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The Grassmann Algebra and its Differential Identities

Carla Rizzo1

Abstract
Let G be the infinite dimensional Grassmann algebra over an infinite field F of character-
istic different from two. In this paper we study the differential identities of G with respect
to the action of a finite dimensional Lie algebra L of inner derivations. We explicitly deter-
mine a set of generators of the ideal of differential identities of G. Also in case F is of
characteristic zero, we study the space of multilinear differential identities in n variables as
a module for the symmetric group Sn and we compute the decomposition of the correspond-
ing character into irreducibles. Finally, we prove that unlike the ordinary case the variety of
differential algebras with L action generated by G has no almost polynomial growth.
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1 Introduction

Let A be an associative algebra over an infinite field F of characteristic p �= 2. A well-
established method of studying the growth of the polynomial identities of A is that of
determining some numerical invariants allowing to give a quantitative description (e.g.
[6, 10]). In particular a lot of information for the polynomial identities is carried by
the codimension sequence, cn(A), n ≥ 1, and in case F is of characteristic zero, by
the Sn-cocharacter sequence, χn(A), n ≥ 1, of the algebra A. Similar sequences are
defined when studying the polynomial identities of algebras with an additional struc-
ture such as group-graded algebras, algebras with an action of a group by automorphism
and anti-automorphism, algebras with an action of a Lie algebra by derivations (e.g.
[3, 4, 8, 9, 15]).
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C. Rizzo

One of the most interesting questions in this context is to compute the growth of the
codimension sequence of an algebra. Regev in [19] proved that any associative algebra A

satisfying a non trivial polynomial identity has codimensions exponentially bounded. Later
in [14] Kemer showed that such codimensions are either polynomially bounded or grow
exponentially. One of the mostly notable algebras with exponential codimension growth is
the infinite dimensional Grassmann algebra G; in case F is of characteristic zero, Latyshev
in [17] determined a basis of the ideal of its polynomial identities . Later, its codimension
sequence and its cocharacter sequence were determined in [16, 18], respectively. Moreover,
in 2001 Giambruno and Koshlukov (see [7]) exhibited a basis of the polynomial identities
satisfied by the Grassmann algebra over a field of positive characteristic.

In this context it is often convenient to use the language of varieties of algebras. Given a
variety of algebras V , the growth of V is defined as the growth of the sequence of codimen-
sions of any algebraA generating V , i.e., V = var(A). In [13] Kemer proved that var(G) has
almost polynomial growth, i.e., var(G) has exponential growth but every proper subvariety
has polynomial growth.

In light of the above, it seems interesting to study the structure of the polynomial iden-
tities of the infinite dimensional Grassmann algebra with an additional structure. In this
perspective, in [1] Anisimov computed the graded codimension growth of G when a cyclic
group of prime order q by automorphism and anti-automorphism acts on G. In particular in
[2] he found the exact values of the codimensions with involution of the Grassmann algebra
for two concrete involutions. Later in [5] Di Vincenzo, Kolshlukov and da Silva determined
the Zq -graded codimensions and cocharacters of G.

The purpose of this paper is to study the growth of the differential identities of the Grass-
mann algebra G. More precisely, we consider G with the action of a finite dimensional
Lie algebra L of its inner derivations. Since this action on G can be naturally extended to
the action of its universal enveloping algebra U(L), it is natural to define the differential
identities of G, i.e., the polynomials in non-commutative variables xh = h(x), h ∈ U(L),
vanishing on G (see [11, 15]).

In this paper we explicitly construct a set of generators for the ideal of differential iden-
tities of the Grassmann algebra over an infinite field F of characteristic p �= 2 and also
we compute its differential codimensions. As a consequence it turns out that the growth
of the differential identities of G is exponential, as in the ordinary case. However, we
prove that unlike the ordinary case G with the action of a finite dimensional Lie algebra
of inner derivations does not generate a variety of almost polynomial growth; in fact we
exhibit a subvariety of almost polynomial growth. Furthermore, in case F is of characteristic
zero we determine the decomposition of the differential cocharacter of G in its irreducible
components by computing all the corresponding multiplicities.

