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Abstract
The class of generalized Lie-type color algebras contains the ones of generalized Lie-type
algebras, of n-Lie algebras and superalgebras, commutative Leibniz n-ary algebras and
superalgebras, among others. We focus on the class of generalized Lie-type color algebras
L admitting a quasi-multiplicative basis, with restrictions neither on the dimensions nor on
the base field F and study its structure. We state that if L admits a quasi-multiplicative basis
then it decomposes as L = U ⊕ (

∑
Jk) with any Jk a well described color gLt-ideal of

L admitting also a quasi-multiplicative basis, and U a linear subspace of V. Also the min-
imality of L is characterized in terms of the connections and it is shown that the above
direct sum is by means of the family of its minimal color gLt-ideals, admitting each one a
μ-quasi-multiplicative basis inherited by the one of L.
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1 Introduction

The concept of multiplicative bases appears in a natural way in the study of different physi-
cal problems. In fact, one may expect that there are problems which are naturally and more
simply formulated exploiting multiplicative bases. There are many works about a study of
algebras with a multiplicative basis [1–5, 8–11, 16–20, 23, 25, 30–32].

The interest in the study of associative algebras admitting a quasi-multiplicative basis
also comes from the viewpoint of the theory of infinite dimensional Lie algebras. Since
we can recover many classes of Lie algebras from an associative algebra with involu-
tion, (see for instance [29, Section 6]), it is interesting to know the structure of the initial
associative algebra to understand the one of the Lie algebra. In the framework of infi-
nite dimensional Lie algebras we find many classes of Lie algebras which admits, in a
natural way, a quasi-multiplicative basis. For instance, we have the semisimple separable
L∗-algebras, the semisimple locally finite split Lie algebras over a field of characteris-
tic zero and the graded Lie algebras considered in [14, Section 3]. Taking into account
these comments, it seems natural to study associative and non-associative algebras with
a quasi-multiplicative basis to a better understanding of these classes of Lie algebras.
The first attempt of a study of algebras with a quasi-multiplicative basis was given
in [15].

This interest leads us in a natural way to study Lie algebras admitting quasi-multiplicative
basis. But instead of study this class of algebras, we are going to extend our framework in
two different ways, on the one hand we will consider the widest n-ary extension by dealing
with generalized Lie-type algebras. On the other hand we will consider the colored ver-
sion of this category of algebras, that is, the generalized Lie-type color algebras. Hence,
our aim is to study generalized Lie-type color algebras admitting quasi-multiplicative
bases.

The paper is organized as follows. In the Section 3 we introduce relations techniques on
the set of indexes I of the quasi-multiplicative basis so as to become a powerful tool for
the study of this class of algebras. By making use of these techniques we show that any
generalized Lie-type color algebra L admitting a quasi-multiplicative basis is of the form
L = U ⊕ (

∑
Jk) with any Jk a well described color gLt-ideal of L admitting also a quasi-

multiplicative basis, and U a linear subspace of V. In the Section 4 the minimality of L
is characterized in terms of the quasi-multiplicative basis and it is shown that, under mild
conditions, the above decomposition of L is actually the direct sum of the family of its
minimal color gLt-ideals.

2 Basic Definitions

2.1 Generalized Lie-Type Algebras

Let us introduce now the notion of generalized Lie-type algebras which extends some well-
known classes of algebras.
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Definition 1 An n-ary algebra (L, 〈·, n). . ., ·〉) is called a generalized Lie-type algebra (or
shortly gLt-algebra) if it satisfies the following n identities:

〈y1, . . . , 〈x1, . . . , xn〉︸ ︷︷ ︸
pos k

, . . . , yn−1〉 =

∑

1 ≤ i, j ≤ n

σ1 ∈ Sn

σ2 ∈ Sn−1

α
σ1,σ2
i,j,k 〈xσ1(1), . . . , xσ1(i−1), 〈yσ2(1),. . ., xσ1(i)︸ ︷︷ ︸

pos j

,. . ., yσ2(n−1)〉, xσ1(i+1),. . ., xσ1(n)〉,

(1)

for k = 1, . . . , n, x1, . . . , xn, y1, . . . , yn−1 ∈ L, being α
σ1,σ2
i,j,k ∈ F, and where pos j means

that the element xσ1(i) is in the position j in the inside n-product.

Observe that depending of the values of α
σ1,σ2
i,j,k we obtain several binary algebras:

• Lie algebras, Leibniz algebras, Novikov algebras, associative algebras, alternative
algebras, bicommutative algebras, commutative pre-Lie algebras, etc.;

and several n-ary algebras:

• n-Lie (Filippov) algebras, commutative Leibniz n-ary algebras, totally associative-
commutative n-ary algebras, etc.

2.2 Color�-Algebras

In this subsection we discuss about color n-ary algebras and color �-algebras. In the end of
the subsection we give some defintions of classical color algebras.

Definition 2 Let G be an abelian group. A graded n-ary algebra (L, 〈·, n). . ., ·〉) is a G-
graded vector space L = ⊕g∈GLg provided with a graded n-linear map 〈·, n). . ., ·〉 : L×· · ·×
L → L satisfying

〈Lg1 , . . . ,Lgn〉 ⊂ Lg1+···+gn ,

for g1, . . . , gn ∈ G.

Definition 3 Let F be a field and G an abelian group. A map ε : G×G → F \ {0} is called
a bicharacter on G if it satisfies:

1. ε(k, g + h) = ε(k, g)ε(k, h),
2. ε(g + h, k) = ε(g, k)ε(h, k),
3. ε(g, h)ε(h, g) = 1.

for all g, h, k ∈ G.

