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Abstract

The class of generalized Lie-type color algebras contains the ones of generalized Lie-type
algebras, of n-Lie algebras and superalgebras, commutative Leibniz n-ary algebras and
superalgebras, among others. We focus on the class of generalized Lie-type color algebras
£ admitting a quasi-multiplicative basis, with restrictions neither on the dimensions nor on
the base field F and study its structure. We state that if £ admits a quasi-multiplicative basis
then it decomposes as £ = U & (3_ Jx) with any Jx a well described color gLt-ideal of
£ admitting also a quasi-multiplicative basis, and ¢/ a linear subspace of V. Also the min-
imality of £ is characterized in terms of the connections and it is shown that the above
direct sum is by means of the family of its minimal color gLt-ideals, admitting each one a
n-quasi-multiplicative basis inherited by the one of £.
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1 Introduction

The concept of multiplicative bases appears in a natural way in the study of different physi-
cal problems. In fact, one may expect that there are problems which are naturally and more
simply formulated exploiting multiplicative bases. There are many works about a study of
algebras with a multiplicative basis [1-5, 8-11, 16-20, 23, 25, 30-32].

The interest in the study of associative algebras admitting a quasi-multiplicative basis
also comes from the viewpoint of the theory of infinite dimensional Lie algebras. Since
we can recover many classes of Lie algebras from an associative algebra with involu-
tion, (see for instance [29, Section 6]), it is interesting to know the structure of the initial
associative algebra to understand the one of the Lie algebra. In the framework of infi-
nite dimensional Lie algebras we find many classes of Lie algebras which admits, in a
natural way, a quasi-multiplicative basis. For instance, we have the semisimple separable
L*-algebras, the semisimple locally finite split Lie algebras over a field of characteris-
tic zero and the graded Lie algebras considered in [14, Section 3]. Taking into account
these comments, it seems natural to study associative and non-associative algebras with
a quasi-multiplicative basis to a better understanding of these classes of Lie algebras.
The first attempt of a study of algebras with a quasi-multiplicative basis was given
in [15].

This interest leads us in a natural way to study Lie algebras admitting quasi-multiplicative
basis. But instead of study this class of algebras, we are going to extend our framework in
two different ways, on the one hand we will consider the widest n-ary extension by dealing
with generalized Lie-type algebras. On the other hand we will consider the colored ver-
sion of this category of algebras, that is, the generalized Lie-type color algebras. Hence,
our aim is to study generalized Lie-type color algebras admitting quasi-multiplicative
bases.

The paper is organized as follows. In the Section 3 we introduce relations techniques on
the set of indexes I of the quasi-multiplicative basis so as to become a powerful tool for
the study of this class of algebras. By making use of these techniques we show that any
generalized Lie-type color algebra £ admitting a quasi-multiplicative basis is of the form
£ =U® (O Jx) with any Ji a well described color gLt-ideal of £ admitting also a quasi-
multiplicative basis, and ¢/ a linear subspace of V. In the Section 4 the minimality of £
is characterized in terms of the quasi-multiplicative basis and it is shown that, under mild
conditions, the above decomposition of £ is actually the direct sum of the family of its
minimal color gLt-ideals.

2 Basic Definitions
2.1 Generalized Lie-Type Algebras

Let us introduce now the notion of generalized Lie-type algebras which extends some well-
known classes of algebras.
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n-Ary Generalized Lie-type Color Algebras Admitting... 1373

Definition 1 An n-ary algebra (&, (-, /., -)) is called a generalized Lie-type algebra (or
shortly gLt-algebra) if it satisfies the following » identities:

Voo (XL e X))y oo, Y1) =
~— ——
pos k
01,02
Z & 7 Kap(1)s -5 Xy (i=1)s Yoo (1) > Xy (i) s+ - o Yor (n=1))» Xory (i+1) -+ +» Xory (n) )5
l<ij<n K
o1 €S, pos j
0y €8yt
(D
fork=1,...,n,x1,..., %X, Y1, ..., Yn—1 € £, being (x?'j’? € I, and where pos j means

that the element x4, (;) is in the position j in the inside n-product.

01,02

Observe that depending of the values of o; jk we obtain several binary algebras:

e Lie algebras, Leibniz algebras, Novikov algebras, associative algebras, alternative
algebras, bicommutative algebras, commutative pre-Lie algebras, etc.;

and several n-ary algebras:
e pn-Lie (Filippov) algebras, commutative Leibniz n-ary algebras, totally associative-
commutative n-ary algebras, etc.

