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Abstract
Let F25 be the family of irreducible lowest weight modules for the Virasoro algebra of
central charge 25 which are not isomorphic to Verma modules. Let L(25, 0) be the Vira-
soro vertex operator algebra of central charge 25. We prove that the fusion rules for
the L(25, 0)-modules in F25 are in correspondence with the tensor rules for the irre-
ducible finite dimensional representations of sl(2,C), extending the known correspondence
between modules for the Virasoro algebras of dual central charges 1 and 25.
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1 introduction

In 1990, in their important paper [3], Feigin and Fuchs described the structure of Verma
modules for the Virasoro algebra and the homomorphisms between them. They stated the
projection formulas for singular vectors on the density modules and described the duality
between the category of Verma modules with central charge c and the category of Verma
modules with central charge 26 − c for c ∈ C. In particular, they established an anti-
equivalence of additive categories between the category of Verma modules for V irc=1 and
the Verma modules for V irc=25 which assigns the Verma module of central charge 1 and
lowest weight h, M(1, h), to the Verma module of central charge 25 and lowest weight
1 − h, M(25, 1 − h) and reverses morphisms. On the other hand, Segal on his 1981 paper
[18] noted a correspondence between the finite dimensional irreducible representations of
sl(2,C) and certain representations of the Virasoro algebra of central charge 1 by a dual
pair type of argument. Later, Frenkel and Zhu, proved in [6] that for c ∈ C, L(c, 0), the
irreducible quotient of the Verma module M(c, 0), has a vertex algebra operator algebra
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structure and that the irreducible quotient of M(c, h), L(c, h), is an L(c, 0)-module for
h ∈ C. The vertex algebra version of the decomposition noted in [18] was proved by Dong
and Griess in [2]. In his doctorate thesis [19], Styrkas used the dual pair decomposition of
Segal to state an antiequivalence of tensor categories between the category of irreducible
finite dimensional modules for sl(2,C) and the semisimple tensor category generated by
the irreducible L(1, 0)-modules which are not Verma modules, i.e the modules of the from

L
(
1, n2

4

)
for n ≥ 0. Milas, independently proved in [14], that the fusion rules for the

irreducible non verma L(1, 0) modules coincide with the tensor rules of the irreducible
finite dimensional representations of sl(2,C). More recently, McRae proved in [17] using
the fusion rules from [14] that the semisimple category generated by the L(1, 0)-modules

L
(
1, m2

4

)
for m ≥ 0 is equivalent to the tensor structure of finite dimensional irreducible

sl(2,C)-modules modified by a 3-cocycle.
In this work, following the methods in [14] and [7] together with results in [11, 20,

21] we show that the fusion rules for the non-Verma irreducible modules for the Vira-
soro algebra L(25, 0) are the same as the tensor rules for the finite dimensional irreducible
representations of sl(2,C). Our main result is

Theorem 1.1 Let m, n ≥ 0. Then

dim I

( L
(
25, 1 − (r+2)2

4

)

L
(
25, 1 − (m+2)2

4

)
L
(
25, 1 − (n+2)2

4

)
)

=
{
1 if r ∈ {|m − n|, |m − n| + 2, · · · , m + n}
0 otherwise.

The fact that the fusion rules for this distinguished family of L(25, 0)-modules coin-
cide with those of sl(2,C) generalizes the existing duality between the representations for
L(1, 0) and L(25, 0). Namely, our result shows that the relation between the Virasoro alge-
bras of central charge 1 and 25 is deeper than simply a duality of additive categories, as
illustrated in Figs. 1 and 2 below.

Our theorem suggests that this equivalence can be extended to an equivalence of
semisimple tensor categories. This tensor category equivalence will be described in a future
paper. In [15] and [16] logarithmic extensions of intertwining operators between theL(1, 0)-
modules were studied and this technique can be adapted to the case of central charge 25
with the aim of applying the logarithmic tensor product theory [9] to the category CL(25,0).
Moreover, in light of the corresponding Feigin-Fuchs duality [1], it is an interesting question
to explore whether this equivalence of fusion rules and tensor categories holds for general
W -algebras.

Fig. 1 Dualities between sl(2,C)

and the Virasoro vertex algebras
of central charges 1 and 25
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Fusion Rules for the Virasoro Algebra of Central Charge 25

Fig. 2 Correspondence of
modules in the dualities between
representations of L(25, 0),
L(1, 0) and sl(2,C)

2 Preliminaries

2.1 The Virasoro Algebra

The Virasoro Lie algebra, denoted V ir throughout this work, is the complex Lie algebra
with generators {C, {Ln}n∈Z} and relations

[Ln, Lm] = (n − m)Lm+n + (n3 − n)

12
δn,−mC

[Ln,C] = 0.

2.1.1 VermaModules

For complex numbers c and h, the Verma moduleM(c, h) for the Virasoro algebra is defined
as

M(c, h) := U(V ir)U(Vir≥0)C
h
c,

where the V ir≥0 := ⊕
n≥0 CLn ⊕ CC, and the V ir≥0-module structure of the one

dimensional space Ch
c := C|0〉c,h is given by

Ln|0〉c,h = 0 for n > 0,

L0|0〉c,h = h|0〉c,h,
C|0〉c,h = c|0〉c,h.

We denote by J (c, h) the unique (possibly trivial) maximal submodule of M(c, h) and by

L(c, h) := M(c, h)/J (c, h)

its irreducible quotient. On the other hand, the contragredient module M(c, h)′ is defined as

M(c, h)′ :=
⊕
n∈Z

Hom(M(c, h)n,C)

where M(c, h)n := {v ∈ M(c, h) | L0v = nv}.