Let L = ⊕g∈GLg be a graded n-ary algebra. An element x is called a homogeneous
element of degree g if x ∈ Lg and denoted by deg(x) = g. From now on, unless stated
otherwise, we assume that all elements are homogeneous. Let ε be a bicharacter of G. Given
two homogeneous elements x, y ∈ L we set ε(x, y) := ε(deg(x), deg(y)). Now we recall

1373



E. Barreiro et al.

the notion of color n-ary �-algebra for an arbitrary family of polynomial identities � (see
[6, 28] for more details).

Definition 4 For a (possible n-ary) multilinear polynomial f (x1, . . . , xn) we fix the order
of indexes {i1, . . . , in} of one non-associative word 〈xi1 , . . . , xin〉β from the polynomial f .
Here,

f =
∑

β,σ∈Sn

ασ,β〈xσ(i1), . . . , xσ(in)〉β,

where Sn is the permutation group of n elements and β is an arrangement of brackets
in the non-associative word. For the shift μi : {j1, . . . , jn} 
→ {j1, . . . , ji+1, ji , . . . , jn}
we define the element ε(xji

, xji+1) ∈ F \ {0}. Now, for arbitrary non-associative word
〈xσ(i1), . . . , xσ(in)〉β its order of indexes is a composition of suitable shifts μi , and for
this word we set εσ defined as the product of corresponding ε(xji

, xji+1). Now, for the
multilinear polynomial f , we define the color multilinear polynomial

fco =
∑

β,σ∈Sn

ασ,βεσ 〈xσ(i1), . . . , xσ(in)〉β .

Let � = {fi} be a family of n-ary multilinear polynomials. We say that a n-ary algebra
L is a �-algebra if it satisfies the family of polynomial identities � = {fi}. Also an n-
ary color �-algebra is an n-ary color algebra L satisfying the family of color multilinear
polynomials �co = {(fi)co}.

Some examples of n-ary color algebras are Lie and Jordan superalgebras [26, 27], Leib-
niz color algebras [24], Filippov (n-Lie) superalgebras [7, 22, 33, 34] and 3-Lie color
algebras [35]. Let us give definitions of some color algebras.

Definition 5 A Leibniz color algebra (L, [·, ·], ε) is a G-graded vector space L = ⊕
g∈G Lg

with a bicharacter ε, an even bilinear map [·, ·] : L × L → L satisfying

[x, [y, z]] = [[x, y], z] + ε(x, y)[y, [x, z]].

Definition 6 An n-Lie color algebra (L, [·, . . . , ·], ε) is a G-graded vector space L =⊕
g∈G Lg with an n-linear map [·, . . . , ·] : L × . . . × L → L satisfying

[x1, . . . , xi , xi+1, . . . , xn] = −ε(xi, xi+1)[x1, . . . , xi+1, xi, . . . , xn],

[x1,. . ., xn−1,[y1,. . .,yn]]=
n∑

i=1

ε(Xn−1,Yi−1)[y1,. . ., yi−1,[x1,. . ., xn−1, yi], yi+1,. . .,yn],

where Xi−1 =
i−1∑

k=1
xk, Yi−1 =

i−1∑

k=1
yk .

Definition 7 For any σ from the permutation group of n elements Sn, we use the notation

〈x1, . . . , xj , . . . , xn〉σ = 〈xσ(1), . . . , xσ(j), . . . , xσ(n)〉.

2.3 Multiplicative and Quasi-multiplicative Basis

Firstly we establish the natural definition of multiplicative basis of graded n-ary algebras.

Definition 8 A basis of homogeneous elements B = {ei}i∈I of a graded n-ary algebra L is
multiplicative if for any i1, . . . , in ∈ I we have 〈ei1 , . . . , ein〉 ∈ Fej for some j ∈ I .

1374



n-Ary Generalized Lie-type Color Algebras Admitting...

In particular, this definition extends the one considered in [19, 20]. Also this definition
is more general than the usual one in the literature [23, 25, 30]. In fact, in these references,
a basis B = {ei}i∈I is multiplicative if for any i, j ∈ I we have either eiej = 0 or 0 �=
eiej = ek for some k ∈ I .

We wish to go a step further by introducing a more general concept than the one of
multiplicative basis as follows.

Definition 9 A graded n-ary algebra L admits a quasi-multiplicative basis if L = V ⊕ W

with V and 0 �= W graded linear subspaces in such a way that there exists a basis of
homogeneous elements B = {ei}i∈I of W satisfying:

1. For i1, . . . , in ∈ I we have either 〈ei1 , . . . , ein〉 ∈ Fej for some j ∈ I or 〈ei1 , . . . , ein〉
∈ V.

2. Given 0 < k < n, for i1, . . . , ik ∈ I and σ ∈ Sn we have 〈ei1 , . . . , eik ,V, . . . ,V〉σ ⊂
Fejσ for some jσ ∈ I .

3. We have either 〈V, . . . ,V〉 ⊂ Fej for some j ∈ I or 〈V, . . . ,V〉 ⊂ V.

Observe that in item 2. we only consider 0 < k < n because k = n is contemplated
in item 1. and k = 0 in item 3. We also note that if the linear subspace V is trivial or
1-dimensional this definition agrees with the one of multiplicative basis.

We note that a different concept of quasi-multiplicative basis to the one given in
Definition 9 can be found, in a context of category theory, in the reference [1].

