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Abstract
Let (R,m, k) denote a local Cohen-Macaulay ring such that the category of maximal
Cohen-Macaulay R-modulesmcmR contains an n-cluster tilting object L. In this paper, we
compute the Quillen K-group G1(R) := K1(modR) explicitly as a direct sum of a finitely
generated free abelian group and an explicit quotient of AutR(L)ab when R is a k-algebra
and k is algebraically closed with characteristic not two. Moreover, we compute AutR(L)ab
and G1(R) for certain hypersurface singularities.

Keywords Cohen-Macaulay · n-cluster tilting · K-theory · Hypersurface singularities ·
Automorphism groups

1 Introduction

Throughout this section (R,m, k) will always denote a local Noetherian ring that is Cohen-
Macaulay. Since the introduction of higher algebraic K-theory by Quillen there has been
a significant effort to understand the structure of the K-groups Ki(A), for A an exact
category. Our particular interest is when A = modR, the category of finitely generated
R-modules. The groups Ki(modR) are denoted by Gi(R). They are, unsurprisingly, called
the G-groups of R (they are also called K ′-groups in the literature and may be denoted by
K ′

i (R)). In Section 2, we will discuss notation and various definitions of K-groups needed
in the computation of G1(R).

Let projR be the subcategory ofmodR of finitely generated projectiveR-modules. Now
the inclusion projR ↪→ modR induces a map of groups between Ki(R) := Ki(projR)

and Gi(R). It is of interest to understand the properties of this induced homomorphism. In
particular, when is this map an isomorphism? This is precisely the case when R is regu-
lar, following immediately from Quillen’s Resolution Theorem [15, §Theorem 3]. However,
regular local rings are exceptionally well-behaved, so one cannot expect this behavior in
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general. Suppose i = 0. It is well-known K0(R) isomorphic to Z (see [16], Theorem
1.3.11), but what of G0(R)? If R is regular, then G0(R) = Z. However, if R is not regu-
lar, but also has finite Cohen-Macaulay type (that is, there are, up to isomorphism, finitely
many indecomposable maximal Cohen-Macaulay R-modules) then the structure of G0(R)

is elucidated in its entirety by the following.

Theorem 1 [21, Theorem 13.7] Suppose there are t non-free indecomposable maxi-
mal Cohen-Macaulay R-modules and denote by G the free abelian group on the set of
isomorphism classes of indecomposable maximal Cohen-Macaulay R-modules. The map
G −→ G0(R) given by X �−→ [X] is surjective and its kernel is generated by

{
X − X′ − X′′ | ∃ an Auslander-Reiten sequence 0 −→ X′ −→ X −→ X′′ −→ 0

}

AndG0(R)∼=coker(ϒ), whereϒ :Z⊕t −→Z
⊕(t+1) is the Auslander-Reiten homomorphism.

The immense usefulness of Theorem 1 lies in the fact that the computation of G0(R)

has been reduced to linear algebra, as the Auslander-Reiten homomorphism can be readily
computed from the Auslander-Reiten quiver. This quickly leads to the explicit computation
of G0(R) for all simple singularities of finite type (see [21], Proposition 13.10). One can
quickly see that these groups are often not Z.

Moving up one rung on theK-theory ladder, it is well-known thatK1(R) :=K1(projR) ∼=
R∗ (see [18], Example 1.6). However, the structure of G1(R) was not known for some time
until the work of H. Holm in [7] and V. Navkal in [13]. In the former, computing G1(R) was
carried out over an R which has finite Cohen-Macaulay type and it was found that G1(R)

could be computed as an explicit quotient of AutR(M)ab, with M an additive generator for
the category maximal Cohen-Macaulay R-modules,mcmR (noting such an M exists if and
only if R has finite Cohen-Macaulay type). The latter produced the following.

Theorem 2 [13, Theorem 1.3]
Assume thatR is Henselian and the categorymcmR has an n-cluster tilting objectL. Let

I be the set of isomorphism classes of indecomposable summands of L and set I0 = I\ {R}.
Then there is a long exact sequence

· · · −→
⊕

L′∈I0

Gi(κL′) −→ Gi(�) −→ Gi(R) −→
⊕

L′∈I0

Gi−1(κL′) −→ · · ·

Where
� = EndR(L)op and κL′ = EndR(L′)op/rad(EndR(L′)op)

Moreover, κL′ is always a division ring, and when R/m = k is algebraically closed,
κL′ = k.

The long exact sequence ends in presentation
⊕

L′∈I0

G0(κL′) −→ G0(�) −→ G0(R) −→ 0

of G0(R). Since G0(�) = Z
I and

⊕

L′∈I0

G0(κL′) = Z
I0 , the presentation of G0(R) given

above is precisely the one given in Theorem 1 when L is an additive generator of mcmR.

The definition of an n-cluster tilting object is technical and we refer the reader to
Definition 9 and Section 4 for examples. We show in Section 3 that utilizing Theorem 2 and
techniques from [7], we can generalize and simplify the results [7] on the structure ofG1(R).
Keeping notation as in Theorem 2), our contribution in this direction is the following.
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Theorem 3 Let k be an algebraically closed field of characteristic not 2 and R a Henselian
k-algebra that admits a dualizing module and is also an isolated singularity. If mcmR

admits an n-cluster tilting object L such that EndR(L)op has finite global dimension, then
there is a subgroup � of AutR(L)ab, described explicitly in Definition 12, and a free abelian
groupH such that

G1(R) ∼= H ⊕ AutR(L)ab/�

The utility of Theorem 3 is that the computation of G1(R) for some hypersurface sin-
gularities becomes tractable, as well as removing the necessity of the injectivity of the
Auslander-Reiten homomorphism and the need for R to have finite Cohen-Macaulay type,
as required in [7]. In fact, with the long exact sequence of [13] and the machinery of [7],
the proof is quite elementary. However, before proving Theorem 3 in Section 3, we col-
lect the necessary details on n-cluster tilting objects, noncommutative algebra and functor
categories in Section 2.

Of course, in order to utilize Theorem 3, one might want to know when mcmR admits
an n-cluster tilting object. This is discussed in Section 4.

The goal of explicitly computing G1(R) for specific R would not be possible if we could
not compute AutR(L)ab. We expend some energy in Section 5 calculating AutR(L)ab for
several concrete examples. This section and the next form the technical heart of our work.

Utilizing the results of Section 5, we are able to explicitly compute G1(R) for several
hypersurface rings in Section 6. See Examples 1, 2, 3 and Proposition 6 for details.

In Section 7, we discuss the similarities our computations share and make a conjecture.
We now fix notation. We always use A to denote an associative ring with identity that

is not necessarily commutative; modA will be the category of finitely generated left A-
modules; and projA will be the category of finitely generated projective left A-modules.

We will use the following setup: (R,m, k) always denotes a commutative local Cohen-
Macaulay ring such that

(a) R is Henselian.
(b) R admits a dualizing module.
(c) mcmR admits an n-cluster tilting object.
(d) R is an isolated singularity.

The assumption of (a) give us that any maximal Cohen-Macaulay module can be writ-
ten uniquely as a direct sum of finitely many indecomposable maximal Cohen-Macaulay
modules (see [11], Theorem 1.8 and Exercise 1.19). In fact, all of the rings for which we
compute G1(R) are complete, so they already satisfy (a) (see [11], Corollary 1.9). The
assumption of (b) is a standard technical assumption in representation theory of Cohen-
Macaulay rings. Currently, the assumption (c) is very much a technical black box, but we
will see it is indispensable; see Definition 9. The assumption in (d) is necessary to make
use of the theory of n-cluster tilting objects. When necessary, we will assume that R is a
k-algebra and char(k) 
= 2, but we do not use this as a blanket assumption.

2 Preliminaries

2.1 Some Definitions of K-Groups

We begin first by discussing the classical definition lower K-groups.
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Definition 1 The classical K0-group of A, denoted by KC
0 (A), is defined as the

Grothendieck group of the category projA. More explicitly, choose an isomorphism class
for each P ∈ projA and let X be the free abelian group on these isomorphism classes. Then
KC

0 (A) is the quotient of X by the subgroup of X generated by
{[P ] − [P ′] − [P ′′] : 0 −→

P ′ −→ P −→ P ′′ −→ 0 exact
}
.

The classical K1-group of A, denoted by KC
1 (A), is defined as the abelianization of the

infinite general linear group over A. That is, using the obvious embeddings GLn(A) ↪→
GLn+1(A), we can form the infinite general linear group GL(A) := ⋃

n≥1 GLn(A). Thus
KC

1 (A) is GL(A)ab.

Of principal importance in defining K-groups for our purposes is the following notion.

Definition 2 An exact category Y is an additive category together with a distinguished
class of sequences Y ′ � Y � Y ′′ called coinflations with a fully faithful additive functor
F from Y into an abelian category X such that

(a) Y ′ � Y � Y ′′ is a conflation in Y if and only if 0 −→ F(Y ′) −→ F(Y ) −→
F(Y ′) −→ 0 is exact in X .

(b) If 0 −→ F(Y ′) −→ X −→ F(Y ′′) −→ 0 is exact in X , then X ∼= F(Y ) for some Y

in Y . That is, Y is closed under extensions in X .

We note any abelian category is an exact category. Moreover, projA is an exact category,
where the conflations are taken to be the sequences that are exact inmodA. Note that projA
is an exact category which is not abelian.

We will need the following notions as they pertain to exact categories.

Definition 3 Y denotes an exact category.

(a) We will always work under the assumption that the objects of Y form a set. In this
regard, we say that Y is skeletally small.

(b) We say Y is a semisimple exact category if every conflation splits. The prototypical
example of a semisimple exact category is projA.

(c) We write Y0 to denote Y viewed as an exact category in which the coinflations Y ′ �
Y � Y ′′ are such that the corresponding exact sequence in the abelian category X is
split exact. We call this the trivial exact structure for Y .

The definition of Bass’s K1 functor rests squarely upon the following notion.

Definition 4 Let Y be any category. Its loop category �Y is the category whose objects
are pairs (Y, α), Y an object of Y and α ∈ AutY (Y ). A morphism in �Y between two
objects (Y, α) and (Y ′, α′) is a commutative diagram in Y

Remark 1 Let Y be a skeletally small exact category. Its loop category �Y is also skeletally
small and it is not hard to see that �Y inherits an exact structure such that (Y ′, α′) �
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(Y, α) � (Y ′′, α′′) is a coinflation in �Y if and only if Y ′ � Y � Y ′′ is a coinflation
in Y .

Definition 5 Let Y be a skeletally small exact category and �Y be its loop category, so that
�Y is also skeletally small and exact. We define Bass’s K1-group of Y , denoted by KB

1 (Y),
to be the Grothendieck group of �Y modulo the subgroup generated by the following
elements

(Y, α) + (Y, β) − (Y, αβ)

For (Y, α) in �Y we denote its image in KB
1 (Y) as [Y, α].

Remark 2 (a) [7, 3.4] We note for Y ∈ Y , we have

[Y, 1Y ] + [Y, 1Y ] = [Y, 1Y 1Y ] = [Y, 1Y ]
Hence [Y, 1Y ] is the identity element of KB

1 (Y).
(b) Unexpectedly, KB

1 is a functor from the category of skeletally small exact categories
to abelian groups. Indeed, for a morphism F (which is necessarily an exact functor)
between Y and another skeletally small exact category, we have KB

1 (F )([Y, α]) =
[F(Y ), F (α)].

Remark 3 [16, Theorem 3.1.7]
There is an isomorphism

ηA : KC
1 (A)

∼=−→ KB
1 (projA)

The isomorphism ηA is such that ξ ∈ GLn(A) is mapped to the class [An, ξ ] ∈ KB
1 (projA),

where elements of An are viewed as row vectors and ξ acts by multiplication on the right.

