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Abstract

In this paper, we first obtain a general result on sufficient conditions for tensor product mod-
ules to be simple over an arbitrary Lie algebra. We classify simple smooth modules over the
infinite-dimensional Heisenberg algebra $), and then obtain a lot of simple modules over the
twisted Heisenberg-Virasoro algebra V' from generalized oscillator representations of V' by
extending these $)-modules. Using generalized oscillator representations we give the neces-
sary and sufficient conditions for Whittaker modules over V (in the more general setting) to
be simple. We use the “shifting technique” to determine the necessary and sufficient condi-
tions for the tensor products of highest weight modules and modules of intermediate series
over V to be simple. At last we establish the “embedding trick” to obtain a lot more simple
V-modules.

Keywords Heisenberg algebra - Virasoro algebra - Twisted Heisenberg-Virasoro algebra -
Whittaker module - Weight module - Simple module
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1 Introduction

We denote by Z, Z, N, and C the sets of all integers, nonnegative integers, positive integers,
and complex numbers, respectively. For a Lie algebra L we denote by U (L) the universal
enveloping algebra of L.
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1418 R.Ld, K. Zhao

The twisted Heisenberg-Virasoro algebra V is the universal central extension of the Lie
algebra { f (t)% + g\ f, g € Clt, t7 1]} of differential operators of order at most one on
the Laurent polynomial algebra C[z, +~1], see [1]. More precisely, the twisted Heisenbeg-
Virasoro algebra V is a Lie algebra over C with the basis

{t"“%, ", 21,22, 23In € 7}
and subject to the Lie brackets given by

d d d nd—n
tn+17,tm+17 — _ tm+n+17 s o = ’ 1.1
[ 7 dt] (m —n) dt+ n—m 52 (1.1)
d
[thE’ " = mt" " 4 8,y _w(n® + n)za, (1.2)
[£", "] = ndu,—mz3, (1.3)
WV, zl=W,22]l=[V,z3]1=0. (1.4)

The center of )N/ is spanned by z1, 22, 23, and 0. We define d, = il %, I; = ¢, and both

symbols will be used according to contexts. The Lie algebra V has a natural Z-gradation
with respect to ad(dp): .
V, =Cd, +CI,,Vn € Z\ {0}, (1.5)

Vo = Cdy + Cly + Cz;y + Czp + Czs. (1.6)

The Lie algebra V has a Witt subalgebra W = (C[z]%, a Virasoro subalgebra V with
basis {d;, z1|i € Z}, and a Heisenberg subalgebra §) with basis {/;, z3]i € Z}.

The twisted Heisenberg-Virasoro algebra ) has been studied by Arbarello, De Concini,
Kac, and Procesi in [1], where a connection is established between the second cohomology
of certain moduli spaces of curves and the second cohomology of the Lie algebra of dif-
ferential operators of order at most one. They also proved that when the central element of
the Heisenberg subalgebra acts in a non-zero way, a simple highest weight module for V
is isomorphic to the tensor product of a simple module for the Virasoro algebra and a sim-
ple module for the infinite-dimensional Heisenberg algebra. For a more general result, see
Theorem 12.

To introduce our results in this paper, we will first recall and define some concepts. _

For A € C, s, r € Z4, we define the following subalgebras and quotient algebras of V:

~ d
W = Der(C[¢]) = span{d;|i > —1}, W = C[I]E + CJ1], (1.7)
a = span{d;|i > 0}, a = span{d;, I;|i > 0}, (1.8)
VO = span{d;|i > r}, V" = span{t"*, dy;i > 0}, (1.9)
a = /YO0 §. =q/p0, (1.10)
d

VAl :(C[t,t_l](t—)»)a—i—(:zl, (1.11)

~ o d
V[)»]:Span{fl,l‘l(f—)»)E,Zl,zz,mli e 7). (1.12)

For any Z-graded Lie algebra L = @®L;, denote by Oy the category of all L-modules V
satisfying

Condition A For any v € V, there exists a positive integer n (depending on v) such that
L;iv=_0foralli > n.
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Generalized oscillator representations 1419

Modules in O for affine Kac-Moody algebras L are called smooth modules by D.
Kazhdan and G. Lusztig in [14, 15].

Let V be a module over a Lie algebra L. We say that V is trivial it LV = 0. Denote
by Socy (V) the socle of the L-module V, i.e., Socy (V) is the sum of the minimal nonzero
submodules of V.

Recall that a module V over a Lie algebra L is called locally finite provided that any
v € V belongs to a finite dimensional L-submodule. The module is called locally nilpotent
provided that for any v € V there exists an n € N such that ajas - --a,(v) = 0 for all
aj,az,...,a, € L. N .

When V is a simple module over L, where L is one of V, V, W, W, the following lemma
gives some equivalent conditions for Condition A.

Lemma 1 Let L be one of \7, v, V~V, W, and V be a simple L-module. Denote L® —
Zizk L;. Then the following conditions are equivalent:

(@0 VeOr.

(b) There exists some 0 £ v € V and s € N such that L v = 0.

(c) There exists k € N such that V is a locally finite L® -module.

(d) There exists m € N such that V is a locally nilpotent L™ -module.

Proof (a) = (b) is trivial. Using PBW Theorem, we can easily deduce (b) = (a), (¢), (d).
(c) = (b). Let 0 # vy € V. Then W = U(L®)y is a finite dimensional L*) module.
Hence L® /ann; « (W) is finite dimensional. By similar arguments as in Section 3.3 in
[21], we obtain d, € ann; ) (W) for some k1 > k. So LY ¢ ann; « (W) for some s >
k +ki. Thus L®vg = 0.
(d) = (b). Let 0 # v € V. There exists some n € N with ajas ---a,v = 0 for all
ai,az, ..., a, € L™ Itis straightforward to verify that there exists some s € N such that

LY c span{ajas - - - apla; € L™} c UL™),

which completes the proof. O

The simple modules in Oyy are studied in [20].

Lemma 2 [20, Lemma 2]

(a). Suppose that A € Oy is simple and nontrivial. Then there exists some r € Z such
that diA = O for all i > r and d, acts bijectively on A. Consequently, A is a simple
a,-module for some r € N.

(b). Let A € Oy W, Wi € Ow be all nontrivial simple modules.

(1)  The W-module Ind)Y (A) is simple in Oy,

(2) The a-module Socq(W) € Oy is simple, and an essential a-submodule of W, i.e. the
intersection of all nonzero a-submodules of V ;

(3) We have W = Ind)Y Socq(W) and A = Socq(Ind)}Y A);

(4) We have W = W if and only if Socq (W) = Socq (Wy).

Consequently, W is the induced module from a simple a,.-module for some r € N.

Let us recall some results for Whittaker modules over V studied in [22] and [17].
For any nonnegative integer m € Zy, let ¥, : V"™ 4+ Cz; — C be a Lie algebra
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1420 R.Ld, K. Zhao

homomorphism. Then we have the one dimensional module Cy,, = Cwy,, over V™ +Cz,
with x - wy,, = Y (X)wy,,, ¥x € V™ + Cz;. The induced V-module

(1.13)

Wy,, = Ind\‘j Cy,,

m+Cz
is called the universal Whittaker module with respect to v,,,.

Lemma 3 [17, Theorem 7] For any m > 1, Wy, is simple if and only if
(W (dom), ¥ (dom—1)) # (0, 0).

Let us recall a result on Whittaker modules over $) from [9]. Suppose that 6 : C[¢] +
Czz — Cisalinear map. Then Cwg becomes a one dimensional C[#]4Cz3 module defined
by xwy = 0(x)wy for all x € C[t] + Cz3. The induced $H-module Wy = Indngr(CZ3 Cwyg
is called a Whittaker module with respect to 6.

Lemma 4 [9, Proposition 6] The $)-module Wy is simple if and only if 0(z3) # 0.

The simple modules in Oy, are studied in [21]. From Lemma 1 and Theorem 2 in [21],
we have

Lemma 5 Let V € Oy be simple.

(1) The a-module Soc,(V) is simple. Furthermore it is an essential a-submodule of V, i.e.
the intersection of all nonzero a-submodule of V;

(2) IfV is not a highest weight module, then V = Indb—@zl Socq(V), where the action of
z1 is a scalar;

(3) Suppose V, Vi € Oy. Then V = Vi if and only if Socq(V) = Socq(V)) and z1 acts
on 'V, Vi as the same scalar.