2.2 Color 2-Algebras

In this subsection we discuss about color n-ary algebras and color Q2-algebras. In the end of
the subsection we give some defintions of classical color algebras.

Definition 2 Let G be an abelian group. A graded n-ary algebra (£, (-, ™., ) is a G-
graded vector space £ = @gcG L, provided with a graded n-linear map (-, My ex--x
£ — £satistying

(Lgrs o Lg) T Lgittgns
forgy,...,gn €G.

Definition 3 Let IF be a field and G an abelian group. Amap € : G x G — T\ {0} is called
a bicharacter on G if it satisfies:

1. e(k,g+ h) =€k, gek,h),
2. €(g+h,k)=¢€(g, ke, k),
3. e(g, he(h,g) =1
forall g, h, k € G.
Let £ = @gcc L, be a graded n-ary algebra. An element x is called a homogeneous
element of degree g if x € £, and denoted by deg(x) = g. From now on, unless stated

otherwise, we assume that all elements are homogeneous. Let € be a bicharacter of G. Given
two homogeneous elements x, y € £ we set €(x, y) := e(deg(x), deg(y)). Now we recall
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1374 E. Barreiro et al.

the notion of color n-ary Q2-algebra for an arbitrary family of polynomial identities 2 (see
[6, 28] for more details).

Definition 4 For a (possible n-ary) multilinear polynomial f(xi, ..., x,) we fix the order
of indexes {iy, ..., i,} of one non-associative word (x;,, ..., x;,) g from the polynomial f.
Here,
f= Z Ao, X (i)s - - Xor(in)) B
B,o€S,

where S, is the permutation group of n elements and B is an arrangement of brackets
in the non-associative word. For the shift w; : {j1,..., ju} ¥ {J1, -5 Jit1s Jir---s Jn}
we define the element €(x,, x;_.,) € F \ {0}. Now, for arbitrary non-associative word
(Xo(i1)s - - +» Xo(in))p its order of indexes is a composition of suitable shifts u;, and for
this word we set €, defined as the product of corresponding €(xj;, xj,_,). Now, for the
multilinear polynomial f, we define the color multilinear polynomial

feo = Z Qo BE (X (i1)s - -+ » Xo(in)) B+
B.oeS,
Let Q = {f;} be a family of n-ary multilinear polynomials. We say that a n-ary algebra
£ is a Q-algebra if it satisfies the family of polynomial identities 2 = { f;}. Also an n-
ary color Q-algebra is an n-ary color algebra £ satisfying the family of color multilinear
polynomials Q2., = {(fi)co}-

Some examples of n-ary color algebras are Lie and Jordan superalgebras [26, 27], Leib-
niz color algebras [24], Filippov (n-Lie) superalgebras [7, 22, 33, 34] and 3-Lie color
algebras [35]. Let us give definitions of some color algebras.

Definition 5 A Leibniz color algebra (£, [, -], €) is a G-graded vector space £ = 2cG L
with a bicharacter €, an even bilinear map [-, -] : £ x £ — £ satisfying

[x, [y, 2l = [lx, ], 2] + €(x, )Ly, [x, z]1.

Definition 6 An n-Lie color algebra (£, [, ..., ],€) is a G-graded vector space £ =
@gEG Le with an n-linear map [+, ..., ] : £ x ... x £ — £ satisfying
[(X15 e ooy Xiy Xigds oo oy Xn] = =€ (07, Xip 1) [X1, - ooy X1, Xiy oo oy Xn ],

n

[0 X [0 3n 1= ) €, Yim DIV o i 1K s Xne 1, ik Vit 1oe oY,
i=1

i—1 i—1
where X;—1 = > xx, Yic1 = ) wk.
k=1 k=1

Definition 7 For any o from the permutation group of n elements S,,, we use the notation

(X1see s Xy ooy Xndo = (Xo (1) -+ o5 Xa(j)s -+ - s Xor(n)) -
2.3 Multiplicative and Quasi-multiplicative Basis
Firstly we establish the natural definition of multiplicative basis of graded n-ary algebras.

Definition 8 A basis of homogeneous elements B = {e;};c; of a graded n-ary algebra £ is
multiplicative if for any iy, ...,i, € I we have (e;,, ..., ¢;,) € Fe; for some j € I.
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n-Ary Generalized Lie-type Color Algebras Admitting... 1375

In particular, this definition extends the one considered in [19, 20]. Also this definition
is more general than the usual one in the literature [23, 25, 30]. In fact, in these references,
a basis B = {e;}i¢s is multiplicative if for any i, j € I we have either ¢;e; = 0 or 0 #
ejej = e forsome k € 1.