2.1.2 Density Modules

For each λ and μ the density module for the Virasoro algebra Dλ,μ is the module spanned
by vectors {wr }r∈Z with action given by

Ln.wr = (μ + r + λ(n + 1))wr−n.

2.1.3 Singular Vectors

We recall the results on projection formulas for singular vectors on density modules
obtained in [3] following the exposition in [10]:
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In M(c, h) there is a singular vector of level N if and only if there exists p, q ∈ Z+ such
that pq = N and t ∈ C such that

c = c(t) = 13 − 6t − 6t−1 (2.1)

h = hp,q(t) = p2 − 1

4
t − pq − 1

2
+ q2 − 1

4
t−1.

If vp,q(t) is the singular vector on M(c, h) then vp.q(t) = Op,q(t)|0〉c,h with

Op,q(t) =
∑

|I |=pq

a
p,q
I (t)L−I

where L−I = L−i1 · · · L−in and |I | = i1 + · · · in. In this formula the sum is over sequences
I = {i1, · · · in} of ordered tuples i1 ≥ · · · ≥ in, each coefficient a

p,q
I (t) depends polyno-

mially on t and t−1 and by convention the coefficient of (L−1)
pq is 1. Consider Dλ,μ the

density module with basis {wr }r∈Z as in Section 2.1.2. We define the function f (λ, μ, t) by

(Op,q(t))w0 = fp,q(λ, μ, t)wpq

in Dλ,μ. Then, we have the following result proved in [3]:

Proposition 2.1 Let θ = √−t−1 and let

Ap,q(l, k) =
((

p − 1

2
+ l

)
θ−1 +

(
q − 1

2
+ k

)
θ

)((
p + 1

2
− l

)
θ−1 +

(
q + 1

2
− k

)
θ

)
.

Then,

f 2
p,q (λ, μ, t) =

∏

− p−1
2 ≤l≤ p−1

2

− q−1
2 ≤k≤ q−1

2

((
μ + Ap,q(l, k)

) (
μ + Ap,q(−l,−k)

)− 4λ(lθ−1 + kθ)2
)
. (2.2)

2.2 Vertex Algebras

For a C-algebra R, we will denote by R((z)) the space of Laurent series, namely

R((z)) =
{∑

l∈Z
alz

l | al 	= 0 for finitely many negative l

}
.

On the other hand, if W is a C-vector space, we denote by W {z} the space of W -valued
formal series involving the rational powers of z. Namely,

W {z} =
⎧⎨
⎩
∑
n∈Q

wnz
n | wn ∈ W

⎫⎬
⎭ .

Definition 2.2 Let V be a vector space C and EndV the algebra of linear operators on V .
We say that a power series

a(z) =
∑
j∈Z

aj z
−j ∈ EndV [[z±1]]

is a field if for any v ∈ V ajv = 0 for j >> 0. That is, for each v ∈ V ,

a(z)v ∈ V ((z)).
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Fusion Rules for the Virasoro Algebra of Central Charge 25

Definition 2.3 [5] A vertex algebra (V , Y, |0〉, T ) consists of a C-vector space V , a distin-
guished vector |0〉 ∈ V called the vacuum vector, an operator T : V −→ V and a linear
map

Y ( . , z) : V −→ End V [[z±1]]
taking each a ∈ V to a field acting on V,

Y (a, z) =
∑
n∈Z

anz
−n−1.

These data are subject to the following axioms for all a, b ∈ V :

(1) Vacuum axioms

Y (|0〉, z) = IdV

Y (a, z)|0〉 ∈ V [[z]] and Y (a, z)|0〉|z=0 = a,

(2) Translation axioms

[T , Y (a, z)] = d
dz

Y (a, z)

T |0〉 = 0

(3) The Jacobi identity

z−1δ

(
x − y

z

)
Y (a, x) Y (b, y)c − z−1δ

(−y+x
z

)
Y (b, y)Y (a, x)c =

y−1δ
(

x−z
y

)
Y (Y (a, z)b, y)c. (2.3)

Definition 2.4 A vertex operator algebra V is a Z-graded vertex algebra

V =
∐
n∈Z

Vn with dimVn < ∞, n = wtv and Vn = 0 for n sufficiently small,

together with a homogeneous conformal vector ω ∈ V2 satifying the following:
If L(n) := ωn+1 for n ∈ Z so that Y (ω, z) =

∑
n∈Z

L(n)z−n−2 then,

[L(m), L(n)] = (m − n)L(m + n) + 1

12
(m3 − m)δm+n,0c

for c ∈ Q which we call the rank of V . Moreover, the action of the Virasoro algebra is
compatible with the gradation and the action of T . Namely, L(0)v = nv = (wtv)v for
n ∈ Z, v ∈ Vn and L(−1) = T . The conformal dimension of an operator Y (a, z) is m if
a ∈ Vm. Namely, an|Vl

⊂ Vl+m−n−1

Definition 2.5 A module W for a vertex operator algebra V is a Q-graded vector space

W =
∐
n∈Q

Wn where for w ∈ Wn we write wtw = n (2.4)

such that

dim Wn < ∞ for n ∈ Q and

Wn = 0 for n sufficiently small (2.5)
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together with a linear map

YW ( . , z) : V −→ (End W)[[z, z−1]]
v 
−→ YW (v, z)

such that YW (v, z) is a field for each v ∈ V and the following axioms hold:

YW (|0〉, z) = IdW

z−1δ

(
x − y

z

)
YW (a, x) YW (b, y) − z−1δ

(−y+x
z

)
YW (b, y)YW (a, x) =

y−1δ
(

x−z
y

)
YW (Y (a, z)b, y),

for all a, b ∈ V ,

YW (ω, z) =
∑
n∈Z

lW (n)z−n−2

satisfies

[lW (m), lW (n)] = (m − n)lW (m + n) + 1

12
(m3 − m)δm+n,0rankV,

lW (0)w = (wt w)w for homogeneous w ∈ W (2.6)

and
d

dz
YW (v, z) = YW (L(−1)v, z).