Examples of gLt-algebras admitting a quasi-multiplicative basis are any n-ary algebras
admitting a multiplicative basis (case V = {0}). We also have that any finite-dimensional
associative algebra A of finite representation type (that is, there are only finitely many
isomorphism classes of indecomposable finite-dimensional A-modules) has also a multi-
plicative basis [5, 30]. Multiplicative bases are also well-related to Gröbner basis. In fact, it
is well-known that an algebra with a multiplicative basis has a Gröbner basis if there is an
admissible order on the basis [25].

3 Decomposition as Direct Sum of Ideals

In what follows L = V ⊕ W denotes a color gLt-algebra admitting a quasi-multiplicative
basis of homogeneous elements B = {ei}i∈I of W �= 0. We begin this section by developing
connection techniques among the elements in the set of indexes I as a main tool in our
study.

Consider v an external element to I and define the set

I := I ∪̇{v}.

The element V gives us information about the behavior of the linear subspace V with respect
to the elements in the basis B. For each j ∈ I, a new assistant variable j /∈ I is introduced
and we consider the set I := {i : i ∈ I }, so

I := {j : j ∈ I} = I ∪̇{v}

consists of all these new symbols. We also denote by P(A) the power set of a given
set A.
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Next, we consider the following operations which recover, in a sense, certain multiplica-
tive relations among the elements in I. Given σ ∈ Sn we define

� aσ : I × n). . . × I → P(I) such as

• aσ (i1, . . . , in) :=
{ {r}, if 0 �= 〈eiσ(1)

, . . . , eiσ(n)
〉 ∈ Fer ;

{v}, if 0 �= 〈eiσ(1)
, . . . , eiσ(n)

〉 ∈ V.
• For 0 < k < n,

aσ (i1, . . . , ik, v, . . . , v) := { {r}, if 0 �= 〈ei1 , . . . , eik ,V, . . . ,V〉σ ⊂ Fer }.
• aσ (v, . . . , v) :=

{ {r}, if 0 �= 〈V, . . . ,V〉 ⊂ Fer ;
{v}, if 0 �= 〈V, . . . ,V〉 ⊂ V.

• ∅ in the remaining cases.

� bσ : I × I × n−1). . . × I → P(I) such as

• For 1 ≤ k ≤ n,

bσ (i, i2, . . . , ik, v, . . . , v) :=
{
i′ ∈ I :aσ (i′, i2, . . . , ik, v, . . . , v)={i}

}

∪
{

{v}, if aσ (i2, . . . , ik, v, . . . , v)={i}
}

.

• bσ (v, i2, . . . , in) := {i′ ∈ I : aσ (i′, i2, ..., in) = {v} }.
• bσ (v, v, . . . , v) := { {v}, if aσ (v, . . . , v) = {v}}.
• ∅ in the remaining cases.

Then, we consider the operation

μ : (I ∪̇ I) × ((I × n−1). . . × I)∪̇(I × n−1). . . × I)) → P(I)

given by:

• For any j, j1, ..., jn−1 ∈I, μ(j, j1, . . . , jn−2, jn−1) := ⋃

σ∈Sn

aσ (j, j1, . . . , jn−2, jn−1)

• For any j ∈ I and j1, ..., jn−1 ∈ I, μ(j, j1, . . . , jn−2, jn−1) := ⋃

σ∈Sn

bσ (j, j1, . . . ,

jn−2, jn−1)• For any j, j1, ..., jn−1 ∈ I, μ(j, j1, . . . , jn−1) := ⋃

k∈{1,...,n−1},σ∈Sn−1

bσ (jk, j , j1, ...,

j k−1, j k, ..., jn−1)

• μ(I, I, . . . , I) := ∅.

From now on, given any j ∈ I we denote (j) := j . Given also any subset J of I∪̇I, we
write by J := {j : j ∈ J } if J �= ∅ and ∅ := ∅.

Lemma 10 Let i, j ∈ I and elements a2, . . . , an of (I× n−1). . . ×I)∪̇(I× n−1). . . ×I). It holds
that i ∈ μ(j, a2, . . . , an) if and only if j ∈ μ(i, a2, . . . , an).

Proof First let us suppose i ∈ μ(j, a2, . . . , an). If {a2, . . . , an} ⊂ I, then there exists
σ ∈ Sn such that {i} = aσ (j, a2, . . . , an). Then

j ∈ bσ (i, a2, . . . , an) ⊂ μ(i, a2, . . . , an).

In another case, if {a2, . . . , an} ⊂ I, then exists σ ∈ Sn such that i ∈ bσ (j, a2, . . . , an)

and so
{j} = aσ (i, a2, . . . , an) ⊂ μ(i, a2, . . . , an).
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To prove the converse we can argue in a similar way.

Lemma 11 Let i ∈ I , j ∈ I and elements a1, . . . , an−1 of (I × n−1). . . × I)∪̇(I × n−1). . . × I).
It holds that i ∈ μ(j, a1, . . . , an−1) if and only if j ∈ μ(i, a1, . . . , an−1).

Proof Suppose i ∈ μ(j, a1, . . . , an−1). Since μ(I, I, . . . , I) := ∅, we just have to consider
the case in which {a1, . . . , an−1} ⊂ I. Then there exist k ∈ {1, ..., n − 1} and σ ∈ Sn−1
such that i ∈ bσ (ak, j, a1, .., ak−1, ak+1, . . . , an−1). From here,

{ak} = aσ (i, j , a1, . . . , ak−1, ak, . . . , an−1) = aν(j, i, a1, . . . , ak−1, ak, . . . , an−1)

where ν =(1, 2)σ . Hence j ∈ bν(ak, i, a1, .., ak−1, ak+1, . . . , an−1)⊂μ(i, a1, . . . , an−1).
The converse is proved similarly.