We wish to go a step further by introducing a more general concept than the one of
multiplicative basis as follows.

Definition 9 A graded n-ary algebra £ admits a quasi-multiplicative basis if £ =V @ W
with V and 0 # W graded linear subspaces in such a way that there exists a basis of
homogeneous elements B = {e;};c; of W satisfying:

1. Foriy,...,iy € I we have either {(¢;,, ..., ¢;,) € Fe; forsome j € I or (¢;,...,e;,)
eV.
2. Given0 < k <n, foriy,...,iy € I ando € S, we have (¢;,...,¢;,V,..., V), C

Fej, for some j, € 1.
3. We have either (V, ..., V) C Fe; forsome j € T or (V,...,V) CV.

Observe that in item 2. we only consider 0 < k < n because k = n is contemplated
in item 1. and & = 0 in item 3. We also note that if the linear subspace V is trivial or
1-dimensional this definition agrees with the one of multiplicative basis.

We note that a different concept of quasi-multiplicative basis to the one given in
Definition 9 can be found, in a context of category theory, in the reference [1].

Examples of glt-algebras admitting a quasi-multiplicative basis are any n-ary algebras
admitting a multiplicative basis (case V = {0}). We also have that any finite-dimensional
associative algebra A of finite representation type (that is, there are only finitely many
isomorphism classes of indecomposable finite-dimensional A-modules) has also a multi-
plicative basis [5, 30]. Multiplicative bases are also well-related to Grobner basis. In fact, it
is well-known that an algebra with a multiplicative basis has a Grobner basis if there is an
admissible order on the basis [25].

3 Decomposition as Direct Sum of Ideals

In what follows £ = V & W denotes a color gLt-algebra admitting a quasi-multiplicative
basis of homogeneous elements B = {e;};e; of W # 0. We begin this section by developing
connection techniques among the elements in the set of indexes / as a main tool in our
study.

Consider v an external element to / and define the set

J = I1U{v}).
The element V gives us information about the behavior of the linear subspace V with respect

to the elements in the basis 8. For each j € J, a new assistant variable j ¢ J is introduced
and we consider the set I :={i : i € I}, so

J:i={j:jed} =10}

consists of all these new symbols. We also denote by P(A) the power set of a given
set A.
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1376 E. Barreiro et al.

Next, we consider the following operations which recover, in a sense, certain multiplica-
tive relations among the elements in J. Given o € S, we define

* day I x M. x T — P(J) such as

{r}, if 0 # (ei,qys-- - €y, € Fers

* ag(iy,....0p) = { (0 I 0% (ernr o rer) € V.

e ForO<k<n,
ag (i1, ...y ik, Uy ..., V) :={{r}, if 0#(e;,....e;,V,..., V), CFe,}.

)y, i O£V, .., V) CFeps
° “(’(”""’v)'_{{v}, if 0£(V,...,V)CV.
¢ () in the remaining cases.

* by :IxTIx"Dx T - P@3) suchas
e Forl<k<n,
bo G ins e T Ty, D) = {i/e Iag(.ia, ..., iL u,...,v):{i}}
u{ (v, ifaa(iz,...,ik,v,...,v):{i}}.

bo(,ia, ..., 0p) =" €l :ax(’, iz, ....in) = {v} ).
bs(v,v,...,v) = {{v}, ifas (v, ...,v) = {v}}.
¢ in the remaining cases.

Then, we consider the operation

w: (AU x ((Ix"DxHUT x Y x 7)) - PO)

given by:
e Forany j, ji, ..., ju—1 €3, w(j, ji,--vs ja=2s Ju—1)i= EJS Ao (Js J1s -+ s jn=2s ju—1)
T €S,
e Foranyjedand ji,.ojyog €T HUsJiseees Jnens noi) = LEJS b (j, jiseees
o n
Jn=2s Jn-1) _ _
o Forany j, ji, .., juc1 € J, w(j, j1s.-vs juo1) = U bo(Jics Js J1s s

jk:l iji "'7jn71)
e 4(3,7,...,7):=0.

From now on, given any jedwe denote (j) := j. Given also any subset J of JUJ, we
writeby J :={j:je J}if J #@Pand ¥ := 0.