Definition 2.6 A weak module W for a vertex algebra V satisfies all the axioms of a V -
module except possibly (2.4), (2.5) or (2.6).

Definition 2.7 [5] Let V be a vertex operator algebra and let W be a V -module. The
contragredient module W ′ :=⊕n∈Q Hom(Wn,C) has the following V -module structure:

〈Y ′
W ′(a, z)f, w〉 = 〈f, YW

(
exL(1)

(
−x−2

)L(0)
a, z−1

)
w〉,

for a ∈ V , f ∈ W ′, m ∈ W , where 〈 , 〉 denotes the usual paring between a vector space
and its dual vector space.

Definition 2.8 A vertex algebra V is called simple if it is irreducible as a V -module.

Definition 2.9 A vertex algebra V is rational if it has finitely many non-isomorphic
irreducible modules and every finitely generated module is a direct sum of irreducibles.

2.2.1 The Vertex Algebra L (c, 0)

For c ∈ C we first define the V ir-module Mc as

Mc := U(V ir−)U(Vir≥)Cc

where

V ir≥ :=
⊕
n≥−1

CLn ⊕ CC,

2018



Fusion Rules for the Virasoro Algebra of Central Charge 25

V ir− :=
⊕
n≤−2

CLn,

where Cc = C|0〉0 is one dimenensional and its V ir≥-module structure is given by
Ln|0〉0 = 0 for n ≥ −1 and C|0〉0 = c|0〉0. Given the linear isomorphism Mc

∼= U(V ir−)

we use this identification to denote elements of Mc.
The vertex operator algebra structure in Mc is given by:

a) Gradation

wt(L−n1L−n2 · · · L−nk
|0〉0) =

k∑
i=1

ni, n1 ≥ n2 ≥ · · · ≥ nk ≥ 2,

b) vacuum vector |0〉 = |0〉0,

c) translation operator T := L−1

d) conformal vector ω = L−2|0〉0,

e) vertex operators defined by Y (|0〉0, z) := Id ,

Y (L−n1−2L−n2−2 · · ·L−nk−2|0〉0) = 1

n1! n2! · · · nk ! : ∂n1 l(z) · · · ∂nk l(z) : (2.7)

where l(z) =
∑
n∈Z

Lnz
−n−2.

Remark 2.10 Note that if we write Y (ω, z) =
∑
n∈Z

ωnz
−n−1, then ωn+1 = Ln.

Using the description of singular vectors for all Verma modules given by Feigin and
Fuchs [3] we have the following result which determines the vertex algebra structure of
L(c, 0) for c ∈ C:

Lemma 2.11 Let cp,q = 1 − 6(p−q)2

pq
. Then,

i) L(c, 0) = Mc if and only if c 	= cp,q for any p, q ≥ 2, (p, q) = 1.
ii) L(cp,q, 0) = Mcp,q /〈vp,q〉, where vp,q denotes the only (up to scalar) singular vector

in Mcp,q and 〈vp,q〉 denotes the submodule generated by this singular vector.

Therefore, L(c, 0) has a vertex algebra structure given by that on Mc when c 	= cp,q or
by the quotient vertex algebra structure on Mc/〈vp,q〉 when c = cp,q .

Remark 2.12 It was conjectured in [6] and proved in [20] that the vertex Virasoro algebra
L(c, 0) is rational if and only if c = cp,q for p, q ≥ 2 and (p, q) = 1. In particular, this
implies that L(25, 0) is an irrational Virasoro vertex algebra. We will show in this work that,
as in the case of L(1, 0), L(25, 0) admits a natural distinguished family of countably many
irreducibles.

It was proved in [6] that M(c, h) is an L(c, 0)-module with YW = Y .
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2.2.2 The Zhu Algebra and Intertwining Operators

We need to recall some definitions and results from [21] and [6] following the exposition
from [20]:

If V is a vertex operator algebra, Zhu proved (with a slightly modified formula, as
explained in Remark 2.20) that V has an algebra structure with the bilinear map ∗
determined by

a ∗ b = Resz

(
Y (a, z)

(1 − z)wt a

z
b

)

for homogeneous a and for all b ∈ V . Also, recall that if O(V ) is defined as the linear span
of elements of the form

Resz

(
Y (a, z)

(1 − z)wt a

z2
b

)

for a, b ∈ V with a homogeneous, then O(V ) ⊂ V is a two sided ideal with the algebra
strucute given by ∗.

Definition 2.13 [21] The Zhu algebra of V is defined as A(V ) = V/O(V ).

A(V ) is a unitary associative algebra for any vertex operator algebra V and [ω] is in its
center. (We will denote by [a] the projection on A(V ) of an element a ∈ V ). If W is a V -
module, we define the A(V )-module A(W) with the analogous formulas: First, we set the
following left and right action of V on W by

a.w = Resz
(
Y (a, z)

(1−z)wt a

z
w
)

w.a = Resz
(
Y (a, z)

(1−z)wt a−1

z
w
)

,

for any homogenous a ∈ V and w ∈ W . Next, we let O(W) be the subspace of W linearly
spanned by all elements of the form

Resz

(
Y (a, z)

(1 − z)wt a

z2
w

)

for homogenous a ∈ V and w ∈ W . Finally, we define A(W) = W/O(W). It was proved
in [6] that A(W) is an A(V )-bimodule.

