3.32(2b) or 3.32(2¢)
contains no nonzero sheaf F with F € f and t F € V. So (T, F) is of type 3.32(2a),
i.e., there exists a quasi-simple bundle E with E € T,tE € F. E is then a direct
summand of 7. Let g be the maximal slope of indecomposable direct summands of
T. Then @y 4(T) is a tilting sheaf with a nonzero torsion direct summand. Since its
indecomposable direct summands can be ordered to be a full exceptional sequence,
by Lemma 3.26, one of the direct summands is a simple sheaf. This finishes the
proof. O

We end this subsection by determining whether certain torsion pairs yield a noetherian
or artinian tilted heart. For P C P!, denote by (7p, Fp) the torsion pair in cohX

(add{coh, X | » € P}, add{vectX, coh; X | A € ]P"\P}). (3.7.1)
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Lemma 3.37 Let P C PL.

(1) The tilted heart B = Fp[1] % Tp is noetherian resp. artinian iff P = @ resp. P = P!.

(2) Suppose X is of tubular type. If n € R\Q then the tilted heart B = coh=FX[1] %
coh™*X is neither noetherian nor artinian. If . € Q, the tilted heart B = F[1]1% T is
noetherian resp. artinian iff P = @ resp. P = P!, where

(T, F) = (add{coh™X, coh{ X | A € P}, add{coh} X, cohn™*X | A ¢ P}).

Proof (1) If P = ¢ then B = cohX[1], which is noetherian. If P = P! then B =
vectX[1] x cohgX =~ (cohX)°P is artinian, where the equivalence is induced by the
duality functor RHom(—, ©). Otherwise, # # P # P!. Take A € P,/ ¢ P. To
see that B = F[1] % T is not artinian, we take an indecomposable torsion sheaf F
supported at A’ such that F fits into an exact sequence

0— Oné) — O((n+1)7é) — F—=0
in cohX. Then for each n € Z, we have an exact sequence
0— OmA[] — O((n+ O[] — F[1] =0

in B. This implies the existence of a strict infinite descending chain of subobjects of
O[1] in B, which shows B is not artinian. Now we show that 3 is not noetherian.
There exists a simple sheaf S € coh, X such that for each [ € Zx, the unique inde-
composable sheaf S™"®M1 e coh, X with socle S and of length Iw(L), where w is the
weight function, fits into an exact sequence

0— O — O — S 5 ¢
in cohX. In particular, SYY™ is a subobject of O[1] in B. Note also that S/¥®M1 is a
subobject of SICHDYM] i B, The infinite ascending chain

SV oy g2WOI] oy gBWON]

of subobjects of O[1] shows that B is not noetherian. Hence B is neither noetherian
nor artinian in this case.

(2) The assertion for 1 € Q is reduced to (1) by using the telescopic functor ®u, w-Sowe
consider u € R\Q. By applying the duality functor RHom(—, O), we know that

B = coh=*X[1] * coh™*X ~ (coh="#X][1] % coh™ "#X)°P.

To show that B is neither noetherian nor artinian, it sufficies to show that B is not
artinian, which in turn follows readily from our claim that each nonzero bundle F €
coh™#X fits into an exact sequence 0 - E — G — F — 0, where E € coh=*X
and G € coh™*X.
Let us show our claim. Let F € coh™*X be a nonzero bundle. By [45, Corollary 1.9],
there exists a pair of coprime integers (4, k) such that
h 1
0< e n < ok
We can assume further

h 1
k > 1k(F), E+kj<N7(F)

since k can actually be taken to be arbitrarily large. By Lemma 3.14, there is a quasi-
simple bundle A € coh%X with coprime rank and degree. In particular, we have rk(A) =
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k, deg(A) = h. Now let Fy, ..., F,, be the semistable factors of F. Denote Fy = F. Let
Flj be an indecomposable direct summand of F;. Consider the evaluation map
ev: @ Hom(7' A, F/) RT'A— F/,
i=0

where p4 is the T-period of A. By [37, Theorem 5.1.3], ev is either a monomorphism or an
epimorphism. Since
pa—1 . ] A )
rk @ Hom(z'A, F/) Qt'A| > rkF > rkF/,
i=0
ev is an epimorphism. In particular, the evaluation map
pa—l ' ‘
ev: @ Hom(t'A, F)) @ t'A — F
i=0
is an epimorphism, whose kernel is denoted by E;. For 1 <[/ < m, E; is a semistable bundle
whose slope ©(E)) satisfies

X (A, Fy)deg(A) — deg(Fi)

HOED = S L Pk (A) = th(F)
(1(F) = pADA) = gipa i (F) .
= i (by Riemann-Roch theorem)
(1 (F) = u(A) = gz
< .

Let T+ 4 be the tubular mutation functor with respect to the 7-orbit of A as recalled in the
proof of Lemma 3.13. Note that E; = Tres(Fj)[—1] for 0 < I < m. Since Fyp = F has
a filtration with factors Fi, ... F,,, E := Eq has a filtration with factors Eq, ..., E,. In
particular, u*(E) < 1. Hence
pa—1
0— E— P Hom(zr'A, F)®'A — F — 0
i=0

is the desired exact sequence. We are done. O

4 Bounded t-Structures on DY(X)

Throughout this section, X will denote a weighted projective line, A = cohX the category of
coherent sheaves over X and D = D”(X) the bounded derived category of cohX. Moreover,
(D=9, D=9 will denote a bounded t-structure on D and its heart will be denoted by 3. The
standard t-structure on D?(X) is denoted by (Dio, Dio).

Lemma 4.1 Each bounded t-structure on DP(X) is width-bounded with respect to the
standard t-structure. In particular, B C DB‘"’"] for some m,n € Z.

Proof Recall that for each X, there is a canonical algebra A such that D (X) ~ DP(A).
Henceforth we have a bounded t-structure on D?(X) with heart equivalent to modA. So
bounded t-structures are width-bounded with respect to each other (see Example 2.2). [
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4.1 Bounded t-Structures which Restrict to t-Structures on D? (cohyX)

In this subsection, we characterize when a bounded t-structure on D?(X) restricts to a t-
structure on D? (cohpX) and then describe this class of t-structures.

The following fact is very useful in analyzing direct summands of truncations of an
object.

Lemma 4.2 Let T be a triangulated category. Assume that A —f> BE Cwisa triangle
in T with Hom™ (A, C) = 0. If A = A1 @ Ay and correspondingly f = (f1, f2) then
fi=0implies Ay =0.IfC =C, ® Cy and g = (g1, g2)" then g1 = 0 implies C; = 0.

Proof f1 = 0implies C = cone(f2) @ A[1] and then Hom(A1, A1) C Hom™'(4,C) =0
thus A1 = 0. Similarly one shows the second assertion. O

Lemma 4.3 If D" contains a nonzero bundle then for some m <1 < n, B[—1] contains
a nonzero bundle.

Proof We use induction on n — m. If n = m then there is nothing to prove. Assume n > m.
Let E be a nonzero bundle lying in Dlmnl Consider the triangle E; — E — E, ~~, where
Ei=t<E € plmn=11 g, — > E € B[—n]. Recall that since cohX is hereditary, each
object X in D?(X) decomposes as X = @H' (X)[—i], where ! (X) is the i-th cohomology
of X. Since Hom™!(E}, E») = 0,by Lemma 4.2, H'(E1) = Ofori # 0, 1 and H/(E>) =0
for j # 0, —1. Hence E; decomposes as a direct sum A @& B[—1] and E; as a direct sum
C ® D[1], where A, B, C, D are sheaves. Taking cohomology yields a long exact sequence

0—D—A—>F—>C—B—0.

If A = 0then D = 0 and thus rk(C) > 0, that is, C contains a nonzero bundle
direct summand. Since C € B[—n], such a direct summand gives a desired bundle. Since
Hom(cohpX, vectX) = 0, if A # 0 then A cannot be a torsion sheaf by Lemma 4.2. Thus
A contains a nonzero bundle direct summand F. Now that F € D"-2~11 the induction
hypothesis assures the existence of the desired bundle. O

Let us make our basic observation on bounded t-structures on D? (X).

Lemma 4.4 The following are equivalent:

(1) {i|vectX[i]NB #0} C{j,j+ 1}forsome j € Z;
(2) (D=0, D29 restricts to a bounded t-structure on D? (coh; X) for each A € P';
(3) B contains a shift of some non-exceptional indecomposable torsion sheaf.

Proof (2) = (3) Take an ordinary point A. The induced bounded t-structure on
D’ (cohy X) has heart B, = BN D’ (coh,X). Since A is ordinary, each bounded
t-structure on D”(coh; X) is a shift of the standard one by Proposition 2.30.
Hence a shift of the simple torsion sheaf S supported at A lies in B; C B.