Lemma 10 Leti, j € I and elements ay, . .., ay of (3 x "=V x HUG x "=V x J). It holds
thati € u(j,an,...,ay) ifand only if j € u(i,as, ..., a).

Proof First let us suppose i € wu(j,an,...,an). If {as,...,a,} C 7T, then there exists
o € S, suchthat {i} = as(j, az,...,a,). Then
JE€bs(i,az,...,ay) C ui,az,...,ay).
In another case, if {a3, ..., a,} C 7J, then exists o € S, such thati € b, (j,az,...,an)
and so

(i} =a,G.az,...,ap) C uli,az, ... an).
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To prove the converse we can argue in a similar way. O
Lemma 11 Leti € 1, j € I and elements ay, ..., ap—1 of (3 x "=V x HUG x "=V x 7).
It holds thati € u(j,ai,...,an—1) ifandonly if j € n(i,ay, ..., an—1).

Proof Supposei € u(j,ai,...,an—1).Since u(i 3,...,0) =4, we just have to consider
the case in which {ay, ..., a,—1} C J. Then there exist k € {l,...,n — 1} and o € S,_;
such thati € b, (ag, j, ai, .., dg—1, Gk+1, - - - , dp—1). From here,

lary = a5, j, a1, ....ax-1,a, ..., an—1) = ay(j,i,ar, ..., ax-1, a, ..., ap-1)
where v=(1,2)o. Hence j € by (ax, i, a1, .., k-1, Akt1, - -, An-1) C (i, at, ..., an_1).

The converse is proved similarly. O

The map u is not adequate for our purposes in the sense that we require to send a subset
of 7UI in a subset of the same union. So we need to introduce the following map:

¢ PUUD x (I x "D x HU@T x =D x 7)) - PUIUI),
as
o@, (T x "7 x 3)U(§7x =D % 7)) := 0, 7 7
e Forany@ #J e PUUD andas, ..., a, € (I x "7V x HU@ x "D x 7),

p(an.an) = ((JnGoaz - can)\ ) U (U n e oan) \ (o).

jelJ jelJ

Note that for any J € P(IUI) and as, ..., a, € (3 x =D x HUT x =Y x J) we have
that

o(J,az,...,ap) =¢(J,aa,...,a) 2)
and
o0 a1 = ({JnG.a...a) \ (o). 3)
jeJ

Lemma 12 Consider J € PUI) such that J = J, az,...,a, € 30T and i € I. The
following statements are equivalent:

1. iep(J,an,...,ay); _
2. either (i}, az,....,an) NI NI #Por¢({i},az,...,an)) NI NI £

Proof 1t is straightforward to verify that for any i € I and ay, ..., a, € JUJ we have that

ieu(j,a,...,an)

for some j € [ if and only lf j € M(i,ﬁzu..,ﬁ,lz (see Lemma 10), while i €
w(j,az,...,ay) for some j € I if and only if j € wu(i,a,...,a,). Since these facts
together with Eqgs. 2 and 3 we conclude the result. O

For an easier comprenhesion we firstly present a shorter notation. Given m a natural
number, we denote X, := (dm2,...,amn) €I UT X n=1) » 53U 7. Let us also denote

Xm = (Em,27 ceey Em,n)'
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1378 E. Barreiro et al.

Additionally, for r > 1, by {X1, X2, ..., X;} we mean the set of elements

{a1,2a e An, A225 -, A2y e Ar 2 7al,l‘l}'

Finally, for 21 € P(IUI) we denote ¢ (A, X)) := ¢, am.2, - .., am.n)-

Definition 13 Leti and j be distinct elements in /. We say that i is connected to j if there
exists a subset {X1, ..., X;} € 3 U7, for certain # > 1, such that the following conditions
hold:

L Teliil),
2. (i}, X1) #9,
o @i}, X1), X2) #0,

H@C.. o X)) X)) £ D
3. e d@..d({T X)), X)),

The subset {X1, ..., X;} is a connection from i to j and by convention i is connected to
itself.

Our aim is to show that the connection relation is of equivalence. Previously we check
the symmetric property.

Proposition 14 The relation ~ in I, defined by i ~ j if and only if i is connected to j, is
an equivalence relation.

Proof The reflexive character of ~ is given by the Definition 13. Let us see the symmetric
character of ~: If i ~ j then there exists a connection

{(X1,...,X;} c 303

from i to j satisfying conditions in Definition 13. In case # = 1 we have j € q{)({z} Xy). If
i =ieltheni € ¢({j} X1). If7 =ie€ Ttheni € ¢({j}, X1). Soi € ¢>({j} Xl) with
(] Xl) e {(j, X1), (j, X1)}, that is, {Xl}lsaconnectlonfrom] toi.