2 Preliminaries

Throughout this paper F will denote an infinite field of characteristic p �= 2. Let A be an
associative algebra. Recall that a derivation of A is a linear map ∂ : A → A such that

∂(xy) = ∂(x)y + x∂(y), ∀x, y ∈ A.

In particular an inner derivation induced by x ∈ A is the derivation ad x : A → A of A

define by (ad x)(y) = [x, y], for all y ∈ A. The set of all derivations of A is a Lie algebra
denoted by Der(A), and the set ad(A) of all inner derivations of A is a Lie subalgebra of
Der(A).
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Let L be a Lie algebra of derivations of A. If U(L) is its universal enveloping algebra,
then the L-action on A can be naturally extended to a U(L)-action.

Given a basis B = {hi |i ∈ I } of U(L), we let F 〈X|L〉 be the free associative algebra
over F with free formal generators x

hi

j , i ∈ I , j ∈ N. If h = ∑
i∈I αihi , αi ∈ F , where only

a finitely many of αi are nonzero, then we put xh := ∑
i∈I αix

hi . We also write xi = x1
i ,

1 ∈ U(L), and then we set X = {x1, x2, . . . }. We let U(L) act on F 〈X|L〉 by the following
h(x

hi1
j1

x
hi2
j2

. . . x
hin

jn
) = x

hhi1
j1

x
hi2
j2

. . . x
hin

jn
+ · · · + x

hi1
j1

x
hi2
j2

. . . x
hhin

jn
,

where h, hi1 , hi2 , . . . , hin ∈ B. F 〈X|L〉 is called the free associative algebra with deriva-
tions on the countable set X and its elements are called differential polynomials (see [9,
11, 15]). Notice that if L ⊆ ad(A), i.e., L is a Lie algebra of inner derivations of A, then
F 〈X|L〉 is a free associative algebra with action of inner derivations.

A polynomial f (x1, . . . , xn) ∈ F 〈X|L〉 is a polynomial identity with derivation of A or
differential identity of A if f (a1, . . . , an) = 0 for any ai ∈ A, and we write f ≡ 0. We
denote by

IdL(A) = {f ∈ F 〈X|L〉|f ≡ 0 on A}
the TL-ideal of differential identities of A, i.e., IdL(A) is an ideal of F 〈X|L〉 invariant under
the U(L)-action. We also denote by

P L
n = span{xh1

σ(1) . . . x
hn

σ(n)|σ ∈ Sn, hi ∈ B}
the space of multilinear differential polynomials in x1, . . . , xn, n ≥ 1. The non-negative
integer

cL
n (A) = dim

P L
n

P L
n ∩ IdL(A)

is called the nth differential codimension of A.
If Sn is the symmetric group of degree n, then the space P L

n has a natural structure of
left Sn-module induced by defining for σ ∈ Sn, σ(xh

i ) = xh
σ(i). Since P L

n ∩ IdL(A) is stable
under the Sn-action the space

P L
n (A) = P L

n

P L
n ∩ IdL(A)

is a left Sn-module. If F is of characteristic zero, the character of P L
n (A), χL

n (A), is called
nth differential cocharacter of A, and it can be decompose as

χL
n (A) =

∑

λ�n

mL
λ χλ,

where λ is a partition of n, χλ is the irreducible Sn-character associated to λ, and mL
λ ≥ 0 is

the corresponding multiplicity.
We denote by Pn the space of multilinear ordinary polynomials in x1, . . . , xn and by