Definition 6 Let Y be a skeletally small exact category. The ith Quillen K-group of
Y , denoted by K

Q
i (Y), is defined to be the abelian group πi+1(BQY, 0), where QY is

Quillen’s Q-construction; BQY is the classifying space of QY ; 0 is a fixed zero object; and
πi+1 denotes the taking of a homotopy group.

By [15, Section 2, Theorem 1] there is a natural isomorphism of between the
Grothendieck group functor and K

Q
0 (as functors on the category of skeletally small exact

categories). Moreover, KQ
1 (projA) is naturally isomorphic to KC

1 (A) (see [18], Corollary
2.6 and Theorem 5.1). Quillen’s definition of higher K-theory is stunningly elegant, but
does not often lend itself to performing computations with ease. The definition of Bass’s
functor KB

1 will be more suited for our computational needs and, we will want to exploit
this in the sequel. As in [7, 3.6], we will make strong use of the following theorem.

Theorem 4 There exists a natural transformation ζ : KB
1 −→ K

Q
1 , which we call the

Gersten-Sherman transformation, of functors on the category of skeletally small exact cat-
egories such that ζY : KB

1 (Y) −→ K
Q
1 (Y) is an isomorphism for every semisimple exact

category Y . In particular, ζprojA : KB
1 (projA) −→ K

Q
1 (projA) is an isomorphism for

every ring A.

The name for ζ was introduced in [7] for the following: The existence of ζ was initially
sketched by Gersten in [6, sect. 5] and the details were later filled in by Sherman [17, sect.
4], whom also proved ζY is an isomorphism for every semisimple exact category.
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2.2 n-Auslander-Reiten Theory

We want to discuss generalizations of Auslander-Reiten theory, following [8]. To do so, we
will require some precise categorical language. Here Y denotes any exact category.

Definition 7 Write ModY for the category of additive contravariant functors Y −→ Ab,
with Ab the category of abelian groups. The morphisms in ModY are natural trans-
formations between functors with kernels and cokernels computed pointwise. An easy
check shows that ModY is abelian. We write (•, Y ) to denote the additive contravari-
ant functor HomY (•, Y ). We say F ∈ ModY is finitely presented if there is an exact
sequence

(•, Y ) −→ (•, Y ′) −→ F −→ 0

in ModY . We write modY for the subcategory of finitely presented functors.

For a ring A, letModA denote the category of all left A-modules and denote the subcat-
egory of finitely presented left A-modules by mod fp A. Fix a left A-module N and denote
by E its endomorphism ring EndA(N). Then N has a left E-module structure that is com-
patible with its left A-module structure such that for e ∈ E and n ∈ N , e · n = e(n).
Denote by addA N the category of A-modules that consists of all direct summands of finite
direct sums of N . For F ∈ Mod (addA N), the aforementioned left E-module structure on
N induces a left-Eop-module structure on the abelian group FN such that e · z = (Fe)(z)

for e ∈ Eop and z ∈ FN . We use these facts for the following proposition, which will be
essential in the proof of Theorem 3.

Proposition 1 [7, Proposition 6.2]
There are quasi-inverse equivalences of abelian categories

Where the functors eN and fN are defined as follows: eN(F ) = FN (evaluation)
and fN(Z) = Z ⊗E HomA(•, N)|addA N (functorification). Also, these quasi-inverse
equivalences restrict to equivalences between categories of finitely presented objects

Definition 8 Let X be an additive category and C a subcategory of X . We call C con-
travariantly finite, if for any X ∈ X there is a morphism f : C −→ X with C ∈ C such
that

(•, C)
•f−→ (•, X) −→ 0

is exact (where •f is the map induced by f ). Such an f is called a right-C-approximation
of X. We dually define a covariantly finite subcategory and a left-C-approximation. A
contarvariantly and covariantly finite subcategory is called functorially finite.

At long last, we are able to define an n-cluster tilting object.
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Definition 9 Let Y be an exact category with enough projectives. For objects X, Y in Y we
write X ⊥n Y if ExtiY (X, Y ) = 0 for 0 < i ≤ n. For an exact subcategory C ⊂ Y , we put

C⊥n = {X ∈ Y : Y ⊥n X for all Y ∈ C}
⊥nC = {X ∈ Y : X ⊥n Y for all Y ∈ C}

We call C an n-cluster-tilting subcategory of Y if it is functorially finite and C =
C⊥n−1 =⊥n−1 C. An object L of Y is called n-cluster-tilting if addY (L) is an n-cluster
tilting subcategory.

From the definition of n-cluster tilting, if mcmR admits an n-cluster tilting object L,
then R is necessarily a direct summand of L. While the definition of n-cluster tilting is quite
a bit to digest at once, there are concrete examples of n-cluster tilting objects over familiar
rings and we refer the reader to Section 4 for several examples.

When R has finite Cohen-Macaulay type, we have the classical notion of an Auslander-
Reiten sequence or almost-split sequence. WhenmcmR has an n-cluster tilting subcategory,
we have the following generalization.

Definition 10 If C ⊂ mcmR is an n-cluster tilting subcategory, given X ∈ mcmR not free
and indecomposable, an exact sequence

0 −→ Cn
fn−→ · · · f1−→ C0

f0−→ X −→ 0

with C0, . . . , Cn ∈ C such that

0 −→ (•, Cn−1)
•fn−→ · · · •f1−→ (•, C0)

•f0−→ (•, X) −→ 0

is a minimal projective resolution of (•, X)/radmcmR(•, X) in modC is called an n-
Auslander-Reiten sequence (or an n-almost-split sequence).

Here radmcmR(•, X) is such that

radmcmR(Y,X) = {f ∈ HomR(Y,X) : fg ∈ rad(EndR(Y )) for all g ∈ HomR(Y,X)}
If C ⊂ mcmR is an n-cluster tilting subcategory, then n-Auslander-Reiten sequences exist
by [9, Theorem 3.31].

2.3 Endomorphism Rings and K-Groups

By our blanket assumptions on R, there is a unique decomposition of the n-cluster tilting
object L = L

⊕l0
0 ⊕ · · · ⊕ L

⊕lt
t , such that Li ∈ mcmR is indecomposable and li > 0 and

the Li are pairwise non-isomorphic. In this section, we will assume that li = 1. For if we
write Lred = L0 ⊕ · · ·⊕Lt , then addR L = addR Lred. Thus L is an n-cluster tilting object
for mcmR if and only if Lred is. Moreover, we will see in Section 3, that in the context
of Theorem 3, the choice of Lred over L is immaterial. Write C = addR L. The following
construction is from [7, Construction 2.6].

If L′ ∈ C, we can write L′ = L
⊕m0
0 ⊕· · ·⊕L

⊕mt
t for uniquely determined m0, . . . , mt ≥

0. Set q = q(L′) = max {m0, . . . , mt } and vj = vj (L
′) = q − mj . Notice that q is the

smallest integer such that L′ is a direct summand of L⊕q . Now form the R-module L′′ =
L

⊕v0
0 ⊕· · ·⊕L

⊕vt
t and let ψ : L′ ⊕L′′ −→ L⊕q be the R-linear isomorphism that takes the

element

((x0, . . . , xt ), (y0
, . . . , y

t
) ∈ L′ ⊕ L′′ = (L

⊕m0
0 · · · ⊕ L

⊕mt
t ) ⊕ (L

⊕v0
0 ⊕ · · · ⊕ L

⊕vt
t )
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where xj ∈ L
⊕mj

j and y
j

∈ L
⊕vj

j , to the element

((z01, . . . , zt1), . . . , (z0q, . . . , ztq)) ∈ L⊕q = (L0 ⊕ · · · ⊕ Lt)
⊕q

with zj1, . . . , zjq ∈ Lj given by

(zj1, . . . , zjq) = (xj , yj
) ∈ L

⊕q
j = L

⊕(mj +vj )

j

Now for α ∈ AutR(L′), we define α̃ to be the automorphism on L⊕q given by ψ(α ⊕
1L′′)ψ−1. Note that α̃ = (α̃ij ), with α̃ij uniquely determined endomorphisms of L. In
particular, α̃ ∈ Mq(EndRL). As in [7], we refer to this construction as the tilde construction.

Remark 4 We note a special case of the tilde construction. Keep notation as above. Suppose
α = a1L′ with a ∈ R∗. If L′ = L

⊕q
i1

⊕ · · · ⊕ L
⊕q
ih

with 0 ≤ i1 < i2 < · · · < ih ≤ t . Then
α̃ : L⊕q −→ L⊕q is the automorphism given by e1L⊕q with e ∈ AutR(L) given by

diag(1L0 , . . . , a1Li1
, . . . , a1Lih

, . . . , 1Lt )

Hence, (ã1L′)−1 = ã−11L′ .

As we will often be working explicitly with highly noncommutative rings, we need to
discuss important ideas at the intersection of noncommutative algebra and K-theory. Let
J (A) be the Jacobson radical of the not necessarily commutative ring A. Recall that A

is said to be semilocal if A/J (A) is semisimple. That is, every left A/J (A)-module has
the property that each of its submodules is a direct summand of A/J (A). In the case that
A is commutative, this is equivalent to A having only finitely many maximal ideals [10,
Proposition 20.2]. Of great importance to us is the following situation: IfA is a commutative
semilocal Noetherian ring and N is a nonzero finitely generated A-module, then EndA(N)

is semilocal in the preceding sense [7, Lemma 5.1]. We will see how the following remark
utilizes this small but essential fact in the proof of Theorem 3.

Remark 5 [7, Paragraph 5.2]
For arbitrary A, denote the composition of the following group homomorphisms

A∗ = GL1(A) ↪→ GL(A) � GL(A)ab = KC
1 (A)

by ϑA. Since KC
1 (A) is abelian, there is an induced map θA : A∗

ab −→ KC
1 (A). If A is

semilocal, then [1, V§9 Theorem 9.1] shows that ϑA is surjective, hence so is θA. When A

contains a field k with char(k) 
= 2, a result of Vaserstein [20, Theorem 2] shows that θA is
an isomorphism. In particular, if R is a k-algebra, char(k) 
= 2 and M is a finitely generated
R-module with E = EndR(M), then θE and θEop are isomorphisms.

Suppose now A is a commutative semilocal ring, so that the commutator subgroup
[A∗, A∗], is trivial, hence θA : A∗ −→ KC

1 (A) is surjective. In [7, Remark. 5.4], if θA is
an isomorphism, an explicit inverse to θA is constructed: The determinant homomorphisms
detn : GLn(A) −→ A∗ induce a homomorphism detA : KC

1 (A) −→ A∗ (since each detn is
trivial on commutators in GL(A)) which satisfies detAθA = 1A∗ , so that θ−1

A = detA.

Using Remark 5 as motivation, the following definition is made in [7].

Definition 11 Let A be a ring for which the map θA : A∗
ab −→ KC

1 (A) is an isomorphism.

The inverse θ−1
A is denoted by detA and is is called the generalized determinant.
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The following proposition makes use of the tilde construction and will be useful in prov-
ing Theorem 3. We note it is essentially proven in [7], where it is a synthesis of [7, Lemma
6.5] and the proof of [7, Proposition 8.8]. We also note that the assumptions in [7, Propo-
sition 8.8] are that R has finite Cohen-Macaulay type. However, we note that under our
assumptions, the portion of the proof we are referencing [7, equation (8.8.1)] still holds.