Suppose t > 2 and let us show that we can find a set

(X, ..., X1} c 33,

where %m e {Xm, Ym}, for 1 < m < t, which gives rise to a connection from j to i. Indeed,
Eq. 2 shows

O (@UTY X1, ), Xim) = (. (i), X1, ), Xi—1)

and so by taking J := ¢ (... (¢({7}, X1),...), X;—1) wehave J € P(IUI) and J = J, so
we can apply Lemma 12 to the expression

J€B@C.. @i}, X1),...), Xi—1), X1)

to get that either

dULX) NG dUTY, X1),..), Xem) N T # 0
or

dUTL XD N (.. @i}, X1),...), Xm) N T #
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and so o
d{j}, X1) #0
with (7, X,) € {(j. X0). (7, X0)}.
By taking o ~
keo({j}, Xo)Nno(...(p{i}, X1),...), X,i—) N1,
Eq. 2 and Lemma 12, the factk € ¢(--- (¢ ({i}, X1),...), Xr—1) and k € ¢({j}, X,) imply
now either

@} X). X)) NG (.. p@(i}. XD)....). X, ) N T # 0
or
@) X0). X)) N (.. pd({i}. XD)....). X,2) N T # 0
and consequently o
d@j} Xe), Xi—1) # 0
for some )N(,_l e {X,—1, Xi—1}.
By iterating this process we get
@ (U X)) Ximms1): Xiom)
NGB .. (@i} X1), .- .), Xe—m—2), Xemm—1) NI # @

for 0 < m <t — 2. In particular, we have for the case m = ¢t — 2 that

S (@7} X0, ..), X3), X)) No({i}, XN T £,
Since either i = i ori = i, if we write J = ¢(¢(... (¢({7}, )?,), o) )~(3), )?2), the
previous equation allows us to assert that either ¢ ({i }, X1)NJNI £ @orp({i}, X1)NINI #
¢ with i € 1. Hence Lemma 12 applies to get

i €ppC.. (07} XD),...), X2), X1)

for some X 1 € {X1, X} and conclude ~ is symmetric.

Finally, let us verify the transitive character of ~. Suppose i ~ j and j ~ k, and write
{X1, ..., X;} for a connection from i to j and {Y1, ..., Y5} for a connection from j to k. If
i = jso{Yy,...,Ys}isaconnection fromi to k. If k = j thus {X1y, ..., X;}is a connection
from i to k. Finally, if #+ > 1 and s > 1, taking into account Eq. 2 we easily have that
{X1,...,X;,Yy,..., Y} is a connection from i to k. We have shown that the connection
relation is an equivalence relation. O

By the above proposition we can consider the quotient set
I/ ~={li]:iel},

becoming [i] the set of elements in / which are connected to i.

Definition 15 A color gLt-subalgebra of £ is a G-graded subspace & of £ verifying
(6,...,6) C 6.AG-graded subspace Z C £isacolor gLt-ideal of £if (Z, £, ..., L)y C
Z,forany o € S,.

Our next goal in this section is to associate an n-ary ideal J;) of £to any [i] € I/ ~. Fix
i € I, we start by defining the sets

Vi = ( > ]F(eil,...,e,-”)> NV vV,

i1,in €[0]

Wiy := Djepiy Fej W
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1380 E. Barreiro et al.

Finally, we denote by ;) the direct sum of the two subspaces above, that is,
Jpir == Viip @ Wiy

Definition 16 Let £ =V @ W be a graded n-ary algebra admitting a quasi-multiplicative
basis B = {e;}ic; with W = 0. It is said that a n-ary graded subalgebra & of £ has a quasi-
multiplicative basis inherited by the one of £if & = Vg @ Wg with Vg a graded linear
subspace of V, and 0 # W a graded linear subspace of W admitting B’ C 93 as a basis.

Proposition 17 For any i € I, the linear subspace J|;) is a color gLt-ideal of £ admitting
a quasi-multiplicative basis inherited by the one of L.