Id(A) the T -ideal of the free algebra F 〈X〉 of polynomial identities of A. We also write
cn(A) for the nth codimension of A and χn(A) for the nth cocharacter of A. Since U(L) is
an algebra with unit, we can identify in a natural way Pn with a subspace of P L

n . Hence we
have Pn ⊆ P L

n and Pn ∩ Id(A) = Pn ∩ IdL(A). Thus it follows that cn(A) ≤ cL
n (A), for all

n ≥ 1.
Next we focus on the Grassmann algebra G.
Let V be a vector space with a countable basis {e1, e2, . . . } over F . The Grassmann

algebra G of V is the associative algebra with the following basis over F

{1, ei1 . . . eik | 1 ≤ i1 < · · · < ik}
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and multiplication induced by eiej = −ej ei , for all i, j ≥ 1. Notice that G can be
decomposed in a natural way as the direct sum of the subspaces

G0 = spanF {ei1 . . . ei2k | i1 < · · · < i2k, k ≥ 0}

and

G1 = spanF {ei1 . . . ei2k+1 | i1 < · · · < i2k+1, k ≥ 0},
i.e.G = G0⊕G1. Note thatG0 is the center ofG, and that the elements ofG1 anticommute.

Recall that if g = ei1 . . . ein ∈ G, the set Supp{g} = {ei1 , . . . , ein} is called the support of
g. Let now g1, . . . , gt ∈ G1 be such that Supp{gi}∩Supp{gj } = ∅, for all i, j ∈ {1, . . . , t}.
Since charF �= 2, we set

δ−1
i=2 ad gi, i = 1, . . . , t .

Then for all g ∈ G, we have

δi(g) =
{
0, if g ∈ G0
gig, if g ∈ G1

, i = 1, . . . , t .

We shall consider L = spanF {δ1, . . . , δt } ⊂ ad(G). Since for all g ∈ G, [δi, δj ](g) = 0,
i, j ∈ {1, . . . , t}, L is a t-dimensional abelian Lie algebra of inner derivations of G. We
shall denote by G̃ the algebra G with this L-action. Throughout this paper F 〈X|L〉 will be
the free associative algebra with inner derivations on X.

3 Differential Codimensions

We start by describing the differential identities of G̃. Recall that in the ordinary case we
have the following result (see[7, 16]).

Theorem 1 Let G be the infinite dimensional Grassmann algebra over an infinite field F

of characteristic p �= 2. Then

(1) Id(G) = 〈[x1, x2, x3]〉T .
(2) {xi1 . . . xim [xj1 , xj2 ] . . . [xj2q−1 , x2q ] : i1 < · · · < im, j1 < · · · < j2q, 2q + m = n} is

a basis of Pn modulo (Pn ∩ Id(G)).
(3) cn(G) = 2n−1.

Remark 2 It can be checked that

[x1, x2][x1, x2] ≡ 0 (1)

is a consequence of [x1, x2, x3] ≡ 0 in G (see for example [10]). Since [x1, x2, x3] ≡ 0
is also a differential identity on G̃, then the linearization of Eq. 1 leads to the identity
[x1, x2][x3, x4] ≡ −[x3, x2][x1, x4] on G̃. Notice that the linearization is harmless because
charF �= 2 and the degree of x1 is equal to 2.

Next we prove the main result of this section. For a real number x we denote by �x� its
integer part.
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Theorem 3 Let F be an infinite field of characteristic p �= 2 and G̃ be the infinite
dimensional Grassmann algebra over F with L = spanF {δ1, . . . , δt }-action. Then
(1) IdL(G̃) = 〈[x1, x2, x3]〉TL

.

(2) cL
n (G̃) = 2t2n−1 − ∑�t/2�

j=1

∑t
i=2j

(
t
i

)(
n

i−2j

)
.

