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Abstract
Let (A,m) be a commutative complete equi-characteristic Gorenstein isolated singularity of
dimension d with k = A/m algebraically closed. Let �(A) be the AR (Auslander-Reiten)
quiver of A. Let P be a property of maximal Cohen-Macaulay A-modules. We show that
some naturally defined properties P define a union of connected components of �(A). So
in this case if there is a maximal Cohen-Macaulay module satisfying P and if A is not of
finite representation type then there exists a family {Mn}n≥1 of maximal Cohen-Macaulay
indecomposable modules satisfying P with multiplicity e(Mn) > n. Let �(A) be the stable
quiver. We show that there are many symmetries in �(A). As an application we show that if
(A,m) is a two dimensional Gorenstein isolated singularity with multiplicity e(A) ≥ 3 then
for all n ≥ 1 there exists an indecomposable self-dual maximal Cohen-Macaulay A-module
of rank n.

Keywords Artin-reiten quiver · Hensel rings · Indecomposable modules · Ulrich
modules · Periodic modules · Non-periodic modules with bounded betti numbers
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1 Introduction

Let us recall that a commutative Noetherian local ring (A,m) is called an isolated singular-
ity if AP is a regular local ring for all prime ideals P �= m. We note that with this definition
if A is Artinian local then it is an isolated singularity. This is not a usual practice, neverthe-
less in this paper Artin rings will be considered as isolated singularities. Also recall that if a
local Noetherian ring (B, n) is Henselian then it satisfies Krull-Schmidt property, i.e., every
finitely generated B-module is uniquely a direct sum of indecomposable B-modules. Now
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assume that B is Cohen-Macaulay with a canonical module KB . Then we say B is of finite
(Cohen-Macaulay) representation type if B has only finitely many indecomposable maxi-
mal Cohen-Macaulay B-modules. In a remarkable paper, [1], Auslander proved that in this
case B is an isolated singularity (also see [25, Theorem 4.22]). Note that if A is not neces-
sarily Henselian but of finite CM representation type then also by a result of Huneke and
Leuschke we get that A has isolated singularities [19, Corollary 2].

To study (not necessarily commutative) Artin algebra’s Auslander and Reiten intro-
duced the theory of almost-split sequences. These are now called AR-sequences. The
AR-sequences are organized to form the AR-quiver. Later Auslander and Reiten extended
the theory of AR-sequences to the case of commutative Henselian isolated singularities.

If (A,m) is a Henselian Cohen-Macaulay isolated singularity then we denote its AR-
quiver by �(A). A good reference for this topic is [25]. The motivation for this paper
comes from the following crucial fact about AR quivers (under some conditions on A),
see [25, 6.2]:

If C is a non-empty connected component of �(A) and if A is not of finite representa-
tion type then there exist a family {Mn}n≥1 of maximal Cohen-Macaulay indecomposable
modules in C with multiplicity e(Mn) > n.

Let P be a property of maximal Cohen-Macaulay A-modules. We show that some
naturally defined properties P define a union of connected components of the AR
quiver of A. Thus the above mentioned observation still holds. Therefore if there is
a maximal Cohen-Macaulay module satisfying P then there exists a family {Mn}n≥1
of maximal Cohen-Macaulay indecomposable modules satisfying P with multiplicity
e(Mn) > n.

1.1 Our Assumptions on the Ring

For the rest of the paper let us assume that (A,m) is a complete equi-characteristic Goren-
stein isolated singularity of dimension d. Assume k = A/m is algebraically closed. Some of
our results are applicable more generally. However for simplicity we will make this hypoth-
esis throughout this paper. We will also assume that A does not have finite representation
type. This is automatic if A is not a hypersurface, see [25, 8.15]. Furthermore if A is a
hypersurface ring with dimA ≥ 2 and e(A) ≥ 3 then also A is not of finite representation
type, [25, 8.1 and 8.10].

Now we describe our results. We first describe our results on
Connected Components of the AR-quiver:

I Modules with periodic resolution:
Let M be a maximal Cohen-Macaulay non-free A-module. Let Syzn(M) be the nth-
syzygy module of M . We say M has periodic resolution if there exists a non-negative
integer n and a positive integer p with Syzn+p(M) ∼= Syzn(M). The smallest p for
which this holds is called the period of the resolution. We say M has propertyH if it has
a periodic resolution.

If A is a hypersurface ring then any non-free maximal Cohen-Macaulay A-module has
periodic resolution with period ≤ 2 and in fact Syz3(M) ∼= Syz1(M). There exists maximal
Cohen-Macaulay modules with periodic resolutions if A is a complete intersection of any
codimension c ≥ 1. Again it can be shown that in this case the period is ≤ 2 and in fact
Syz3(M) ∼= Syz1(M).

For general Gorenstein local rings there is no convenient criterion to determine when
A has a module with periodic resolution (however see [12, 5.8] for a criterion). It was
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conjectured by Eisenbud that if a module M has a periodic resolution then the period is ≤ 2,
see [14, p. 37]. This was disproved by Gasharov and Peeva, see [15, Theorem 1.3]. Our
first result is

Theorem 1.2 (with hypotheses as in 1.1.) H defines a union of connected components
of �(A).