Proof Given o € S,, we can write

Qi £ o = (Vi @ Wi, (V@ @Fen), ... (Vo @Fen))o. @)

rel sel

In case (¢}, ey, ..., e;,)c 7 0forsome j € [i]and iy, ..., i, € I, we have that either
0 # (ej,eiy,....€,)c € Fegwithl € I or 0 # (e, ej,,...,€,)s € V.In the first case
the connection {iy, ..., i,} givesus j ~ [, sol € [i] and then (e}, e;,, ..., €;,)s € W[;).
In the second case, for all 2 < k < n we get iy € by (V, j,i2,...rike1,ikals---sin)

for some t € S,, and so iy € w(j,v,i2,...,0k—1,Iik+1,-.-,in). Hence the set
{v,i2, ..., ik—1,lk+1,---,In} 1S a connection from j to iy and so iy € [i] for2 < k < n.
Therefore (e}, €;,, ..., €;,)s € V}i]. Hence we get
Wiy, (@ Fer)..... @ Fe)o C i (5)
rel sel

For some j € [i],if we have 0 # (¢;,V,...,V,e;,,...,e;)s C Fe for certainl € I
and where k > 2, then/ € u(j,v,...,v,...,02,...,0). So{v,...,v,... 02, ... ik} isa
connection from j to £ then/ € [i]. From here we have (taking also into account Equation
(5)) that:

(W[i],s,...,ﬂ)g CW[,‘J. (6)

Suppose there exist iy, ...,i, € [i] with O # (e;,...,e;,)0 € V, thatis, v €
(i1, ..., iy), in such a way that 0 # ({e;;,...,¢€;,)o.€j,---,€j,_)c € Fe, for some
Jis -+, ju—1 € 1. By Eq. 1 we get that

0# <eial(1)’ oo Cig 1y <ej¢72(1)’ coes Cig gy e ejaz(n—l))'fl » Cig gr1ys v -0 Cigy (n))fz € Fey
——
pos h

for certain 1 < h,k < n, o1 € S,,00 € S,—1. The connection {is,(2), ..., io;(k—1)>
', ig (k+1ys - - - I, ()} Where either i’ € I if 0 # (€foytys -+ Cigyays -+ -5 Coyinry )11 € Feir

ori’ =vwhen0 # (€Joytys =5 Cigyys =+ 2 Cjoyun )12 € ¥, giVes us that ig, (1) is connected
to m and so m € [i]. From here
Vi, (@ Fer). ... @ Fe))s € Wi N
rel sel

Now, suppose there exist ij,...,i, € [i] with v € pu(i,...,i,) satisfying
0 # ({eif,...,e€)0,V,..., V). We have two possibilities, in the first one 0 #
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((eiy, ... ei)o, V, ..., V). C FFer and we have as above that k£ € [i]. In the second one
0 +# ({ei,---»¢€i,)e,V,..., V) C Vand we get by Eq. |
0 # <eial(1)’ ey einl(k—l)’ (V, ey eiﬁlUf)’ ey V)Tl, eial(k+1)’ N eiul(n)>f2 cVv
being then wu(is, k), v, ..., v) = {r}, forr € I, with {v, ..., v} a connection from i, ) to
r.Hence r € [i] and
0 7& <ei(’1(1)’ ey eial(k—])’ <Va ey eiol(k)’ ey V)Tl s ei{,l(k+1>7 ey ei(,l(,,)>1’2
C F(ei”l“), oo Cig ge1yr €1 Cigy eyt einl(n)>fz nvc V[i]'
We have shown
Vi, Voo, Ve C 3y (8)
Finally, in case there exist iy, ...,i, € [i] with v € u(y,...,i,) satisfying 0 #
({eiys-.veio.V, ..., V,ej,..,ej)r with k > 2. We have that necessarily 0 #
((eiys .- €i)e,V,...,V,ej,..,e;); CFe forsome! € I, and we have as above that
I € [i]. Consequently
Vi Voo VoW, e W e C - 9

From Eqs. 4-9 we conclude that ;] is a color gLt-ideal of £.
Finally, observe that the decomposition Jj;) = V[;; & W{;] together with the basis

lej :jelil}
of Wy;) allow us to assert that ;) admits a quasi-multiplicative basis inherited by the one
of £. O

Definition 18 A color glt-algebra £ is simple if its unique non-zero color glt-ideals are
{0} and £.

Corollary 19 If £ is simple, then there exists a connection between any couple of elements
in the index set I.

Proof The simplicity of £ applies to get that Jj;,) = £ for any ip € I. Hence [ip] = I and
so any couple of elements in / are connected. O

Lemma 20 [f[i] # [h] for some i, h € I then (Jp1, Jn)s £ - .., £)o =0 forany o € S,.