Proof Let Q = 〈[x1, x2, x3]〉TL
. It is readily checked that Q ⊆ IdL(G̃). Let f ∈ F 〈X|L〉

be a differential polynomial in x1, . . . , xn. Since 1 ∈ G̃, f can be written as a linear
combination of products of the type

x
α1
i1

. . . x
αk

ik
w1 . . . wm (2)

where αi ∈ U(L), αi �= 1, for 1 ≤ i ≤ k, and w1 . . . , wm are left normed commu-
tators in the x

βh

j s, βh ∈ U(L). Notice that [xγ1
1 , x

γ2
2 , x

γ3
3 ] ≡ 0 and [xγ1

1 , x2] ≡ 0 with
γi ∈ U(L), for 1 ≤ i ≤ 3, are consequence of [x1, x2, x3] ≡ 0. Then, modulo Q, in
Eq. 2 we have wj = [xjh

, xjk
], for all j = 1, . . . , m, and they are central. Also since

xδiδj ∈ Q, for all i, j ∈ {1, . . . , t}, it follows that in Eq. 2 αi ∈ {δ1, . . . , δt } modulo
Q. Moreover it is clear that xδi xδj ≡ 0 is a consequence of [x1, x2][x1, x3] ≡ 0 and by
Remark 2 [x1, x2][x3, x4] + [x3, x2][x1, x4] ∈ Q. Then we may assume that f is multilin-

ear. Now observe that x
δi

1 x
δj

2 ≡ −x
δi

2 x
δj

1 and x
δi

1 [x2, x3] ≡ −x
δi

3 [x2, x1] are consequences
of [x1, x2][x3, x4] ≡ −[x3, x2][x1, x4]. Then f can be written, modulo Q, as a linear
combination of elements of the type

x
δh1
1 . . . x

δhk

k [xk+1, xk+2] . . . [xk+2q−1, xk+2q ], (3)

with
h1 < · · · < hk, k + 2q = n, 0 ≤ k ≤ t . (4)

Next we prove that these elements are linearly independent modulo IdL(G̃).
For any 0 ≤ k ≤ t , consider 
k = {δh1 , . . . , δhk

} ⊆ {δ1, . . . , δt }, set X
k
=

x
δh1
1 . . . x

δhk

k [xk+1, xk+2] . . . [xk+2q−1, xk+2q ] and suppose that f = ∑

k

α
k
X
k

∈
IdL(G̃). In order to show that all coefficients α
k

are zero we consider the following evalua-
tions: for any 
k = {δh1 , . . . , δhk

} we choose x1 = g
′
1, . . . , xk+2q = g

′
k+2q where g

′
i ∈ G1,

1 ≤ i ≤ k + 2q, and for all r ∈ {1, . . . , t} \ {h1, . . . , hk}, there exists s ∈ {1, . . . , k + 2q}
such that Supp{g′

s} ∩ Supp{gr } �= ∅. If we make these evaluations for increasing value of
k (0 ≤ k ≤ t), by the properties of the polynomial in Eq. 3, it follows that α
k

= 0 for
any 
k . Thus the elements (3) are linearly independent modulo IdL(G̃), and this proves that
IdL(G̃) = Q.

Notice that if we consider the multilinear differential polynomials, then the elements

xi1 . . . ximx
δh1
j1

. . . x
δhk

jk
[xjk+1 , xjk+2 ] . . . [xjk+2q−1 , xjk+2q ], (5)

with

i1 < · · · < im, j1 < · · · < jk+2q, h1 < · · · < hk, m + k + 2q = n, 0 ≤ k ≤ t, (6)

are a basis of P L
n modulo P L

n ∩ IdL(G̃). Thus we count for any fixed n, the total number of
elements in Eq. 5 subject to the conditions (6), i.e. the nth differential codimension cL

n (G).
If 0 ≤ k ≤ t , then this number is equal to

sk =
(

t

k

) �(n−k)/2�∑

q=0

(
n

k + 2q

)

.
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Notice that s0 = 2n−1 and s1 = (
t
1

)
2n−1. Moreover, if k = 2l with l ≥ 1,

s2l =
(

t

2l

)
⎛

⎝
�n/2�∑

r=0

(
n

2r

)

−
l−1∑

p=0

(
n

2p

)
⎞

⎠ =
(

t

2l

)
⎛

⎝2n−1 −
l−1∑

p=0

(
n

2p

)
⎞

⎠ .