Proposition 2 Keeping our general assumptions, suppose in addition that R is an algebra
over its residue field k and the characteristic of k is not two. Let L0, . . . , Lt ∈ mcmR and
L be their direct sum. Set � = EndR(L)op. Let C0 = addR (L) be equipped with the trivial
exact structure. If � has finite global dimension, then there is an isomorphism of groups

τ : KB
1 (C0) −→ AutR(L)ab

such that for any L′ ∈ C0 and any α ∈ AutR(L′), τ([L′, α]) = det�op (̃α).

Remark 6 [7, Observation 8.9]
Let A be any commutative Noetherian local ring and ηA be the isomorphism from

Remark 3 and θA : A∗ −→ KC
1 (A) be the induced map from Remark 5. Then θA is an iso-

morphism by [18, Example 1.6]. Thus the composition ρA = ηAθA : A∗ −→ KB
1 (projA)

is an isomorphism such that a ∈ A∗ is mapped to [A, a1A].

We now combine the the above preliminaries with the tilde construction to define the
subgroup � of AutR(L)ab in Theorem 3.

Definition 12 Recall that we are assuming that mcmR has n-cluster-tilting object of the
form L = L0 ⊕ · · · ⊕ Lt . We assume that L0 = R and that for j > 0, the Lj are non-
free pairwise non-isomorphic and indecompsable objects in mcmR. Suppose also that R

is a k-algebra, char(k) 
= 2 and k is algebraically closed. If mcmR has an n-cluster tilting
object L such that � := EndR(L)op has finite global dimension, we define a subgroup � of
AutR(L)ab as follows: For j > 0, let

0 −→ C
j
n −→ · · · −→ C

j

0 −→ Lj −→ 0

be the n-Auslander-Reiten sequence ending in Lj (see Definition 10). By Remark 5, θ�op :
AutR(L)ab −→ KC

1 (�op) is an isomorphism with inverse given by det�op . Then � is the
subgroup generated by the elements given by

ã1Lj

n+1∏

i=1

det�op(ã1
C

j
i−1

)(−1)i

where a runs over all elements of k∗ and j = 1, . . . , t .

3 The Structure ofG1(R)

In this section, unadorned K-groups are the Quillen K-groups. Our goal of this section
is to prove Theorem 3. We always assume that mcmR has an n-cluster tilting object
L = L

l0
0 ⊕ · · · ⊕ L

⊕lt
t , with L0 = R, and L1, . . . , Lt non-free, non-isomorphic indecom-

posable maximal Cohen-Macaulay R-modules such that � := EndR(L)op has finite global
dimension. In addition to our blanket assumptions, we assume that k is algebraically closed
of characteristic not two and R is a k-algebra. We begin with an easy reduction.
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Lemma 1 Set Lred = L0 ⊕ · · · ⊕ Lt . If �red = EndR(Lred)
op, then � and �red are

Morita-equivalent. In particular, Gi(�) ∼= Gi(�red) for all i ≥ 0.

Proof The desired Morita equivalence is from [4, Lemma 2.2]. Thus the categories of left �
and �red modules are equivalent, hence there is an equivalence of exact categories between
mod� and mod�red. It is well-known this yields an isomorphism in G-theory, hence
Gi(�) ∼= Gi(�red) for all i ≥ 0.

It is easy to see addR L = addR Lred. Moreover, since � has finite global dimension, the
Morita equivalence of Lemma 1 gives that �red also has has finite global dimension. Since
� has finite global dimension and is a semilocal algebra over a field of characteristic not
two, by Quillen’s Resolution Theorem [15, §Theorem 3], [18, Corollary 2.6 and Theorem
5.1], and [20, Theorem 2] we have isomorphisms

G1(�) ∼= K1(�) ∼= KC
1 (�) = �∗

ab = AutR(L)ab

As noted above, �red has finite global dimension, hence the same arguments apply, so that
the above remarks and Lemma 1 give

AutR(Lred)ab = (�red)
∗
ab

∼= G1(�red) ∼= G1(�) ∼= �∗
ab = AutR(L)ab

Thus may safely assume that the n-cluster tilting object L for mcmR has the form L0 ⊕
· · · ⊕ Lt , where the Li are non-isomorphic indecomposable maximal Cohen-Macaulay.
Henceforth, we always use � to denote EndR(L)op with L = L0 ⊕ · · · ⊕ Lt , L0 = R and
for j > 0, the Lj are non-free, non-isomorphic indecomposable objects in mcmR.

Since k is algebraically closed, κLj
= EndR(Lj )

op/rad(EndR(Lj )
op) = k for all j (this

is essentially Nakayamma’s lemma). By Theorem 2, there is an exact sequence of abelian
groups

G1(k)⊕t γ−→ G1(�) −→ G1(R) −→ G0(k)⊕t −→ G0(�) −→ G0(R) −→ 0

By Theorem 2, G0(�) = Z
⊕(t+1). Moreover, is well-known that G0(k) = Z. In particular,

the above exact sequence becomes

G1(k)⊕t γ−→ G1(�) −→ G1(R) −→ H −→ 0 (�)

where H is the kernel of a map Z
⊕t −→ Z

⊕(t+1). Now H is free, being the subgroup of a
free group, hence the exactness of (�) gives an isomorphism

G1(R) ∼= coker(γ ) ⊕ H

Thus to prove Theorem 3, that is, in order to calculate �, we need to explicitly describe
the map γ . In this direction, we first define C0 to be the category C := addR L =
addR (L0, . . . , Lt ) equipped with trivial exact structure. As we are assuming � has
finite global dimension, [7, Lemma 6.5] gives an isomorphism K1(C0) ∼= K1(modC)

that is induced by the exact Yoneda functor yL : C0 −→ modC, where yL(X) =
HomR(•, X)|C . Since � is left Noetherian, Proposition 1 gives that the evaluation functor
eL : modC −→ mod� is an equivalence, hence induces an isomorphism K1(modC) ∼=
K1(�). Moreover, � has finite global dimension, so that Quillen’s Resolution Theorem
[15, §Theorem 3] yields that the inclusion functor proj� −→ mod� induces an isomor-
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phism K1(�) ∼= G1(�). Hence there is a map α : G1(k)⊕t −→ K1(C0) such that the
diagram

commutes. This gives coker(γ ) ∼= coker(α). Thus to prove Theorem 3, it suffices to
compute coker(α). In fact, α is computed in the discussion of [13, Section 7.2]. The details
will be useful and we recall them. Now L = L0⊕· · ·⊕Lt , with L0 = R and L1, . . . , Lt are
the non-free indecomposable and non-isomorphic summands ofL. We set I = {L0, . . . , Lt }
and I0 = I\ {R}. For j > 0 let

0 −→ C
j
n −→ · · · −→ C

j

0 −→ Lj −→ 0

be the n-Auslander-Reiten sequence ending in Lj (see Definition 10). Denote by kj the
object of ⊕I0mod k which is k in the Lj -coordinate and 0 in the others. We remark that
to define a k-linear functor out of ⊕I0mod k, one needs only to specify the image of each
object kj . We define k-linear functors

ai :
⊕

I0

mod k −→ C0 (0 ≤ i ≤ n + 1)

by
{

ai(kj ) = C
j

i−1 (1 ≤ i ≤ n + 1)
a0(kj ) = Lj

It is shown in [13, Section 7.2] that α = ∑n+1
i=0 (−1)iK1(ai). We have the following.

Proposition 3 If � is the subgroup of �∗
ab from Definition 12, there is an isomorphism

coker(α) ∼= �∗
ab/�.

Now Proposition 3 implies Theorem 3, so the proof of Proposition 3 will conclude this
section.

Proof Since the morphisms ai : ⊕
I0
mod k −→ C0 are functors on exact categories,

they also define maps KB
1 (ai) : KB

1 (
⊕

I0
mod k) −→ KB

1 (C0) on the Bass K1-groups.

Now |I0| = t , so that KB
1 (

⊕
I0
mod k) = ⊕

I0
KB

1 (mod k) = KB
1 (mod k)⊕t . Let

β : KB
1 (mod k)⊕t −→ KB

1 (C0) be the map given by
∑n+1

i=0 (−1)iKB
1 (ai). Our first task is

to show that coker(α) ∼= coker(β). The Gersten-Sherman transformation (see Theorem 4)
ζ : KB

1 −→ K1 provides the following commutative diagram for i = 0, 1, . . . , n + 1
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Where the vertical isomorphisms come courtesy of Theorem 4, as C0 and mod k are
semisimple exact categories. Hence there is a commutative diagram

This gives that coker(α) ∼= coker(β). To finish the proof, first note that Remark 6
furnishes an isomorphism ρk : k∗ −→ KB

1 (mod k) such that a �→ [k, a1k], hence
there is an isomorphism ρ⊕t

k : (k∗)⊕t −→ KB
1 (mod k)⊕t . Now recall the isomorphism

τ : KB
1 (C0) −→ �∗

ab (noting �∗
ab = AutR(L)ab) of Proposition 2. The map τ is such that

for L′ ∈ C0 and any f ∈ AutR(L′), τ([L′, f ]) = det�op(f̃ ), where det�op is the gener-
alized determinant of Definition 11 and f̃ ∈ AutR(L) is the map obtained from the tilde
construction of Section 2.3. In particular, coker(β) ∼= coker(τβρ⊕t

k ), hence we calculate
the latter. Restricting to the j th coordinate of (k∗)⊕t , by slight abuse of notation, we have
for a ∈ k∗

βρk(a) = β([k, a1k]) = [Lj , a1Lj
] +

n+1∑

i=1

(−1)i[Cj

i−1, a1C
j
i−1

]

By definition, det�op(ã1Lj
) = ã1Lj

, so that

τβρk(a) = τ

(

[Lj , a1Lj
] +

n+1∑

i=1

(−1)i[Cj

i−1, a1C
j
i−1

]
)

= ã1Lj

n+1∏

i=1

det�op(ã1
C

j
i−1

)(−1)i

This is precisely the subgroup � of Definition 12, whence the result.

4 Existence of n-Cluster Tilting Objects in mcmR

Naturally, the usefulness of Theorem 3 would be limited if the situations in which mcmR

contained an n-cluster tilting object were sparse. Fortunately for us, they are not. Moreover,
if mcmR admits an n-cluster tilting object L, we require that � := EndR(L)op has finite
global dimension. At first glance, this condition might also seem limiting, but is in fact quite
common, as seen in the following theorem.

Theorem 5 [8, Theorem 3.12(a)]
Suppose dimR = d and that mcmR contains an n-cluster tilting object L with d ≤ n.

Then � has global dimension at most n + 1.

The most well-studied situation in whichmcmR admits an n-cluster tilting object is the
following.

4.1 Finite Cohen-Macaulay Type

Recall that we say that R has finite Cohen-Macaulay type (or finite type for short) when R

has only finitely many indecomposable maximal Cohen-Macaulay modules. Now the only
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1-cluster tilting subcategory of mcmR is mcmR itself. Thus the existence of a 1-cluster
tilting object for mcmR is equivalent to R having finite type. In particular, when R has
finite type, mcmR has an additive generator M . For practical and computational purposes,
when R has finite type, we will often work with the R-module M = M0 ⊕ M1 ⊕ · · · ⊕ Mt ,
with M0 = R and M1, . . . , Mt the pairwise non-isomorphic and non-free indecomposable
maximal Cohen-Macaulay R-modules. Moreover, [12, Theorem 6] shows that EndR(M)op

has finite global dimension, hence Theorem 3 is applicable in this situation. In fact, in this
case, if the Auslander-Reiten homomorphism ϒ : Z⊕t −→ Z

⊕(t+1) is injective, Theorem 3
is just [7, Theorem 2.12], the result which inspired Theorem 3.