(3) = (1) Suppose T is a non-exceptional indecomposable torsion sheaf such that T[] €
B. By Lemma 3.20, for each nonzero bundle FE, Ext!(T,E) # 0 and
Hom(E, T) # 0. Now that T[j] € B, if E[i] € Btheni # j, j + 1 will yield
a contradiction to Hom" (B, B) = 0 forn < 0. Hence {i | vectX[i]N B # 0} C
Ui+ 1)
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(1) = (2) We will show that (1) implies that (D=0, DZ0) restricts to a bounded t-structure
on D’ (cohpX). Then (2) follows since cohgX = [1,.cpt coh, X, Suppose that
(D=9, D=9 does not restrict to a t-structure on D?(cohyX). Then for some
torsion sheaf 7 and some ! € Z, ;T ¢ D? (cohpX). By Lemma 4.2, 7T
decomposes as A @ B[—1] with A € cohX, B € cohpX and 7-;7T decomposes
as C @ D[1] with C € cohpX, D € cohX. 1T ¢ Db(cohOX) implies that A
contains a nonzero bundle E as its direct summand. Since rk(A) = rk(D), D
also contains such a direct summand F. Now that E € D=l F € DZ*2 and the
t-structure is bounded, by Lemma 4.3, both B[—r] and 5[—s] contain nonzero
bundles for some r <[, s > [ 42. It is then impossible that {i | vectX[i]NB #
0} C {j, j + 1} for some j. 0

We are going to give a description of bounded t-structures on D? (X) satisfying the con-
ditions in the above lemma. Recall the definition of a proper collection of simple sheaves in
Section 3.4. Two such collections are said to be equivalent if they yield the same isoclasses
of simple sheaves. Recall also that for P C P!, the pair (7p, Fp) denotes the torsion pair
(3.7.1) in cohX. Moreover, we have a split torsion pair (STA NTp, STA N Fp)in S TA.

Proposition 4.5 Suppose {i € Z | vectX[i]N B # 0} = {j} or {j — 1, j} for some j € Z.
Then there is a unique (up to equivalence) proper collection S of simple sheaves such that
. (D=0, D29 is compatible with the recollement

it e _

Dr(Sta) = §ip —ii—— DP(X) = (S)p,

where iy, ji are the inclusion functors;

. if{i | vectX[i1NB # 0} = {j} then for a unique P C P', the corresponding t-structure
on S1P is a shift of the HRS-tilt with respect to the torsion pair (S+A N Tp, S+AN
Fp)inS LA

o iff{i | vectX[i1N B #£ 0} = {j — 1, j} then the corresponding t-structure on S D is
a shift of the HRS-tilt with respect to some torsion pair (T, F) in S A with S+A N
cohgX C T € S+a.

Proof By Lemma4.4, (D=0, DY) restricts to a bounded t-structure on D? (coh; X) for each
A € P!. Denote
A =coh; X, Dy = (cohyX)p = DP(cohyX),
D =D'nD,, D=D="nND,, B.=BND;.

Then (Dfo, D/\ZO) is a bounded t-structure on Dj with heart [3;. Observe that each Ext-
projective object in D5 is Ext-projective in D=0, Indeed, if X € D’ c D=0 is D:’-
projective then T X[1] € Dfo c D=9, which implies X is D=-projective.

For each A € P!, by Proposition 2.30, there is a unique proper collection Sy, of simple

sheaves supported at A such that (Dfo, Dfo) is compatible with

/—f*\ /_g!\
8, P ————f—>=D; = DP(coh; X) —¢"—— (Si)p;.
\f!—/ \g*_/
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. . . 1p,
where f,, g are the inclusion functors, and the corresponding t-structure on S, P% has

heart B; N SJ_DA = SLA'A [m,] for some m;. If S, = @ (say when A is an ordinary
point), let 75, = 0. Otherwise, (SA)D,\ is triangle equivalent to D”(]_['u modk&livk) for
some positive integers ny, [; 5, where kAl is the path algebra of the equioriented A;-quiver.
By Theorem 2.22, the t-structure (g*DA , g*Dfo) on (Sy)p, corresponds to a basic silting
object Ty, in (S, )p, so that (T3)p, = (Sx)p, and Tj is g*’Dfo-projective. By Lemma 2.18,
T, = g1, is Dfo-projective and hence Tj, is D="-projective. By Proposition 2.21, the
indecomposable direct summands of 7 can be ordered to form an exceptional sequence. Let
T =&, 1, S = U,S,.. We have (T)p = (S)p and the indecomposable direct summands
of T can be ordered to form an exceptional sequence. Then by Lemma 2.17, (D=0, D=9) is
compatible with the recollement

T~ /--—JIM
1p _ L —iy D j*=>(T)p = (S)p,
S->D=T7T-D < P '“/D D

where i, ji are the inclusion functors.
Now let us show that the corresponding t-structure on S 2 takes the asserted form. Let

By = BNS 1D be its heart. We have SALA* [m;] = Bi ND;, C By.Hence for each A € P!,
there is a nonexceptional indecomposable torsion sheaf F; such that Fy[m;] € B. Up to a
shift of B, we can suppose {i | vectX[i]NB # 0} = {1} or {0, 1}. If {i | vectX[i]NB # 0} =
{1}, let E be a nonzero bundle such that E[1] € B. Hom(E, F3) # 0 and Ext!(Fy, E) #0
imply that m; € {0, 1}. If {i | vectX[i] N B # 0} = {0, 1} then we have nonzero bundles
E1, E; with Ey, E2[1] € B. Hom(E;, F) # 0 and Ext'(F;, E;) # 0 (i = 1,2) imply
m)_ = 0. Consequently, in either case, we have B C S+A[1] %« S+4 and thus B; =
F[1] T for some torsion pair (7, F) in S -A. Moreover, if {i | vectX[i]N B # 0} = {1}
then T = add{SALA* | » € P} = STANTp, where P = (A € P! | m; = 0}; if
{i | vectX[i]N B # 0} = {0, 1} then S 4 NcohgX C T C S+4.

Finally, the uniqueness of S follows from the uniqueness of S;; the uniqueness of P
follows from Lemma 2.7. O

Remark 4.6 Actually, for each bounded t-structure (D=, D=0) on D, there exists a unique
maximal proper collection S of simple sheaves such that (D=9, D=0) is compatible with the

admissible subcategory S LD The crucial point to show this is that (T)p = (S)p, where
T is the direct sum of a complete set of indecomposable D=C-projectives of the form E[n]
with E a torsion sheaf.

Remark 4.7 Recall from Theorem 3.15 that we have an equivalence S+A ~ cohX’ for
some weighted projective line X’. Via such an equivalence, the torsion pair (S+A N
Tp, STANFp)inS LA corresponds to the torsion pair (7}, F) in cohX'; a torsion pair
(T, F)in St4 with S "4 NcohgX C T C S1A corresponds to a torsion pair (77, F') in
cohX’ with cohgX’ C T’ C cohX'.

Here we characterize when the heart of a bounded t-structure just described is noetherian,
artinian or of finite length.
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Corollary 4.8 With the notation in Proposition 4.5, in the case {i | vectX[i|NB # 0} = {j},
the heart B is not of finite length and B is noetherian resp. artinian iff P = @) resp. P = P';
in the case {i | vectX[i] N B # 0} = {j — 1, j}, the heart B is noetherian (artianian or of
finite length) iff so is the tilted heart F[1]  T.

Proof Recall that there exist integers n, Iy, ..., [, such that (S)4 =~ ]_[?:] rnodk&li. By
Lemma 2.23, each bounded t-structure on (S)p = D?((S).4) ~ D? (LI, modk&li) has a
length heart. So the assertion for the case {i | vectX[i]N B # 0} = {j — 1, j} follows from
Lemma 2.12. For the case {i | vectX[i]NB # 0} = {;}, by virtue of the equivalence S +A ~
cohX’ in Theorem 3.15, the assertion follows from Lemma 3.37(1) and Lemma 2.12. O

4.2 Bounded t-Structures which do not Restrict to t-Structures on D? (coh¢X) Even
up to Action of AutD? (X)

Now we deal with bounded t-structures on D?(X) which does not satisfy the condi-
tion considered above even up to the action of AutD?(X). We only have results for the
domestic and tubular cases and we rely heavily on the telescopic functors in the tubular
case.

The key feature of this class of t-structures is given in the following lemma.

Lemma 4.9 (1) If X is of domestic type then each indecomposable object in B is
exceptional iff {i | vectX[i1N B # 0} € {j, j + 1} forany j € Z.

(2) X is of tubular type then each indecomposable object in B is exceptional iff {i |
vectX[i] N Poo g (B) # 0} £ {j, j+ 1} forany g € Qand j € Z.

Proof Each indecomposable object in B is of the form E[n] for some n € Z and some
indecomposable bundle or some indecomposable torsion sheaf E.

(1) By Theorem 3.9, if X is of domestic type then each indecomposable bundle is excep-
tional. So B contains a non-exceptional indecomposable object iff 3 contains a shift
of a non-exceptional torsion sheaf, which is equivalent to {i | vectX[i] N B # 0} C
{j, j + 1} for some j € Z by Lemma 4.4. So our assertion holds.

(2) By Theorem 3.12, if X is of tubular type then each indecomposable sheaf is semistable
and thus lies in coh*X for some u € Q. B contains a non-exceptional indecom-
posable object E[n], where E is a sheaf with slope g, iff the heart ® 4(B)[—n]
contains the non-exceptional torsion sheaf ® o 4 (E). Thus our assertion follows from
Lemma 4.4. O

We show that B contains no cycle if each indecomposable object in B is exceptional.