Finally, in case k = 2l + 1 with l ≥ 1,

s2l+1 =
(

t

2l + 1

)
⎛

⎝
�(n−1)/2�∑

r=0

(
n

2r + 1

)

−
l−1∑

p=0

(
n

2p + 1

)
⎞

⎠

=
(

t

2l + 1

)
⎛

⎝2n−1 −
l−1∑

p=0

(
n

2p + 1

)
⎞

⎠ .

Thus

cL
n (G̃) =

t∑

k=0

sk = 2n−1 +
(

t

1

)

2n−1 +
�t/2�∑

l=1

(
t

2l

)
⎛

⎝2n−1 −
l−1∑

p=0

(
n

2p

)
⎞

⎠

+
�(t−1)/2�∑

l=1

(
t

2l + 1

)
⎛

⎝2n−1 −
l−1∑

p=0

(
n

2p + 1

)
⎞

⎠

= 2t2n−1 −
�t/2�∑

l=1

(
t

2l

) l−1∑

p=0

(
n

2p

)

−
�(t−1)/2�∑

l=1

(
t

2l + 1

) l−1∑

p=0

(
n

2p + 1

)

= 2t2n−1 −
t∑

i=2

(
t

i

)(
n

i − 2

)

−
�t/2�∑

l=2

(
t

2l

) l−2∑

p=0

(
n

2p

)

−
�(t−1)/2�∑

l=2

(
t

2l + 1

) l−2∑

p=0

(
n

2p + 1

)

= . . .

= 2t2n−1 −
�t/2�∑

j=1

t∑

i=2j

(
t

i

)(
n

i − 2j

)

.

Recall that two functions ϕ1(n) and ϕ2(n) are asymptotically equal and we write ϕ1(n) ≈
ϕ2(n) if limn→∞ ϕ1(n)/ϕ2(n) = 1. Then the following corollary is an obvious consequence
of the previous theorem.

Corollary 4 cL
n (G̃) ≈ 2t2n−1.

The proof of Theorem 3 suggests a convenient decomposition of P L
n (G̃). For any n ≥ 1

and for all γ1, . . . , γk ∈ L distinct, we set

Φγ1,...,γk
= {γ1, . . . , γk, 1, . . . , 1︸ ︷︷ ︸

n−k

}.

We define

P
Φγ1,...,γk
n = spanF {xε1

σ(1) . . . x
εn

σ(n) | σ ∈ Sn, εi ∈ Φγ1,...,γk
},
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a Sn-submodule of P L
n . Since for all γ1, . . . , γk, β1, . . . , βk ∈ L, P

Φγ1,...,γk
n and P

Φβ1,...,βk
n

are isomorphic as Sn-modules, we introduce the notation

P L
n,k = P

Φδ1,...,δk
n .

In particular, for k = 0 we have P L
n,0 = Pn. Hence for any 0 ≤ k ≤ t , we set

P L
n,k(G̃) = P L

n,k

P L
n,k ∩ IdL(G̃)

and

cL
n,k(G̃) = dimF P L

n,k(G̃).

As consequence of proof of the Theorem 3 we have the following.

Corollary 5 cL
n (G̃) = ∑t

k=0

(
t
k

)
cL
n,k(G̃), where

cL
n,k(G̃) =

⎧
⎪⎨

⎪⎩

2n−1, if k = 0, 1

2n−1 − ∑�k/2�−1
j=0

(
n
2j

)
, if k ≥ 2 is even

2n−1 − ∑�k/2�−1
j=0

(
n

2j+1

)
, if k ≥ 3 is odd

.

Next we shall be concerned with the growth of the differential codimension of G̃.
Recall that if V = varL(A) is a variety of algebras with derivation generated by an

algebra A, i.e. the Lie algebra L acts on A as derivations, then the growth of V is the growth
of the sequence cL

n (V) = cL
n (A), n ≥ 1. We say that V has polynomial growth if cL

n (V) is
polynomially bounded and V has almost polynomial growth if cL

n (V) is not polynomially
bounded but every proper subvariety of V has polynomial growth.