Proof We have to study the product (V[;; @ W;, Vi @ Wiy, £, ..., £)6. By Egs. 6 and
7 we have the following subsets of W;; N Wy satisfy

Vi, Wi, £, 000, 86 = (Wi, Vi, £, .04, £)6 = {0} (10)
We also have as consequence of the previous comments to Eq. 5 and to Eq. 8 that

(Wi, Wiy, £, ..., )0 N (@D Fer) € Wiy N Wiy = {0}

kel
and
Vi, Vi, £, ..., €6 N (@ Fer) C Wiy N Wiy = {0}
kel
respectively. From here, it just remains to consider the products (e;, ey, €x;, ..., €k, )o €
V for i’ € [i], W € [h], k3,...,k, € I and (<eii’ R ei;l)gl, (eh/l, €plys e eh;l)g'z, Vv,
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V, ..., Vg, € Vioril,...,i, € lil, I}, ..., h, € [l with ¢ (i}, ....il) = ¢(h}, ..., h})

= {v}. In the first situation, if (e;/, ey, exs, - - - » €k, ) # O, theni’ € by (v, I, k3, ..., ky) and
soi’ € u(h', v, k3, ..., k). From here the connection {v, k3, ..., k,,} gives us i’ is connected
to i/, that is [i] = [k] a contradiction, so {(¢;, ey, €y, - . ., €k, )o = 0.

In the second situation we deal, by Eq. 1, with n-ary products of the form (eh/z, R

eh;(_l,ei;m),eh/kﬂ,...eh;l)(, for certain oy € S, and 2 < k < n. In case some

(eh/z, e s ei;l(l), €, o eh;’)g # 0 we would have (V;j, Wiy, ..., Wp))e #
0 what contradicts Eq. 10. From here any (Vij, Wiy, ..., Wp))e = 0, then
({eirs - eip)ors lent ey - eny)ay Vi oo, V)gy = 0 and the proof is complete. O

Theorem 21 A color gLt-algebra £ = V & W admitting a quasi-multiplicative basis of
W # 0 decomposes as
2:1/{63( Z G[i])»
lilel/~
where U is a linear complement of 3 11/~ Viiy in 'V and any Jjiy is one of the color gLt-
ideals, admitting a quasi-multiplicative basis inherited by the one of £, given in Proposition
17. Furthermore

@Ol Ly oo, £)e =0
whenever [i] # [h].

Proof Since we can write

c=vo (@re)

iel
and
v_ue( Y Vi) @Fa- @ wa
lilel/~ iel [ilel/~

we clearly have
£=U® ( > 3[i1)
liled/~
being each J[;] a color gLt-ideal of £, admitting a quasi-multiplicative basis inherited by
the one of £, satisfying (Ji1, Jn), £, ..., £) = 0 when [i] # [h] by Proposition 17 and
Lemma 20. O

In case £ admits a multiplicative basis (see Definition 8) we have as an immediate
consequence of Theorem 21 the next result.

Corollary 22 If £ admits a multiplicative basis, then
£= @ Ji1s
lilel/~

where any J|;] is one of the color gLt-ideals given in Proposition 17, admitting each one a
multiplicative basis inherited by the one of £.

Definition 23 Let £ = V@ W be a color glt-algebra admitting a quasi-multiplicative basis.
We call the center of £ the set

ZEL) ={xel:(x, L ...,8)s=0 forany o €S,}.
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We also say that V is tight whence V = {0} or V = > Flei,....€i,).
[T inel
ni, ..o yin) = {v}

Corollary 24 Suppose £ is centerless and V is tight, then £ decomposes as the direct sum
of the color gLt-ideals given in Proposition 17,

= P

lilel/~

Proof By Theorem 21, since U = 0, we just have to show the direct character of the sum.
Given
xeJun Y. Iy
[/’]»€ I/~

ji

by using the fact (Jpi1, Jpap, £, ..., £)e = 0for [i] # [A] and any o € S,, we obtain

30 L Do =6, Y I L Lo =0
et/ ~
jei

It implies (x, £, ..., £)s = 0,50 x € Z(£) = 0, as desired. O

4 The Minimal Components

In this section we study the minimality of the components in the decompositions of color
glt-algebras given in Theorem 21, Corollary 22 and Corollary 24. So we introduce the next
concept.

Definition 25 Let £ = V@ W be a color gLt-algebra admitting a quasi-multiplicative basis
B = {ej}ic; with W # 0. It is said that £ is minimal if its only non-zero color gl.t-ideal
admitting a basis inherited by the one of £ is itself.