Lemma 4.10 Suppose X is of dometic or tubular type. If each indecomposable object in B
is exceptional then a complete set of pairwise non-isomorphic indecomposable objects in B
can be totally ordered as {X}ies such that Hom(X;, X ;) =01ifi < j.

Proof Each indecomposable object in B is of the form E[n] for some indecomposable sheaf
E.Since Hom(E[n], F[m]) = 0for E, F € Aandn > m, it sufficies to order indecompos-
ables in 5 N A[n], or rather, indecomposables in B[—n] N A. For X of domestic or tubular
type, each idecomposable sheaf is semistable and Hom(E, F) = 0 for indecomposable
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sheaves E, F with w(E) > w(F). Thus we only need to consider indecomposable sheaves
with the same slope, i.e., those in B[—n]Ncoh*X. We have assumed these indecomposables
to be exceptional.

We consider u = oo at first. If indecomposables in B[—n] N coh®™X = B[—n] N cohpX
cannot be totally ordered as desired then B[—n]NcohyX will contain a cycle of indecompos-
ables in some coh; X. By Lemma 2.28, BB contains a non-exceptional object, a contradiction.
Hence indecomposables in 3[—n] N coh™X can be totally ordered as desired. Now we con-
sider u € Q. If X is of domestic type then indecomposable bundles in coh*X are stable and
thus the morphism spaces between each other vanish, whence any order is satisfying. If X
is of tubular type then using the telescopic functor ®, ,,, we know from the conclusion for
@ = oo that the desired ordering also exists. O

Recall the definition of 1 (3) from Eq. 3.5.1. Observe that each limit point in () is a
limit point of u(B[I] N A) for some [ since A is hereditary and since B C DB‘"’"] for some
m,n € Z by Lemma 4.1.

Lemma 4.11 oo is a limit point of w(B) iff {i | vectX[i]N B # 0} C {j, j + 1} for some
Jj €Z.

Proof (=) If oo is a limit point of «(B) then there is a sequence (Ei);?i | of objects in some
B[l], where E;’s are indecomposable bundles, such that

u(E;) — 400 or w(E;) — —oo0 as i — +00.

If w(E;) — 400 then by Theorem 3.22, for each nonzero bundle F, Hom(F, E;) # 0
and Ext!(E;, F) # 0 for i > 1. Consequently, F[k] € B implies k € {l,] + 1}. Similar
arguments apply to the case u(E;) — —oo.

(<) Suppose {i | vectX[i]N B # 0} = {j} or {j, j + 1}. By Proposition 4.5, we can
take a line bundle L such that L € B[—j]. Moreover, for a simple sheaf S supported at an
ordinary point, i) S € B[—j] orii) S[1] € B[—j]. If case i) happens, L(nc) € B[—j] for
n > 0; if case ii) happens, L(n¢) € B[—j] for n < 0. In either case, co is a limit point of
w(B). O

The following lemma allows us to apply a telescopic functor in the next proposition.

Lemma 4.12 If X is of tubular type and j1(B) has an irrational number as its limit point
then for some q € Q, @ 4 (B) coincides with a shift of the tilted heart with respect to some
torsion pair in A.

Proof Suppose that for some I € Z, u(BN.A[l]) has an irrational number r as its limit point.
Then there is a sequence (E,')l?'i1 of indecomposable bundles such that E; € B[—[] and
w(E;) converges to r. Let E be an indecomposable sheaf with w(E) < r. By Corollary 3.24,
there are some E; with Hom(E, E;) # 0 and some E; with Hom(r~'E, E;) # 0, which
implies Ext! (Ej, E) # 0. Thus for h € Z, E[h] € B implies h € {I,] + 1}. Similarly, if
F is an indecomposable sheaf with (F) > r, then for some E;, E;, Hom(E;, F) # 0,
Ext!(F, Ej) #0.Forh € Z, F[h] € Bimplies h € {/, [ —1}. Consequently, if (BN A[l])
has an irrational limit point r then

keZ | BNAKk]#0Cc{l—1,1,1+1}
and an indecomposable sheaf in B[—1 — [] (resp. B[1 — []) has slope < r (resp. > r).
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If w(B N A[l + 1]) also has an irrational number as its limit point then similar arguments
as before show that {k | BN A[k] # 0} C {I,1+ 1}, thatis, B C A[l + 1] = A[{]. Thus B is
a shift of the tilted heart with respect to some torsion pair in A. Consider the case that the
set of limit points of w(B N A[l + 1]) is contained in @ Since each indecomposable sheaf
in B[—I — 1] N A has slope less than r, there is some rational number ¢ < r such that each
indecomposable sheaf E € B[—] — 1] N A has slope u(E) < q. Then

Do g (BN A+ 1)) C All +11.
Since an indecomposable object E € B[1 — [] N A has slope u(E) > r > g, we have
Doo g (BNA[L—1]) C Alll
It follows that
Do ,g(B) = Poo g (add{BN Al — 11, BN A[ll, BN Al + 11}) C A[l + 1] = A[l],

as desired. O

The class of bounded t-structures on D?(X) under consideration is reminiscent of
bounded t-structures on DP(A), where A is a representation-finite finite dimensional
hereditary algebra, as the following proposition indicates.

Proposition 4.13 [f one of the following cases occurs:

. Xis of domestic type and {i | vectX[i1NB £ 0} € {j, j + 1} forany j € Z, .
. Xis of tubular type and {i | vectX[i] N $op 4 (B) # 0} g {j, j+ 1} forany q € Q and
j €z,

then B is a length category with finitely many (isoclasses of) indecomposables and each
indecomposable object in B is exceptional.

Proof Tt has been shown in Lemma 4.9 that each indecomposable object in B is exceptional
under the given condition. We show that /3 contains finitely many indecomposables. If 5
contains infinitely many indecomposables then for some n, B[n] N A contains infinitely
many indecomposables. But for each u € Q, coh*X contains finitely many exceptional
indecomposables. Thus x(B[n] N A) has a limit point in R. Note that an indecomposable
object in A is either a torsion sheaf or a vector bundle. For X of domestic type, since rank on
indecomposables is bounded, 0o is the unique limit point of u(B[rn] N .A). By Lemma 4.11,
{i | vectX[i]NB # 0} C {j, j+ 1} for some j, a contradiction. For X of tubular type, under
the given assumption, by Lemma 4.12, ;(13) contains at most limit points in Q. If ¢ € Q is
a limit point of w(B), oo is a limit point of p(P e 4 (B)), whereby yielding a contradiction
to our assumption by Lemma 4.11. Thus in either case, 3 contains only finitely many inde-
composables. It remains to show that B is of finite length. Let {X1, ..., X, } be a complete
set of indecomposable objects in /3. We have End(X;) = k. Moreover, by Lemma 4.10, we
can suppose Hom(X;, X;) = 0 fori < j. Then one sees that if ®}_ le.@S" is a proper sub-
object of @l’f: 1Xi@ti then (s1,...,8,) < (t1,...,1,), where < refers to the lexicographic
order. It follows immediately that 3 must be of finite length. This finishes the proof. O

As a corollary, we obtain a characterization of when a bounded t-structure on L X),
where X is of domestic type, has a length heart.

Corollary 4.14 If X is of domestic type then B is of finite length iff #i{i | vectX[i]N B #
0} > 1.
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Proof Proposition 4.13 tells us that if {i | vectX[i]N B £ 0} € {j, j + 1} for any j then B
is of finite length. So consider those B with {i | vectX[i]N B # 0} = {j} or {j — 1, j} for
some j. By Corollary 4.8, if {i | vectX[i] N B # 0} = {j} then B is not of finite length. So
consider the case {i | vectX[i]N B # 0} = {j — 1, j}. We shall apply Proposition 4.4 and
keep the notation there. By Theorem 3.15, we have an equivalence S A ~ cohX’, where
X' is also a weighted projective line of domestic type. By Remark 4.7, the corresponding
t-structure on DP(X/) ~ DP(S+A) has up to shift the tilted heart F'[1] s T~ for some
torsion pair (77, F’) in cohX" with cohpX’ C 7’ C cohX'. By Lemma 3.32(1), we have a
line bundle L € T’ with L € F'. Let (Dfo, DIZO) be the bounded t-structure on D :=
DP(X’) with heart F'[1] % 7. By Lemma 2.14, L is Dlﬁo—projective. By Lemma 2.15,
(DISO, D]ZO) is compatible with the admissible subcategory L 1o, — pb (L Leonx') of Dy =
Db (X). We know from Lemma 3.18(1) that L Lteohx’ ~ modA for a representation-finite
finite dimensional hereditary algebra. Then by Lemma 2.23, each bounded t-structure of
L*P1 = Db(LLeonx’) has a length heart. Moreover, ioyp oy = (L)yp, ~ Db (k). Thus
the tilted heart F'[1] % 7 is o f finite length by Lemma 2.12. So is BB. In conclusion, B is
of finite length iff #{i | vectX[i] N B # 0} > 1. O

4.3 Some Properties of Silting Objects

Recall Konig-Yang correspondence (see Theorem 2.22) that equivalent classes of silting
objects in D?(X) are in bijective correspondence with bounded t-structures on D?(X) with
length heart. So we continue to describe some properties of silting objects in D?(X), which
in turn give information on bounded t-structures with length heart.