This paper is organized as follows. In Section 2, we obtain a general result on sufficient
conditions for tensor product modules to be simple over an arbitrary Lie algebra (Theo-
rem 7). This result can be applied to many known cases and several cases in the present
paper. In Section 3, we first classify simple modules in Og, (Proposition 9), and then con-
struct generalized oscillator representations of 1V by extending the the $)-module structure
on simple modules in Og (Theorem 10). Many simple modules in O35 with nonzero action
of z3 are proved to be decomposed into a tensor product of an oscillator representation
of V and a simple V-module (Theorem 12). Then we apply this theory and generalized
oscillator representations to completely determine conditions for Whittaker modules W,
over V (in the more general setting as in [2]) to be simple, see Theorem 15. Quite sur-
prisingly, the conditions are a couple of degree two equations involving only the values
of doy, dom—1, Im, In—1, z2 and z3 under the Whittaker function ¢,,. In Section 4, we use
the “shifting technique” to determine the necessary and sufficient conditions for the ten-
sor products of highest weight modules and modules of intermediate series over V to be
simple (Theorem 26). The case Theorem 26 (1) is an anomaly, unlike the other cases or
the Virasoro algebra case [8], it has nothing to do with singular vectors. In Section 5, we
first classify simple modules in Oy;; (Lemma 22), and then establish the “embedding trick”
to make these simple W € Oy into simple V-modules W([A] for any A € C* (Proposi-
tion 32). By taking tensor product, we obtain more simple V-modules (Theorem 34). Their
isomorphism classes are determined in Theorem 35.
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Generalized oscillator representations 1421

2 Simplicity of Tensor Product Modules

In this section, we will prove some general results for tensor product modules, which will
be frequently used later.

Let V be a module over a Lie algebra L. For any v € V, the annihilator of v is defined
as anny (v) = {g € L|gv = 0}. For any S C V, define

anny (S) = Nyes anng (v).

Lemma 6 Let L be a Lie algebra over C with a countable basis, and V be a simple L-
module. For any n € Z and any linearly independent subset {vi, vz, ...v,} C V, and any
subset (v}, ..., v,} C V, there exists some u € U(L), such that

uv = v, Vi=1,2,...,n.

Proof Denote R = U(L)/anny,)(V). Then R is an associative algebra with countable
basis. It is well known that any endomorphism of a simple module over a countably gen-
erated associative C-algebra is a scalar (Proposition 2.6.5 in [6]). Thus Homg(V, V) = C.
Note that V is a faithful and simple R-module. From the Jacobson Density Theorem (Page
197, [12]), we know that R is isomorphic to a dense ring of endomorphisms of the C-vector
space V. The Lemma follows. O

Now we can give some useful sufficient conditions for a tensor product module to be
simple.

Theorem 7 Let L be a Lie algebra over C with a countable basis, and Vi, Vo be L-modules.
Suppose that one of the following conditions holds:

(1) The module Vi is simple and anng (v) + annz (S) = L for all v € V| and all finite
subsets S C Vy;
(2) For any finite subset S C V,, Vi is a simple annp, (S)-module.

Then

1. Any submodule of V| ® Vs is of the form V| ® V,, for a submodule V, of Va;
2. If Vi, Vp are simple, then Vi ® V5 is simple.

Proof (1) = (2). Suppose that Condition 1 holds. For any nonzero v € V; and a finite
subset S in V;, we have

Vi =U(L)v = U(anng (v) + anng (S))v

= U(ann ($))U (anng (v))v = (U (anng (S))v,
So Vj is simple as anny, (S)-module. Thus Condition 2 holds.
Now we suppose that Condition 2 holds.
(a) Let M be a nonzero submodule of V| ® V5. For any nonzero X € M, write X =

Zle V1, ®v2,; € M with minimal s. Then {vy,1, ..., v1 s} and {vy,1, ..., v2 4} are linearly
independent sets.
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1422 R.Ld, K. Zhao

Denote L, = ann;({vz,j|j = 1,2...,s}). Then V; is a simple L,-module. From
Lemma 6, there exists some ug € U(Ly) such that upvy,;; = vy,1, and ugvy,; = 0 for
i=2,...,5.50

N s
upX = Mo(z Vi @) = Z(“Ovl,i ®uai) =v11 @V € M.
i=1 i=1
For any u € U(L3), we have (uvy1) @ vo,1 = u(vy,;1 @ v2;) € M. Thus V1 ® vo1 =
(U(L2)v1,1) ® v2,1 C M. Similarly we have

Viewm; CcM,Yi=1,2,...,s. 2.1

We have proved that
M=V,®V,, (2.2)

where V, = {vz € V2|V ® v € M}. For any v; € Vi, v € V5, and forall g € L, we have
V1 ®guy =g @u2) —guv ®ua € M. So Vz/ is an L-submodule of V5.
Part (b) follows from (a). O

Example 1 Theorem 3.3 in [11] can follow from our Theorem 7. For other applications, see
Theorems 11, 13, 33.

Lemma 8 Let W be a module over a Lie algebra L, g be a subalgebra of L, and B be a
g-module. Then the L-module homomorphism t : Indé(W ®B)—> WQ® Indé(B) induced

from the inclusionmap W @ B - W ® Indé(B) is an L-module isomorphism.

Proof Take asubspace V C Lsuchthat L = g®V.Let{l;|i € I},{b;lj € J1},{w;lj € J2}
ki 1ko
ALY A
i1 “ip

" € S | ki + ...+ kn = n}. Then

be bases of V, B and W, respectively. Denote S = {/ llli"l” lifT < ip < -+ < ky},
kigky
iy Yin

T ={x(ws @by) | x€S,s€Ji,t €},

where < is a total order on /, and U,, = span{/

T ={ws @ (xb;) | x € S,5 € J1,t € Jp}

are bases of Inds W®B)and W ® Indé (B), respectively.

kipka gk

Forany x =1;'[;*---1;" € S, by induction on n = > 'L ki we can prove that

T(x(ws ® b)) € wy ® (xb) + W ® Y (Ui B), (2.3)

from which one can deduce that 7 is bijective. O

3 Generalized Oscillator Representations of %

In this section we will first classify simple modules in Oy, and then construct generalized
oscillator representations of 1 by extending the the $)-module structure on simple modules
in Og. Since the representation space is in general not the Fock space, we call the result-
ing representations as generalized oscillator representations of 1. When the representation
space is indeed the Fock space, we actually obtain the usual oscillator representations of ).
This generalizes the construction in Section 2.3 of [13].
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Generalized oscillator representations 1423

3.1 Simple Modulesin Og

For any m € N, we define
Ty =span{l;, z3li = —m,—m +1,...,m — 1, m},

HAm = span{l;, z3|li > —m,i € Z}.

Proposition 9 Let B, B’ be simple modules over T, for some m € N with nonzero action
of z3.

(a). The $H-module Indgm B is simple, where B is regarded as $),,-module by I; B = 0, [I
all i > m. Moreover, all nontrivial simple modules in Og can be obtained in this way.
(b). As $H-modules, Indgm B= Indgm B’ ifand only if B = B’ as T,,-modules.

Proof Let K, = span{l_,,—;|j € N}.

(a). Using PBW Theorem and nonzero action of z3, we can easily prove that the $)-module
Ind? B =U(Ky)B is simple.

Now suppose that V € Og is simple and nontrivial. Take a nonzero v € V such that
m € Nis minimal with I,,4 jv = Oforall j € Z.

Claim 1 U ($),,)v is a simple §),,,-module.

Since V.= U(K))U($Hm)v = U(K,,)U(Z,,)v is nontrivial, we see that U (T,,)v €
Cv, hence the action of z3 is nonzero. We can deduce that V is a free U(K,,)-module
on U($H,)v. Since V is a simple $)-module, we deduce that B = U ($,,)v is a simple
$,;-module.

Thus V =Ind? B.

(b). Noting that B and B’ are the socles of $,,-modules Indgm B and Indgm B’ respec-

~ ~

tively, we see that, if Indgm B = Indgm B’ as $,,-modules, hence B = B’ as
T n-modules. The converse is trivial.

O

From the above theorem, it follows that classifying all simple modules in Og is equiv-
alent to classifying all simple modules over the finite-dimensional Heisenberg algebras ¥,
for all m € N, which in tern is equivalent to classifying all simple modules over the rank m
Weyl algebras A,,. Such a classification is only known for m = 1, see [5].

Example 2 Take m = 1, make Cv into a module over b = Cly + CI_; + Cz3 by lpv =
Tov, I_1v = 0,z3v = %30 for Jy, 23 € C with 23 # 0. We have the simple weight T;-
module B = Indf1 Cv. Then we obtain the simple weight $)-module Indg1 B. In the same
way as in Section 3.1 in [3], one can construct a lot of simple weight modules in Og,.

Example 3 Let B = Clt, ~1bea simple T(-module defined by /_;t" = e =
" Yo + n), Iot" = at™, z3t" =" fora € C\ Z and a € C. Then we obtain the simple
$-module Indg1 B. In this manner using simple modules over the Weyl algebra as in [5],
one can construct a lot of simple modules in Og.
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1424 R.Lu, K. Zhao

3.2 Generalized Oscillator Representations of \%

In this subsection, we prove that for any 7> € C, a simple representation H € Og with
nonzero action of z3 can always be extended to a representation of V with z; acting as scalar
Z2. Here we will use oscillator-like representations on H.