The map μ is not adequate for our purposes in the sense that we require to send a subset
of I ∪̇I in a subset of the same union. So we need to introduce the following map:

φ : P(I ∪̇I ) × ((I × n−1). . . × I)∪̇(I × n−1). . . × I)) → P(I ∪̇I ),

as

• φ(∅, (I × n−1). . . × I)∪̇(I × n−1). . . × I)) := ∅,
• For any ∅ �= J ∈ P(I ∪̇I ) and a2, . . . , an ∈ (I × n−1). . . × I)∪̇(I × n−1). . . × I),

φ(J, a2, . . . , an) :=
((⋃

j∈J

μ(j, a2, . . . , an)
) \ {v}

)
∪

((⋃

j∈J

μ(j, a2, . . . , an)
) \ {v}

)
.

Note that for any J ∈ P(I ∪̇I ) and a2, . . . , an ∈ (I× n−1). . . × I)∪̇(I× n−1). . . × I) we have
that

φ(J, a2, . . . , an) = φ(J, a2, . . . , an) (2)

and
φ(J, a2, . . . , an) ∩ I =

(⋃

j∈J

μ(j, a2, . . . , an)
)

\ {v}. (3)

Lemma 12 Consider J ∈ P(I ∪̇I ) such that J = J , a2, . . . , an ∈ I∪̇I and i ∈ I . The
following statements are equivalent:

1. i ∈ φ(J, a2, . . . , an);
2. either φ({i}, a2, . . . , an) ∩ J ∩ I �= ∅ or φ({i}, a2, . . . , an) ∩ J ∩ I �= ∅.

Proof It is straightforward to verify that for any i ∈ I and a2, . . . , an ∈ I∪̇I we have that

i ∈ μ(j, a2, . . . , an)

for some j ∈ I if and only if j ∈ μ(i, a2, . . . , an) (see Lemma 10), while i ∈
μ(j, a2, . . . , an) for some j ∈ I if and only if j ∈ μ(i, a2, . . . , an). Since these facts
together with Eqs. 2 and 3 we conclude the result.

For an easier comprenhesion we firstly present a shorter notation. Given m a natural
number, we denote Xm := (am,2, . . . , am,n) ∈ I ∪̇ I × n−1). . . × I ∪̇ I. Let us also denote

Xm := (am,2, . . . , am,n).
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Additionally, for t ≥ 1, by {X1, X2, . . . , Xt } we mean the set of elements

{a1,2, . . . , a1,n, a2,2, . . . , a2,n, . . . , at,2 . . . , at,n}.
Finally, for A ∈ P(I ∪̇I ) we denote φ(A, Xm) := φ(A, am,2, . . . , am,n).

Definition 13 Let i and j be distinct elements in I . We say that i is connected to j if there
exists a subset {X1, . . . , Xt } ⊂ I ∪̇ I, for certain t ≥ 1, such that the following conditions
hold:

1. ĩ ∈ {i, i},
2. φ({̃i}, X1) �= ∅,

φ(φ({̃i}, X1),X2) �= ∅,
...

φ(φ(. . . φ({̃i}, X1), . . . ), Xt−1) �= ∅.
3. j ∈ φ(φ(. . . φ({̃i}, X1), . . . ), Xt ).

The subset {X1, . . . , Xt } is a connection from i to j and by convention i is connected to
itself.

Our aim is to show that the connection relation is of equivalence. Previously we check
the symmetric property.

Proposition 14 The relation ∼ in I , defined by i ∼ j if and only if i is connected to j , is
an equivalence relation.

Proof The reflexive character of ∼ is given by the Definition 13. Let us see the symmetric
character of ∼: If i ∼ j then there exists a connection

{X1, . . . , Xt } ⊂ I∪̇I
from i to j satisfying conditions in Definition 13. In case t = 1 we have j ∈ φ({̃i}, X1). If
ĩ = i ∈ I then i ∈ φ({j}, X1). If ĩ = i ∈ I then i ∈ φ({j}, X1). So i ∈ φ({j̃}, X̃1) with
(j̃ , X̃1) ∈ {(j,X1), (j ,X1)}, that is, {X̃1} is a connection from j to i.

Suppose t ≥ 2 and let us show that we can find a set

{X̃t , . . . , X̃1} ⊂ I∪̇I,

where X̃m ∈ {Xm,Xm}, for 1 ≤ m ≤ t , which gives rise to a connection from j to i. Indeed,
Eq. 2 shows

φ(. . . (φ({̃i}, X1), . . . ), Xt−1) = φ(. . . (φ({̃i}, X1), . . . ), Xt−1)

and so by taking J := φ(. . . (φ({̃i}, X1), . . . ), Xt−1) we have J ∈ P(I ∪̇I ) and J = J , so
we can apply Lemma 12 to the expression

j ∈ φ(φ(. . . (φ({̃i}, X1), . . . ), Xt−1),Xt )

to get that either

φ({j}, Xt ) ∩ φ(. . . (φ({̃i}, X1), . . . ), Xt−1) ∩ I �= ∅
or

φ({j}, Xt ) ∩ φ(. . . (φ({̃i}, X1), . . . ), Xt−1) ∩ I �= ∅
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and so
φ({j̃}, X̃t ) �= ∅

with (j̃ , X̃t ) ∈ {(j,Xt ), (j ,Xt )}.
By taking

k ∈ φ({j̃}, X̃t ) ∩ φ(. . . (φ({̃i}, X1), . . . ), Xt−1) ∩ I,

Eq. 2 and Lemma 12, the fact k ∈ φ(· · · (φ({̃i}, X1), . . . ), Xt−1) and k ∈ φ({j̃}, X̃t ) imply
now either