Lemma 2.14 [22] Let V be a vertex operator algebra and let W be a lowest weight V -
module with lowest weight h and with L(0)-weight decomposition W = ⊕

n≥0 W(n+h).
Define W(n) := W(h+n) and call W(n) the degree n subspace of W . Then, W(0) is a
natural A(V )-module with the action determined by the fact that [a] acts on W(0) by
(−1)degaawta−1 for any homogeneous a ∈ V .

Lemma 2.15 [21] Let V be a vertex operator algebra. Let W1 be a submodule of the V -
module W . Then, A(W/W1) ∼= A(W)/[W1], where [W1] denotes the image of W1 under
the projection W � A(W).

For later use we recall the definition of intertwining operators:
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Definition 2.16 [4] Let W1, W2 and W3 be a triple of modules for a vertex operator algebra
V . An intertwining operator Y of type

(
W3

W1 W2

)
is a map

Y : W1W2 −→ W3{z}
that satisfies the following properties:

1) Truncation: For any wi ∈ Wi, i = 1, 2,

(w1)nw2 = 0,

for n >> 0.
2) L(−1)-derivative: For any w1 ∈ W1,

Y(L(−1)w1, z) = d

dz
Y(w1, z),

3) Jacobi identity: In Hom(W1W2,W3){x, y, z} we have

z−1δ

(
x − y

z

)
YW3(u, x)Y(w1, y) − z−1δ

(
y − x

−z

)
Y(w1, y)YW2(u, x)

= y−1δ

(
x − z

y

)
Y(YW1(u, z)w1, y),

for u ∈ V and w1 ∈ W1.

We denote the space of all the intertwining operators of the type
(

W3
W1 W2

)
by I

(
W3

W1 W2

)
.

We recall the following important result due to [6] and refined in [12, 13]:

Lemma 2.17 Let V be a vertex operator algebra and let W1, W2 and W3 be lowest weight
V modules. If W3 is irreducible, then

dim I

(
W3

W1 W2

)
≤ dim HomA(V )

(
A(W1)A(V)W2(0),W3(0)

)
.

Finally, we mention the following lemma which will be useful in future computations.
Its proof appears in [8] and [12].

Lemma 2.18 LetWi for i = 1, 2, 3, be lowest weight modules for a vertex operator algebra
V . Then

dim I

(
W3

W1, W2

)
= dim I

(
W3

W2, W1

)
= dim I

(
W ′

2

W1, W ′
3

)
.

Definition 2.19 [13] Let V be a vertex operator algebra, let V̂ = VC[t, t−1] and d =
L(−1)1 + 1 d

dt
. Then the lie algebra of V is g(V ) := V̂ /dV̂ with bracket determined by

[a(m), b(n)] =
∞∑
i=0

(
m

i

)
(aib)(m + n − i),

where we denote a(m) = atm + dV . If we set dega(m) = wta − m − 1 then we have a
triangular decomposition g(V ) = g(V )− ⊕ g(V )0 ⊕ g(V )+.
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If U is a g(V )0-module, then we define [13]

F(U) = IndU(g)

U(g(V )+⊕g(V )0)
U .

where g(V )+ acts by 0. We define F̄ (U) = F(U)/J (U) where J (U) denotes the
intersection of all the kernels of all g(V )-homomorphisms from F(U) to weak modules.

Remark 2.20 In the original definition of the Zhu algebra [21] the product is given by

a∗̄b = Resz

(
Y (a, z)

(1 + z)wt a

z
b

)

for homogeneous a and for all b ∈ V while Ō(V ) is defined as the linear span of the
elements of the form

Resz

(
Y (a, z)

(1 + z)wt a

z2
b

)
.

In this case, an element [ā] ∈ Ā(V ) := V/Ō(V ) acts on the top level of a module W as
awta−1 for homogeneous a ∈ V and everything in Section 2.2.2 works in a parallel way. We
work with the slightly modified formula presented in Section 2.2.2 for convenience in the
computations.

3 The Fusion Rules for L(25, 0)

Consider the vertex operator algebra L(25, 0) and let us denote by F25 its distinguished
family of irreducible modules which are not Verma modules. Namely F25 := {L(25, 1 −
n2

4 )| n ≥ 2}.

Remark 3.1 Note that L(25, 1) and L
(
25, 1 − 1

4

)
are (irreducible) Verma modules and

therefore, they do not belong in F25.

Let m, n, r ≥ 2. We want to describe the space of intertwining operators

I

(
L(25, 1 − r2/4)

L(25, 1 − m2/4) L(25, 1 − n2/4)

)
.

From the irreducibility of the non equivalent L(25, 0) modules L(25, 1 − n2

4 ), n ≥ 2 it
follows that

dim I

( L
(
25, 1 − k2

4

)

L(25, 0) L
(
25, 1 − n2

4

)
)

=
{
1 if k = n

0 otherwise

which together with Lemma 2.18 implies that

dim I

( L
(
25, 1 − k2

4

)

L
(
25, 1 − n2

4

)
L(25, 0)

)
=
{
1 if k = n

0 otherwise.

Therefore, we assume that m, n ≥ 3 from now on.
We want to use Lemma 2.17 to bound the fusion rules. We first recall the A(V ) structure

in the case of the Virasoro algebra of central charge 25: From [6] and [20], we know that
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Lemma 3.2 If ω ∈ L(25, 0) is the conformal vector ω = L−2|0〉0, then there exists an
isomorphism of associative algebras

A(L(25, 0)) ∼= C[y] (3.1)

[ω]n 
→ yn, (3.2)

where [ω] = [(L−2 − L−1)|0〉0].