Let o be an endomorphism of some Lie algebra L, and V be any module of L. We can
make V into another L-module, by defining the new action of L on V as

xov=ox)v,Vxe L,veV. 3.1

We will call the new module the twisted module of V by o, and denote it by V°. Two L-
modules V and W are said to be equivalent if there exists some automorphism o of L such
that V.~ W9,
For any
=Y at eClt,t'],beC, 32)
i€l
we have the 0 = 0y € Aut(f}) defined as

o(dy) =dy +1" (@ +nb) — (n+ Da_,z2

- Aid—y—; b
- (Zf + annb)3 + 8.0b(z2 + 523) (3.3)
o(t") = 1" + 8,,0b23 — a_z3, 0(21) = 21 — 24bzy — 12b%z3, (3.4)
0(z2) = 22 + bz3,0(z3) = z3. (3.5)

For more details, see Page 712 in [17].

Theorem 10 Let 2,73 € C with 25 # 0. Let H € Og be a simple module with z3 acting
as the scalar 73. Then the $)-module structure on H can be extended to an V-module by

1222 . .
a=1-"2 == 2, (3.6)
23
1 k+ 1)z
di= -5+ 8 D2 e (3.7)
273 “ 73
i€Z
where, for all i, j € 7, the normal order is defined as

N Ii1;, ifi <}j,
T 1L, otherwise.

The resulting ]7-m0dule structure on H will be denoted by H(2>).

Proof Letb = % Note that the righthand side in Eq. 3.7 is well defined as an operator on

H,ie., —ﬁ ZieZ Itk : v+ b(k + 1)Ixv makes sense for any v € H since there are
only finitely many nonzero terms. It is straightforward to check that H(z2) = H (0)7.

So we only need to verify that H(0) is a } module. The proof is similar to the arguments

in Section 2.3 of [13]. The verifications are tedious but straightforward. We omit the details.

O

We see that (3.7) is the oscillator-like actions on H. So we call the ﬁ—module H(zp) a
generalized oscillator representation of V.
Note that for any v € H € Og with z3 # 0 and 22 € C, if ;v = 0,Vi > n for some
n € N, then in H(z»), we have
div=0,Vi > 2n. (3.8)
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Generalized oscillator representations 1425

We see that as an V-module, H(z2) € Oy which does not give new simple V-modules.

If the $-module H is a weight module, then H () is a weight module. When H is a
highest weight module over $), the V-module H (z») was constructed in Section 3.4 of [13].
For any A € C, the V-module H (1) is simple if and only if H is simple as $)-module.

Note that the action of z; on H (z2) is determined by z; and z3. In the next subsection we
will give a method so that the action z; can be arbitrary.

Example 4 Let H be the simple $-module Indg1 B constructed in Examples 2 and 3. Using

Theorem 10 we can obtain simple V-modules H (22). From the simple weight modules H
defined in Example 2, we obtain simple weight modules over ) whose nonzero weight
spaces are infinite-dimensional.

Example 5 Let 23, 23, Iy, a € C. Define 6(z3) = 23 # 0,0(lo) = Ip, 0(11) = a, 6(I;) =0
for i > 1. Then we have the simple $)-module H = Wy in Lemma 4. From Theorem 10
we have the simple V-module H(Z2) which is a Whittaker module defined in [16]. Unlike
Corollary 4.5 in [16], the V-module H (z7) is not free over U(V 7).

3.3 Simple Modules from Tensor Product

Let V be a V-module. Then we can regard V as V-module by defining (Czo + H)V = 0.
The resulting V-module will be denoted by VY.

Theorem 11 Let A, € C, let V, W be V-modules, and let H, K € Og be simple with
nonzero action of z3.

(1) Any V-submodule of vV ® H(M) is of the form (V’)‘N} ® H(}) for a V-submodule V' of
V. Thus any V-quotient of VV @ H (L) is of the form (VY @ H(M)/ (V)Y @ H(L)) =
(V/ VY @ H(L). In particular, VY ® H()) is simple as V-module if and only if V is
a simple V-module.

2 VVQHMW=WY®Kifandonlyif,=u, V=W, and H=K.

Proof (1) Note that  C anng(V), and H (1) is a simple $)-module. Thus the statement
follows from Theorem 7. N ~
(2) The sufficiency is trivial. Now suppose that ¥ : VVQ HL) — WY Q@ K(un) is a
V-module isomorphism. By comparing the action of z, we have A = p.
Let us fix a nonzero hg € H and arbitrary v € V, Write ¥ (v ® hg) = Zle w; ki
with minimal s. By Lemma 6, there exists some ug € U ($) such that upk; = 81k, i =
1,2, ..., s. Therefore

N
9(v ® uugho) = @(uuo(v ® ho)) = uuo(Y | w; ® k;)
i=1

= Zw,- ® uuok; = w1 @ uky, Yu € U($).

i=1
Let h1 = ugho, so we have proved that

Y(v®@uhy) = w; ® uky, Yu € U($). 3.9)
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1426 R.Ld, K. Zhao

From the simplicity of H and K, we have U($)h; = H and U($H)k; = K. From Eq. 3.9,
we have 7, : H — K defined by t,(uh;) = uki,Vu € U($)) is a well-defined U (£))
module isomorphism. N
Without lose of generality, we may assume that H = K. Then ¢ becomes an V-module
isomorphism from VY ® H(A) to WY ® H(1). Recall that any endomorphism of a simple
module over a countably generated associative C-algebra is a scalar. So 7, is a scalar and
from Eq. 3.9 we may define the map v : V — W such that ¥ (v ® h) = v(v) @ h, Vv €
V,h € H.Now from d,p(v @ h) = ¢(d,,(v®h)), we have d,v(v) ® h = v(d,v)  h, Vv €
V,h € H. Hence d,,v(v) = v(d,(v)). Sov : V — W is a V-module isomorphism. O

Theorem 12 Let V e Oy be simple with nonzero action of z3. If V contains a simple $-

submodule H, then V = H(z2) ® U V' as V-modules for some 7, € C and some simple
module U € Oy,.

Proof Suppose that Iy, z1, 22, 73 act on V as scalars 1o, 71, 72, 23, where we have assumed
that 73 # 0. Let 0 # v € H and ny,ny € N with d;jv = 0,for all i > ny and /;v = 0,for
all j > ny. Denote n = max{ny, 2n;}. It is not hard to show that H is a simple module over
L = span{d;, 1}, z1, 22, 23li = n, j € Z}. Define the one dimensional L-module Cvy by
d;, 1j, 72, z3 acting as zero for alli > n, j € Z, and z; acting as 71 + % — 1. It is clear
that H = H(2») ® Cvg as L-module. Now from Lemma 8, we have

IndY (H) = Ind, (H(z2) ® Cvg) = H () ® Ind? Cup.

Note that Indg Cvp € Oy, and that V is a simple quotient module over Indg(H ). Now the
theorem follows from Theorem 11. O

Open Problem It will be interesting to classify all simple modules in O3;.

3.4 Whittaker Modules Over 17

Now we will focus on the so called Whittaker modules over .

For any m € Z, recall PoOm — span{dy, i, t'|i € 7. }. Let gy, : pom +Z?:1 Czi —
C be a Lie algebra homomorphism. Then we have the one dimensional module C,, =
Cuwy,, over pom 4 3 Czi with x - wy, = @m(X)wy,,, Vx € POm 4 >3 | Cz;. The
induced V-module 5 5

W‘/’m = Ind‘é(o.mprz?:l Cz; C‘/’m

will be called the universal Whittaker module with respect to ¢,. And any nonzero quotient
of W,,, will be called a Whittaker module with respect to ¢,.

Note that (pm(DN/(O"”), )7(0’”‘)]) = (. Then we have

(3.10)

wln(d2m+j) = (Pm(lm+j) =0,vVjeN
Remark that if m = 0, VT/(pm will be a highest weight module.
For the above ¢, with ¢,,(z3) # 0, we define a new Lie algebra homomorphism ¢, :
Y 4 Cz; — C as follows
Pm (ZZ)Z
¥m(z3) '
@, (di) =0,Vk > 2m + 1,

0n(z1) = om(z1) — 1412
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(Z ()(Pm(l Yo (Tk—i)) — 2(m + Dy () om (ZZ)

(ﬂ;,, (dv) = om(di) +

2(pm (z3)
forallk =m,m+ 1, ...,2m. Then we have the universal whittaker V-module W%
Wy = Indv("’)+(Cz Cwyy, (3.11)

where x - wyr = ¢, (X)wy , Vx € V) 4 Cy.