4.1.1 ADE Singularities

The most important examples of rings that have finite type are the simple surface singular-
ities. These are called the ADE singularities. Let S = k[[x, y, z2, z3, . . . , zd ]] and assume
k is algebraically closed with characteristic different from 2, 3 and 5. Set R = S/f S with
f nonzero and f /∈ (x, y, z2, . . . , zd)2. The f for which R has finite type are exactly the
following [11, Theorem 9.8]

(An) x2 + yn+1 + z22 + z23 + · · · + z2d (n ≥ 1)

(Dn) x2y + yn−1 + z22 + z23 + · · · + z2d (n ≥ 4)

(E6) x3 + y4 + z22 + z23 + · · · + z2d

(E7) x3 + xy3 + z22 + z23 + · · · + z2d

(E8) x3 + y5 + z22 + z23 + · · · + z2d

4.2 Invariant Subrings

Let k be a field and S the ring k[[x1, . . . , xn]]. Suppose G is a finite subgroup of GLn(k)

that does not contain any nontrivial pseudo-reflections and with |G| invertible in k. Let R

be the invariant subring k[[x1, . . . , xn]]G of S, where G acts by a linear change of variables
on S. If R is an isolated singularity, then the R-module S is an (n − 1)-cluster tilting object
(see [9, 2.5]).

The skew group ring of S, denoted by S#G, is given by S#G = ⊕
σ∈G S · σ , with

multiplication defined by (s · σ)(t · τ) = sσ (t) · στ . In this situation, S#G has global
dimension equal to n [11, Corollary 5.8] and there is an isomorphism EndR(S) ∼= S#G
[11, Theorem 5.15]. In particular, Theorem 3 is applicable in this situation.

4.3 Reduced Hypersurface Singularities

4.3.1 Dimension One

Let k be an algebraically closed field of characteristic not two and S = k[[x, y]]. For
f ∈ (x, y), let R = S/f S be a reduced hypersurface singularity. Suppose f has prime
factorization and f = f1 · · · fn, Si = S/(f1 · · · fi)S and L is the R-module S1 ⊕ · · · ⊕ Sn.
If fi /∈ (x, y)2 for all i, then [2] shows that L is a 2-cluster tilting object for mcmR.
Moreover, Theorem 5 shows that EndR(L)op has global dimension at most three. Hence
we can apply Theorem 3 in this situation. Note, in particular, if λ1, . . . , λn are distinct
elements of k, then Theorem 3 is applicable to the ring S/f S with f = (x − λ1y) · · ·
(x − λny).
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4.3.2 Dimension Three

Keep notation as above, but set S′ = k[[x, y, u, v]] and R′ = S′/(f +uv)S′. ThenmcmR′
has a 2-cluster tilting object if fi /∈ (x, y)2 for all i and it is given by L := U1 ⊕ · · · ⊕ Un

with Ui = (u, f1 · · · fi) ⊂ R′ [8, Theorem 4.17]. Moreover, [8, Theorem 4.17] also says
EndR′(L)op has finite global dimension, so Theorem 3 is applicable in this situation.

5 Abelianization of Automorphism Groups

Of course, the usefulness of Theorem 3 would be limited if one were unable to compute
AutR(L)ab. We make several computations, though each computation is tailored specifically
to each ring and it seems difficult to find results that hold generally. Our computations rely
significantly upon the general framework laid out by [7] and this work serves strongly as
inspiration for our results. The purpose of this section is to prove the following.

Proposition 4 Let k be an algebraically closed field of characteristic not equal to two. Then

(a) if R = k[x]/xnk[x] and M = R ⊕ xR ⊕ · · · ⊕ xn−1R, then AutR(M)ab ∼= (k∗)⊕n.
(b) if k also has characteristic not equal to 3 or 5, R = k[[t2, t2n+1]], n ≥ 0 and M =

R ⊕ R1 ⊕ · · · ⊕ Rn, with Ri = k[[t2, t2(n−i)+1], then AutR(M)ab ∼= (k∗)⊕n ⊕ k[[t]]∗.
(c) if R = k[[s2, st, t2]], then AutR(R ⊕ (s2, st)R)ab ∼= k∗ ⊕ R∗.
(d) if S = k[[x, y]], f1, . . . , fn ∈ (x, y) are irreducible such that

(i) f = f1 · · · fn, R := S/f S, is an isolated singularity (i.e. (fi) 
= (fj )),
(ii) fi /∈ (x, y)2 for all i,
(iii) (fi, fi+1) = (x, y),

Si = S/(f1 · · · fi)S, and L = S1 ⊕ · · · ⊕ Sn, then

AutR(L)ab ∼= (S/f1S)∗ ⊕ · · · ⊕ (S/fnS)∗ = R
∗

Where R = S/f1S ⊕ · · · ⊕ S/fnS is the integral closure of R in its total quotient ring.
(e) if k has characteristic zero, S′ = k[[x, y, u, v]], R′ = S′/(f + uv)S′, where f =

f1 · · · fn with fi ∈ k[[x, y]] satisfying the conditions in (d), Ui = (u, f1 · · · fi), and
L = U1 ⊕ · · · ⊕ Un, then

AutR′(L)ab ∼= R′∗ ⊕ k[[w, z]]∗⊕(n−1)

where w, z are variables over k.

Of course, the purpose of Proposition 4 is to combine it with Theorem 3 calculate explicit
examples of G1(R) for several hypersurface singularities. This will be done in Section 6.

We set up some useful notation. Let N1, . . . , Ns be A-modules and consider the A-
module N := N1 ⊕ · · · ⊕ Ns . We view the elements of N as column vectors and the
endomorphism ring of N has a matrix-like structure: For f ∈ EndA(N), we can write
f = (fij ) with fij ∈ HomA(Nj ,Ni) and composition with another endomorphism
g = (gij ) can be accomplished in the same manner one would multiply matrices with
entries in A. We write a diag(α1, . . . , αs) for the diagonal endomorphism of N with
αi ∈ EndA(Ni). For α ∈ AutA(Nj ), we denote by dj (α) the automorphism of N given by
diag(1N1 , . . . , 1Nj−1 , α, 1Nj+1 , . . . , 1Ns ). For i 
= j and β ∈ HomA(Nj , Ni), we denote by
eij (β) the automorphism of N with diagonal entries 1N1 , . . . , 1Ns and (i, j)th entry given
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by β and zeros elsewhere. Before we begin, we discuss calculations that will be used often
in the sequel.

Lemma 2 [7, Lemma 9.2]
Let A be a ring in which 2 is invertible, N1, . . . , Ns be A-modules and N := N1 ⊕ · · · ⊕

Ns . If i 
= j and α ∈ HomA(Nj , Ni), then eij (α) is a commutator in AutA(N).

Proof Given β, γ in AutA(N), the commutator of β and γ is [β, γ ] = βγβ−1γ −1. It is not
hard to see that eij (α) = [eij (

α
2 ), dj (−1Nj

)].

Lemma 3 Let (A, n) be commutative and local such that 2 is invertible in A. Let
N1, . . . , Ns be A-modules and set N = N1 ⊕ · · · ⊕ Ns . Let a ∈ 1 + n, and consider the
automorphism di(a1Ni

)di+1(a
−11Ni+1) of N . Suppose either

(a) Ni ⊇ Ni+1 and nNi ⊆ Ni+1 or
(b) Ni ⊆ Ni+1 and (1 − a)Ni+1 ⊆ Ni

then di(a1Ni
)di+1(a

−11Ni+1) is in the commutator subgroup of AutA(N).

Proof In the case of (a), Let ιi : Ni+1 −→ Ni be inclusion. Now note that a−1 ∈ 1 + n, so
that we have the following decomposition of di(a1Ni

)di+1(a
−11Ni+1):

ei+1,i ((a
−1 − 1)1Ni

)ei,i+1(ιi)ei+1,i ((a − 1)1Ni
)ei,i+1(−a−1ιi )

We apply Lemma 2 to see that di(a1Ni
)di+1(a

−11Ni+1) is in the commutator subgroup of
AutA(N).

In the case of (b), notice that our hypothesis implies (a−1 − 1)Ni+1 ⊆ Ni . Let
ιi : Ni −→ Ni+1 be the inclusion map. We have the following decomposition of
di(a1Ni

)di+1(a
−11Ni+1):

ei,i+1((a
−1 − 1)1Ni+1)ei+1,i (ιi )ei,i+1((a − 1)1Ni+1)ei+1,i (−a−1ιi )

and once again, we apply Lemma 2 to see that di(a1Ni
)di+1(a

−11Ni+1) is in the commutator
subgroup of AutA(N).

5.1 Truncated Polynomial Rings in One Variable

Our aim here is to prove (a) of Proposition 4. That is k is algebraically closed and has
characteristic not two, R = k[x]/xnk[x], m is its maximal ideal xR, then with M = R ⊕
m ⊕ · · · ⊕ mn−1, we have AutR(M)ab ∼= (k∗)⊕n.

Proof Denote by Rj the ring k[x]/xj k[x] for 1 ≤ j ≤ n. Note that Rj−1 ⊂ Rj and
R = Rn. Let m denote the maximal ideal xR of R. Then EndR(mi ) is isomorphic to the
local ring Rn−i . Let M be the R-module R ⊕ m ⊕ · · · ⊕ mn−1. We set E = EndR(M) and
seek to show E∗

ab
∼= (k∗)⊕n.

For n = 1, this is clear. For n = 2, we have EndR(m) = k, so that E∗
ab

∼= (k∗)⊕2 by
[7, Proposition 9.6].

Suppose now n ≥ 3. We first show that there is a surjection E∗
ab −→ (k∗)⊕n such

that the kernel consists of diagonal matrices α = (αii) with αii ∈ AutR(mi−1) =
R∗

n−i+1. By [7, Proposition 9.4], (αij ) ∈ E is invertible if and only if αii is invert-
ible for all i. In particular, this gives that every two-sided maximal ideal of E is of the
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form ni := {
(αij ) : αii ∈ J (EndR(mi−1))

}
. Hence the Chinese Remainder Theorem gives

E/J (E) ∼= E/n1 × · · · × E/nn = k × · · · × k. In particular, there is an induced surjection
ϕ : E∗

ab � (k∗)⊕n. We appeal to [7, Corollary 9.5] to see every element of E∗
ab can be repre-

sented by a diagonal automorphism. Moreover, it is clear elements in the kernel ϕ are given
by (αii) such that αii is multiplication by an element in 1+J (EndR(mi−1)) = 1+xRn−i+1
for all i.

We now demonstrate the injectivity of ϕ. Let α ∈ E∗
ab such that ϕ(α) is trivial. By the

above, we can write α = (αii) such that αii is multiplication by an element of 1+xR∗
n−i+1.

Now every endomorphism onmn−1 is given by an element of 1+xR1 = {1}, so that we can
write α = d1(α11) · · · dn−1(αn−1,n−1). It suffices to show each di(αii) is in the commutator
subgroup of E∗. We do this below.

We show by decreasing induction on i that di(β) can be written as a product of commu-
tators, where β is given by multiplication by an element of 1+xRn−i+1. For i = n−1, write
β = r1mn−2 , where r ∈ 1 + xR2. Notice that r−1 ∈ 1 + xR2 as well, hence multiplication
by r−1 restricts to the identity on mn−1. This gives

dn−1(β) = dn−1(r1mn−2) = dn−1(r1mn−2)dn(r
−11mn−1)

By Lemma 3, dn−1(r1mn−2)dn(r
−11mn−1) is in the commutator subgroup of E∗, hence

so is dn−1(β). Suppose now i < n − 1 and β ∈ AutR(mi−1) is given by multiplication on
mi−1 by an element of 1 + xRn−i+1. We have

di(β) = di(β)di+1(β
−1|mi )di+1(β|mi )

By the induction hypothesis, di+1(β|mi ) is in the commutator subgroup of E∗. By
Lemma 3, di(β)di+1(β

−1|mi ) is in the commutator subgroup of E∗, hence so is di(β). This
completes the induction step and gives that E∗

ab
∼= (k∗)⊕n.