We obtain the following information on direct summands of 7 from our previous
coglclusions on full exceptional sequences. This holds particularly for a tilting object in
D?(X).

Proposition 4.15 Let T be a silting object in D” (X).

(1) If T contains a shift of a torsion sheaf as its direct summand then T contains a shift of
an exceptional simple sheaf as its direct summand.

) If X is of domestic type then T contains a shift of some line bundle as its direct
summand.

(3) If Xis of tubular type then for a suitable q € Q Do,q(T') contains a shift of some
exceptional simple torsion sheaf and a shift of a line bundle as its direct summands.

Proof By Proposition 2.20, if A = @ézlAi [n;] is a basic partial silting object in D?(X),
where A; € A, then the sequence (Aq[n1], ..., A;[n;]) can be reordered to form an excep-
tional sequence. So can the sequence (Aj, ..., A;). Morover, the obtained exceptional
sequence is full. Indeed, since mod End(.A) is equivalent to the heart B of the correspond-
ing bounded t-structure, we have [ = rk Ko(mod End(A)) = rk Ko(B) = rk Db (X). We
know from Lemma 3.25 that the obtained exceptional sequence is full.

Thus (1) follows immediately from Lemma 3.26, (2) from Proposition 3.27 and (3) from
Corollary 3.28. O
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A silting object T in D?(X) is called concentrated if T contains nonzero direct sum-
mands in vectX[m] for a unique m. This is a generalization of the notion of a concentrated
tilting complex [37, Definition 9.3.3].

Lemma 4.16 A silting object T in D(X) is concentrated iff the corresponding bounded
t-structure (D=0, D=0 satisfies the property {i € Z | vectX[i] N B # 0} C {j, j + 1} for
some j € Z.

Proof Recall that in Konig-Yang correspondence, the t-structure (D=, D=%) correspond-
ing to T has heart
B ={X € D*(X) | Hom™ (T, X) = 0}.

Let T be a concentrated silting object, say T = T1 & T with T € vectX[/] and
T, € DP(cohpX). By Happel-Ringel Lemma (see Proposition 2.19), the indecompos-
able direct summands of 7, are exceptional. Hence 7, is supported at exceptional points.
For a simple sheaf S supported at an ordinary point, we have Hom?°(T}, S[/]) = 0 and
HomX (75, S[I]) = 0 for any k € Z and thus S[/] lies in B. It follows from Lemma 4.4 that
{i € Z | vectX[i]NB #£0} C {j,j+ 1} for some ;.

Conversely, suppose {i | vectX[i]N B # 0} C {j, j + 1} for some j. By Proposition 4.5
and Remark 4.7, there is a proper collection S of simple sheaves such that the t-structure
(D=0, D=9 is compatible with the admissible subcategory D?(S +4) of D?(X) and up to
shift the corresponding t-structure (DISO, Dlzo) on D (X') >~ D?(S+4) has heart F/[1]xT"
for some torsion pair (77, F’) in cohX’ with cohgX’ C 77 C cohX'. Since B is of finite
length, so is F'[1] * 7’ by Lemma 2.12 and thus (77, F’) is induced by a tilting bundle
in cohX’ by Proposition 3.33. Hence indecomposable Ext-projectives in DFO are bundles.
If X[n] is an indecomposable direct summand of 7 with X a bundle then X[n] is D=0.
projective and thus i*X[n] is nonzero Dfo—projective by Lemma 2.18, where i* is the left
adjoint of the composition D (X') S Db(SEA)Y s DP(X). This implies that i*X[n] is a
nonzero bundle. By Theorem 3.15(2), i * is t-exact with respect to the standard t-structures.
So we have n = 0. Hence T is concentrated. O

We now give some properties of the endomorphism algebra of a silting object in D?(X).
This generalizes parts of [37, Theorem 9.4.1, 9.5.3].

Proposition 4.17 Let T be a silting object in D?(X) and I' = End(T).

(1) The quiver of T has no oriented cycle. In particular, T has finite global dimension.

2) If X is of domestic or tubular type then T is either representation infinite or
representation directed.

(3) For X of domestic type, T is representation infinite iff T is concentrated.

(4) ForXof tubular type, I is representation infinite iff ®o0 4(T') is concentrated for some

q €Q.

Proof Let (D=0, DZ% be the bounded t-structure corresponding to 7 in Konig-Yang
correspondence. Its heart B is equivalent to mod I'.

(1) We can assume 7 is basic. Then by Proposition 2.20, indecomposable direct sum-
mands of T can be ordered to form an exceptional sequence. Hence the quiver of
I' = End(T) has no oriented cycle.

(2) IfT is not representation infinite then B >~ mod I" contains finitely many indecompos-
ables. Thus B contains no non-exceptional object by Lemma 4.4 (for the tubular case,
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we may need an additional application of a telescopic functor to apply Lemma 4.4.).
By Lemma 4.10, each object in mod I' 2~ B is directed. So I" is representation directed.

(3) Suppose T is concentrated. By Lemma 4.16, we have {i € Z | vectX[i]N B # 0} C
{j,j + 1} for some j € Z. By Lemma 4.11, B contains infinitely many indecom-
posables. Since modI" >~ B, I is representation infinite. Conversely, suppose I' is
representation infinite, then 53 contains infinitely many indecomposables. By Proposi-
tion 4.13, we have {i € Z | vectX[i]N B # 0} C {j, j + 1} for some j € Z. Then
Lemma 4.16 implies that 7' is concentrated.

(4) The argument is similar to that for (3), except that we need to take into account the
action of a suitable telescopic functor ®, ,. We remark that ®, 4 (T') corresponds to
the bounded t-structure with heart @, , (B). 0

4.4 Description of Bounded t-Structures on Db (X)

We are in a position to formulate our description of bounded t-structures on D”(X) using
HRS-tilt and recollement. Recall once again that for P C P!, (Tp, Fp) denotes the torsion
pair (3.7.1) in cohX.

We begin with the domestic case.

Theorem 4.18 Ler X be a weighted projective line of domestic type. Suppose (D=0, DZ0)
is a bounded t-structure on D?(X) with heart B. Then exactly one of the following holds:

(1) up to the action of PicX, (D=0, D=0) is compatible with the recollement

P i _

Ol i»—>=D = D (X) (O)p,
/

e e
where iy, ji are the inclusion functors, in which case B is of finite length;
(2) for a unique (up to equivalence) proper collection S of simple sheaves and a unique
P c P!, (D=9, D29 is compatible with the recollement

- T —— A,,"'"j!"“\
Db Stay=Sip i D = DP(X) (S)p,
~— [ e

where i, jy are the inclusion functors, such that the corresponding t-structure on S -
is a shift of the HRS-tilt with respect to the torsion pair (S+A N Tp, STA N Fp)

in STA, in which case B is not of finite length and B is noetherian resp. artinian iff
P = resp. P =P

Proof If B is of finite length then the corresponding basic silting object is the direct sum
of a complete set of indecomposable Ext-projectives in D=C. By Lemma 4.15, D=0 has an
Ext-projective object which is a shift of a line bundle and thus up to the action of PicX,
(D=9, D=9 is compatible with the recollement given in (1). Conversely, if (D=0, DY) is
compatible with the recollement in (1), then B is of finite length since bounded t-structures
on O 1P and (O)p have length hearts. If B is not of finite length then by Proposition 4.13,
B satisfies the assumption of Proposition 4.5. By Corollary 4.14, BB is not of finite length
iff {i | vectX[i] N B £ 0} = {;} for some j € Z and thus (D=9, DZ9) fits into type (2) by
Proposition 4.5. The assertion on the noetherianness or artianness of 3 in this case is shown
in Corollary 4.8. O

For the tubular case, we need one more lemma characterizing when the heart B is of
finite length.
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Lemma 4.19 Suppose X is of tubular type. Then B is of finite length iff there are two inde-
composable sheaves E, F with u(E) # w(F) for which E[m], F[n] are 'Dfo—pmjectives
for some m, n.

Proof (=)Let T be a corresponding silting object. Then by Proposition 4.15, for some
q € Q, D 0,4 (T') contains a shift of some simple sheaf and a shift of some line bundle as its
direct summands. The assertion follows immediately.

(<) By Proposition 2.21, either (E, F) or (F, E) is an exceptional pair. We only
consider the case that (F, E) is an exceptional pair since the other case is similar. By
Corollary 2.17, (D=9, D=9) is compatible with the admissible filtration

D’({E, F}*A) ={E,F}*? c E1DP c D.

If w(E) # w(F) then by Lemma 3.18(2), {E, F} LA ~ modA for some representation-
finite finite dimensional hereditary algebra A. It follows from Corollary 2.13 and
Lemma 2.23 that B is of finite length. O

Here comes our description of bounded t-structures in the tubular case.