Moreover, as shown in [6] we have the following description of the C[y]-module
structure for the module A(W(25, h)) for any h ∈ C:

Lemma 3.3 As a C[y]-module
A(M(25, h)) ∼= C[x, y] (3.3)

The isomorphism is given by

C[x, y] ∼= A(M(25, h))

xnym 
→ [(L−2 − 2L−1 + L0)
n][ω]m[|0〉h]

In this isomorphism the lowest weight vector is identified with 1 ∈ C[x, y] and the
actions left and right actions of C[y] are described by

y.p(x, y) = xp(x, y), p(x, y).y = yp(x, y) (3.4)

for p(x, y) ∈ C[x, y].

We are interested in Hom

(
A
(
L
(
25, 1 − m2

4

))
C[y] L

(
25,1 − n2

4

)
(0),L

(
1,1 − r2

4

)

(0)
)
so we first analyze

A

(
M

(
25, 1 − m2

4

))

C[y]
L

(
25,1 − n2

4

) (
0
)

From the irreducibility of the non equivalent It is easy to see that as a C[y] -module

L

(
25, 1 − n2

4

)
(0) ∼= C

1− n2
4

(3.5)

where we identify the image of the lowest weight vector |0〉
1− n2

4
with 1 and have that

y.1 =
(
1 − n2

4

)
1.

We recall the following important results:

Lemma 3.4 [21] In the quotient space A(L(25, 0)) = L(25, 0)/O(L(25, 0)),

[(L(−1) − L(0))v] = 0 (3.6)

for any v ∈ L(25, 0).

Lemma 3.5 [20] In A(L(25, 0)) we have that for n ≥ 1, v ∈ L(25, 0)

[L(−n)v] = [(((n − 1)L(−2) − L(−1)) + L(0))v]. (3.7)

Using the method described by Milas in [14] we get the following
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Lemma 3.6 In A(M(25, 1 − m2

4 ))C[y]L(25,1 − n2

4 )(0),

[
L(−j1) · · ·L(−jk)v1− m2

4

]
=

k∏
r=1

(
jr

(
1 − n2

4

)
− y + β(r, k)

)[
v
1− m2

4

]
(3.8)

=
k∏

r=1

(
jr

(
1 − n2

4

)
− x + β(r, k)

)[
v
1− m2

4

]
(3.9)

where β(r, k) = jr+1 + · · · + jk +
(
1 − m2

4

)
.

Proof By Eq. 3.4 it is clear that the right hand side of Eqs. 3.8 and 3.9 are equivalent so it is
enough to prove that Eq. 3.8 holds. We prove it by induction on k: If k = 1 then we have that

[
L(−j)v

1− m2
4

]
=
[
L(−j)v

1− m2
4
1

]
(3.10)

Next, using Lemma 3.5 together with Eqs. 3.2, 3.10 and 3.5 we have that
[
L(−j)v

1− m2
4

]
=
[
v
1− m2

4
[(j − 1)y + L(0)] 1

]
(3.11)

=
[
v
1− m2

4

[
j

(
1 − n2

4

)
− y + L(0)

]
1

]

=
[[

j

(
1 − n2

4

)
− y + L(0)

]
v
1− m2

4
1

]
(3.12)

=
(

j

(
1 − n2

4

)
− y + 1 − m2

4

)[
v
1− m2

4

]
(3.13)

For k > 1,

[
L(−j1)L(−j2) · · · L(−jk)v1− m2

4

]

=
(

j1

(
1 − n2

4

)
− x + 1 − m2

4
+ j2 + j3 · · · + jk

)[
L(−j2) · · · L(−jk)v1− m2

4

]
(3.14)

by the same computation as in Eq. 3.11. Finally, using the induction hypotesis we obtain
Eq. 3.8.

Following the analysis [14], we note that the term in the right hand side of Eq. 3.8
coincides with P(j1, · · · jk) where

L(−j1) · · · L(−jk)wo = P(j1, · · · jk)wj1+···jk
(3.15)

if we fix λ = n2

4 −1 and μ = 2− n2

4 − m2

4 −x forDλ,μ the density module as in Definition
2.12.

Next, we apply the theory of singular vectors from Section 2.1.3 to M(25, 1− m2

4 ). From
the work of Feigin and Fuchs [3] we know that for each m ≥ 2 there is a singular vector

vm−1 inM
(
25, 1 − m2

4

)
of weight 1− m2

4 +m−1 such that if 〈vm−1〉 denotes the submodule

generated by vm−1 then M
(
25, 1 − m2

4

)
/〈vm−1〉 ∼= L

(
25, 1 − m2

4

)
. Note that in this case,
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t = −1, p = m − 1, q = 1, θ = 1, in the notation of Section 2.1.3 and Eq. 2.2 becomes

f 2
m−1,1

(
n2

4
− 1, 2 − m2 + n2

4
− x,−1

)

=
∏

− m−2
2 ≤l≤ m−2

2

((
2 − m2 + n2

4
− x + Am−1,1(l, 0)

)

×
(
2 − m2 + n2

4
− x + Am−1,1(−l, 0)

)
+ 4l2 − (ln)2

)
.