5.2 Singularty of Type A2n in Dimension One

Our aim here is to prove (b) of Proposition 4. Thus, k is an algebraically closed field of
characteristic not equal to 2, 3 or 5 and R the ring k[[t2, t2n+1]]. Set R = R0 and let M be
the R-module R0 ⊕ R1 ⊕ · · · ⊕ Rn, where Ri = k[[t2, t2(n−i)+1]] for i = 0, . . . , n. Then
we want to show AutR(M)ab ∼= (k∗)⊕n ⊕ k[[t]]∗. Before we begin, we prove the following.

Lemma 4 Let 0 ≤ i, j ≤ n. If

(a) i ≤ j , then HomR(Ri, Rj ) = Rj .
(b) i > j , then HomR(Ri, Rj ) can be viewed as a subset ofR. In particular, it is contained

in Rn = k[[t]].
As a consequence of the above, we can viewE := EndR(M) as a subring ofMn+1(Rn) =

Mn+1(k[[t]]).

Proof (a) We claim
HomR(Ri, Rj ) = HomRi

(Ri, Rj )

Indeed, since R ⊆ Ri , there is a natural inclusion HomRi
(Ri, Rj ) ⊆ HomR(Ri, Rj ).

We demonstrate the reverse inclusion. Let s ∈ Ri , f ∈ Ri and ϕ ∈ HomR(Ri, Rj ).
It is not hard to see that there is a nonzero r ∈ R such that rs ∈ R (for example, by
noting that t2n+1 ∈ R, t2n+1k[[t]] ⊆ R, and Ri ⊆ k[[t]]). We have

rϕ(sf ) = ϕ(rsf ) = rsϕ(f )
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and r is nonzero, so that ϕ(sf ) = sϕ(f ). This proves the claim. Thus, we have

HomR(Ri, Rj ) = HomRi
(Ri, Rj )

and the latter is naturally isomorphic to Rj .
(b) By [19, Lemma 2.4.3], there is an isomorphism of R-modules:

HomR(Ri, Rj ) ∼= (Rj :R Ri)

Where (Rj :R Ri) is the ideal of R consisting of f ∈ R such that f Ri ⊆ Rj .
Utilizing (a) and (b), we see that E can be viewed as the subring of Mn+1(Rn) =

Mn+1(k[[t]]) given by
⎛

⎜⎜⎜⎜⎜
⎝

R0 R1 R2 R3 · · · Rn

(R1 :R R0) R1 R2 R3 · · · Rn

(R2 :R R0) (R2 :R R1) R2 R3 · · · Rn

...
...

...
...

...
...

(Rn :R R0) (Rn :R R1) (Rn :R R2) (Rn :R R3) · · · Rn

⎞

⎟⎟⎟⎟⎟
⎠

We now proceed with the proof of (b) of Proposition 4.

Proof Note the Ri are finitely generated R-modules; each Ri is local with maximal ideal
mi = (t2, t2(n−i)+1)Ri ; we have inclusions Ri ⊆ Ri+1 and mi ⊆ mi+1; and each Ri has k

as a residue field.
This is clear for n = 0. For n = 1, this is just [7, Proposition 9.6], since k[[t]] ∼=

(t2, t3)k[[t2, t3]] as k[[t2, t3]]-modules.
Suppose now n ≥ 2. Our goal is to construct a map from E∗ to the abelian group

(k∗)⊕n ⊕ k[[t]]∗, so that we obtain an induced map E∗
ab −→ (k∗)⊕n ⊕ k[[t]]∗ that we will

later show is an isomorphism.
First we construct a map fromE∗ to (k∗)⊕n. The proof that there is group homomorphism

from E∗ −→ (k∗)⊕n works in exactly the same manner as as it did in the proof of (a)
of Proposition 4. Noting of course that with ni = {

(αij ) : αii ∈ J (EndR(Ri−1))
}
, (a) of

Lemma 4 gives that E/ni = EndR(Ri−1)/J (EndR(Ri−1)) = Ri−1/mi−1 = k. Thus we
obtain an induced map E∗

ab −→ (k∗)⊕n.
As Lemma 4 allows us to view E as a subring of Mn+1(Rn) = Mn+1(k[[t]]), E∗ is

naturally a subset of GLn+1(k[[t]]), the group of invertible (n + 1) × (n + 1) matrices over
k[[t]]. By taking the determinant, we obtain a map from E∗ −→ k[[t]]∗. Now k[[t]]∗ is
abelian, hence this induces a group homomorphism E∗

ab −→ k[[t]]∗.
Regarding E as a matrix subring of Mn+1(k[[t]]), we combine our preceding work to

see there is a group homomorphism � : E∗
ab −→ (k∗)⊕n ⊕ R∗

n such that the image of
α = (αij ) ∈ E∗

ab under � is

(α11 + m0, . . . , αnn + mn−1, det(α))

We note � is surjective: For (a1, . . . an, f ) ∈ (k∗)⊕n ⊕ R∗
n, (a1, . . . an, f ) is the image

under � of
diag(a1, a2, . . . , an, (a1a2 · · · an)

−1f )

To see that � is injective, let α ∈ E∗
ab such that �(α) is trivial. By [7, Corollary 9.5],

we may assume that α ∈ E∗
ab is diagonal. Write α = diag(f0, f1, . . . , fn−1, fn), with

fi−1 ∈ (Ri−1)
∗ by Lemma 4. Since �(α) is trivial, fi−1 ∈ 1 + mi−1 for i = 1, . . . , n

and f0f1 · · · fn = 1 in R∗
n = k[[t]]∗. Hence for i = 1, . . . , n, α is the product of the

diagonal automorphisms βi = di(fi−1)dn+1(f
−1
i−1). Consider the automorphisms γi =
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di(fi−1)di+1(f
−1
i−1) and note that βi = γi · · · γn. To see that γi is in the commutator sub-

group, note that f −1
i−1 is in 1 + mi−1, hence multiplication by fi−1 − 1 maps Ri into Ri−1.

Indeed, multiplication by mi−1 on mi takes mi into mi−1. Moreover, any unit in Ri is a
power series with nonzero constant term, hence multiplication on Ri by an element in mi−1
takes Ri into Ri−1. Thus the hypotheses of Lemma 3 are satisfied, so that each γi is in the
commutator subgroup of E∗, hence so is each βi , and ultimately so is α. Thus � is injective,
hence an isomorphism.

5.3 Generalities for Invariant Subrings

Let k be a field. Recall from Section 4 that S is the ring k[[x1, . . . , xn]], G is a finite sub-
group of GLn(k) that does not contain any nontrivial pseudo-reflections with |G| invertible
in k and R is the invariant subring SG of S (where G acts by a linear change of variables on
S). Then if R is an isolated singularity, the R-module S is an (n − 1)-cluster tilting object
in mcmR.

We need the following lemmas for the proof of (c) of Proposition 4.

Lemma 5 Let A be a local Cohen-Macaulay integral domain of dimension d > 1 such
that A is an isolated singularity. Then A is normal and HomA(I, I ) ∼= A for any ideal I of
height one.

Proof Clearly A satisfies Serre’s criterion for normality. For the second part, choose x ∈ I

to be nonzero. Then [19, Lemma 2.4.3] shows that HomA(I, I ) can be identified with the A-
submodule 1

x
(xI :A I) of the quotient field of A. Now (Ix :A I) is nonzero and contained

in I , so must have height one. If I is principal, it is clear that (xI :A I) = xA. However,
as (xI :A I) has height one and A is an isolated singularity, Ap is a discrete valuation
ring for every associated prime p of (xI :A I), hence (xIAp :Ap

IAp) = xAp. Thus
(xI :A I) = xA and HomA(I, I ) ∼= A.

Lemma 6 [3, Lemma 5.4]
Let A be a commutative Noetherian ring. Then for any ideal I and module M such that

grade(I,M) ≥ 2, we have HomA(I,M) ∼= HomA(A,M) ∼= M .

5.4 Singularity of Type A1 in Dimension Two

Our aim here is to prove (c) of Proposition 4. Thus R is the A1 singularity k[[s2, st, t2]] in
dimension two with char(k) 
= 2. If I = (s2, st)R, then AutR(R ⊕ I )ab ∼= k∗ ⊕ R∗.

Proof By [11, Example 5.25], the indecomposable maximal Cohen-Macaulay modules of
M are R and I . That is, R has finite type. Thus by [21, Theorem 4.22], R is an isolated
singularity. Moreover, since R is of finite type, R ⊕ I is an additive generator for mcmR,
so that EndR(R ⊕ I )op has finite global dimension by [12, Theorem 6]. Now I has height
one, so that HomR(I, I ) ∼= R by Lemma 5. Moreover, as I is maximal Cohen-Macaulay,
we have HomR(I, R) ∼= R by Lemma 6. Thus EndR(R ⊕ I ) is isomorphic to the subring(

R R

I R

)
ofM2(R). By [14, Corollary 2.8], there is an isomorphism

AutR(R ⊕ I )ab ∼= KC
1 (R) ⊕ KC

1 (R/I) = R∗ ⊕ k[[t2]]∗
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Thus if m denotes the maximal ideal of R, we have

R∗ ⊕ k[[t2]]∗ ∼= k∗ ⊕ 1 + m ⊕ k[[t2]]∗
∼= k∗ ⊕ k[[t2]][[s2, st, t2]]∗
= k∗ ⊕ R∗

5.5 Generalities for Reduced Hypersurface Singularities

Before we prove parts (d) and (e) of Proposition 4, we discuss another route for computing
the group AutR(L)ab that we plan to utilize for the proof. We begin with another aside on
noncommuatative algebra. A ring A with Jacobson radical J (A) is said to be semiperfect if
A is semilocal and idempotents of A/J (A) lift to idempotents of A. We assume thatmcmR

contains an n-cluster tilting object L of the form L0 ⊕L1 ⊕· · ·⊕Lt and L0, L1, . . . , Lt are
pairwise non-isomorphic and indecomposable. As EndR(Li) is local for all i, it is the case
that � = EndR(L)op is semiperfect by [10, Theorem 23.8] (noting that � is semiperfect if
and only if �op is semiperfect). In particular, if R is a k-algebra, the characteristic of k is
not two, then by [20, Theorem 2], there is an isomorphism

KC
1 (�) ∼= �∗

ab = AutR(L)ab

Since � is semiperfect, with the above isomorphism, we can utilize [14, Theorem 2.2] to
obtain an isomorphism

AutR(L)ab ∼= KC
1 (�) ∼=

(
t⊕

i=0

AutR(Li)

)/
HC

Where C is the subgroup of
⊕t

i=0 AutR(Li) generated by all elements of the form

(1 + αiβi)(1 + βiαi)
−1

with αi, βi ∈ EndR(Li−1) such that 1 + αiβi ∈ AutR(Li−1), and H is the subgroup
generated by all elements of the form

(1 + αijαji)(1 + αjiαij )
−1

with αij ∈ HomR(Li−1, Lj−1), i 
= j , and 1 + αijαji ∈ AutR(Li−1).
However each αijαji is never an automorphism when i 
= j , since otherwise Li−1 would

be a direct summand of Lj−1 (see [7, Lemma 9.3]). Since each of the rings EndR(Li−1) are
local, this implies that 1 + αijαji ∈ AutR(Li−1) for all i 
= j .

We now continue with the proof of (d) of Proposition 4.