Theorem 4.20 Let X be a weighted projective line of tubular type. Suppose (D=0, DY) js
a bounded t-structure on DP (X) with heart B. Then exactly one of the following holds:

(1) for a unique p € R\Q, (D=0, DZ9) is a shift of the HRS-tilt with respect to the torsion
pair (coh”™ "X, coh=*X) in cohX, in which case B is neither noetherian nor artinian;
(2)  for a unique n € Q and a unique P C P, (D=0, DZ9) is a shift of the HRS-tilt with
respect to the torsion pair
(add{coh™"X, coh{X | % € P}, add{coh)X, coh<*X | » € P'\ P})
in cohX, in which case B is not of finite length and B is noetherian resp. artinian iff
P =0resp. P = IP’_l;
(3) for a unique q € Q, a unique (up to equivalence) nonempty proper collection S of
simple sheaves and a unique P C P!, CDOOV,I((DEO, D=%) is compatible with the

recollement
-— i
Dh(Sta)y=Sip i D = D’(X) (S)p,
~— e

where i, ji are the inclusion functors, such that the corresponding t-structure on
DP (S +A) is a shift of the HRS-tilt with respect to the torsion pair (S *ANTp, S+AN
Fp)in S A, inwhich case B is not of finite length and B is noetherian resp. artinian
iff P =@ resp. P =P';

(4) for some q € @ and some exceptional simple sheaf S, @oo,q((DSO, D=%) s
compatible with the recollement

- T K—--j!*—“\
Db(SJ__A) :SJ_D i*HD:Db(X) <S>D7
R N

where iy, ji are the inclusion functors, such that the corresponding t-structure on
DY (S LAY has a length heart, in which case B is of finite length.
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Proof Tf B is of finite length then by Proposition 4.15, for some ¢ € Q, there is some excep-
tional simple sheaf S which is @« , (D=')-projective for some /. Hence ®og 4 (D=0, D=0))
is compatible with the recollement of the form in (4). The corresponding t-structure on
DP(S+4) has a length heart by Lemma 2.12. Suppose B is not of finite length. By Propo-
sition 4.13, for some ¢ € Q and some j € Z, {i | vectX[i] N Do q(B) #0} C {j, j+ 1}
Thus Proposition 4.5 applies. Moreover, by Lemma 4.10, either (I) <I>oo,q(D50) contains
no nonzero Ext-projective or (II) all indecomposable CDoo,q(Dfo)-projectives has the same
slope.

First consider the case (I): QDOO,,!(DEO) contains no nonzero Ext-projective. Then the
asserted collection S of simple sheaves in Proposition 4.5 is empty by Lemma 2.18. Hence
up to shift we have two cases: 1) oo 4 (B) = Fp[1] * Tp for some P C P!, or2) (T, F)
is a torsion pair in cohX with cohpX C T C cohX. Moreover, for case 2), there exists no
nonzero sheaf E € 7 with TE € F since ®op 4 (D=%) contains no nonzero Ext-projective.
By Lemma 3.32, we have either 2.1) (7, F) = (coh™ "X, coh<*X) for some u € R\Q, or
2.2) for some p € Q and some P C P!,

(T, F) = (add{coh™X, coh{ X | A € P}, add{coh}X, coh™*X | A ¢ P}).

If case 2.1) occurs then dDOO’q((DSO, Dz%) is of type (1); if 1) or 2.2) occurs,
d>oo,q((D50, D=%) is of type (2). Observe that the class of t-structures of type (1) or (2) is
closed under the action of the telescopic functor @ = q)gol. g Hence (D=0, D=9 is of
type (1) or (2). It is evident that types (1) and (2) are disjoint and the assertion on uniqueness
is also obvious. The assertion on noetherianness or artinianness is proved in Lemma 3.37.

Now consider the case (II): all indecomposable Qw,q(Dfo)—projectives has the same
slope, which we denote by x. By Lemma 2.18, the compatibility of ®« ,((D=C, D=0))
with the recollement in Proposition 4.5 implies that there is a torsion sheaf which is Ext-
projective in some P 4 (D=!). Thus u = oo. It follows that if an indecomposable sheaf
E is Ext-projective in some D=/ then u(E) = ¢. This enforces the uniqueness of g. The
uniqueness of S and P is then asserted in Proposition 4.5. To show that (D=0, D9) is of
type (3), we will show that it is impossible that {i | vectX[i]N ®uo ¢ (B) # 0} = {j, j + 1}.
It sufficies to show that the corresponding t-structure on DP(X’) >~ DP(S+4) is not a shift
of HRS-tilt with respect to any torsion pair (77, ') in cohX’ with cohgX' C 77 C cohX’
(see Remark 4.7). Assume for a contradiction that it was. Since X’ is a weighted projective
line of domestic type, by Corollary 4.23, F'[1]x T’ would be of finite length. Then so would
®y 4 (B), a contradiction. This finishes the proof. O

In light of Lemma 2.7, we can already see certain bijective correspondence from our
theorems for bounded t-structures whose heart is not of finite length. In the following corol-
lary, we identify Z as the group of autoequivalences of D?(X) generated by the translation
functor, which acts freely on the set of bounded t-structures on Db (X).

Corollary 4.21 (1) If X is of domestic type then there is a bijection
{bounded t-structures on D’ (X) whose heart is not of finite length} /7 <—

I_l ({P | P C IP’I} x {bounded t-structures on (S)D}> , (4.4.1)
S

where S runs through all equivalence classes of proper collections of simple sheaves.
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() IfXis of tubular type then there is a bijection

{bounded t-structures on Db (X)) whose heart is not of finite length} /7. <—
R\Q |_| (Q X |_| ({P | P C IP’I} X {bounded t-structures on (S)D})> , (442)
S

where S runs through all equivalence classes of proper collections of simple sheaves.

Suppose X is of domestic or tubular type. Corollary 4.21 reduces the classification of
bounded t-structures on D?(X) whose heart is not of finite length to the classification of
bounded t-structures on (S)p = D?((S).4). Recall that if S # ) then there are positive
integers m, ki, ..., k;; such that (S)4 =~ ]_[;":1 modkAy,;. By Lemma 2.23, each bounded
t-structure on D? (modk&l) has a length heart. So we can achieve the latter classification
by calculating silting objects or simple-minded collections in D? (modkAy,) by virtue of
Ko6nig-Yang correspondences.

For bounded t-structures on D” (X) with length heart, there is no obvious bijective corre-
spondence from the recollement in Theorem 4.18(1) or Theorem 4.20(4). Recall that Db (X)
is triangle equivalent to D?(A) for a canonical algebra A, whose global dimension is at
most 2. So the powerful Konig-Yang correspondences are still applicable. We can try to
compute the collections of simple objects in the heart from the recollements using Proposi-
tion 2.11. Instead, we can try to compute silting objects in D?(X) from these recollements
using [36, Corollary 3.4].

Anyway, for X of tubular type, since S A ~ cohX’ for some weighted projective line
of domestic type, Theorem 4.20(4) reduces the combinatorics in classification of bounded
t-structures on D?(X) with length heart to that in the classification of bounded t-structures
on D?(X') with length heart; for X of domestic type with weight seqence (p1, p2, p3),
Theorem 4.18(1) reduces the combinatorics in the classification of bounded t-structures on
Db (X) with length heart to that in the classification of bounded t-structures on O ip —
DO LAYy ~ DP(k[p1, p2, p3]) (by Theorem 3.17(2)), where k[pi, p2, p3] is the path
algebra of the equioriented star quiver [p1, p2, p3] (a Dynkin quiver here).

All in all, for X of domestic or tubular type, the combinatorics in the classifiction of
bounded t-structures on D?(X) can be reduced to that in the classification of bounded t-
structures on D?(A) for representation-finite finite dimensional hereditary algebras A.

The following example recovers the description of bounded t-structures on D?(P') in
[19, §6.10].

Example 4.22 Let X be of trivial weight type (py, ..., ps), that is, each p; = 1, and thus
cohX =~ cohP!. Then each indecomposable object in A = cohX is isomorphic to either
a torsion sheaf S supported at some point A € P! for some m € Zs1, or a line bundle
O(nc) for some n € Z. By Theorem 4.18, a bounded t-structure whose heart is not a length
category is up to shift of the form (Di_1 *Tp, Fp[l] * Dio) for some P C P!, where

(Tp, Fp) = (add{coh; X | A € P}, add{On?), cohyX | n € Z, A ¢ P}).

To obtain bounded t-structures with length heart, we can compute silting objects directly.
Each basic silting object is up to shift of the form Onc) & O((n + 1)c)[l] for some
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n € Z,1 > 0. Such an object is a tilting object iff / = 0. The t-structure corresponding to
the silting object O(nc) & O((n + 1)c)[I] has heart
add{O(nc), O((n — DOl + 11} ~ modk | | modk ifl >0,
add{cohpX U {O(qo)[1], O(mc) | ¢ < n,m > n}} ~ modk(e = e) if I = 0.

4.5 Torsion Pairs in cohX Revisited

We can now give a more clear description of torsion pairs in cohX since torsion pairs are in
bijective correspondence with certain t-structures.

Proposition 4.23 Suppose X is of domestic type. Each torsion pair (T, F) in cohX fits into
exactly one of the following types:

(1) (T, F) is induced by some tilting sheaf, that is, there is a tilting sheaf T such that
T ={E € coh(X) | Ext'(T, E) =0}, F ={E € coh(X) | Hom(T, E) = 0}.

(2) either T C cohoX or F C cohgX, and thus (T, F) is of the form given in
Lemma 3.29.