We have that

Am−1,1(l, 0) =
(m

2
− 1 + l

) (m

2
− l + 1

)
=
(m

2

)2 − (1 − l)2

while

Am−1,1(−l, 0) =
(m

2

)2 − (1 + l)2,

so that

f 2
m−1,1

(
n2

4
− 1, 2 − m2 + n2

4
− x, −1

)

=
∏

− m−2
2 ≤l≤ m−2

2

((
2 − n2

4
− x − (1 − l)2

)(
2 − n2

4
− x − (1 + l)2

)
+ 4l2 − (ln)2

)

=
∏

− m−2
2 ≤l≤ m−2

2

((
1 − n2

4
− x − l2 + 2l

)(
1 − n2

4
− x − l2 − 2l

)
+ 4l2 − (ln)2

)

=
∏

− m−2
2 ≤l≤ m−2

2

((
1 − n2

4
− x − l2

)2

− 4l2 + 4l2 − (ln)2

)

=
∏

− m−2
2 ≤l≤ m−2

2

(
1 − n2

4
− x − l2 + ln

)(
1 − n2

4
− x − l2 − ln

)

=
∏

− m−2
2 ≤l≤ m−2

2

(
1 − x −

(n

2
− l
)2)(

1 − x −
(n

2
+ l
)2)

=
∏

− m−2
2 ≤l≤ m−2

2

(
1 − x −

(n

2
− l
)2)2

=
∏

i∈Lm,n

(
x −

(
1 − i2

4

))2
, (3.16)

where we denote

Lm,n := {m − n + 2,m − n + 4, · · · ,m + n − 2}. (3.17)

Remark 3.7 The central charge c = 25 for the Virasoro vertex operator algebra is funda-
mental to obtaining the simplified formulas for the projection of singular vectors on density
modules. This central charge, which corresponds to t = −1 in our computations, is what
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allows us to get formula (3.16). Note that the dual central charge, c = 1, corresponds to
t = 1 and that the singular vector formulas become simplified only for both of these dual
values of t .

We get the following result

Lemma 3.8 Let n, m ≥ 3. Then as an A(L(25, 0))-module

A

(
L

(
25, 1 − m2

4

))

A(L(25,0))

L

(
25,1 − n2

4

)
(0)

is isomorphic to

C[x]/〈 ∏
i∈Lm,n

(x − (1 − i2

4
)
〉. (3.18)

Proof Let us recall that from Eqs. 3.1, 3.3 together with Remark 3.5 we have

A

(
M

(
25, 1 − m2

4

))

A(L(25,0))

L

(
25,1 − n2

4

) (
0
) ∼= C[x,y]C[y]C1− n2

4
. (3.19)

Now, using projection formula for the singular vector in v1,m−1 on D n2
4 −1,2− n2

4 − m2
4 −x

that

we obtained in Eq. 3.16 we see that for m ≥ 3

v1,m−1w0 =
∏

i∈Lm,n

(
x −

(
1 − i2

4

))
wm−1. (3.20)

Next, using Lemma 2.15 together with Eqs. 3.19 and 3.15 we obtain that

A

(
L

(
25, 1 − m2

4

))

A(L(25,0))

L

(
25,1 − n2

4

)
(0) ∼= C[x]/〈∏

i∈Lm,n (x−(1−i2/4)
〉

In particular, it follows from Lemma 3.8 that if m ≥ n ≥ 3 then

A

(
L

(
25, 1 − m2

4

))

A(25,0)

L

(
25,1 − n2

4

)
(0) ∼=

⊕
i∈Lm,n

Cvi

where Cvi is the irreducible A(L(25, 0))-module such that y.vi =
(
1 − i2

4

)
vi .

We have obtained the following result:

Proposition 3.9 For m, n ≥ 2

dim I

(
L(25, 1 − r2/4)

L(25, 1 − m2/4) L(25, 1 − n2/4)

)
≤ 1.

if r ∈ Lm,n and

dim I

(
L(25, 1 − r2/4)

L(25, 1 − m2/4) L(25, 1 − n2/4)

)
= 0

for r /∈ Lm,n.
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Let g(L(25, 0)) be the lie algebra in Eq. 2.19 and let ω = L(−2)|0〉 ∈ L(25, 0). From
Definition 2.19 we know that

[ω(m + 1), ω(n + 1)] = (m − n)ω(n + m + 1) + δm+n,0
25

12
(m3 − m).

This implies that for any g(L(25, 0))0-module U , U(V ir−)U ↪→ U(g(L(25, 0)−))U ∼=
F(U). It follows that for any h ∈ C, M(25, h) ↪→ F(M(25, h)(0)) and that M(25, h)′ ↪→
F((M(25, h)(0))∗).

Assume that m ≤ n. By replacing F(M(25, 1 − n2

4 )(0)) with M(25, 1 − n2

4 ) and

F(M(25, 1 − r2

4 )(0)∗) with M(25, 1 − r2

4 )′ following the argument in [13] we obtain an
intertwining operator of type

(
M(25, 1 − r2

4 )′

L(25, 1 − m2

4 ) M(25, 1 − n2

4 )

)
(3.21)

that we denote by Y1.

The contragradient module M(25, 1− r2

4 )′ is not irreducible so it is not of lowest weight
type so we have that L(25, 1 − r2

4 ) ∼= L(25, 1 − r2

4 )′ ⊂ M(25, 1 − r2

4 )′. Namely, if f0 ∈
Hom(M(25, 1 − r2

4 )0,C) ⊂ M(25, 1 − r2

4 )′ is such that f0(|0〉25,1− r2
4
) = 1, then

U(V ir)f0 ∼= L

(
25, 1 − r2

4

)
.