5.6 Reduced Hypersurface Singularities in Dimension One

Our aim here is to prove (d) of Proposition 4. Here, k is an algebraically closed field of
characteristic not two and S = k[[x, y]], R is the ring S/f S with f ∈ (x, y) is such that
in its prime factorization, f = f1 · · · fn we have (fi) 
= (fj ) for i 
= j , fi /∈ (x, y)2,
(fi, fi+1) = (x, y). Then if Si = S/(f1 · · · fi)S and L := S1 ⊕ · · · ⊕ Sn, we have
AutR(L)ab ∼= R

∗
, where R is the integral closure of R in its total quotient ring. We first

prove a useful lemma.

Lemma 7 With notation as above, we have

HomR(Sj , Si) ∼=
{

(fj+1 · · · fi)/(f1 · · · fi) j < i

Si i ≤ j
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Proof The isomorphisms

HomR(Sj , Si) ∼= HomR(R/(f1 · · · fj ), R/(f1 · · · fi)) ∼= (0 :R/(f1···fi ) (f1 · · · fj ))

make the statement clear.

We now proceed with the proof of (d) of Proposition 4.

Proof Now by [2, 4.7], L is a 2-cluster-tilting object for mcmR. As � := EndR(L)op has
finite global dimension by Theorem 5, the remarks of Section 5.5 give

AutR(L)ab ∼=
(

n⊕

i=1

AutR(Si)

)

/HC

Where C is the subgroup of
⊕n

i=1 AutR(Si) generated by all elements of the form (1 +
αiβi)(1 + βiαi)

−1 such that αi, βi ∈ EndR(Si) and 1 + αiβi ∈ AutR(Si). By Lemma 7,
EndR(Si) = Si , so that C is trivial and AutR(L)ab ∼= (

S∗
1 ⊕ · · · ⊕ S∗

n

)
/H . We now describe

the subgroup H . Again by the remarks in Section 5.5, H is the subgroup generated by all
elements of the form

(1 + αijαji)(1 + αjiαij )
−1

where αij ∈ HomR(Sj , Si), αji ∈ HomR(Si, Sj )), and i 
= j . In fact, we can consider the
subgroup generated by such elements where i < j . We note αijαji ∈ EndR(Si) = Si and
αjiαij ∈ EndR(Sj ) = Sj . Utilizing Lemma 7, we can give a more concise description of
H as follows (note i < j ). The subgroup H is generated by the elements hij (s), which we
now describe:

(i) the ith entry of hij (s) is the image of an element s ∈ 1+ (fi+1 · · · fj ) ⊂ S in the unit
group S∗

i ;
(ii) the j th entry of hij (s) is the image of s−1, with s from (i) in the unit group S∗

j ;
(iii) hij (s) is trivial elsewhere.

Let Hi,j be the subgroup of H generated by the hij (s), with s defined above. We have
H = ⊕i<jHi,j . By projecting onto the j th coordinate, it is easy to see Hi,j is isomorphic to
the subgroup 1+(fi+1 · · · fj ) of S∗

j . For 1 ≤ i < n, we call the subgroupHi,i+1⊕· · ·⊕Hi,n

of H the ith layer of H . It is easy to see that S∗
1 ⊕ · · · ⊕ S∗

n modulo the direct sum of the
first m layers of H is

m+1⊕

u=1

(S/fuS)∗ ⊕
n⊕

v=m+2

(S/(fm+1 · · · fv)S)∗

As H is the direct sum of its n − 1 layers of H , we see that S∗
1 ⊕ · · · ⊕ S∗

n modulo H is just

(S/f1S)∗ ⊕ · · · ⊕ (S/fnS)∗

And this is just R
∗
.

5.7 Reduced Hypersurface Singularities in Dimension Three

Our aim here is to prove (e) of Proposition 4. Keep notation as in Section 5.6 with the
exception that we now require k be an algebraically closed field of characteristic zero. Set
S′ = k[[x, y, u, v]] and R′ = S′/(f + uv)S′. Then a 2-cluster tilting object for mcmR is
given by L := U1 ⊕ · · · ⊕ Un, with Ui = (u, f1 · · · fi) ⊂ R′ (see Section 4). Then we aim
to show AutR(L)ab ∼= R′∗ ⊕ k[[w, z]]∗⊕(n−1). In order to understand AutR(L)ab, we first
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need to understand the structure of the modules HomR′(Ui, Uj ), so that we are able to use
the remarks of Section 5.5 to compute AutR(L)ab. This is the first step we make below.

Proposition 5 Let R′ and Ui be as above. Then

HomR′(Ui, Uj ) ∼=
{

Uj j < i

R′ i ≤ j

Proof Now R′ is Gorenstein of dimension three and an isolated singularity. Since Ui is an
ideal of R′ of height one, we may apply Lemma 5 to see that HomR′(Ui, Ui) ∼= R′ for
all i. If i 
= j , [19, Lemma 2.4.3] says we may identify HomR′(Ui, Uj ) with the the R′-
submodule 1

u
(uUj :R′ Ui) of the quotient field of R′. Now (uUj :R′ Ui) is nonzero and

(uUj :R′ Ui) ⊂ Uj , hence (uUj :R′ Ui) has height one. Let p be a minimal prime of
(uUi :R′ Uj ). As R′ is an isolated singularity, R′

p is a discrete valuation ring. Write R′
p = A

and let μ be a generator for the maximal ideal of A. Suppose u maps to cμa , with a > 0 and
c ∈ A∗. Write (Ui)p = μni A and (Uj )p = μnj A, with nj , ni nonnegative integers. Then

(uUj :R′ Ui)p = (μa+nj :A μni )

If i ≤ j , then Uj ⊆ Ui , hence nj ≥ ni . We have

(μa+nj :A μni ) = μa+nj −ni A ⊂ μaA

Thus (uUj :R′ Ui)p = (uR′)p. In this case, (uUi :R′ Uj ) = uR′, so that HomR′(Ui, Uj ) ∼=
R′.

Now if j < i, then Ui ⊂ Uj and ni ≥ nj . Notice u ∈ Ui , so that a ≥ ni . We have

(μa+nj :A μni ) = μa+nj −ni = μa−ni (Uj )p

And μa−ni A = (μa :A μni ) = (u :R′ Ui)p. We have (u :R′ Ui) = (u :R′ f1 · · · fi).
Thus (uUj :R′ Ui) = (u :R′ f1 · · · fi)Uj . When i = n, (f1 · · · fn)R

′ = (uv)R′, hence
(u :R′ f1 · · · fn) = R′. This gives Uj = (uUj :R′ Un), hence there is an isomorphism of
R′-modules HomR′(Un,Uj ) ∼= 1

u
Uj

∼= Uj .
To analyze the ideal (u :R′ f1 · · · fi) for i < n, note that fi+1 · · · fn ∈ (u :R′ f1 · · · fi)

and that the ideals (u, fi+1)R
′, . . . , (u, fn)R

′ are prime. In particular, the minimal primes
of (u :R′ f1 · · · fi) are (u, fi+1)R

′, . . . , (u, fn)R
′. Let q denote the prime ideal (u, fs)R

′,
with i + 1 ≤ s ≤ n. Then (f1 · · · fi)R

′
q = R′

q, as f1, . . . , fi /∈ q and hence (u :R′
f1 · · · fi)q = (uR′)q. Thus (u :R′ f1 · · · fi) = uR′, so that (u :R′ f1 · · · fi)Uj = uUj , and
hence HomR′(Ui, Uj ) ∼= Uj . This gives the result.

We now proceed with the proof of (e) of Proposition 4.

Proof By [8, Theorem 4.17], EndR′(L)op has finite global dimension, so the remarks of
Section 5.5 are applicable. Thus there is an isomorphism:

AutR′(L)ab ∼=
(

n⊕

i=1

AutR′(Ui)

)

/HC

Where C is the subgroup of
⊕n

i=1 AutR′(Ui) generated by (1+αiβi)(1+βiαi)
−1 such that

αi, βi ∈ EndR′(Ui) and 1 + αiβi ∈ AutR′(Ui). By Proposition 5, EndR′(Ui) = R′, so that
C is trivial, hence AutR′(L)ab ∼= (R′∗)⊕n/H . We now describe the subgroup H . Again by
the remarks in Section 5.5, H is the subgroup generated by all elements of the form

(1 + αijαji)(1 + αjiαij )
−1
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where αij ∈ HomR′(Uj , Ui), αji ∈ HomR′(Ui, Uj )), and i 
= j . In fact, we can consider
the subgroup generated by such elements where i < j . We now give a more concise descrip-
tion of H . Utilizing Proposition 5, H is the subgroup of (R′∗)⊕n generated by the elements
hij (g) with i < j and g ∈ Ui such that that:

(i) the ith entry of hij (g) is 1 + g;
(ii) the j th entry of hij (g) is (1 + g)−1;
(iii) hij (g) is trivial elsewhere.

For fixed i and j , let Hi,j be the subgroup generated by the elements hij (g). Thus H =
⊕i<jHi,j and Hi,j

∼= 1 + Ui ⊂ R′∗. For i < n, we call the subgroup Hi,i+1 ⊕ Hi,i+2 ⊕
· · ·⊕Hi,n the ith layer of H . As Un ⊂ Un ⊂ · · · ⊂ U1, it is easy to see that (R′∗)⊕n modulo
the direct sum of layers n − 1, n − 2, . . . , n − i is isomorphic to

(R′∗)⊕(n−i) ⊕ (R′/Un−i )
∗⊕i

Now the direct sum of layers n − 1, n − 2, . . . , 1 is just H , so that we see

AutR′(L)ab ∼= R′∗ ⊕ (R′/U1)
∗⊕(n−1)

Moreover, since U1 = (u, f1) and f1 ∈ (x, y)\(x, y)2 ⊆ k[[x, y]], we see R′/U1 ∼=
k[[w, z]], for variables w, z over k. Thus

AutR′(L)ab ∼= R′∗ ⊕ k[[w, z]]∗⊕(n−1)

6 ComputingG1(R)

The aim of this section is to utilize Theorem 3 to explicitly calculate G1(R) for several
hypersurface singularities. Our results are the following:

Example 1 Let k be an algebraically closed field of characteristic not two. If n ≥ 1 and
R = k[x]/xnk[x], then G1(R) ∼= k∗.

Remark 7 We note that Example 1 follows immediately from Quillen’s Dévissage Theo-
rem [15, §5 Theorem 4], but we find the calculation illustrative of our methods as well as
allowing us to generalize [7, Example 10.2].

Example 2 Let k be an algebraically closed field of characteristic not two, three or five. If
R is the finite-type singularity k[[t2, t2n+1]] for n ≥ 0, then G1(R) ∼= R

∗ = k[[t]]∗;

Example 3 Let k be an algebraically closed field of characteristic not two. If S = k[[x, y]]
let f1, . . . , fn ∈ (x, y) be irreducible and f = f1 · · · fn be such that

(i) R := S/f S is an isolated singularity (ie. (fi) 
= (fj ))
(ii) fi /∈ (x, y)2 for all i.
(iii) (fi, fi+1) = (x, y).