Proof Note that T Q cohpX and F g cohpX iff both 7 and F contain nonzero bundles.
So in this case the tilted heart B = F[1] * T satisfies {i | vectX[i]N B # 0} = {0, 1}.
By Corollary 4.14, B is of finite length. Then by Proposition 3.33, (7, F) corresponds to a
tilting sheaf 7', which is exactly the one induced by 7. O

Proposition 4.24 Suppose X is of tubular type. Each torsion pair (T, F) in cohX fits into
exactly one of the following types:

(1) (T, F) is induced by a tilting sheaf, that is, there is a tilting sheaf T such that
T ={E € coh(X) | Ext!(T, E) =0}, F ={E € coh(X) | Hom(T, E) = 0}.

(2) for some n € R\Q, (T, F) = (coh™"X, coh='"X);
(3) for some u € Q, there exists a torsion pair (T, Fy) in cohéfoor each ) € P! such
that

T = add{coh™X, T, | » € P}, F = add{F,, con=*X | 1 € P'};
4) F C cohgX and thus (T, F) is of the form given in Lemma 3.29(2).

Proof Consider the HRS-tilt (Dgo, Dgo) with heart B = F[1] = 7. Obviously types (2),
(3) and (4) form disjoint classes. If (7", F) is a torsion pair of type (2) or (3) or (4) then
either there is no nonzero Dgo-projective or all indecomposable Dgo-projectives have the
same slope and hence F[1] * T is not of finite length by Lemma 4.10. Thus types (2), (3)
and (4) are disjoint from type (1) by Proposition 3.33. Conversely, suppose that (7, F) is a
torsion pair in cohX such that B is not of finite length. We want to show that (7, F) is of
type (2), (3) or (4).

We apply Theorem 4.20. If (Dgo, D;;O) is a t-structure of type Theorem 4.20(1) resp.
Theorem 4.20(2) then obviously (7, F) is of type (2) resp. (3). Otherwise, (Dgo, D%O) is
of type Theorem 4.20(3). Denote

B = ®ny(B) = Poo g (FI115T),

where ¢ is the unique element in Q asserted in Theorem 4.20(3). From the proof of Theo-
rem 4.20, we see that {i | vectX[i] N B # 0} = {;j} for some j. If F C cohoX then (T, F)
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is of type (4). Suppose F contains nonzero bundles. Then by Lemma 3.31, coh*X C F for
u < gq. Now that coh*X[1] C F[1] C B, we have vectX[1] N B # 0 by Lemma 3.13(2).
Hence j = 1. Moreover, an 1ndecomposable sheaf E such that &, q(E )y e Db (cohOX) has
slope pu(E) = g. It follows that B ¢ A[1]*cohoX c A[1]%.A. Thus B = F[1]% T, where
(T, F) is the torsion pair

(add{T;, | » € P}, add{vectX, F3 | » € P'})
for some torsion pair (7~E, —7?1) in coh; X. Let
(Tas Fo) = (@4,00(Th), Pg.00(F)),
which is a torsion pair in cthX. Then we have
(T, F) = (add{coh™ X, T;. | » € P'}, add{F;, coh=IX | » € P'}),
which is of type (3). We are done. O

5 Derived Equivalence
5.1 Serre Functor and Derived Equivalence

The main theorem of [44] states that given a finite dimensional hereditary algebra A and
a bounded t-structure (D=0, DZ0) with heart 3 on D?(A), the inclusion B < D’(A)
extends to a derived equivalence Db (B) ~ Db (A) iff the Serre functor of D?(A) is right t-
exact with respect to the t-structure (D=0, DZ0). This motivates us to consider the following

Assertion 5.1 For a Hom-finite k-linear triangulated category D with a Serre functor and
a bounded t-structure (D=0, DZ%) on D with heart B, the inclusion of B into D extends to
an exact equivalence DP(B) =~ D iff the Serre functor is right t-exact.

The necessity of Assertion 5.1 always holds by [44, Corollary 4.13] whereas [44, Exam-
ple 9.4, Example 9.5] show that the sufficiency does not hold in general. We put it in the
form only to stress the role of the Serre functor. Hopefully there would exist more classes
of triangulated categories such that Assertion 5.1 hold. Observe that if 7 is a k-linear trian-
gulated category that is triangle equivalent to D then Assertion 5.1 holds for 7 iff it holds
for D.

To give an application of our results on bounded t-structures on the bounded derived
category DP?(X) of coherent sheaves over a weighted projective line X, we will prove the
following

Theorem 5.2 If X is of domestic or tubular type then Assertion 5.1 holds for D = Db (X).
Since the result of [44] embraces the wild case, it is tempting to make the following

Conjecture 5.3 Given an arbitrary weighted projective line X, Assertion 5.1 holds for D =
Db (X).

We will see in Lemma 5.13 that this does hold for a certain class of t-structures on D? (X).

Recall that for X of domestic type, cohX is derived equivalent to modI" for a tame
hereditary algebra I". Thus the conclusion for this case is already covered by [44]. The new
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part of Theorem 5.2 is for the tubular case. Recall that a tubular algebra A, introduced
by Ringel in [43], can be realized as the endomorphism algebra of a tilting sheaf over a
weighted projective line of tubular type. In particular, D?(A) is triangle equivalent to D? (X)
for some weighted projective line X of tubular type. So Theorem 5.2 yields the following

Corollary 5.4 Assume that k is an algebraically closed field. Assertion 5.1 holds for D =
DP(A) where A is a tubular algebra over k.

Here let us review some necessary background. Let D be a triangulated category
equipped with a bounded t-structure whose heart is denoted by B. An exact functor F :
DY(B) — D is called a realization functor if F is t-exact and the restriction Fp:B— DB
is isomorphic to the identity functor of . This is a reasonable functor but the existence
of such a functor is a problem. By virtue of the filtered derived category, [7, §3.1] con-
structed a realization functor for arbitrary bounded t-structure on a triangulated subcategory
of DT (A), where A is an abelian category with enough injectives. Beilinson [6] abstracted
this theme and introduced the notion of a filtered triangulated category. Given a triangulated
category D with a filtered triangulated category over it (see [6, Appendix] for the precise
definition), [6, Appendix] constructed a realization functor for arbitrary bounded t-structure
on D. Recently, [16, §3] showed that an algebraic triangulated category indeed admits a
filtered triangulated category over it and so generally we have

Proposition 5.5 [16] A realization functor exists for any bounded t-structure on an
algebraic triangulated category.

A realization functor is not necessarily an equivalence. For example, Example 4.22 tells
us that there is a bounded t-structure on D? (P') with heart equivalent to modk | [ modk but
definitely modk | [ modk is not derived equivalent to cohP!. The following lemma helps us
determine when a realization functor is an equivalence.

Lemma 5.6 [6, Lemma 1.4] Let Dy, D, be two triangulated categories with bounded t-
structures. Suppose Ay, Ay are the hearts respectively. Let F : D) — D; be an exact
Sfunctor such that F is t-exact and F| 4, : Ay — A is an equivalence. The following are
equivalent:

(1) F :Dy — D; is an equivalence;
(2) For each A,B € A, the map F : Hom"D](A, B) — Hom”Dz(F(A), F(B)) is an
isomorphism.
IfDy = Db (A1) then there is an additional equivalent condition:
(3) Forany A,B €¢ A, n > 0and f € Hom”DZ(F(A),F(B)), there exists a
monomorphism B — B’ in A effacing f.

As remarked in [7, Remarque 3.1.17], we have always

Hom', , (A, B) = Hom}, (F(A), F(B))
for A,B e Ajandn < 1.

Although we don’t know the uniqueness of a realization functor, if some realization
functor Fy : D?(B) — Disan equivalence then any realization functor F; : DY(B) - D
is an equivalence by Lemma 5.6. So it makes sense to say that the inclusion B <> D extends
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to an exact equivalence D?(B) ~ D if some realization functor F : D?(B) — D is an
equivalence.

If there exists an exact equivalence H : D’ (B) = D which is moreover t-exact then any
realization functor F : D?(B) — D is an equivalence; given an exact autoequivalence ®
of D, there exists a realization functor F : D?(B) — D iff there exists a realization functor
G : DY(®(B)) — D and F is an equivalence iff so is G. We will use these trivial facts
implicitly.

A remarkable instance of a realization functor being an equivalence is that for a tilted
heart with respect to a (co-)tilting torsion theory introduced in [22].

Proposition 5.7 Suppose that A is an abelian category and (T, F) a torsion pair in A. If
T is a tilting torsion class or F is a co-tilting torsion-free class then the inclusion of the

tilted heart F[11% T into D (A) extends to an exact equivalence D (F[1]1xT) = DP(A).

Remark 5.8 (1) Proposition 5.7 is proved originally in [22] requiring enough projectives
or enough injectives in A (see [22, Theorem 3.3]). The additional condition is removed
in [11] using the derived category of an exact category (see [11, Proposition 5.4.3]).
See also [15] for a short proof via an explicit construction of the equivalence functor.

(2) Generalizing Proposition 5.7, [13] contains a characterization of when the inclusion
of the tilted heart F[1] 7 into D?(A) extends to an exact equivalence for a torsion
pair (7, F) in A.

5.2 Reduction via Ext-Projectives

In [44], one step of the proof of the main theorem (i.e., Assertion 5.1 holds for DP(A) for
a finite dimensional hereditary algebra A) is reduction via Ext-projectives (more precisely,
the simple top of an Ext-projective). The reduction relies on [44, Proposition 8.6], but we
don’t know whether there is a corresponding version in our setup.