We want to get an intertwining operator of type
( L(25,1− r2

4 )

L(25,1− m2
4 ) L(25,1− n2

4 )

)
from the intertwin-

ing operator obtained of type
( M(25,1− r2

4 )′

L(25,1− m2
4 ) M(25,1− n2

4 )

)
. We first prove the following

Lemma 3.10 Let m, n, r ≥ 3 with m ≤ n ≤ r , and let Y1 be the intertwining operator

obtained in Eq. 3.21. Let v
1− n2

4
be the singular vector in M(25, 1 − n2

4 ) gene-

rating the maximal submodule J (25, 1 − n2

4 ) ∼= M(25, 1 − (n−2)2

4 ), let |0〉
25,1− r2

4
∈

M(25, 1 − r2

4 )
′ ′
(0) ∼= M(25, 1 − r2

4 )(0) and |0〉
25,1− m2

4
∈ L(25, 1 − m2

4 ) be the respective

lowest weight vectors . Then,

〈|0〉
25,1− r2

4
,Y1(|0〉25,1− m2

4
, x)v

1− n2
4

〉 = 0. (3.22)

Proof From the Jacobi identity it follows that

[L(−j),Y1(|0〉25,1− m2
4

, x)] =
∑
i≥0

(
j + i − 2

i

)
x−j−i+1(−1)iY1(L(i − 1)|0〉

25,1− m2
4

, x)

= x−j+1Y1(L(−1)|0〉
25,1− m2

4
, x) − (1 − j)x−jY1(L(0)|0〉

25,1− m2
4

, x)

= x−j+1 d

dy
Y1(|0〉25,1− m2

4
, x) + (1 − j)

(
1 − m2

4

)
x−jY1(|0〉25,1− m2

4
, x)
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which implies that for j ∈ N

〈|0〉
25,1− r2

4
,Y(|0〉

25,1− m2
4

, x)L(−j)|0〉
25,1− n2

4
〉

= 〈|0〉
25,1− r2

4
, L(−j)

(
Y(|0〉

25,1− m2
4

, x)|0〉
25,1− n2

4

)
〉

−
(

x−j+1 d

dx
+ (1 − j)

(
1 − m2

4

)
x−j

)
〈|0〉

25,1− r2
4
,Y1(|0〉25,1− m2

4
, x)|0〉

25,1− n2
4

〉

−
(

x−j+1 d

dx
+ (1 − j)

(
1 − m2

4

)
x−j

)
〈|0〉

25,1− r2
4
,Y1(|0〉25,1− m2

4
, x)|0〉

25,1− n2
4

〉,

because (cf. [4])

〈|0〉
25,1− r2

4
, L(−j)

(
Y1(|0〉25,1− m2

4
, x)|0〉

25,1− n2
4

)
〉

= 〈L(j)|0〉
25,1− r2

4
,Y1(|0〉25,1− m2

4
, x)|0〉

25,1− n2
4

〉 = 0.

More generally,

〈|0〉
25,1− r2

4
,Y(|0〉

25,1− m2
4

, x)L(−j1) · · ·L(−jk)|0〉25,1− n2
4

〉

=
k∏

i=1

−
(

x−ji+1 d

dx
+ (1 − ji)x

−ji

(
1 − m2

4

))
〈|0〉

25,1− r2
4

,Y1(|0〉25,1− m2
4

, x)|0〉
25,1− n2

4
〉

=
k∏

i=1

−
(

x−ji+1 d

dx
+ (1 − ji)x

−ji

(
1 − m2

4

))
Cx

m2
4 + n2

4 −1− r2
4

= (−1)k
k∏

i=1

⎛
⎝m2

4
+ n2

4
− 1 − r2

4
−

k∑
s=i+1

js + (1 − ji)

(
1 − m2

4

)⎞
⎠Cx

m2
4 + n2

4 −1− r2
4 −∑k

i=1 ji

=
k∏

i=1

⎛
⎝−ji

m2

4
+ r2

4
+

k∑
s=i+1

js − n2

4

⎞
⎠Cx

m2
4 + n2

4 −1− r2
4 −∑k

i=1 ji , (3.23)

where C is a constant that depends on Y1 which we may assume to be equal to 1. Note
that the coefficients in Eq. 3.23 coincide with the coefficients in Eq. 3.9 if we replace

x with 1 − r2

4 and exchange the roles of 1 − n2

4 and 1 − m2

4 . Therefore, we have that
〈|0〉

25,1− r2
4
,Y1(|0〉25,1− m2

4
, z)v

1− n2
4

〉 = 0 if and only if the corresponding projection in

A
(
L
(
25, 1 − n2

4

))
A(25,0)

L
(
25,1 − m2

4

)
(0) vanishes. We know from Eq. 3.18 (with the

roles of m and n exchanged) that

A

(
L

(
25, 1 − n2

4

))

A(25,0)

L

(
25,1 − m2

4

)
(0) ∼= C[x]/〈 ∏

i∈Lm,n

(x − (1 − i2

4
)
〉

Since m ≤ n we have that Ln,m ⊂ Lm,n. By hypothesis, a priory r ∈ Lm,n but
using that r ≥ n we have that r ∈ Ln,m. Therefore, we have that the projection

in A
(
L
(
25, 1 − n2

4

))
A(25,0)

L
(
25,1 − m2

4

)
(0) vanishes which implies that Eq. 3.22

holds.
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Proposition 3.11 Let 3 ≤ m ≤ n ≤ r , let r ∈ Lm,n and let Y1 be the intertwining operator
obtained in Eq. 3.21. Then,

〈w′
3,Y1(w1, x)w2〉 = 0

for any w1 ∈ L(25, 1 − m2

4 ), w2 ∈ M(25, 1 − (n−2)2

4 ) ↪→ M(25, 1 − n2

4 ) and w′
3 ∈

M(25, 1 − r2

4 )
′ ′ ∼= M(25, 1 − r2

4 ).

Proof It follows from the Jacobi identity together Lemma 3.10.