Then G1(R) ∼= Z
⊕(n−1) ⊕ R

∗
(where R is the integral closure of R);

Remark 8 We note here that Examples 2 and 3 follow from the use of more classical
technology. Let A ⊆ B be an inclusion of commutative Noetherian such that B is a
module-finite extension of A. Let I ⊆ A and J ⊆ B be ideals such that IB ⊆ J . Set
X = Spec(A) \ Spec(A/I), Y = Spec(B) \ Spec(B/J ), and suppose that the induced
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morphism of schemes X −→ Y is an isomorphism. Then Quillen’s Localization Theorem
[15, Theorem 5] yields long exact sequences

Gi(A/I) −→ Gi(A) −→ Gi(X) −→ Gi−1(A/I) −→ · · ·
and

Gi(B/J ) −→ Gi(B) −→ Gi(Y ) −→ Gi−1(B/J ) −→ · · ·
Where we note that for a Noetherian scheme S , Gi(S) is the ith Quillen K-group of
the category of coherent OS -modules. Now restriction of scalars induces the following
commutative diagram

Where we note that εY is an isomorphism. Some rather involved but straightforward
diagram chasing gives a Mayer-Vietoris-like sequence of G-groups that we denote by (�):

· · · −→ Gi(B/J )
α−→ Gi(A/I) ⊕ Gi(B)

β−→ Gi(A)
γ−→ Gi−1(B/J ) −→ · · ·

Where α =
(

εB/J

δB/J

)
, β = (δA/I ,−εB), and γ = δY ε−1

Y δA.

To see how we can recover the claims in Example 2 using (�), let I = (t2, t2n+1) ⊆
k[[t2, t2n+1]] = A and J = (t) ⊆ B = k[[t]]. We note that B is a module-finite extension
of A and Spec(A) \ Spec(A/I) = {(0)} ∼= Spec(B) \ Spec(B/J ) = {(0)}, so the above
requirements are met. Using (�), we obtain a long exact sequence

Gi(k)
α−→ Gi(k) ⊕ Gi(B)

β−→ Gi(A)
γ−→ Gi−1(k)

α′−→ Gi−1(k) ⊕ Gi−1(B)

Where α′ =
(

ε′
B/J

δ′
B/J

)
. As I = J ∩ A, the induced map A/I −→ B/J is an isomorphism,

so that εB/J is an isomorphism. In particular, we obtain the exact sequence

0 −→ Gi(B)/im(δB/J ) −→ Gi(A)
γ−→ Gi−1(k)

α′−→ Gi−1(k) ⊕ Gi−1(B)

Now δB/J = δ′
B/J = 0, so that we easily obtain from the above exact sequence Gi(B) ∼=

Gi(A). In particular, G1(A) = G1(k[[t2, t2n+1]] ∼= G1(B) = G1(k[[t]]) = k[[t]]∗. We
note, unlike the restriction on the characteristic we encounter using Theorem 3 below, this
holds regardless of the characteristic.

To see how we can recover the claims in Example 3 using (�), we let A = S/(f1 · · · fn)

with I the maximal ideal of A and B = S/(f1) ⊕ · · · ⊕ S/(fn) with J = m1 ⊕ · · · ⊕ mn,
where mi is the maximal ideal of the local ring S/(fi). It is easy to see that B is a module-
finite extension of A. Moreover, B is also the integral closure of A in its total quotient ring.
We also have

X = Spec(A) \ Spec(A/I) = {(fi)/(f1 · · · fn) : 1 ≤ i ≤ n}

Y = Spec(B) \ Spec(B/J ) =
⎧
⎨

⎩
S/(f1) ⊕ · · · ⊕ 0︸︷︷︸

i

⊕ · · · ⊕ S/(fn) : 1 ≤ i ≤ n

⎫
⎬

⎭
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From the above, it is clear the induced map X −→ Y is given by (fi)/(f1 · · · fn) �→
S/(f1) ⊕ · · · ⊕ 0︸︷︷︸

i

⊕ · · · ⊕ S/(fn), hence is clearly an isomorphism. From (�), we obtain

a long exact sequence

Gi(k)⊕n α−→ Gi(k) ⊕ Gi(B)
β−→ Gi(A)

γ−→ Gi−1(k)⊕n α′−→ Gi−1(k) ⊕ Gi−1(B)

Now the first component of α and α′ is the summing map. Moreover, δB/J = δ′
B/J = 0

(where δ′
B/J is the second component of α′) so that we obtain an exact sequence

0 −→ Gi(B) −→ Gi(A) −→ Gi−1(k)⊕(n−1) −→ 0

As fj /∈ (x, y)2, S/(fj ) is regular, hence Gi(B) = Ki(B). Specializing to i = 1, we obtain
the exact sequence

0 −→ K1(B) −→ G1(A) −→ Z
⊕(n−1) −→ 0

Since the above sequence splits, we obtain G1(A) ∼= K1(B) ⊕ Z
n−1. As K1(S/(fj )) =

(S/(fj ))
∗, it is easy to see that K1(B) = B∗. This gives Example 3. We note that (iii) in the

hypothesis of Example 3 is not needed, so this is more general.
Whilewe can recoverExamples 2 and3 from thesemethods,we find that ourwork expands

on calculations given in [13, Section 7.3 and Proposition 7.26] and [7, Example 10.5].

Lastly, our results that do not follow from our arguments in Remark 8 are the following:

Proposition 6 Let k be an algebraically closed field of characteristic not two.

(a) If R = k[[s2, st, t2]], then G1(R) ∼= R∗.
(b) Suppose k has characteristic zero, S = k[[x, y]], S′ = k[[x, y, u, v]], and R′ =

S′/(f + uv)S′, where f = f1 · · · fn ∈ S = k[[x, y]] is such that
(i) S/f S is an isolated singularity (ie. (fi) 
= (fj ))
(ii) fi /∈ (x, y)2 for all i.
(iii) (fi, fi+1) = (x, y).

Then G1(R
′) ∼= Z

⊕(n−1) ⊕ (
R′∗ ⊕ k[[w, z]]∗⊕(n−1)

)
/�, with � the subgroup of

Definition 12 and w, z variables over k.

6.1 The n-Auslander-ReitenMatrix

Before we can use Theorem 3 to perform the calculation of Examples 1, 2, 3, and prove
Proposition 6, we need to explicitly define the free groupH occurring in the decomposition
of G1(R) in Theorem 3. Our assumptions are as usual and we also require that R is a k-
algebra and k is algebraically closed of characteristic not two.We useL = L0⊕L1⊕· · ·⊕Lt

to denote an n-cluster tilting object of mcmR such that � = EndR(L)op has finite global
dimension. We assume that L0, L1, . . . , Lt are the pairwise non-isomorphic summands of
L (each occurs with multiplicity one in the decomposition of L) and that L0 = R. Let
I = {L0, L1, . . . , Lt } and I0 = I\ {L0}. We set C = addR L. Recall, for j > 0, there is an
exact sequence, called the n-Auslander-Reiten ending in Lj (see Definition 10):

0 −→ C
j
n −→ · · · −→ C

j

0 −→ Lj −→ 0

with C
j

0 , C
j

1 , . . . , C
j
n ∈ C. Given N ∈ C, let #(i, N) be the number of Li-summands

(0 ≤ i ≤ t) appearing in a decomposition of N into the indecompsables R-modules
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L0, L1, . . . , Lt . Following [13], we define a (t + 1) × t integer matrix T whose ij -th
entry is #(i, Lj ) + ∑n

u=0(−1)u+1#(i, Cj
u) = δij + ∑n

u=0(−1)u+1#(i, Cj
u) (note that T

has a 0th row but no 0th column). As G0(k) = Z and G0(�) = Z
⊕t , Theorem 2 gives

us a map Z
⊕t −→ Z

⊕(t+1). It is shown in [13, Section 7.2] that T defines the map
Z

⊕t −→ Z
⊕(t+1) afforded to us by Theorem 2. We call T the n-Auslander-Reiten matrix

or the n-Auslander-Reiten homomorphism. Moreover, this is the same map given in The-
orem 1 when mcmR has a 1-cluster tilting object. For our needs, recall Theorem 3 says
G1(R) = H ⊕ AutR(L)ab/�, so that nowH = ker(T ).

We make a useful observation before our computations.

Lemma 8 Let 1 ≤ i1 < · · · < ih ≤ t and L′ = L
⊕q
i1

⊕ · · · ⊕ L
⊕q
ih

with q >

0. Then for a ∈ R∗, we have det�op(ã1L′) = α, where α ∈ (�op)∗ is given by
diag(1L0 , . . . , a

q1Li1
, . . . , aq1Lih

, . . . , 1Lt )

Proof From Remark 4, we see that ã1L′ : L⊕q −→ L⊕q is the map e1L⊕q , where
e ∈ (�op)∗ is given by diag(1L0 , . . . , a1Li1

, . . . , a1Lih
, . . . , 1Lt ). Now recall the injec-

tion GL1(�
op) = (�op)∗ ↪→ GLq(�op) that takes γ ∈ (�op)∗ to the automorphism

d1(γ ) = diag(γ, 1L, . . . , 1L) ∈ GLq(�op). Now

(e1L⊕q )−1 · d1(α) = e−11L⊕q · d1(α) = β1 · · · βq−1

where βu := d1(e)du+1(e
−1) ∈ GLq(�op). Consider the element γu := diag(e, 1, . . . , 1)

in GLu(�
op). Then, by slight abuse of notation, the matrix δu := diag(γu, γ

−1
u ) in GL2u is

in the commutator subgroup of GL2u(�
op) by [16, Corollary 2.1.3]. Thus by [16, Proposi-

tion 2.1.4], each δu is in the commutator subgroup ofGL(�op). InGL(�
op), either βu is the

image of δu under the injection GL2u(�
op) ↪→ GLq(�op), or δu is the image of βu under

the injection GLq(�op) ↪→ GL2u(�
op). In either case we see that βu is in the commutator

subgroup of GL(�op). Hence e1L⊕q ≡ d1(α) in GL(�op)ab.
Since det�op : GL(�op)ab −→ (�op)∗ab is the inverse of the isomorphism induced by the

map
(�op)∗ = GL1(�

op) ↪→ GL(�op) � GL(�op)ab

We see that det�op(e1L⊕q ) = α.

We note R has finite type if and only if R has a 1-cluster tilting object M . In this case,
mcmR = addR M and M = M0 ⊕ M1 ⊕ · · · ⊕ Mt , with M0 = R and M1, . . . , Mt

the non-free indecomposable maximal Cohen-Macaulay R-modules. For j > 0, we call
the 1-Auslander-Reiten sequence ending in Mj the Auslander-Reiten sequence ending in
Mj and the 1-Auslander-Reiten matrix is referred to as the Auslander-Reiten matrix. The
Auslander-Reiten matrix is a classical invariant and we denote it by ϒ .

We now make use of Theorem 3 perform the calculations of Examples 1, 2, 3, and prove
Proposition 6. That is, in the context of Theorem 3, we must compute the kernel of the n-
Auslander-Reiten homomorphism and the subgroup � of AutR(L)ab. In each computation,
it will also be clear that R is a k-algebra.

6.2 Truncated Polynomial Rings in One Variable

Our aim here is to utilize Theorem 3 to perform the calculation in Example 1. That is, if
R = k[x]/xnk[x], then G1(R) ∼= k∗.
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Proof For n = 1, R = k, so G1(R) = K1(R) ∼= k∗.
We now suppose n ≥ 2. Let m denote the maximal ideal xR. By the proof of

[11, Theorem 3.3], R has finite type and the indecomposable R-modules are given by
R,m, . . . ,mn−1. Let M be the R-module given by R ⊕ m ⊕ · · · ⊕ mn−1 and denote its
endomorphism ring by E. Using [21, Lemma 2.9] it is not hard to see the Auslander-Reiten
sequences ending in mj are given by

0 −→ mj −→ mj−1 ⊕ mj+1 −→ mj −→ 0 (1 ≤ j ≤ n − 1) (�)

Thus for 1 ≤ j ≤ n − 2, ϒ has its j th column given by (0, . . . ,−1, 2,−1, . . . , 0)T , where
−1, 2 and −1 occur in rows j − 1, j and j + 1, respectively. And the (n − 1)st column is
given by (0, . . . , 0,−1, 2)T . It is easy to see that ϒ is injective.