φ(φ({j̃}, X̃t ), Xt−1) ∩ φ(. . . φ(φ({i}, X1), . . . ), Xt−2) ∩ I �= ∅
or

φ(φ({j̃}, X̃t ), Xt−1) ∩ φ(. . . φ(φ({̃i}, X1), . . . ), Xt−2) ∩ I �= ∅
and consequently

φ(φ({j̃}, X̃t ), X̃t−1) �= ∅
for some X̃t−1 ∈ {Xt−1, Xt−1}.

By iterating this process we get

φ(φ(. . . (φ({j̃}, X̃t ), . . . ), X̃t−m+1), X̃t−m)

∩φ(φ(. . . (φ({̃i}, X1), . . . ), Xt−m−2),Xt−m−1) ∩ I �= ∅
for 0 ≤ m ≤ t − 2. In particular, we have for the case m = t − 2 that

φ(φ(· · · (φ({j̃}, X̃t ), . . . ), X̃3), X̃2) ∩ φ({̃i}, X1) ∩ I �= ∅.

Since either ĩ = i or ĩ = i, if we write J := φ(φ(. . . (φ({j̃}, X̃t ), . . . ), X̃3), X̃2), the
previous equation allows us to assert that either φ({i}, X1)∩J∩I �= ∅ or φ({i}, X1)∩J∩I �=
∅ with i ∈ I . Hence Lemma 12 applies to get

i ∈ φ(φ(. . . (φ({j̃}, X̃t ), . . . ), X̃2), X̃1)

for some X̃1 ∈ {X1, X1} and conclude ∼ is symmetric.
Finally, let us verify the transitive character of ∼. Suppose i ∼ j and j ∼ k, and write

{X1, . . . , Xt } for a connection from i to j and {Y1, . . . , Ys} for a connection from j to k. If
i = j so {Y1, . . . , Ys} is a connection from i to k. If k = j thus {X1, . . . , Xt } is a connection
from i to k. Finally, if t ≥ 1 and s ≥ 1, taking into account Eq. 2 we easily have that
{X1, . . . , Xt , Y1, . . . , Ys} is a connection from i to k. We have shown that the connection
relation is an equivalence relation.

By the above proposition we can consider the quotient set

I/ ∼= {[i] : i ∈ I },
becoming [i] the set of elements in I which are connected to i.

Definition 15 A color gLt-subalgebra of L is a G-graded subspace S of L verifying
〈S, . . . ,S〉 ⊂ S. A G-graded subspace I ⊂ L is a color gLt-ideal of L if 〈I,L, . . . ,L〉σ ⊂
I , for any σ ∈ Sn.

Our next goal in this section is to associate an n-ary ideal J[i] of L to any [i] ∈ I/ ∼. Fix
i ∈ I , we start by defining the sets

V[i] :=
( ∑

i1,...,in∈[i]
F〈ei1 , . . . , ein〉

)
∩ V ⊂ V,

W[i] := ⊕
j∈[i] Fej ⊂ W
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Finally, we denote by J[i] the direct sum of the two subspaces above, that is,

J[i] := V[i] ⊕ W[i].

Definition 16 Let L = V ⊕ W be a graded n-ary algebra admitting a quasi-multiplicative
basis B = {ei}i∈I with W �= 0. It is said that a n-ary graded subalgebra S of L has a quasi-
multiplicative basis inherited by the one of L if S = VS ⊕ WS with VS a graded linear
subspace of V, and 0 �= WS a graded linear subspace of W admitting B′ ⊂ B as a basis.

Proposition 17 For any i ∈ I , the linear subspace J[i] is a color gLt-ideal of L admitting
a quasi-multiplicative basis inherited by the one of L.

Proof Given σ ∈ Sn, we can write

〈J[i],L, . . . ,L〉σ = 〈V[i] ⊕ W[i],
(
V ⊕ (

⊕

r∈I

Fer )
)
, . . . ,

(
V ⊕ (

⊕

s∈I

Fes)
)
〉σ . (4)

In case 〈ej , ei2 , . . . , ein〉σ �= 0 for some j ∈ [i] and i2, . . . , in ∈ I , we have that either
0 �= 〈ej , ei2 , . . . , ein〉σ ∈ Fel with l ∈ I or 0 �= 〈ej , ei2 , . . . , ein〉σ ∈ V. In the first case
the connection {i2, . . . , in} gives us j ∼ l, so l ∈ [i] and then 〈ej , ei2 , . . . , ein〉σ ∈ W[i].
In the second case, for all 2 ≤ k ≤ n we get ik ∈ bτ (v, j, i2, . . . , ik−1, ik+1, . . . , in)

for some τ ∈ Sn, and so ik ∈ μ(j, v, i2, . . . , ik−1, ik+1, . . . , in). Hence the set
{v, i2, . . . , ik−1, ik+1, . . . , in} is a connection from j to ik and so ik ∈ [i] for 2 ≤ k ≤ n.
Therefore 〈ej , ei2 , . . . , ein〉σ ∈ V[i]. Hence we get