Let Ȳ1 be the operator defined by

Ȳ1(w1, x)w2 = Y1(w1, x)π−1
n (w2) (3.24)

where πn : M(25, 1 − n2

4 ) � L(25, 1 − n2

4 ) is the canonical projection. Then, Ȳ1 is a non

trivial intertwining operator of type
( M(25,1− r2

4 )′

L(25,1− m2
4 ) L(25,1− n2

4 )

)
. Next, we use that

I

(
M(25, 1 − r2

4 )′

L(25, 1 − m2

4 ) L(25, 1 − n2

4 )

)
∼= I

(
L(25, 1 − n2

4 )

L(25, 1 − m2

4 ) M(25, 1 − r2

4 )

)
. (3.25)

By our assumption, 3 ≤ m ≤ n ≤ r and r ∈ Lm,n so that m − n + 2 ≤ r ≤ m + n − 2. It
follows that r − m + 2 ≤ n ≤ r + m − 2, namely, n ∈ Lr,m.

Let Y2 ∈ ( L(25,1− n2
4 )

L(25,1− m2
4 ) M(25,1− r2

4 )

)
be the image of Ȳ1 under the isomorphism (3.25). Let

u′
3 ∈ L(25, 1− n2

4 )′ ∼= L(25, 1− n2

4 ) and let u1 ∈ L(25, 1− m2

4 ) then, for the lowest weight

vector |0〉
1− r2

4
∈ M(25, 1 − r2

4 ) we have that

〈u′
3,Y2(|0〉25,1− m2

4
, x)L(−j1) · · · L(−jk)|0〉1− r2

4
〉

=
k∏

i=1

−
(

x−ji+1 d

dx
+ (1 − ji)x

−ji

(
1 − m2

4

))
〈u′

3,Y2(|0〉25,1− m2
4

, x)|0〉
1− r2

4
〉

=
k∏

i=1

−
(

x−ji+1 d

dx
+ (1 − ji)x

−ji

(
1 − m2

4

))
Dx

m2
4 + r2

4 −1− n2
4

= (−1)k
k∏

i=1

⎛
⎝m2

4
+ r2

4
−1− n2

4
−

k∑
s=i+1

js +(1−ji)

(
1− m2

4

)⎞
⎠Dx

m2
4 + r2

4 −1− n2
4 −∑k

i=1 ji

=
k∏

i=1

⎛
⎝−ji

m2

4
+ n2

4
+

k∑
s=i+1

js − r2

4

⎞
⎠Dx

m2
4 + r2

4 −1− n2
4 −∑k

i=1 ji , (3.26)

where D is a constant that depends on Y2 which we may assume to be equal to 1. Note
that again the coefficients in Eq. 3.26 coincide with the coefficients in Eq. 3.9 if we replace

x with 1 − n2

4 and exchange the roles of 1 − r2

4 and 1 − m2

4 . Therefore, if we denote by

v
1− r2

4
the singular vector generating the maximal submodule in M(25, 1 − r2

4 ), we have

that 〈|0〉
25,1− n2

4
,Y2(|0〉25,1− m2

4
, z)v

1− r2
4
〉 = 0 if and only if the corresponding projection

2029



F.O. Hunziker

in A
(
L
(
25, 1 − r2

4

))
A(25,0)

L
(
25,1 − m2

4

)
(0) vanishes. We know from Eq. 3.18 that

A

(
L

(
25, 1 − r2

4

))

A(25,0)

L

(
25,1 − m2

4

)
(0) ∼= C[x]/〈∏i∈Lr,m (x−(1−i2/4)〉.

Since by hypothesis n ∈ Lr,m, it is clear that

〈u′
3,Y2(u1, x)v

1− r2
4
〉 = 0

for any u′
3 ∈ L(25, 1 − n2

4 ) and u1 ∈ L(25, 1 − m2

4 ). Hence, if we denote the canonical

projection by πr : M(25, 1− r2

4 ) � L(25, 1− r2

4 ) and define for u1 ∈ L(25, 1− m2

4 ), u2 ∈
L(25, 1 − r2

4 )

Ȳ2(u1, x)u2 := Y2(u1, x)(π−1
r (u2))

we obtain a non-trivial intertwining operator Ȳ2 of type
(

L(25, 1 − n2

4 )

L(25, 1 − m2

4 ) L(25, 1 − r2

4 )

)
.

Finally, if Y3 is the image of Ȳ2 under the isomorphism in Eq. 3.25, then

Y3 ∈ I

(
L(25, 1 − r2

4 )

L(25, 1 − m2

4 ) L(25, 1 − n2

4 )

)

is a non trivial intertwining operator.
If instead, 3 ≤ m ≤ r〈n using an analogous argument and the fact that r ∈ Ln,m we end

up with an intertwining operator Ȳ2 of type
( L(25,1− r2

4 )

L(25,1− m2
4 ) L(25,1− n2

4 )

)
.

Using Lemma 2.18, Proposition 3.9 together with the discussion above we obtain the
following result:

Theorem 3.12 Let m, n ≥ 0. Then

dim I

(
L(25, 1− (r+2)2

4 )

L(25, 1 − (m+2)2
4 ) L(25, 1− (n+2)2

4 )

)
=
{
1 if r ∈{|m−n|, |m−n|+2, · · · ,m+n}
0 otherwise.

Remark 3.13 As we mentioned in Remark 3.7, the central charge c = 25 was critical to
obtaining the correspondence of fusion rules for the familyF25 ofL(25, 0)-modules and for
the irreducible finite dimensional sl(2,C)-modules. The singular vector formulas become
simplified when t = 1 and t = −1 in Eq. 2.1 which correspond to dual the central charges
c = 1, studied in [14], and c = 25 respectively.
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