Theorem 13 Suppose that m € Z., and ¢n and @,, are given above with ¢, (z3) # 0. Let
H = U®)w,, in W,,.

(1) We have VT/(pm = H(om(22)® W‘Nj Consequently, each simple whittaker module with

respect 10 g, is tsomorphlc to H((pm (22)) ® vaor a simple quotient T of Wy
(2) The V-module W¢m is szmple if and only if Wy, is a simple V-module. Consequently,
for m € N, the module W is simple if and only if (@), (d2m—1), @), (d2m)) # (0, 0),
ie.,
20 (d2n) P (23) + @ (1n)* = 2(m + D (In)pm (22) # 0, or
Om (dom—1)0m (23) + O (L) Pm Ip—1) — (m + 1)(/)m(1m)(pm(z2) # 0.
(3) Let Ty, Tz be simple quotients of Wy, . Then H(pn(22)) ® Tv = H(om(22) ® TV if
and only if Ty = T.

Proof From Lemma 4, we know that H is a simple $)-module.
(1) Define L = span{dj+;, I}, 21, 22, 23|l € Z, j € Z}. From simple computations we
see that

= L ~ .
H= IndV(O m)+z (C Cw(ﬁm = H(ZQ) ® CUJ(p'/ﬂ

as L-modules, where the action of L on (Cw%/n is given by (9+Cz2+Cz3)wy, = 0, xwy =
P (X)wyy forall x € V) 4 Czy. Therefore from Lemma 8, we have

= 1Ind” (Indk Cuwy,) = IndY (H (%) ® Cw,y )

Yom 53 Cz
= H(zy) ® Ind} Cw,y ) = H(Z) ® Wy
Parts (2) and (3) follows from Lemma 3, Theorem 11 and some easy computations. [

Next we consider VT/(,,m for ¢(z3) = 0.

Theorem 14 Suppose that m > 1 and the Lie algebra homomorphism gp . POm +
Z, 1 Cz; — Cis with ¢,y (z3) = 0. Then the universal Whittaker module W, is simple if

and only if ¢y (In) # 0.

Proof Casel ¢, (I,) # 0.
Since @p(dom+j) = @mImyj) = 0 for all j € N, we may choose some a =

S ait’ € Clz, 17" such that

0=gnld) +ent"a),Vn=m+1,m+2,...,2m.
Then W(Z‘;’O becomes a new Whittaker module with the new action dj o wy,, = 0 for all
k > m. Since ¢(z3) = 0, the action of § on W,,, is unchanged. Without lose of generality,

we may assume that
Om(dy) = 0,Vk > m. (3.12)
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Denote B = dzio m Cwe,,. Then {dl'” | dio We,, |(Gm—1, ..., i0) € Z"'} is a basis of B.

Itis straightforward to check that I, acts injectively on B, and B is simple as V©0_module.

v
Now from Theorem 1 in [7] (for d = O there), we see that me = Indv<°~°)+2?:1 s, B is
simple.
Case2 ¢, () =0.
Let
m—1 m+1
w = (Z a;d; + Z bil i +cl 1I-Dwy, € W,
i=0 i=1

where ag, ..., am—1,b1,...,bpt1,¢c € C will be determined. We will make w into
a Whittaker vector. From d,+iw = ¢ dpyi)w and I1yjw = @p(I14i)w for i =
0,1, ...,m, we obtain the following homogenous linear system with 2m + 2 variables
ag, ..., am—1,b1, ..., byy1, cand 2m + 1 equations:

m—1

> aign (k. di) =0, k=1,....m—1;

i=0

(—=m — Dbya1 + 2¢0m([dy, 1-1]) = 0;

m—1

Y aign(ldn, i) + Zblwm([dm, 1) =0;

i=0 i=1

m—1 m+1

Y aion(dnit, di) + Y bign(dni, 1) =0, [=1,2....m.

i=0 i=1

It is clear that the homogenous linear system has a nonzero solution since the number of
equations is less than the number of variables. N _

Thus w generates a nonzero proper submodule of W, . So we have proved that W, is
not simple in this case. (]

Now we summarize the established results of this subsection into the following main
theorem.

Theorem 15 Ler m € N and ¢, : Pom 4 Z?:1 Cz; — C be a Lie algebra
homomorphism.

(1) Suppose ¢,,,(z3) # 0. Then the Whittaker module me is simple if and only if
20 (dam) P (23) + 9 (In)* = 20m + D@ (In)pm (22) # 0, or

Pm (dmel)Qom(Z3) + @m (Im)gom(lmfl) - (m + l)gom(lm)(pm(ZZ) 7+— 0.

(2) Suppose ¢ (z3) = 0. Then the Whittaker module me is simple if and only if
(pm (Im) # 0'

We remark that if m = 1, then the modules me are the usual Whittaker module defined
in [16] and [22].
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4 Tensor Products of Highest Weight Modules and Modules
of Intermediate Series

In this section, we will determine the necessary and sufficient conditions for the tensor
products of highest weight modules and modules of intermediate series over V to be simple.
Let (o, do, 71, 72, 23) € C3, T be the left ideal in U(V) generated by

{dn, Ly, do — do, Io — Ip, 21 — 21, 22 — 22, 22 — 23|n € N}

Then M (ly, do, 71,72, 23) = U()NJ)/I is a Verma module which is a free U(]N/’) module
generated by the highest weight vector w = 1 4 Z. It has a unique maximal submodule
J 1y, dy, 71, 72, 73), and the quotient module

V(lo, do, 21, 72, 23) = Mo, do, 21, 72, 23)/ T (o, do, 21, 72, 23)

is simple. We will denote the image of w by w. These modules are studied in [1, 4].
Now we recall the modules of intermediate series from [18]. For any a,b, F € C,
A(a, b; F) = C[x, x~!1is a V-module with the action

21=2=23=0, 4.1)
dyx™ = (a + m + nb)x™t", 4.2)
Lix™ = Fx"" ¥m, n e Z. 4.3)

It is well known that A(a, b; F) is reducible if and only if a € Z, b € {0, 1} and F = 0.
Denote by A’(a, b; F) the unique nontrivial simple sub-quotient of A(a, b; F). Recall that
A'(a,b, F) = A'(0,0,0) if A(a, b; F) is not simple.

It has been shown in [18] that an simple VV-module with finite-dimensional weight spaces
is either a highest (or lowest) weight module, or isomorphic to some A’(a, b; F).

As usual, we use M (db, Z1) and V(db, Z1) to denote the Verma module and irreducible
highest weight module over V), respectively, and use A(a, b) and A’(a, b) to denote the
intermediate series V-modules.

Lemma 16 (/) Suppose z'3 # 0. Then V(io, do, 71,72, 23) @ A'(a, b; 0) is simple if and
only lfV(d(] + 2; Io - 20,71 -1+ 12212 ) ® A’(a, b) is a simple V-module (the later
part is completely determmed in [8]). R

(2) IfF #0, then A(a, b; F) ® V(dy, 21)Y is simple.

Proof (1). Denote by H the highest weight $-module with Iy = fo and z3 = z3. From
Theorem 13 or Section 6 in [1] we know that

12752
73

1
V(lo, do, 71, 72, 73) = H(Z2) ® V(dp + 710 - *10 71— 1+ ) ,

V (o, do, 71, 72, 73) ® A'(a, b; 0)

~ . : I .2 2. .
=H@D)QVdo+ —1Iv — =1y, 21
273 23
Therefore the result follows from Theorem 11.
(2) Note that for any finite subset S C V(do, 1), there exists some r such that Vo 4
$+Czo C anng3(S). However A(a, b; F) is simple as V@) 4 6 + Czy module. Thus the

result follows from Theorem 7.
O
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Lemma 17 The module M(io, db, 71,22, 23) ® A'(a, b; F) is not simple.

Proof Let w be the highest weight vector of M (Iy, do, 71, 22, 73). Suppose that x*, xk+1 =
0in A’(a, b; F). The lemma is clear from the following claim.

Claim We have w ® x* ¢ U(V)(w ® xk*1).
Note that
UV)(w @ x)y =u Y Hu V) w e xF) ¢ Z UP™ ) (w @ 1),
i€y

Using the PBW Basis of U (]N)_), it is easy to verify that w ® xK can not be written as
S ui(w ® xk), where u_; € U(V7)-; withu_, # 0, since the term u_, w ® xktr
in the expression of Y/_; u_; (w ® x**7) cannot be canceled. O

Corollary 18 If Iy # 0, then V (Iy, do, Z1, 0, 0) @ A(a, b; F) is not simple.

Proof From Theorem 2 in section 6 of [1] or Theorem 1 in [7], we have
V(lo, do. 71,0,0) = M(lo, do, 21,0, 0)
if Iy # 0. The result follows from Lemma 17. O

Lemma 19 Suppose that F # 0. Then any nonzero submodule M of V(fo, db, 71,22,73) ®
A(a, b; F) contains ® ® x* for some k.