〈W[i], (
⊕

r∈I

Fer ), . . . , (
⊕

s∈I

Fes)〉σ ⊂ J[i]. (5)

For some j ∈ [i], if we have 0 �= 〈ej ,V, . . . ,V, ei2 , . . . , eik 〉σ ⊂ Fel for certain l ∈ I

and where k ≥ 2, then l ∈ μ(j, v, . . . , v, . . . , i2, . . . , ik). So {v, . . . , v, . . . , i2, . . . , ik} is a
connection from j to L then l ∈ [i]. From here we have (taking also into account Equation
(5)) that:

〈W[i],L, . . . ,L〉σ ⊂ W[i]. (6)

Suppose there exist i1, . . . , in ∈ [i] with 0 �= 〈ei1 , . . . , ein〉σ ∈ V, that is, v ∈
μ(i1, . . . , in), in such a way that 0 �= 〈〈ei1 , . . . , ein〉σ , ej1 , . . . , ejn−1〉τ ∈ Fem for some
j1, . . . , jn−1 ∈ I . By Eq. 1 we get that

0 �= 〈eiσ1(1)
, . . . , eiσ1(k−1)

, 〈ejσ2(1)
, . . . , eiσ1(k)

︸ ︷︷ ︸
pos h

, . . . , ejσ2(n−1)
〉τ1 , eiσ1(k+1)

, . . . , eiσ1(n)
〉τ2 ∈ Fem

for certain 1 ≤ h, k ≤ n, σ1 ∈ Sn, σ2 ∈ Sn−1. The connection {iσ1(2), . . . , iσ1(k−1),

i′, iσ1(k+1), . . . iσ1(n)} where either i′ ∈ I if 0 �= 〈ejσ2(1)
, . . . , eiσ1(k)

, . . . , ejσ2(n−1)
〉τ1 ∈ Fei′

or i′ = v when 0 �= 〈ejσ2(1)
, . . . , eiσ1(k)

, . . . , ejσ2(n−1)
〉τ2 ∈ V, gives us that iσ1(1) is connected

to m and so m ∈ [i]. From here

〈V[i], (
⊕

r∈I

Fer ), . . . , (
⊕

s∈I

Fes)〉σ ⊂ W[i]. (7)

Now, suppose there exist i1, . . . , in ∈ [i] with v ∈ μ(i1, . . . , in) satisfying
0 �= 〈〈ei1 , . . . , ein〉σ ,V, . . . ,V〉τ . We have two possibilities, in the first one 0 �=
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〈〈ei1 , . . . , ein〉σ ,V, . . . ,V〉τ ⊂ Fek and we have as above that k ∈ [i]. In the second one
0 �= 〈〈ei1 , . . . , ein〉σ ,V, . . . ,V〉τ ⊂ V and we get by Eq. 1

0 �= 〈eiσ1(1)
, . . . , eiσ1(k−1)

, 〈V, . . . , eiσ1(k)
, . . . ,V〉τ1 , eiσ1(k+1)

, . . . , eiσ1(n)
〉τ2 ⊂ V

being then μ(iσ1(k), v, . . . , v) = {r}, for r ∈ I , with {v, . . . , v} a connection from iσ1(k) to
r . Hence r ∈ [i] and

0 �= 〈eiσ1(1)
, . . . , eiσ1(k−1)

, 〈V, . . . , eiσ1(k)
, . . . ,V〉τ1 , eiσ1(k+1)

, . . . , eiσ1(n)
〉τ2

⊂ F〈eiσ1(1)
, . . . , eiσ1(k−1)

, er , eiσ1(k+1)
, . . . , eiσ1(n)

〉τ2 ∩ V ⊂ V[i].
We have shown

〈V[i],V, . . . ,V〉τ ⊂ J[i]. (8)

Finally, in case there exist i1, . . . , in ∈ [i] with v ∈ μ(i1, . . . , in) satisfying 0 �=
〈〈ei1 , . . . , ein〉σ ,V, . . . ,V, ej2 , ..., ejk

〉τ with k ≥ 2. We have that necessarily 0 �=
〈〈ei1 , . . . , ein〉σ ,V, . . . ,V, ej2 , ..., ejk

〉τ ⊂ Fel for some l ∈ I , and we have as above that
l ∈ [i]. Consequently

〈V[i],V, . . . ,V,W[i], ...,W[i]〉τ ⊂ J[i]. (9)

From Eqs. 4–9 we conclude that J[i] is a color gLt-ideal of L.
Finally, observe that the decomposition J[i] = V[i] ⊕ W[i] together with the basis

{ej : j ∈ [i]}
of W[i] allow us to assert that J[i] admits a quasi-multiplicative basis inherited by the one
of L.

Definition 18 A color gLt-algebra L is simple if its unique non-zero color gLt-ideals are
{0} and L.

Corollary 19 If L is simple, then there exists a connection between any couple of elements
in the index set I .

Proof The simplicity of L applies to get that J[i0] = L for any i0 ∈ I . Hence [i0] = I and
so any couple of elements in I are connected.

Lemma 20 If [i] �= [h] for some i, h ∈ I then 〈J[i], J[h],L, . . . ,L〉σ = 0 for any σ ∈ Sn.