We compute the subgroup � of E∗
ab from Definition 12. By (�) and Lemma 8, the

subgroup � is generated by elements

ξa,j = (ã21mj ) · ( ˜a−11mj−1 ⊕ a−11mj+1) (1 ≤ j ≤ n − 2)

ξa,n−1 = ( ˜a21mn−1) · ( ˜a−11mn−2)

where a runs over k∗. Again by Lemma 8, we have

ξa,j = diag(1R, . . . , a−11mj−1 , a
21mj , a

−11mj+1 , . . . , 1mn−1)

ξa,n−1 = diag(1R, . . . , . . . , a−11mn−2 , a
21mn−1)

By (a) of Proposition 4, there is an isomorphism E∗
ab

∼= (k∗)⊕n. We regard � as a
subgroup of (k∗)⊕n and abuse notation to write

ξa,j = (1, . . . , a−1, a2, a−1, . . . 1)

ξa,n−1 = (1, . . . , a−1, a2)

Where a−1, a2 and a−1 occur in ξa,j at positions j , j + 1 and j + 2, respectively. Let
� : (k∗)⊕n −→ k∗ be the map such that �(a1, . . . , an) = an

1an−1
2 · · · an. Then � is a

surjective group homomorphism such that � ⊆ ker(�). Let (a1, . . . , an) ∈ ker(�), so that
an
1an−1

2 · · · an = 1. Then (a1, . . . , an) = ζ1 · · · ζn−1, where

ζj =
n−1∏

v=j

ξ
a

j−v−1
j ,v

Thus � induces an isomorphism � : (k∗)⊕n/� −→ k∗, hence G1(R) ∼= k∗ by
Theorem 3.

6.3 Singularity of Type A2n in Dimension One

The ADE singularity of type A2n is given by the ring R = k[[t2, t2n+1]]. Here we utilize
Theorem 3 to perform the calculation in Example 2. That is, if the characteristic of k is not
2, 3 or 5, then G1(R) ∼= R

∗ = k[[t]]∗.

Proof For n = 0, R = k[[t]], a regular local ring, so that G1(R) ∼= K1(R) ∼= R∗ = k[[t]]∗
by Quillen’s Resolution Theorem [15, §Theorem 3].

We now suppose n ≥ 1. Now R has finite type and the indecomposable maximal Cohen-
Macaulay R-modules are Rj = k[[t2, t2(n−j)+1]], with j = 0, . . . , n by [21, Proposition
5.11]. Thus M is the R-module R0 ⊕R1 ⊕· · ·⊕Rn (R0 = R). Let E be the endomorphism
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ring of M . By the proof of [21, Proposition 5.11], the Auslander-Reiten sequence ending in
Rj is

0 −→ Rj −→ Rj−1 ⊕ Rj+1 −→ Rj −→ 0 (1 ≤ j < n)

0 −→ Rn −→ Rn−1 ⊕ Rn −→ Rn −→ 0
Thus the Auslander-Reiten matrix ϒ , for 1 ≤ j ≤ n − 1, has j th column given by
(0, . . . ,−1, 2, −1, . . . , 0)T , with −1, 2 and −1 occur in rows j − 1, j and j + 1, respec-
tively. The nth column is given by (0, . . . , 0, −1, 1)T . Now ϒ is clearly injective, hence
G1(R) ∼= E∗

ab/� by Theorem 3. We calculate the subgroup � occurring of Definition 12.
By Lemma 8, the subgroup � is generated by the elements

ξa,j = ã21Rj
· ˜a−11Rj−1 ⊕ a−11Rj+1 (1 ≤ j < n)

ξa,n = ã21Rn · ˜a−11Rn−1 ⊕ a−11Rn

Where a runs over k∗. We abuse notation and regard � as a subgroup of (k∗)⊕(n+1). We
compute compute (k∗)⊕(n+1)/�, viewing the elements of � as a row vectors in (k∗)⊕(n+1).
Hence the elements that generate � are given by

ξa,j = (1, . . . , a−1, a2, a−1, . . . , 1) (1 ≤ j < n)

ξa,n = (1, . . . , a−1, a)

Where a−1, a2 and a−1 occur in positions j, j + 1 and j + 2 for 1 ≤ j < n. Let χ :
(k∗)⊕(n+1) −→ k∗ be given by χ(a1, . . . , an+1) = a1 · · · an+1. Then ker(χ) is generated
by elements of the form (a1, . . . , an+1) such that

(a1, . . . , an+1) = (a−1
2 , a2, 1, . . . , 1)(a

−1
3 , 1, a3, 1, . . . , 1) · · · (a−1

n+1, 1, 1, . . . , an+1)

We show � = ker(χ). Obviously, � ⊆ ker(χ). For the converse, it suffices to show the
elements ζa,j = (a−1, 1 . . . , a, . . . , 1), where a is in the j th position and 2 ≤ j ≤ n + 1,
are in �. Indeed, note that ζ2,a = ξa,1ξa,2 · · · ξa,n and for j > 2, we have ζa,j =
ζa,j−1ξa,j−1ξa,j · · · ξa,n. Thus ker(χ) = � as needed. Combining the above and using (b)
of Proposition 4, we have

G1(R) ∼= (k∗)⊕(n+1)/� ⊕ (1 + tk[[t]]) ∼= k∗ ⊕ (1 + tk[[t]]) ∼= k[[t]]∗

6.4 Reduced Hypersurface Singularities in Dimension One

Our aim here is use Theorem 3 to perform the calculation in Example 3. We recall Example
3. We let S = k[[x, y]], f1, . . . , fn ∈ (x, y)\(x, y)2, with fi irreducible, f = f1 · · · fn,
R = S/f S is an isolated singularity (i.e. fiS 
= fjS), and (fi, fi+1) = (x, y). Then
G1(R) ∼= Z

⊕(n−1) ⊕ R
∗
.

Proof Now L = S1 ⊕ · · · ⊕ Sn, with Si = S/(f1 · · · fi), is a 2-cluster tilting object in
mcmR. In order to computeG1(R), we need to understand the structure of the 2-Auslander-
Reiten sequences in C = addR L. By [8, Proof of Theorem 4.11] the 2-Auslander-Reiten
sequences ending in Sj are

0 −→ Sj −→ Sj+1 ⊕ Sj−1 −→ Sj+1 ⊕ Sj−1 −→ Sj −→ 0 (1 ≤ j < n)

From this and Lemma 8 it is clear that the subgroup � of AutR(L)ab is trivial. Moreover,
from this, it is easy to see that the 2-Auslander-Reiten matrix T : Z⊕(n−1) −→ Z

⊕n is zero.
Thus by Theorem 3 and (d) of Proposition 4

G1(R) ∼= ker(T ) ⊕ AutR(L)ab ∼= Z
⊕(n−1) ⊕ R

∗
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6.5 Singularity of Type A1 in Dimension Two

Our aim here is to prove (a) of Proposition 6. That is, if R is the ring k[[s2, st, t2]] then
G1(R) ∼= R∗.

Proof By [11, Example 5.25 and 13.21] R has finite type and the indecomposable maxi-
mal Cohen-Macaulay R-modules are R and I = (s2, st). Moreover, the Auslander-Reiten
sequence ending in I is given by

0 −→ I −→ R2 −→ I −→ 0

Set M = R ⊕ I and let E be its endomorphism ring.
An easy calculation shows that the Auslander-Reiten homomorphism ϒ : Z −→ Z

⊕2 is
injective. Now � is the subgroup of E∗

ab generated by the elements

ã1I · detE(ã1R2)
−1 · ã1I = ã21I · detE(ã1R2)

−1 (a ∈ k∗)

The automorphism of M , ã21I , is given by diag(1R, a21I ). Using Lemma 8, detE(ã1R2)

is the image of the automorphism diag(a21R, 1I ) in E∗
ab. Thus � is the subgroup of E∗

ab
generated by the elements

diag(1R, a21I ) · diag(a−21R, 1I ) = diag(a−21R, a21I )

As groups, � ∼= k∗2 = {
a2 : a ∈ k∗}. Since k is algebraically closed, k∗2 = k∗. Using (c)

of Proposition 4, we have E∗
ab

∼= k∗ ⊕ R∗, hence E∗
ab/� ∼= R∗. Thus G1(R) ∼= R∗ by

Theorem 3, since ϒ is injective.

6.6 Reduced Hypersurface Singularities in Dimension Three

Our aim here is to prove (b) of Proposition 6. We recall (b). If S′ = k[[x, y, u, v]], R′ =
S′/(f +uv)S′, where f = f1 · · · fn with fi ∈ (x, y)\(x, y)2 ⊆ S = k[[x, y]] are such that
thenG1(R

′) ∼= Z
⊕(n−1)⊕(

R′∗ ⊕ k[[w, z]]∗⊕(n−1)
)
/�, with� the subgroup from Theorem

3 and w, z variables over k.

Proof If Ui = (u, f1 · · · fi), then L = U1 ⊕ · · · ⊕ Un is a 2-cluster tilting object. Then
by [13, Proposition 7.28], the 2-Auslander-Reiten matrix T is zero. By (e) of Proposition 4,
AutR′(L)ab ∼= R′∗ ⊕ (k[[w, z]])∗⊕(n−1) (w and z variables over k), thus Theorem 3 yields

G1(R
′) ∼= Z

⊕(n−1) ⊕
(
R′∗ ⊕ k[[w, z]]∗⊕(n−1)

)
/�

Where � is the subgroup of R′∗ ⊕ k[[w, z]]∗⊕(n−1) of Definition 12.

7 Discussion

It is of interest to note that in the calculations of G1(R) for R of positive dimension, either
G1(R) ∼= R

∗
(R is the integral closure of R in its total quotient ring), or G1(R) contains

R
∗
a direct summand. Our methods were ad hoc and tailored specifically to each singularity

via the calculation of the group AutR(L)ab, so a deeper look into the relationship between
� = EndR(L)op and R could shed some light on the structure of G1(R) for hypersurface
singularities.

In fact, the key to the relationship seems to be understanding the relationship between the
derived categories ofmodEndR(L)op andmodR. Indeed, in [5], it is shown that if A and B
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are Noetherian (not necessarily commutative) rings whose derived categories are equivalent
as triangulated categories, then there is an isomorphism Gi(A) ∼= Gi(B) for i ≥ 0. Of
course, one should not expect an equivalence of the derived categories of modEndR(L)op

and modR since our examples (see Proposition 4) indicate for positive-dimensional rings
that G1(EndR(L)op) ∼= AutR(L)ab only contains R

∗
as a direct summand. Moreover, it may

also be too much to ask that G1(R) is a direct summand of G1(EndR(L)op), as G1(R) is
not always isomorphic to R

∗
. However, if R is a reduced one-dimensional local Noetherian

ring, then R = R/p1 × · · ·×R/ps , where the pj are the minimal primes of R and each ring
R/pj is a semilocal principal ideal domain. In this situation

G1(R) ∼= G1(R/p1) × · · · × G1(R/ps)

Now R/pj is semilocal and has finite global dimension, hence if R is an algebra over a field
k with char(k) 
= 2, then Quillen’s Resolution Theorem [15, §Theorem 3], [18, Corollary
2.6 and Theorem 5.1], and [20, Theorem 2] show there are isomorphisms

G1(R/pj ) ∼= K1(R/pj ) ∼= KC
1 (R/pj ) = (R/pj )

∗

ThusG1(R) ∼= R
∗
in this case. Nevertheless, we conjecture that ifR satisfies the hypotheses

of Theorem 3 and has positive dimension, then AutR(L)ab/� ∼= R
∗
and hence G1(R)

is isomorphic to the direct sum of the kernel of the n-Auslander-Reiten homomorphism
and R

∗
.
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