Proof Take a nonzero B = Y i_yv_; ® x**' € M, where v_; € UV™)_iw. Replacing
B with ug for some u € U(VY) if necessary, we may assume that vg = w. Choose n such
thatd;jv_; = [ju_; =0,Yj > n,i = 1,2,...,s. Note that A(a, b; F) is simple as V™ +
H+Cz rr_lodule. Therefore from Lemma 6, we may choose some u € U (V™ + $ + Cz3)
with uxkti = 80,,-x0 forall j = 1,2,...,s. Rewrite u = Y, u;u; with u; € U($) and
u; € U(V™). Note that
Ij],'X = F1i+jX, Vl,] (S Z, X e A(a,b; F)

For sufficient large /, replacing I;I; with FI;; in Lju, we obtain u e U (17("’”)) with
wxk = tlux*+ = F§y;x!,¥i=0,1,...,s. Now0 # u/f = Fo ® x' e M. O

Now we use the “shifting technique”. We will denote vy Qx'as @y th foralli, k € Z,
where v, € V(ly, do, 71, 22, 73) with dovg = (dy + k)vi. Then

M (lo, do, 71,72, 23) ® A(a, b; F) = M(ly, do. 21,72, 73) ® Cly, y']

with the actions
dn(ugw ® ¥') = ((dy — k +a +i +nbugw) ® y"+i, (4.4)
Liuw ® y) = ((In + Fugw) @ y'*", 4.5)

for all uy € U(i})k ={uce U(]A/‘)I[do, u] = ku}. For simplicity we define
W =3 UW)w Yt € My, do. 1. 72, 23) ® A, b F),

i€Z4

w® = w® 0 (M, do, 21, 22, 73) ® Y"), ¥n € Z.

@ Springer



Generalized oscillator representations 1431

Lemma20 (1) W® =3, , UV )w® y+).
Q) WO > @My, do, 71,72, 73) ® Y.
(3) My, do.71. 7.2 @ V' =W @ Cwe y ).
(4) Suppose that P is a weight vector in U (V™) such that
Pwey!le Wk(]i)l C Mo, do, 21,72, 73) ® A(a. b; F),

then (UV™)Pw) ®@ y*=1 ¢ wb,.

Proof (1). 1t follows from UWV)(w ® y') = UVHUVT + Wyw ® y) C
ez, UV @y ).

(2). Using (1), Eqs. 4.4 and 4.5, by induction on s + m it is straightforward to prove that
... 0_jdy --dg,wey e WO foralli > kand ji,..., js,l1,...,In € N.

(3). This follows from (2) and the proof of Lemma 17.

(4). Suppose that P € U(V7),,. From (2), Eqs. 4.4 and 4.5, we have

(d—i Pw) @ y* ! =d_;(Pw ® y*T7 1))

k—1 (k) (4.6)
—(@—m+k—1-ib)(Pw) @y~ € W,
(i Pw) ® Y~ =1 (Pw ® y*'™1)
k—1 () .7
- FPw®y ™ e W, ,VieN
Therefore we may prove (4) by induction on m.
O

For any n € N, from Lemma 20 (3), similar to ¢, defined in [8] we may define the linear
map p, : U(V ™) — C inductively as follows

pn(l) =1, (4.8)
pn—ju) = —Fp,(u), N 4.9
pn(d—_ju)y=—(@+k+i+n—ib)o,(u),Yu e UV ™) . (4.10)

Remark 21 1t is clear that p, depends only on a, b, F, n.

Lemma 22 Let P € U(V_). Then

(1) Pw®y"=p,(P)w®y" ( mod Wr+hy;
) Pw®y" e WD ifand only if p,(P) = 0.

Proof The proof for (1) is similar to that of Lemma 8 in [8] but one also has to consider
I_y. Part (2) follows from (1). O

Let us recall some following results from Theorem 1 in [4].

Theorem 23 Let (I, do, 21, 22, 73) € C° with 73 = 0.

() IF8 ¢ Zor T =1, then M(ly. do. 71, 7. 0) is simple.

2) Ifl1-— % € 7\ {0},. then M(i(), do, 71, 22, 0) possesses a singular weight vector v € M,
Iy

where p = |1 — > |, and the quotient module M(io, db, 71,22, 0)/ U(lj’)w is simple.
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Remark 24 (1) Let M (db, Z1) be the Verma module over V. Then it is well-known
that (see [10], for example), there exist two weight vectors Q1w’, Qow’ such that
UV)Q1w' + U(V7)Qow' is the maximal proper submodule of M (dy, 1), where
01, Q2 € U(V7) and w' is the highest weight vector in M(db, zZ1).

(2) If73 =z, = 0and Iy # 0, from Theorem 1 in [7] we know that M (Iy, do, Z1, 22, 23)
is simple.

(3) [Ifzz # 0, denote by H the highest weight $)-module with Iy = Iy and z3 = 73. From
Theorem 13 we know that

Y i . 1 ., 12Z2
M(ly, do, 21,72, 23) = H(22) @ M(do + 10" — 10, 71— 1+
273 23
Let J = UV )Qiwy; + U (V )Q>w», be the maximal proper submodule of M (dy +
ﬁio — —Io,zl -1+ ]212 ) where Q1, Q2 € U(V™) and w; is a highest weight
vector. From Theorem 13 we know that U(V Y w; ® Qrwr) + U(V ) (w1 ® Orw))

is the unique maximal proper submodule of H(z72) ® M (do + 21 102 - —Io, 71 —
-2

) .

1+ %)V,where w1, wy are highest weight vectors of H(z2) and M(do + E Iy

%I'o, 71— 1+ %) respectively. So we have proved that the maximal proper V-

submodule of M (fo, do, 71, 2, Z3) can also be generated by at most two singular weight
vectors.

Suppose that (fg,z'z,z'3) # (0,0,0), from the remark above, we always have
weight vectors (or zero) Q1 Qz e UV~ ) such that the maximal proper V-submodule
of M(Io,do,zl 72, 73) is generated by Qlw sz as U(V ) modules. Recall that
pn(Ql) pn(Qz) are defined in Eqs. 4.8, 4.9, 4.10.

Lemma 25 Suppose that (Iy, 72, 73) # (0,0,0) and V (ly, do, 21,72, 73) ® A'(a, b; F)
satisfies

Condition B For any nonzero submodule V; of V(fo, db, 71,22,23) ® A'(a, b, F), there
exists some k (depending on V), such that w ® x*t e v foralli € L.

1. Suppose that A(a, b; F) is simple. Then V(Io, do, 71, 22, 73) ® A(a, b; F) is simple if

and only if (pn(01). pa(02)) # (0,0) forall n € Z.
2. If(a,b, F)=(0,0,0), then V (o, do, 21, 22, 23) ® A'(0,0,0) is simple if and only if

(0n(Q1), pu(Q2)) # (0,0) for all n € Z\{0}.

Proof Denote by J =U (17_)5114) + U (\7‘)@211) the maximal proper submodule of
M(ly, do, 71, 22, 73)-

(1) Erorp condition B and Lemmas 20, 22, it is clear that the module
Vo, dy, 71, 72,73) ® Ala,b; F) is simple if and only if J ® y" + wt
M (ly, do, 71, 22, 73) @ y" for all n € Z if and only if

WP H0 1w+ UV )0w) ®y" ¢ WD vn e Z,

if and only if
{Qw®y", Qawey"} ¢ W'D, Vel
if and only if (0, (01), pn(02)) # (0,0) forall n € Z.
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(2) The proof is similar to that of Part (1). The only difference is that we don’t need
(P0(Q1). po(Q2)) # (0,0) since the image of w ® y* is zero in V (lo, do, 71, 22, 73) ®
A’(0,0,0).

O

Now we summarize the established results into the following main result in this section.

Theorem 26 Leta, b, F, Iy, dy, 71, 72, 73 € C.

(1) IfF #0, then V (0, db, 71,0,0) ® A'(a, b; F) is simple.

(2) V(0,do, 71,0,0)® A'(a, b; 0) is simple if and only if V (do, 21) @ A'(a, b) is a simple
V-module.

3) Suppose that (fo 22,723) #* 0,0,0) and A(a,b; F) is szmple Then

V(lo, do, 71, 72, 73) ® Ala, b; F) is simple if and only if (p,(Q1), pa(02)) # (0,0)
foralln € Z. )
(4) Suppose that (lp,22,73) # (0,0,0) and (a,b,F) = (0,0,0). Then

V Iy, do, 21, 22, 73) @ A'(0, 0, 0) is simple if and only if the pairs (on(01), pn(02)) #
(0, 0) for all n € Z\{0}.