Proof We have to study the product 〈V[i] ⊕ W[i],V[h] ⊕ W[h],L, . . . ,L〉σ . By Eqs. 6 and
7 we have the following subsets of W[i] ∩ W[h] satisfy

〈V[i],W[h],L, . . . ,L〉σ = 〈W[i],V[h],L, . . . ,L〉σ = {0}. (10)

We also have as consequence of the previous comments to Eq. 5 and to Eq. 8 that

〈W[i],W[h],L, . . . ,L〉σ ∩ (
⊕

k∈I

Fek) ⊂ W[i] ∩ W[h] = {0}

and
〈V[i],V[h],L, . . . ,L〉σ ∩ (

⊕

k∈I

Fek) ⊂ W[i] ∩ W[h] = {0}

respectively. From here, it just remains to consider the products 〈ei′ , eh′ , ek3 , . . . , ekn〉σ ∈
V for i′ ∈ [i], h′ ∈ [h], k3, . . . , kn ∈ I and 〈〈ei′1 , . . . , ei′n〉σ1 , 〈eh′

1
, eh′

2
, . . . , eh′

n
〉σ2 ,V,
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V, . . . ,V〉σ3 ∈ V for i′1, . . . , i′n ∈ [i], h′
1, . . . , h

′
n ∈ [h] with φ(i′1, . . . , i′n) = φ(h′

1, . . . , h
′
n)

= {v}. In the first situation, if 〈ei′ , eh′ , ek3 , . . . , ekn〉σ �= 0, then i′ ∈ bσ (v, h′, k3, ..., kn) and
so i′ ∈ μ(h′, v, k3, ..., kn). From here the connection {v, k3, . . . , kn} gives us h′ is connected
to i′, that is [i] = [h] a contradiction, so 〈ei′ , eh′ , ek3 , . . . , ekn〉σ = 0.

In the second situation we deal, by Eq. 1, with n-ary products of the form 〈eh′
2
, . . . ,

eh′
k−1

, ei′
σ1(1)

, eh′
k+1

, . . . eh′
n
〉σ for certain σ1 ∈ Sn and 2 ≤ k ≤ n. In case some

〈eh′
2
, . . . , eh′

k−1
, ei′

σ1(1)
, eh′

k+1
, . . . eh′

n
〉σ �= 0 we would have 〈V[i],W[h], . . . ,W[h]〉σ �=

0 what contradicts Eq. 10. From here any 〈V[i],W[h], . . . ,W[h]〉σ = 0, then
〈〈ei′1 , . . . , ei′n〉σ1 , 〈eh′

1
, eh′

2
, . . . , eh′

n
〉σ2 ,V, . . . ,V〉σ3 = 0 and the proof is complete.

Theorem 21 A color gLt-algebra L = V ⊕ W admitting a quasi-multiplicative basis of
W �= 0 decomposes as

L = U ⊕
( ∑

[i]∈I/∼
J[i]

)
,

where U is a linear complement of
∑

[i]∈I/∼ V[i] in V and any J[i] is one of the color gLt-
ideals, admitting a quasi-multiplicative basis inherited by the one of L, given in Proposition
17. Furthermore

〈J[i], J[h],L, . . . ,L〉σ = 0

whenever [i] �= [h].

Proof Since we can write

L = V ⊕
(⊕

i∈I

Fei

)

and
V = U ⊕

( ∑

[i]∈I/∼
V[i]

)
,

⊕

i∈I

Fei =
⊕

[i]∈I/∼
W[i]

we clearly have

L = U ⊕
( ∑

[i]∈I/∼
J[i]

)

being each J[i] a color gLt-ideal of L, admitting a quasi-multiplicative basis inherited by
the one of L, satisfying 〈J[i], J[h],L, . . . ,L〉 = 0 when [i] �= [h] by Proposition 17 and
Lemma 20.

In case L admits a multiplicative basis (see Definition 8) we have as an immediate
consequence of Theorem 21 the next result.

Corollary 22 If L admits a multiplicative basis, then

L =
⊕

[i]∈I/∼
J[i],

where any J[i] is one of the color gLt-ideals given in Proposition 17, admitting each one a
multiplicative basis inherited by the one of L.

Definition 23 Let L = V⊕W be a color gLt-algebra admitting a quasi-multiplicative basis.
We call the center of L the set

Z(L) := {x ∈ L : 〈x,L, . . . ,L〉σ = 0 for any σ ∈ Sn}.
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We also say that V is tight whence V = {0} or V = ∑

i1 , . . . , in ∈ I

μ(i1 , . . . , in) = {v}

F〈ei1 , . . . , ein〉.

Corollary 24 Suppose L is centerless and V is tight, then L decomposes as the direct sum
of the color gLt-ideals given in Proposition 17,

L =
⊕

[i]∈I/∼
J[i].

Proof By Theorem 21, since U = 0, we just have to show the direct character of the sum.
Given

x ∈ J[i] ∩
∑

[j ] ∈ I/ ∼
j � i

J[j ],

by using the fact 〈J[i], J[h],L, . . . ,L〉σ = 0 for [i] �= [h] and any σ ∈ Sn we obtain

〈x, J[i],L, . . . ,L〉σ = 〈x,
∑

[j ] ∈ I/ ∼
j � i

J[h],L, . . . ,L〉σ = 0.

It implies 〈x,L, . . . ,L〉σ = 0, so x ∈ Z(L) = 0, as desired.

4 TheMinimal Components

In this section we study the minimality of the components in the decompositions of color
gLt-algebras given in Theorem 21, Corollary 22 and Corollary 24. So we introduce the next
concept.