Let us introduce the notion of p-multiplicativity in the framework of color gLt-algebras
with quasi-multiplicative bases in a similar way to the ones of closed-multiplicativity for
associative quasi-multiplicative algebras, graded associative algebras, graded Lie algebras,
split Leibniz algebras or split Lie triple systems (see [12—15, 21] for these notions and
examples). From now on, for any i € I we denote e; = 0.

Definition 26 Let £ = V@ W be a color gLt-algebra admitting a quasi-multiplicative basis
B = {ei}ier of W # 0. We say that £ admits a -quasi-multiplicative basis if given i € I
and ki, ..., ky € (I x - x DU@ x -+ x J) such that

i€ulki,..., ky) then e; € Flug,, ..., ux,)o

for some o € S, where uy, = e, + er, if k, ¢ {v,v} oruy, = Vifk, € {v,v}, for
1<r<n.

Theorem 27 Suppose £ admits a pu-quasi-multiplicative basis and V is tight. It holds that
£ is minimal if and only if I has all of its elements connected.
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Proof If £ is minimal, for the color gLt-ideals defined in Proposition 17 we have ;) = £
for any [i]. Hence, [i] = I. To prove the converse, consider Jj a non-zero color gLt-ideal of
£ admitting a basis inherited by the one of £. Since J # 0, we can take some iy € I such
that

0# e, €. (11)
Taking into account that  has all of its elements connected, we have that for any i € I, we
can consider a connection

{ar2,...,ain,a22, ..., a2, .-, a1 2, ..., a1 n} (12)
from ip to i, being ¢ > 1. We know by Eq. 2 that
oo} arz, ... ar) NI #0

and so for any j; € cj)({i;)}, arn,...,arn) NI Wghave, taking into account i~o e {io, io}
that either j; € w(o, ai 2, ..., a1,n) \ {v} or j1 € u(io, ai 2, ..., ai,n) \ {v}, being necessarily
any aj x € J in the second possibility. By Eq. 11 we get in the first possibility that 0 #

ej; € Wleiy, Uayys-..stay,)o C J for some o € Sy, and with ug,, = eq, + €q if
ajy e lUTor uq,, = Vifay, € {v,v}. In the second possibility, we get by Eq. 11 and
the p1-quasi-multiplicativity of B that e, € F(eiy, Ua, 55 ..., Ua;,)o C T for some o € Sy,

where ug , = ey, ifayy € I orug, =Vifa =v.
Hence we can assert

S Fe; C 3. (13)
jepiol.ai,2,....a1n)NI
Since
d(@d{iot, a12, .- a1n),a22, ..., a20) N1 £V,

we can argue as above, taking into account Eq. 13, to get

@ Fej c 3.

jed@io}.ai2,...a1,n),a2,2,....a2,,)NI

By reiterating this process with the connection (12) we obtain

@ Fe; C 3J.

Jj€d(@(..o(io}.ar,2,a1,n),-)5a1,2,,01,.0) N

Taking now into account i € ¢(¢(...¢{io}, a12,...,a1n),...) a2, ..., ar,) NI we
conclude ¢; € J and so

W =PFe 3. (14)
iel
Taking now into account that V is tight, Eq. 14 allows us to assert
Vcy. (15)
Finally, since £ =V @ W, Egs. 14 and 15 give us J = £. O

Theorem 28 Suppose £ admits a p-quasi-multiplicative basis. If £ is centerless and with
V tight then
c=Du
k

is the direct sum of the family of its minimal color gLt-ideals, each one admitting a jv-quasi-
multiplicative basis inherited by the one of £.
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Proof By Corollary 24 we have that £ = Py;)c;/~ Ji1 is the direct sum of the color gLt-
ideals C( [il-
We wish to apply Theorem 27 to any J;}, so we have to verify that

Jii1 = Vi @ Wiy

admits a p-quasi-multiplicative basis, V[; is tight and the basis {e; : i € [i]} of W[;
satisfies that all of the elements in the index set [i] are [i]-connected (connected through
connections contained in ([i ]JUv)U([i]UD)).

We clearly have that J|;] admits a pu-quasi-multiplicative basis as consequence of having
a basis inherited from the one of £ and that the linear space Vy;j is tight by construction.

Finally, since it is easy to verify that [i] has all of its elements [i]-connected we can apply
Theorem 27 to any Jj[;] so as to conclude Jj;] is minimal. It is clear that the decomposition
£ = Pyijes/~ Jii satisfies the assertions of the theorem. O
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