Proof (1) is from Lemma 16. (2) is trivial. If 73 = z> = 0 and ig # 0, we have the theorem
from Corollary 18. If F = 0 and z3 # 0, the theorem follows from Lemma 16. For other
case, we need to check the Condition B in Lemma 25. If F # 0, we have Condition B hold
from Lemma 19. If F = 73 = 0 and 7> # 0, we have Condition B hold from the proof of
Theorem 45 in [23]. O

The simplicity of the tensor product A’ (a, b; 0) ® V (o, do, 71, 22, 0) is obtained in [23].
Let us recover it as an example.

Theorem 27 [23] Suppose that 73 = 0 and 7 # 0.

(1) Forl-— 2—2 = p € N, the module A'(a, b; 0) ® V(fo, db, 71, 22, 0) is simple if and only
ifa—pb ¢ Z.

(2) For ;—‘2) — 1 €N, the module A'(a, b; 0) @ V (I, do, Z1, 22, 0) is not simple.

(3) The module A'(a, b; F) ® V(0,0, 71, 22, 0) is simple if and only ifa — b ¢ Z.

Proof Suppose that F = 0. Using Lemma 23, from easy computations we see that p,(Q) =

0if £ — 1 € N,and p,(Q) = pa(d_p) = —(@+ p+n — pb)if 1 — LO = p € N, which
1mply (1) and (2).

Now suppose that (fo, dg, 71, 22,23) = (0,0, 71, 22, 0), then it is straightforward to see
that Q = d_;. And we have p,(Q) = p,(d—1) = —(a + 1 +n — b), which implies (3). O

Example 6 Suppose that z3 # 0 and F ;é 0. Let H be the highest weight module over $)
with Iy = I and z3 = z3. Then M (Iy, — mt 1072 ,2— 1212 ,22,23) = H(Z2) @ M (0, I)V
The maximal submodule of M (0 1) is generated by the Welght vector of weight —1. It is
straightforward to obtain that Q1 = Q2 =d_1+ ;2 1.

We know that pn(él) =—(@+14n->b)— %F Therefore

I I 12752
Vil 0 T2 5 128
2z z3

,22,23) @ A(a, b, F)

@ Springer



1434 R.Ld, K. Zhao

is simple if and only if b—a— D F ¢ Z.1fn = b—a—1-DBF € Z.then UD)- 0@y
is the unique minimal submodule of V(Io, 1‘; + I‘;gz 2 — 12;3'22 ,22,23) ® A(a, b; F),
which is simple and the quotient ‘

I Iz 12,2 . . ~ _
Vo, — 9 + 22022 2 )@ A b F)/(U®D) - 0@y
273 23 23

is a highest weight module with the highest weight vector w ® y" + U (17) S @ y"th.

5 Simple V-Modules from O

We will use the algebras defined in Section 1: VT/ q, P) and 9[)»]
In this section we will first cla551fy all simple modules in Oy, then use the “embedding
trick” to make these simple W-modules into simple Y-modules.

5.1 Simple Modules in OW

For any B € Oz and 0 # v € B, define ordz(v), the order of v, to be the minimal
nonnegative integer » with 7, ;v = 0 for all i > 0. And ordgz(B), the order of B, is defined
to be the maximal order of all its elements or oo if it doesn’t exist.

Lemma 28 Suppose that B € Oj is simple.

(1) We have ordg(B) = ordz(v) for all 0 # v € B. And there exists some (r,s) € Zi
such that lj(r )B =0, i.e., B can be regarded as a simple module overa, ;.

(2) Ifordz(B) = 0, then B is a simple a-module.

(3) Ifr = ordz(B) > 0, then the action of I,_1 on B is bijective.

Proof For any nonzero v, v’ € B, since B is simple, there exists some u € U(d), such
that v/ = wuv. It is straightforward to check that I;v" = Luv = 0,Vi > ordg(v). So
ordg(v) > ordg(v'). Similarly we have ordg(v") > ordg(v). Thus ordgz(v') = ordz(v) = r.
Now suppose that djv = 0,Vi > k. Then take s > max{k, r}. It is easy to verify that
V9 B = 0. So we have proved (1). Part (2) is trivial.

Now suppose that r = ordz(B) > 0. Consider the subspace X = {v € B|l,_jv = 0}
which is a proper subspace of B. Then X and I,_; B are a-submodules of B. Since B is
simple, X # B and I,_1 B # 0, we deduce that X = Oand I,_1 B = B, i.e., [,_j is bijective
on B. Part (3) follows. O

Lemma 29 Let B € Oy, W, Wi € Oy be nontrivial simple modules.

(1) The module Ind? (B) is simple in Oy,

(2) The module Soci (W) is a simple a-module, and an essential a-submodule of W;
(3) We have W = IndY’ Socg(W), B = Socz(IndY’ B);

(4) We have W = W if and only if Socg(W) = Socg(Wy).
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Proof (1). Let M be any nonzero submodule of Indaﬁ (B) = Cl[d-1] ® B. Choose 0 #
v = Zf:o dil ® v; € M with minimal s, where v; € B. Denote r = ordz(B).If r =0,
the result follows from Lemma 2. Thus we assume that » > 0. Note that in U (V) we
have

s=2
Ld' =d* I —rsd’ 'L+ Y dU®).
i=0
If s > 0, then
s—2
0#Lve—srd (' ® Lo+ » d' | ®BCM,
i=0

whicNh contradicts to the minimality of s. Sos = 0, i.e., v € 1 ® B. Therefore M =
IndY’ (B), and Ind¥ (B) is simple.

(2). Fixsome 0 # w € W with minimal ordgw = r. Let M = U (@)w. Then ordgM = r,
and W = Cl[d_|]M. If r = 0, the result follows from Lemma 2. Thus we assume that
r > 0. For any v = Zf»zodilw,- € Wwithwg #0andw; € M fori =0,...,s, we
have

O0# Ly v==D'r+s—D@+s)---rl_jw; € M, (5.1)
I+iv=0,Vi >s. 5.2)

Thus ordg(v) = r +s5.So W = Cld_1]® M and W = Indgv M. Recall that W is a
simple WV module. Thus M is simple as d-module, and it is essential from Eq. 5.1.
Part (3) is an obvious consequence of (1) and (2). Part (4) follows from (3). O

Example 7 Consider some r € N and set
= (s frg s -y H2r)s k= (KO, K1, K2, - oy Kp) € CT,
Define the one dimensional V©")-module Cuy,c with the action

d2r+iv#,,( = IH_rUM,K = 0, Vi € N,

Livi e = KiVy e, driVue = UrgiVue, Yk=0,1,...,r.
Then we have the induced W-module W, , = Ind%\fovr) Cup k.

Lemma 30 The VT/—moa’ule Wi is simple if and only if (1o, hor—1, k) # (0,0, 0).

Proof If (uar, nar—1) # (0, 0), then from Lemma 3, and Theorem 2 in [MZ], we know that
W, « is a simple VW-module, hence a simple W-module.

Now suppose that (uar, u2,—1) = (0,0) and «, # 0. We make Cuv, , to be a
PO.n + Z?zl(Cz,- module by z; z2 = 0,z3 = 1. Then by Theorem 13(2),
Y W43, C
ndgo,) 5 o, 9<rfr>z+'§;:<cm
ple VA\} + Z?:l Cz; module, that is, W,, . is a simple VT/-module. On the other hand, if
(2r, M2r—1, k) = (0,0, 0), then it is straightforward to verify that d, v, . generates a
proper W submodule. O

Cuy, is a simple V-module. Thus Ind Cuy . is a sim-
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5.2 The “Embedding Trick”

LetW e OVT,. Then W can be naturally regarded as a module over C[[#]] % +C[[¢]]. Regard
Clt, (t + )74 + Clt, (r + )7'] as a subalgebra of C[[¢]]4 + C[[¢]]. We will use the
expression

oo

(t+ )" = Z (’?)xm*it" e C[[t]], Vm € Z, » € C*,
i=0

where (') = —m'(m_l)'i'!'(’"_““l). Let
o1V — Clt, (1 + A)_l]% +Clt, t +0)71
be the epimorphism of Lie algebras defined by
o (f(0)) = fi+2), Gx(f(t)%) =f@ +k)%,vf(t) eClt, 17,

and 03 (z;) = 0,i = 1, 2, 3. So we have the ﬂ—module W([A] = W with the action

ziow=0,i=1,2,3, 5.3)

d d d
(f(t)a)ow zox(f(t)a)v = (f(t+k)a)v, 5.4
fM®ow=0o(f®)v=f@+ v,V f(t) e C[t, t_l], weWw. (5.5)

We call the above method to make W-module W into v-module WIA] the “embedding
trick”.

Remark 31 Note that o; |5 is a Lie algebra automorphism. Hence for any W € Oy, W[A]

is equivalent to W as VW-modules. It is easy to see that W[A] ¢ Os; for any A € C* unless
W is trivial.