Notice that by Corollary 4 varL(G̃) has exponential growth, nevertheless it has no almost
polynomial growth. In fact, the Grassmann algebra G (ordinary case) is an algebra with L-
action where δi , i = 1, . . . , t , acts trivially on G, i.e., xδi ≡ 0, i = 1, . . . , t , are differential
identities of G. Then it follows that G ∈ varL(G̃), but by Theorem 1 cn(G) = 2n−1. Thus
we have the following result.

Theorem 6 varL(G̃) has no almost polynomial growth.

4 Differential Cocharacter

Throughout this section F will be a field of characteristic zero.
We start by recalling a notation. For integers d, l ≥ 0, we define a hook shaped part of

the plane of arm d and leg l as

H(d, l) = {λ = (λ1, λ2, . . . ) � n ≥ 1 | λd+1 ≤ l}.
In particular, if λ is a partition of n ≥ 1, then λ ⊂ H(1, 1) if

λ = (p, 1, . . . , 1) = (p, 1n−p), p ≥ 1.

Let χn(G) = ∑
λ�n mλχλ be the nth (ordinary) cocharacter of G where mλ ≥ 0 is the

multiplicity corresponding to the irreducible character χλ. Then in the ordinary case we
have the following theorem (see [18]).
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Theorem 7 If G is the infinite dimensional Grassmann algebra over a field F of
characteristic zero, then χn(G) = ∑

λ�n
λ⊂H(1,1)

χλ.

Let now χL
n,k(G̃) be the character of the Sn-module P L

n,k(G̃). Then we can write

χL
n,k(G̃) =

∑

λ�n

mL
λ,kχλ, (7)

where mL
λ,k ≥ 0 is the multiplicity corresponding to the irreducible character χλ.

Next we shall compute the multiplicities mL
λ,k in Eq. 7.

For any partition λ � n let Tλ be a Young tableau of shape λ and eTλ the cor-
responding minimal essential idempotent of the group algebra FSn. Recall that eTλ =∑

σ∈RTλ
τ∈CTλ

(sgn τ)στ where RTλ and CTλ are the subgroups of row and column permutations

of Tλ, respectively.

Lemma 8 If χL
n,k(G̃) = ∑

λ�n mL
λ,kχλ is the character of P L

n,k(G̃), then we have:

(1) mL
λ,k = 1, if λ = (n − r + 1, 1r−1) and r ≥ k, r �= 0;

(2) mL
λ,k = 0 in all other cases.

Proof If k = 0, we have P L
n,0 = Pn and χL

n,0(G̃) = χn(G). Then by Theorem 7 the theorem
is proved in case k = 0.

Suppose that k ≥ 1. Assume that δ1, . . . , δk , act on P L
n,k(G̃). If λ = (n − r + 1, 1r−1)

and r ≥ k, we define Tλ to be the tableau

1 r + 1 . . . n

2
...

r

.

Then RTλ = Sn−r+1{1, r + 1, . . . , n} and CTλ = Sr , where Sn−r+1{1, r + 1, . . . , n}
denotes the symmetric group acting on the set {1, r + 1, . . . , n}. We associate to Tλ the
polynomial

wδ1...δk
r = eTλ(x

δ1
1 . . . x

δk

k xk+1 . . . xn)

=
⎛

⎝
∑

σ∈Sn−r+1{1,r+1,...,n}
σ

⎞

⎠

⎛

⎝
∑

τ∈Sr

(sgn τ)x
δ1
τ(1) . . . x

δk

τ(k)xτ(k+1) . . . xτ(r)

⎞

⎠ xr+1 . . . xn.