Nevertheless, we have a similar but not exactly the same version, i.e., Proposition 5.9 to
perform reduction. Although Proposition 5.9 works for a more general class of triangulated
categories, we have additional assumption on our Ext-projectives to do reduction and so we
have to make efforts to assure the existence of such an Ext-projective object.

Let D be a k-linear algebraic triangulated category of finite type admiting a Serre functor
S. Let (D=°, D=%) be a bounded t-structure on D with heart 3. These hypothesis will be
retained through this subsection.

Let X € D=0 be an exceptional object such that SX € D=0, By Lemma 2.14, X is D=0-
projective. Denote D; := X +P = 1DPSX. By Lemma 2.15, (D=9, D=%) is compatible
with the recollement

i
1 s D ./*

S T
where iy, j) are the inclusion functors. We have j, X = SX; for Y € D, we have j*Y =
Hom*(X, Y) ® X. There are triangles

D (X)p, (5.2.1)

Co-ev

Hom*®*(X,Y) ® X BY 5 iyi*Y s, 'Y 5 VS DHom* (Y, SX)) ® SX ~> .

D; has a Serre functor S| = i'Si, by Proposition 2.4. Moreover, we have an induced
t-structure
(D%, D% = (D1 N D=, D; N DY)
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on D) with heart B; = D N B. We keep these notation in the following proposition.
Proposition 5.9 Ler X € D=0 be an exceptional object. Suppose that X and SX lie in B
and that either X or SX is simple in B. Then

(1) S is right t-exact with respect to (D=0, D=%) iff so is S| with respect to the t-structure
(D;°, D7) on Dy;

(2) the inclusion B — D extends to an exact equivalence D°(B) ~ D iff the inclusion
By < D\ extends to an exact equivalence Db (B)) ~ D;.

Proof Since X is D=0-projective, we have Extg X, = Hom%)(X, Y)=0forallY € B,
and thus X is a projective object in /3. Similarly, since SX is Ext-injective in D=, SX is an
injective object in 5.

(1) First we show that the right t-exactness of S| implies that of S. Let ¥ € D=, Then
i*Y € DF°, i,i*Y € D=0
and we have a triangle
isi'Sixi*Y = Siyi*Y — DHom® (Si,i*Y,SX) ® SX ~ .
Note that for n < 0, we have X[n] € D=! and
Hom" (Si4i*Y, SX) = Hom" (i,i*Y, X) = 0.
Thus
DHom* (Si,i*Y, SX) ® SX = @,>0DHom" (Si,i*Y, SX) ® SX[n] € D=.
If Sy is right t-exact then
i Sixi*Y = i,S1i*Y € D=0.
Hence Si,i*Y € D=0. Since X is D=-projective, we have
S(Hom*(X,Y) ® X) = S(@u<oHom" (X, Y) ® X[—n])
= @n<oHom" (X, Y) ® SX[—n]
e D=0,
Then using the triangle
SHom*(X,Y) ® X — Y — i,i*Y ~),
one knows that SY € D=C. This shows that S is right t-exact.

Now we suppose S is right t-exact and deduce the equivalence between the right
t-exactness of S| and the condition that for each Y € By, the co-evaluation map

HY(SiY) — DHom(H°(Si,Y),SX) ® SX

is an epimorphism in 3. This equivalence will yield the desired implication, as we will see.
For Y € By, S1Y = i'Si,.Y fits into the triangle

i+$1Y — Si,Y — DHom®(Si,Y,SX) ® SX ~ .
Since i,.Y, X € B, we have

DHom® (Si..Y, SX) ® SX = @®=0DHom(i,.Y, X[m]) ® SX[m] € D=;
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since S is right t-exact, we have Si,.Y € D=0 Consider the commutative diagram

Z] —— 1<_18SixY —— @®p-oHom(Si, Y, SX[m]) ® SX[m]

l i l

i.S1Y SiY coey DHom®*(Si,Y, SX) ® SX

| i l

Zy —— HO(Si,Y) ——> DHom(H"(Si,Y), SX) ® SX,

where rows and columns are distinguished triangles. Then Z; € D=0 and hence i,S;Y €
D=0 iff Z, € D=0. By the triangle
Zy — H°(Si,Y) — DHom(H(Si,Y), SX))) ~,
we have Z; e D%l Taking cohomology tells us that Z, € B iff the morphism
HY@Si.Y) — DHom(H°(Si.Y),SX) ® SX is epic in B. Hence we have the claimed
equivalence that S is right t-exact iff for each Y € B, the co-evaluation map
H(SiY) — DHom(H(Si,Y), SX) ® SX

is epic in B.

If SX is simple in B then clearly the co-evaluation map is an epimorphism. If X is simple
in 3 then X is a simple projective. Hence for Y € B,

Hom(H°(Si,Y), SX) = Hom(Si,Y, SX) = Hom(i, Y, X) = 0

and so the co-evaluation map is also an epimorphism.

(2) If X is simple in B then for Y € B, the evaluation map Hom(X,Y) ® X — Y isa
monomorphism in B. Therefore

ixi"Y = cone(Hom®*(X,Y)® X — Y) = cone(Hom(X,Y)® X — Y)
coincides with the cokernel of the evaluation map
Hom(X,Y)® X - Y

in B, whence i*Y € B;. It follows that i * is t-exact and restricts to an exact functor
i*|p : B — Bj, which is left adjoint to the inclusion ¢ = iy, : B < B. This
implies that the inclusion ¢ : B} <> B extends to a fully faithful exact functor Db ) :
Db (By) — Db(B). Similarly, if SX is simple in BB then i' is t-exact and restricts to an
exact functor i !|5 : B — Bj. This also implies that the inclusion ¢ = iy, : B < B

extends to a fully faithful embedding Db () : DP(B)) — DP(B). In either case, we
have a fully faithful functor D? (1) : D*(B;) — D*(B).

Let F : D?(B) — D be a realization functor. Note that F maps the essential image of
DP(B;) in D?(B) into D and F; := F o D?()) : DP(B;) — D, is a realization functor.
We now show our assertion.

(=) If F is an equivalence then for any Y1, Y, € B, we have

Hom”Db(B])(Yl, Yz) :> HomilDb(B)(Yl, Yz) :) Hom”D(Y1 . Yz) = Hom’{)l (Y], Yz).
Hence Fi is an equivalence.
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(<) Assume that Fy : D?(B)) — D is an equivalence. Since both D(B) and D are
generated by {X} U B and also by {SX} U B, to show that F is an equivalence, it sufficies
to show that F induces an isomorphism

(+)  Homl, s (Y1, Y2) = Homlps (Y1, Y2)

for each Y| € {X} U By, Y, € {SX} U Bj. (x) always holds for n < 1 and so we need to
show that () holds for n > 2. Since F; : D?(B;) — Dj is an equivalence, (*) holds for
Y1, Y, € By. Since X is Ext-projective in D= and projective in 13,

Hom’, (X, Y2) =0 = Hom’;)b(B)(X, Y>)

for Y, € {SX}UB; and n > 1; since SX is Ext-injective in D=9 and injective in BB, we have

Hom’, (Y;,SX) =0 = Hom”Db(B)(Yl, SX)

for Y; € {X}U B and n > 1. This finishes the proof. O

We use the following fact to find an object satisfying the assumption of Proposition 5.9.
For an exceptional object X € D, denote My = co-cone(X A sx ), where 1 is a
nonzero morphism. Since Hom(X, SX) = DHom(X, X) = k, My is up to isomorphism
independent of the choice of 7.

Lemma 5.10 Ler X be an exceptional Ext-projective object in D=C. With the above nota-
tion, if Mx € D=0 then SX is a simple object in B; if Mx € D= then X is a simple object
in B. In particular, if Mx[l] € B for some | then either X or SX is simple in BB.

Proof We will use the recollement (5.2.1), with which the t-structure (D=0, DZ%) is com-
patible. Denote by (DQSO, Dzzo) the corresponding t-structure on (X)p ~ DP(k). Since
Jj* X =X¢e¢ Dfo and j*SX =X € DZO, we know that the heart of (DZSO, DZZO) is add X.
Then by Proposition 2.11, ji. X is simple in 3 and ji, X fits into the two triangles
ixT<0i' 1X = jX = juX ~, X = o X = iy T0i* ju X o
If Mx € D! then
My =i‘Mx € D}
thus
iyT<oi' 1 X = iyT<oMx =0, juLX = jX =X;
if Mx € D=0 then
Mx = i*Mx € D}°
thus
ixT01" ju X = ixT=0(Mx[1]) =0, juX = SX.
These show our first assertion and the second assertion follows easily. O

Remark 5.11 If X, SX lie in B then by the definition of jy, we have ji,(X) = im(p : X —
SX), which is the simple top (resp. socle) of X (resp. SX).

5.3 Proof of Theorem 5.2
We prove Theorem 5.2 in this subsection. At first, we consider again the category A, of

finite dimensional nilpotent k-representations of the cyclic quiver A;_; with ¢ vertices. The
following lemma refines Lemma 2.29 and makes feasible our induction process.
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Lemma 5.12 For a bounded t-structure (D=0, D=%) on D’ (A,) with heart BB, which is not
a shift of the standard one, there exists a simple object X € A; such that for some some
n ez, Xnlis Dfo—projeczive and either X[n) or SX[n] is a simple object in B, where S is
the Serre functor of D”(A,).