Proposition 32 Suppose that W, W' € Oy are simple and nontrivial, 1., 1" € C*.

(@) The module W[A] is a simple 17-m0dule.

(b) Wehave W[A] = Indgm Socz (W) = Cldp]®Socz (W), where Socg (W) is considered
asa 9[A]-m0dule. _ _

(¢) We have W[A] = W'[A'] as V-modules if and only if » = X and W = W’ as VWV-
modules.

Proof Part (a) follows from Remark 31.
(b). For any w € Socg (W), any n € Z, we have

o0

("ow=(+1"w=Y (?)Am—it"w,
i=0
nd _ nd _oo n\ i i1 4
(=Mt d[)ow—(t(t—l—)\) dt)w—;(l)k (t d[)w-

So Socg(W)isa lj[k]-module. The rest follows from the definition of W[A] and Lemma 29.
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The sufficiency of Part (c) is trivial. Now suppose that ¥ : W[A] — W/[A']is a W-
module isomorphism. Suppose that A # A’. For any 0 # v € W[A], there exists some k € N
such that (C[z, 111t = W4 + C[r, t7'](t — 1)* + Cz + Czz + Cz2) o v = 0. Hence

3
(Cre, =1 — x)"% +Cle e =0+ ) " Cz) o pr(v) = 0. (5.6)

i=1

And also there exists some k' € N, such that

3
’ d ’ -
(Clt, = — AH¥ -+ Clt, 17"t =) + ) Czi)oy(v) = 0. (5.7)
i=1
From Eqgs. 5.6 and 5.7, we have Vo ¥ (v) = 0, a contradiction. So A = A’. For any f(t)% +
g(t) e Wand v € W, we have

d d
w((f(t)a +g)v) =¥ ((f - A)E + 8t =) ov)

d d
=(f@ - K)a +g(t =) o(v) = (f(t)E +gM)Y () e W
Thus ¢ : W — W' is a W-module isomorphism. O
Example 8 Let A(by, by) be the Verma module over W with the highest weight vector
Up, b, Of highest weight (b1, by) € C? ie., dovp, b, = b1Vp; by> l0Vb, b, = b2Up, 5y, and
Iivp, b, = divp, b, = 0 forall i > 0. Denote Q(X; by, by) = A(b1, by)[A]. From Lemma

29 then Q(A; by, b2) is simple if and only if (b1, b2) # (0, 0).
For any A € C*, the action of V on Q2(A; by, by) = Cldp] o vy, p, is

21=22=23=0,
dm o (d} 0 vpy b)) =(do — m)' © (dyy © Vb, 1)
. d
=(do —m) o (((r + A)"’“E)vbl.bz)
=(do —m)" o W Trd_y + (m + DA™ do)vp, 1,)
=(do —m)" o (mA"do + A" (do + rd—_1)vp, 1)
=A"((do — m)' (mby + do)) o vp, p,, Ym € Z,i € Ly,
L o (d}y 0 vy py) =(do — m)' 0 (I © Vp, 1)
=(do —m)" o (((t + )" vy, 1)
=" by)(do — m) o vy, by, Ym € Z,i € L.

We see that, as V-modules, 2(A; by, by) is isomorphic to (A, by + 1) defined in Section
4.3 of [19], where V-modules Q (X, b; + 1) = C[3] with the action:

dy - F =210 +nb)@ —n)VkeZinel. (5.8)

Example 9 Let W, , be as defined in Example 7 with r = 1. Then W, ([A] =
Cldo, d—11vy i is simple if and only if i # 0 or k1 # 0. Take

{dly o (ddvu0)li j € Zy)
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as a basis of W, [A]. Then action of ]NJ on this basis is
21=22=23=0,
dy o (diy o (d] )
=" ((do — m)'do) o (d vyue) +mA" (do — m) o (d] ™ vy.0)

o = mY o (do = 1) vy)
3 _

6
L o (dl) o (d] )

=(do —m)" o (M"kod] +ma" " (do — 1)/ 1)vye).

m m_,._ i i
A2 pa (do — m)' o (do — 2) vy ),

5.3 Simplicity of Tensor Product Modules

In this subsection we will use Theorem 7 to construct more simple V-modules by taking
tensor product of simple modules constructed in this paper.

Lemma 33 Let Wi, Wy, ..., W, € Oy be simple and nontrivial, and A1, A2, ..., k, € C*
pairwise distinct. Then the V-module

Wilr] @ Wa[A2] @ -+ - ® WylAal
is simple.

Proof We will prove the lemma by induction on n. It is obvious for n = 1. Now suppose
thatn > 1. Denote Vi = Wi[A ] @ Wa[A2] ® -+ - ® Wy_1[An—1] and V, = W, [A,].

From the inductive hypothesis, V; is simple.

Take p(t) = (t — A1) ...(t — Ay—1). From the definition of W[A], we see that for any
finite subset v; € Vi, and S, C V>, there exists some kg € N such that

d
(Clt, t_l]p(t)koa +Clt, t " p@)* + Cz; + Cz2 + Cz2) o vy =0,

d
(Clt, "t — A,,)koE +Clt, 17 — Ak + Cz1 + Czo + Cz2) 0 S = 0.

Note that C[z, = 1p)* + Clz, t =11t — A,)* = C[t, r~!]. From Theorem 7, we know
that Vi @ Vo = Wi[A] @ Wa[Aa] ® - - - @ W, [A,] is simple. O
Theorem 34 Let Wi, W2, ..., W, € Oy be simple and nontrivial, V. € O3 be simple,
and A1, Aa, ..., Ay € C* be pairwise distinct. Then the V-module

VWA W2 [A2] Q- ® WylAy]

is simple.

Proof Denote Vi = V and Vo = Wi[A] ® Wa[A2] ® - - - ® W, [A,]. From Lemma 33, V;
is simple. Take p(x) = (¢t — X1)...(t — A,). Then see that for any v € Vi, and any finite
subset S» C V>, there exists some ky € N such that

d
ko koy,, —
(Cle1e 7 + C[t]t*)v = 0,
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d
(Clr, 1 p(n)ko o T, 1" p)*0 + Cz; + Cz2 + Cz2) 0 S, = 0.

Clearly, C[t]t%0 + C[t,t "Ip(t)* = C[r,¢7']. In fact, I = C[t,t~'|p()* has finite
codimension in C[z, r~1]. Say Clz, 11 = T @& I as vector spaces where T is a finite-
dimensional subspace of C[¢, t~11. Then we have /T C C[¢]* for some sufficient large i
since T is finite dimensional. Therefore

Clt,t N=rClt,t =T @D =t'T+11CC[t)*+1<Clt,t7'].

So C[1]t% + C[t, t’l]p(z‘)kO = C[t,t~ 1. Now by Theorem 7, we know Vi ® V2 = V ®
Wilt]1 ® Wa[A2] ® - - - ® W, [A,] is a simple V-module. O

Example 10 Let Ay, ..., A, € C* are pairwise distinct, ai, ..., a,, b1, ..., b, € C, and
V e Oy is simple. From Example 8 and using Theorem 34, we obtain the simple module
QA1;a1,b)Q@QLMN2; a1, b)) Q-+ -QQ(Ay; an, by) ®V if each (a;, bi) # (0, 0). Further, if
we take b; = Oforalli,and V € Oy, then Q(A1; a1, )@ (\2; a1, 0)®- - -Q@Q(Ay; an, 0)®
V is also a simple V-module since $) acts trivially. Such simple V-modules were obtained
in [24, 25].

5.4 Isomorphism Classes

In this subsection we will determine the isomorphism classes of the simple tensor product
V-modules discussed in Theorem 34.

Theorem 35 Let Wi, Wa, ..., W,,, W, W}, ..., W, € Oy be simple and nontrivial,
V. V' € O be simple, and A, Ay, ..., kg, X, A, ..., A, € C*. Then the simple V-
modules Wi[A 1@ Wa[A2]®- - - @ Wy [A,1® V and W{[AM 1@ W3[A5]Q--- @ W, [A, 10V’
are isomorphic iff m =n, V.= V', &; = Al, W; = W/ fori = 1,2, ..., n after re-indexing
the modules W'[)].

Proof The “if” part is obvious. We need only to consider the “only if” part, that is, we
suppose that the simple V-modules Wi[A1] ® W2[A2] ® - - ® Wy[A,] ® V and W[[A|] ®
WA ® -+ ® Wy, [A,,] ® V' are isomorphic.