We claim that w
δ1...δk
r , r ≥ k, is not an identity of G̃. In fact, we consider the evaluation

ϕ : F 〈X|L〉 → G such that

ϕ(xi) = ei, 1 ≤ i ≤ r,

and

ϕ(xr+1) = er+1er+2, . . . , ϕ(xn) = e2n−r−1e2n−r
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such that for all i ∈ {1, . . . , 2n − r}, ei /∈ Supp{gj }, for all j ∈ {1, . . . , k}. Then, since for
all i ∈ {1, . . . , r} and j ∈ {1, . . . , k}, ϕ(x

δj

i ) = gjϕ(xi), we obtain

ϕ(
∑

τ∈Sr

(sgn τ)x
δ1
τ(1) . . . x

δk

τ(k)xτ(k+1) . . . xτ(r))

=
∑

τ∈Sr

(sgn τ)g1ϕ(xτ(1)) . . . gkϕ(xτ(k))ϕ(xτ(k+1)) . . . ϕ(xτ(r))

= (±g1 . . . gk)
∑

τ∈Sr

(sgn τ)eτ(1) . . . eτ(r) = ±(r!)g1 . . . gke1 . . . er �= 0.

Thus, since ϕ(xr+1), . . . , ϕ(xn) are central in G,

ϕ(wδ1...δk
r ) = ±(r!)(n − r + 1)!g1 . . . gke1 . . . e2n−r �= 0.

We have proved that w
δ1...δk
r is not an identity of G̃. Hence this implies that mL

λ,k ≥ 1, if

λ = (n − r + 1, 1r−1) and r ≥ k. Then, since cL
n,k(G̃) = ∑

λ�n mL
λ,kχλ(1), we have

n∑

r=k

χ(n−r+1,1r−1)(1) ≤ cL
n,k(G̃). (8)

By the hook formula χ(n−r+1,1r−1)(1) = (
n−1
r−1

)
(see [12]), then, if k = 1, we have

n∑

r=1

χ(n−r+1,1r−1)(1) =
n∑

r=1

(
n − 1

r − 1

)

= 2n−1.

On the other hand, by Corollary 5, cL
n,1(G̃) = 2n−1. Then, if k = 1 we get the equality in

Eq. 8, and in this case the theorem is proved. Suppose then k ≥ 2,

n∑

r=k

χ(n−r+1,1r−1)(1) =
n∑

r=1

(
n − 1

r − 1

)

−
k−1∑

r=1

(
n − 1

r − 1

)

= 2n−1 −
k−1∑

r=1

(
n − 1

r − 1

)

.

Hence in order to get the equality in Eq. 8 we need to prove that

2n−1 −
k−1∑

r=1

(
n − 1

r − 1

)

≥ cL
n,k(G̃).

Thus, if k = 2l with l ≥ 1, by Corollary 5 we need to check that

2n−1 −
2l−1∑

r=1

(
n − 1

r − 1

)

≥ 2n−1 −
l−1∑

j=0

(
n

2j

)

.

But by induction on l ≥ 1, it is easy to verify that
∑2l−1

r=1

(
n−1
r−1

) = ∑l−1
j=0

(
n
2j

)
and also

in this case the theorem is proved. Suppose finally that k = 2l + 1 with l ≥ 1. Since∑2l−1
r=1

(
n−1
r−1

) = ∑l−1
j=0

(
n

2j+1

)
, by Corollary 5 we get the equality in Eq. 8 and the theorem

is proved.

Theorem 9 Let F be a field of characteristic zero and G̃ be the infinite dimensional Grass-
mann algebra over F with L = spanF {δ1, . . . , δt }-action. If χL

n (G̃) = ∑
λ�n mL

λ χλ is the
nth differential cocharacter of G̃, then we have:

(1) mL
λ =

{ ∑r
i=0

(
t
i

)
, r < t

2t , r ≥ t
, if λ = (n − r + 1, 1r−1);

133



C. Rizzo

(2) mL
λ = 0 in all other cases.

Proof By Corollary 5, mL
λ = ∑t

k=0

(
t
k

)
mL

λ,k . Then by using Lemma 8 we get the proof of
the theorem.
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