Definition 25 Let L = V⊕W be a color gLt-algebra admitting a quasi-multiplicative basis
B = {ei}i∈I with W �= 0. It is said that L is minimal if its only non-zero color gLt-ideal
admitting a basis inherited by the one of L is itself.

Let us introduce the notion of μ-multiplicativity in the framework of color gLt-algebras
with quasi-multiplicative bases in a similar way to the ones of closed-multiplicativity for
associative quasi-multiplicative algebras, graded associative algebras, graded Lie algebras,
split Leibniz algebras or split Lie triple systems (see [12–15, 21] for these notions and
examples). From now on, for any i ∈ I we denote ei = 0.

Definition 26 Let L = V⊕W be a color gLt-algebra admitting a quasi-multiplicative basis
B = {ei}i∈I of W �= 0. We say that L admits a μ-quasi-multiplicative basis if given i ∈ I

and k1, . . . , kn ∈ (I × · · · × I)∪̇(I × · · · × I) such that

i ∈ μ(k1, . . . , kn) then ei ∈ F〈uk1 , . . . , ukn〉σ
for some σ ∈ Sn, where ukr = ekr + ekr

if kr /∈ {v, v} or ukr = V if kr ∈ {v, v}, for
1 ≤ r ≤ n.

Theorem 27 Suppose L admits a μ-quasi-multiplicative basis and V is tight. It holds that
L is minimal if and only if I has all of its elements connected.
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Proof If L is minimal, for the color gLt-ideals defined in Proposition 17 we have J[i] = L

for any [i]. Hence, [i] = I . To prove the converse, consider J a non-zero color gLt-ideal of
L admitting a basis inherited by the one of L. Since J �= 0, we can take some i0 ∈ I such
that

0 �= ei0 ∈ J. (11)

Taking into account that I has all of its elements connected, we have that for any i ∈ I , we
can consider a connection

{a1,2, . . . , a1,n, a2,2, . . . , a2,n, . . . , at,2, . . . , at,n} (12)

from i0 to i, being t ≥ 1. We know by Eq. 2 that

φ({ĩ0}, a1,2, . . . , a1,n) ∩ I �= ∅
and so for any j1 ∈ φ({ĩ0}, a1,2, . . . , a1,n) ∩ I we have, taking into account ĩ0 ∈ {i0, i0}
that either j1 ∈ μ(i0, a1,2, ..., a1,n) \ {v} or j1 ∈ μ(i0, a1,2, ..., a1,n) \ {v}, being necessarily
any a1,k ∈ I in the second possibility. By Eq. 11 we get in the first possibility that 0 �=
ej1 ∈ F〈ei0 , ua1,2 , . . . , ua1,n

〉σ ⊂ I for some σ ∈ Sn, and with ua1,k
= ea1,k

+ ea1,k
if

a1,k ∈ I ∪ I or ua1,k
= V if a1,k ∈ {v, v}. In the second possibility, we get by Eq. 11 and

the μ-quasi-multiplicativity of B that ej1 ∈ F〈ei0 , ua1,2 , . . . , ua1,n
〉σ ⊂ I for some σ ∈ Sn,

where ua1,k
= ea1,k

if a1,k ∈ I or ua1,k
= V if a1,k = v.

Hence we can assert ⊕

j∈φ({i0},a1,2,...,a1,n)∩I

Fej ⊂ J. (13)

Since
φ(φ({i0}, a1,2, . . . , a1,n), a2,2, . . . , a2,n) ∩ I �= ∅,

we can argue as above, taking into account Eq. 13, to get
⊕

j∈φ(φ({i0},a1,2,...,a1,n),a2,2,...,a2,n)∩I

Fej ⊂ J.

By reiterating this process with the connection (12) we obtain
⊕

j∈φ(φ(...φ({i0},a1,2,...,a1,n),...),at,2,...,at,n)∩I

Fej ⊂ J.

Taking now into account i ∈ φ(φ(. . . φ({i0}, a1,2, . . . , a1,n), . . .), at,2, . . . , at,n) ∩ I we
conclude ei ∈ J and so

W =
⊕

i∈I

Fei ⊂ J. (14)

Taking now into account that V is tight, Eq. 14 allows us to assert

V ⊂ J. (15)

Finally, since L = V ⊕ W, Eqs. 14 and 15 give us J = L.

Theorem 28 Suppose L admits a μ-quasi-multiplicative basis. If L is centerless and with
V tight then

L =
⊕

k

Jk

is the direct sum of the family of its minimal color gLt-ideals, each one admitting a μ-quasi-
multiplicative basis inherited by the one of L.
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Proof By Corollary 24 we have that L = ⊕
[i]∈I/∼ J[i] is the direct sum of the color gLt-

ideals J[i].
We wish to apply Theorem 27 to any J[i], so we have to verify that

J[i] = V[i] ⊕ W[i]

admits a μ-quasi-multiplicative basis, V[i] is tight and the basis {ei : i ∈ [i]} of W[i]
satisfies that all of the elements in the index set [i] are [i]-connected (connected through
connections contained in ([i]∪̇v)∪̇([i]∪̇v)).

We clearly have that J[i] admits a μ-quasi-multiplicative basis as consequence of having
a basis inherited from the one of L and that the linear space V[i] is tight by construction.

Finally, since it is easy to verify that [i] has all of its elements [i]-connected we can apply
Theorem 27 to any J[i] so as to conclude J[i] is minimal. It is clear that the decomposition
L = ⊕

[i]∈I/∼ J[i] satisfies the assertions of the theorem.
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