Proof We will use freely the notation introduced at the start of Section 2.9. Let S be the
proper collection of simple objects in A, asserted in Proposition 2.30. Then for some S € S,
(D=0, D=9 is compatible with the recollement

/’"’i*"w"“\ Af”’"'"j!'*\
gip iv—>=D = DV(A,) —i*— (S)p,
B T I i e

i e

where i, ji are the inclusion functors. Denote
D) =512, D7 =D, nD=, D=* =D, n D=, B, =Dy N B.

Then (DISO, DIZO) is a bounded t-structure on D; with heart ;.

We will use induction on the pair (¢, #S) to prove our assertion. As the first step of
induction, we consider arbitrary ¢ and S = 1. Then & = {S} and, up to a shift of B,
the corresponding t-structure on S 2 has heart S +4:. In particular, 7S?! € B. Since we
have a triangle 7S”?1 — § — S[1] ~+, S is the desired object by Lemma 5.10. Now
suppose #S > 1. In particular, 7 > 2. By the induction hypothesis, there exist some simple
S’ € S14: and some [ € Z such that S'[{] is simple in B; and is moreover Dfo-projective

or Dlzo-injective. Note that a simple object in S -4 is isomorphic to 7 S'?! or to some simple
object in A; nonisomorphic to 7S, S. If §’ = 5! then we have tS?1[/] € B and § is the
desired object by Lemma 5.10. It remains to consider the case when §’ is a simple object in
A; nonisomorphic to S or S. Up to a shift of /3, we can suppose [ = 0. Then S’ is either
Dfo-projective or Dlzo-injective.

If S’ is leo-projective then S5 € Dlzo C D=9 where S; = i'Si, is the Serre functor

of D = § 7. Easy computation shows that

S'[1] if " 2t7ls:

—
15 = { SR if s = ls.

If 8’ 2 t=1S then t8'[1] € DZ0 and thus S’ is D=C-projective. Moreover S’ is simple in 3|
thus simple in 3, whence ' is the desired object. If &’ = v~ S then tS?! € D!, Suppose
j*B = add S[n]. Then S € D=" tS[1] € D>".If n > 1 then using the triangle 7 S1? —
S — t8[1] ~», S[1] € D" and 7S € D=! imply § € D=!. Then §' = t~!§ is D=0-
projective. Now that t~!S is simple in B, T~!S is the desired. If n < 0 then zS?! € D!
and tS[1] € D" imply S[n] € D=", whereby yielding S[n] € B since we already have
S[n] € D=Y. Now that S[n] € B and tS[n + 1] € D=0, S[n] is D="-projective. Moreover,
we have tS[n] € DZ! and thus S[n] is simple in 5 by Lemma 5.10. Therefore S is the
desired.

Similar arguments apply to the case when §’ is Dlzo-injective. The following are some
sketchy arguments. Since ¢ > 2, 728 2 S. We have

LS [—1] if 8 2 £28;

—1 ka—1
Sy S =i*s l*S’Z{TS[Zl[—I] if ' =128,
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Suppose j*B = add S[n]. If S’ 2 v2S then t—1S’ is the desired. If §' = 2§ then 7 is the
desired when n < —2 and S is the desired when n > —2. We are done. O

We show that Assertion 5.1 holds for a class of bounded t-structures on D? (X), where X
is a weighted projective line of arbitrary type.

Lemma 5.13 Let X = X(p, A) be a weighted projective line. Let (D=9, D=0 pe a bounded
t-structure on D = DP(X) whose heart B satisfies {i | vectX[i]N B # 0} C {j, j + 1}.
Then Assertion 5.1 holds under these additional assumptions.

Proof We have only to show the sufficiency. Let S be the proper collection of simple
sheaves asserted in Proposition 4.5. If S = {J then up to a shift of B we have B = F[1]* T
for some torsion pair (7, F) in cohX. By Lemma 3.31, either 7 is a tilting torsion class or
F is a cotilting torsion-free class. Then it follows from Proposition 5.7 that the inclusion
B — DP(X) extends to an exact equivalence D (B) S pb (X). In particular, if the weight
sequence p is trivial then there is no exceptional simple sheaves and S = @ and so the asser-
tion also holds in this case. Now we use induction on the weight sequence p and consider a
nontrivial weight sequence p = (py, ..., pn). We suppose S # . n

Take A € P! such that S, = S N coh; X # @. By Lemma 4.4, (D=0, DZ0) restricts to
a bounded t-structure (Dfo, Dfo) on D’ (coh; X). Let B, = D?(coh, X) N B be its heart.
Recall that coh, X ~ A,,. By Lemma 5.12, for some exceptional simple sheaf S € S
and some n € Z, S[n] is Dfo-projective and either S[n] or TS[n + 1] is simple in B5;.
Sn] € D=0, tS8[n + 1] € D= imply that S[n] is D=C-projective. Then (D=0, D=0) is
compatible with the recollement

Sk

i i
DM (X/) = DP($H4) — i D=D'X) —/'——= (S, (3D
Sl D

where iy, ji are the inclusion functors, X' = X(E/, M) is a weighted projective line with
weight sequence

P'=(p1, .. pic1, i — 1, Pists oo, Pu)

and the exact equivalence DP(X) ~ D?(S1A4) is induced by the equivalence S LA~
cohX’ (see Theorem 3.15). If the Serre functor S = 7(—)[1] is right t-exact then
S[n], TS[n + 1] € B. One easily shows

S[n] if S[n] is simple in B;

J(S[nl) = im(n : Sin] — 7S{n +1]) = { tS[n+1] iftS[n + 1]is simple in B;. °

where 1 : S[n] — t©S[n + 1] is any nonzero morphism. Hence either S[n] or tS[n + 1]
is simple in B. Then by Proposition 5.9(1), the right t-exactness of the Serre functor S of
DP(X) implies the right t-exactness of the Serre functor S; of D’ (X).

Let B be the heart of the corresponding t-structure on D” (X'). Since the essential image
of vectX'[i] N By under the sequence of functors D?(X') ~ DP(§+A) — DI(X) is
contained in vectX[i] N B,

{i | vectX[i]NB #£0} C{j,j+1} implies {i|vectX'[i]NB; #0}C{j,j+1}.

By the induction hypothesis, the right t-exactness of S; implies that the inclusion of 3; into
Db (X’) extends to a derived equivalence Db(B)) ~ D?(X’). Then by Proposition 5.9(2),
the inclusion B < DP(X) extends to an exact equivalence D?(B) ~ Db (X). O
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We eventually arrive at our proof of Assertion 5.1 for D = D’(X), where X is of
domestic or tubular type.

Proof of Theorem 5.2 We show the sufficiency. Assume that the Serre functor S is right t-
exact. We have shown in Lemma 5.13 that if {i | vectX[i]N B # 0} C {j,j + 1} then
Assertion 5.1 holds. If X is of domestic or tubular type and B does not satisfy the condition
even up to the action of AutD”(X) then B is of finite length by Proposition 4.13. The
remaining argument goes as in [44, §4]. By Theorem 2.22, (D=0, D=%) corresponds to a
silting object 7' in D?(X). In particular, we have an equivalence F : B = mod End(T). If
S is right t-exact then T is a tilting object by Lemma 2.24, whose endomorphism algebra
has finite global dimension by Proposition 4.17. The composition

DBy 2D Db End(Ty) 25 Db (x)
is an exact equivalence which maps B into B. Thus the inclusion B < D?(X) extends to
an exact equivalence DY (B) ~ Db (X). O

Remark 5.14 'We make a final remark on a potential approach to Conjecture 5.3, based on
the validity of the following

Conjecture 5.15 Let X be a weighted projective line of arbitrary type. For any bounded t-
structure (D=0, DZ0) on Db (X), D=0 contains no nonzero Ext-projective iff it is a shift of
the HRS-tilt with respect to some torsion pair (T, F) in cohX such that there is no nonzero
sheaf E € T with tE € F.

The sufficiency obviously holds. The necessity holds in the domestic and tubular case by
our description of bounded t-structures.

The aforementioned potential approach is as follows. Let (D=, D=%) be a bounded t-
structure on D?(X) with heart B. We can first try to show that Assertion 5.1 holds when
D=0 contains no nonzero Ext-projective. For example, if Conjecture 5.15 holds, then Asser-
tion 5.1 holds by Lemma 3.31 and Proposition 5.7. Then we consider the case when D=°
contains a nonzero Ext-projective. Suppose all indecomposable Ext-projectives are torsion
sheaves and suppose Conjecture 5.15 is true. Then the heart 3 satisfies {i | vectX[i]N B #
0} € {j,j + 1} for some j € Z and Assertion 5.1 holds by Lemma 5.13. It remains to
consider the case when some indecomposable bundle E is D=C-projective (up to a shift of
B). On one hand, it’s possible that our previous approach still works, i.e., we can still apply
Proposition 5.9 in some way. On the other hand, since E is exceptional, by Proposition 3.17,
E +eohx ~ modH for some hereditary algebra H. Stanley and van Roosmalen’s result [44]
may apply here.
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