Forany v € V orv € V/, there is an/ € N such that

((C[z]tli + C[r]t’) v=0.
dt

Let p1(#t) = (t — A1)...(t — Xy) and po(t) = (t — )Jl)...(t — A},). From the given
isomorphism, we know that, for any nonzero
X=w® - Quw,®v e W[L]@W[A2]®--- @ Wy [1,]®V,

there exists kg € N such that

((C[t](pl(t)t)ko% + (C[t](pl(t)t)k0> ow;=0,i=1,2,....n (5.9)
<(C[t](p1(t)t)k°% + (C[t](pl(t)t)ko> v =0, and (5.10)

d
(C[t](pz(t)t)koa + C[t](pz(t)t)’“’) X =0. (5.1
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If p1(t) t pa(t), without lose of generality, we may assume that (f — A;) 1 p2(r). Let
p(t) = p1(1) p2(t)/( — A1). Then

(C[I](p(t)t)k‘)% + C[t](p(t)t)kO) (W2 ® - Qw, ®v) =0.

Combining with Eq. 5.11, we know that

((C[t](p(t)t)k“% + (C[t](p(t)t)k°> owy =0. (5.12)

Note that there exists some k € Z such that

3
d
((C[t, N - M)kE +Clt, ¢ = Ak + Z(Cz,-) owy = 0. (5.13)

i=1

From Egs. 5.12 and 5.13, we have Vo w1 = 0, which is a contradiction. Thus p1(¢)|p2(t),
and similarly p»(2)|p1(2), to give p1(t) = pa(t). So we have m = n, and we may assume
that A; = Al fori =1,2,...,n.

Lety : WiM]® - @ Wa[ly]®V = WM]® - @ W, [A] ® V' bea V-module
isomorphism. Fix some nonzero

X=w Q.. w;, Qv e Wi [AM]IW2[A2] ®--- @ Wy [A,] ® V.

Write ¢ (X) = Y ;_, w} ; ® ¥; with minimal s, where w/ ; € W{[A1], Yi € W] ®---®
W, [An]® V. We know that ¥;’s are linearly independent. Denote p(r) = t(t —A2) ... (t —
An), then there exists k1 € N such that

(C[t]p(t)k‘ % + (C[t]p(t)k‘) Y, =0, Vi=1,2,...,s,

(C[I]P(t)kl% + (C[t]p(t)k1> (W2 ® - Q@ w, ®v) =0.
Denote L = C[t]p()* % + C[t]p()*1. Then for any w € W [A], w’ € W/{[A], it is
straightforward to check that
anng; (w) + L = anngs(w') + L = V. (5.14)
For any w € W1, we have
Wilh]l=UV) ow = U(annz (w) + L) o w
=U(L)U(anng (w)) ow = U(L) o w.
that is, W[A] is a simple L-module. Similarly we have Wl’ [A1]1is also simple as L-module.
Now from Lemma 6, there exists some ug € U (L) such that ug o wﬁ’i = 5i,lw/1’ - Then
Y((Uoow) @ (w2 ® -+ w, @) = w) | @ Y.
And
Y ((uug) owp) @ (w2 @ -+~ wy @v))) = wowy )Y, Vu € U(L).
Recall that W[ (], W{[x] are simple Y -module. Therefore we have the well-defined
linear map ¢ : Wi[A;] = Wa[X,] defined by ¢ (1 o (ugow;)) =uo wa’l forallu € U(L),

which is obvious an L-module isomorphism. Now we only need to show that it is also a V-
module homomorphism. Now for any w € Wi[A], it is easy to check that L + (anng;(w) N
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~

anng; @(w)) = )7 Hence for any x € V, we may write x = x1 + x» with x; € L and
X2 € anngz(w) N anng; @(w). Now

p(xow) =¢(x1ow) =x10¢(w) =xo0¢(w),

ie,pisa ]N/—module isomorphism.
Similarly, we have W;[A;] = W/[A;]fori =2,3,...,n,and V = V’. Now the theorem
follows from Proposition 32 (c). O

It is easy to see that the simple modules for m > 1 in Theorem 35 are not isomorphic to
any generalized oscillator representations.

Acknowledgments K.Z. is partially supported by NSF of China (Grant No. 11871190) and NSERC (Grant
311907-2015). R.L. is partially supported by NSF of China (Grant 11471233, 11771122) and Jiangsu Gov-
ernment Scholarship for Overseas Studies (JS-2013-313). The authors are grateful to the referees for nice
suggestions.

References

1. Arbarello, E., De Concini, C., Kac, V.G., Procesi, C.: Moduli spaces of curves and representation theory.
Commun. Math. Phys. 117, 1-36 (1988)

2. Batra, P, Mazorchuk, V.: Blocks and modules for Whittaker pairs. J. Pure Appl. Algebra 215(7), 1552—
1568 (2011)

3. Bekkert, V., Benkart, G., Futorny, V., Kashuba, I.: New irreducible modules for Heisenberg and affine
Lie algebras. J. Algebra 373, 284-298 (2013)

4. Billig, Y.: Representations of the twisted Heisenberg-Virasoro algebra at level zero. Can. Math. Bullet.
46, 529-537 (2003). arXiv:math/0201314v2

5. Block, R.: The irreducible representations of the Lie algebra s[(2) and of the Weyl algebra. Adv. Math.
139(1), 69-110 (1981)

6. Dixmier, J., algebras, E.nveloping.: Revised Reprint of the 1977 Translation Graduate Studies in
Mathematics, vol. 11. American Mathematical Society, Providence (1996)

7. Chen, H., Guo, X.: New simple modules for the Heisenberg-Virasoro algebra. J. Algebra 390, 77-86
(2013)

8. Chen, H., Guo, X., Zhao, K.: Tensor product weight modules over the Virasoro algebra. J. Lond. Math.
Soc. 88(3), 829-844 (2013)

9. Christodoulopoulou, K.: Whittaker modules for Heisenberg algebras and imaginary Whittaker modules
for affine Lie algebras. J Algebra 320, 2871-2890 (2008)

10. Feigin, B., Fuks, D.: Verma modules over a Virasoro algebra. Funktsional. Anal. Prilozhen. 17(3), 91-92
(1983)

11. Guo, X., Zhao, K.: Irreducible representations of non-twisted affine Kac-Moody algebras.
arXiv:1305.4059

12. Jacbson, N.: Basic algebra, II. W.H. Freeman and Company, San Francisco (1980)

13. Kac, V., Raina, A.: Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie
Algebras Advanced Series in Mathematical Physics, vol. 2. World Scientific Publishing Co., Inc.,
Teaneck (1987)

14. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras. I. J. Amer. Math. Soc. 6,
90-947 (1993)

15. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, II. J. Amer. Math. Soc. 6,
949-1011 (1994)

16. Liu, D., Wu, Y., Zhu, L.: Whittaker modules for the twisted Heisenberg-Virasoro algebra. J. Math. Phys.
51(2), 023524, 12 (2010)

17. Li, R., Guo, X., Zhao, K.: Irreducible modules over the Virasoro algebra. Doc. Math. 16, 709-721 (2011)

18. Lii, R., Zhao, K.: Classification of irreducible weight modules over the twisted Heisenberg-Virasoro
algebra. Commun. Contem. Math. 12(2), 183-205 (2010)

19. Li, R., Zhao, K.: Irreducible Virasoro modules from irreducible Weyl modules. J. Algebra 414, 271-287
(2014)

20. Li, R., Zhao, K.: A family of simple weight Virasoro modules. J. Algebra 479, 437-460 (2017)

@ Springer


http://arXiv.org/abs/math/0201314v2
http://arXiv.org/abs/1305.4059

1442 R.Ld, K. Zhao

21.

22.

23.

24.
25.

Mazorchuk, V., Zhao, K.: Simple Virasoro modules which are locally finite over a positive part. Select.
Math. (N.S.) 20(3), 839-854 (2014)

Ondrus, M., Wiesner, E.: Whittaker modules for the Virasoro algebra. J. Algebra Appl. 8(3), 363-377
(2009)

Radobolja, G.: Subsingular vectors in Verma modules, and tensor product modules over the twisted
Heisenberg-Virasoro algebra and W (2, 2) algebra. J. Math. Phys. 54, 071701 (2013)

Tan, H., Zhao, K.: Irreducible modules from tensor products. Ark. Mat. 54(1), 181-200 (2016)

Tan, H., Zhao, K.: Irreducible modules from tensor products (II). J. Algebra 394, 357-373 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Generalized oscillator representations
	Abstract
	Introduction
	Simplicity of Tensor Product Modules
	Generalized Oscillator Representations of V"0365V
	Simple Modules in OH
	Generalized Oscillator Representations of V"0365V
	Simple Modules from Tensor Product
	Open Problem

	Whittaker Modules Over V"0365V

	Tensor Products of Highest Weight Modules and Modules of Intermediate Series
	Simple V"0365V-Modules from OW"0365W
	Simple Modules in OW"0365W
	The ``Embedding Trick"
	Simplicity of Tensor Product Modules
	Isomorphism Classes

	References