Remark 1.3 In the theory of (not necessarily commutative) Artin Algebra’s a module M is
said to be DTr periodic if (DT r)n(M) = M for some n ≥ 1. For symmetric algebras (in
particular for Artinian Gorenstein local rings) we have DT r(M) = Syz2(M). By a result of
Happel, Preiser and Ringel (cf. [8, 4.16.2]) it is known that if C is a connected component of
the stable quiver containing a DTr periodic module then every module in C is DTr periodic.
Furthermore if C is infinite then it is a tube. Note that this result doe not imply our result
even in the case of Gorenstein Artin local rings, because of the following reason:

Suppose (A,m) is a Gorenstein Artin local ring.
Our results imply that periodic modules define union of connected components of the

whole AR-quiver and not just the stable quiver. We need this added information as we need
to show that existence of a single periodic module implies existence of indecomposable
periodic modules {Mn}n≥1 such that e(Mn) > n.

We now give more refined versions of Theorem 1.2:
Assume A = Q/(f ) where (Q, n) is a Gorenstein local ring and f ∈ n2 is a Q-regular

element. Let M be a maximal Cohen-Macaulay non-free A-module. We say M has prop-
ertyPQ if projdimQ M finite. In this case it is easy to prove thatM has a periodic-resolution
over A with period ≤ 2. There is essentially a unique method to construct non-free max-
imal Cohen-Macaulay modules over A having finite projective dimension over Q. This is
essentially due to Buchweitz et al, see [11, 2.3]. Also see the paper [18, 1.2] by Herzog et
al. Our next result is:

Theorem 1.4 [with hypotheses as in 1.4.] PQ defines a union of connected components of
�(A).

Again our results implies existence of indecomposable maximal Cohen-Macaulay A-
modules with arbitrarily high multiplicity and satisfying property PQ. However our method
does not give a way to construct these modules.

Eisenbud’s conjecture (as stated above) is valid ifM has the so-called finite CI-dimension
[6, 7.2]. We say M has property PO if M has finite CI-dimension over A and has a periodic
resolution over A. We say M has property PE if M has periodic resolution over A but it has
infinite CI dimension over A. Our next result is

Theorem 1.5 [with hypotheses as in 1.1.]

(1) PO defines a union of connected components of �(A).
(2) PE defines a union of connected components of �(A).

We note that in [15, 3.1] a family Aα of an Artininian Gorenstein local ring is constructed
with each having a single module Mα having periodic resolution of period > 2 is given. As
the period of Mα is greater than two it cannot have finite CI-dimension over Aα . Thus our
result implies existence of indecomposable modules with arbitrary length, having a periodic
resolution and having infinite CI dimension over Aα .
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Note that till now our results does not give any information regarding period’s. In
dimension two we can say something, see Theorem 1.13.

Now assume that A is a complete intersection of codimension c ≥ 2. There is a theory of
support varieties for modules over A. Essentially for every finitely generated module E over
A an algebraic set V (E) in the projective space Pc−1 is attached, see [4, 6.2]. Conversely it
is known that if V is an algebraic set in P

c−1 then there exists a finitely generated module
E with V (E) = V , see [9, 2.3]. It is known that V (Syzn(E)) = V (E) for any n ≥ 0. Thus
we can assume E is maximal Cohen-Macaulay. If E has periodic resolution over A then
V (E) is a finite set of points. The converse is also true, see [7, Theorem II]. If further E is
indecomposable then V (E) is a singleton set, see [9, 3.2]. Let a ∈ P

c−1. We say a maximal
Cohen-Macaulay A-module M satisfies property Pa if V (M) = {a}. We prove:

Theorem 1.6 [ with hypotheses as in 1.8.] Let a ∈ P
c−1. Then Pa defines a union of

connected components of �(A). Conversely if C is a non-empty connected component of
�(A) containing a periodic module M then for any [N ] ∈ C we have V (N) = V (M)(=
{p}). In particular �(A) has at least |k| connected components.

II Modules with bounded betti-numbers but not having a periodic resolution:
For a long time it was believed that if a module M has a bounded resolution (i.e., there
exists c with βi(M) ≤ c for all i ≥ 0) then it is periodic. If A is a complete intersection
then modules having bounded resolutions are periodic [14, 4.1]. In [15, 3.2] there are
examples of modules M having a bounded resolution but M is not periodic.

If M is a maximal Cohen-Macaulay A-module having a bounded resolution but M is not
periodic then we say that M has property BNP . We prove

Theorem 1.7 [with hypotheses as in 1.1.] BNP defines a union of connected components
of �(A).

We note that if M has bounded resolution but not periodic then there exists c with
e(Syzn(M)) ≤ c for all n ≥ 0. Our result implies the existence of modules with bounded
but not periodic resolution of arbitrary multiplicity.

III: Ulrich modules:
Let M be a maximal Cohen-Macaulay A-module. It is well-known that e(M) ≥ μ(M)

(hereμ(M) denotes the cardinality of a minimal generating set ofM). A maximal Cohen-
Macaulay module M is said to be an Ulrich module if its multiplicity e(M) = μ(M). In
this case we say M has property U .

If dimA = 1 then A has a Ulrich module. It is known that if A is a strict complete inter-
section (i.e, the associated graded ring of A is a complete intersection) of any dimension d

then it has a Ulrich module, see [18, 2.5]. In particular if A is a hypersurface ring then it
has a Ulrich module. There are some broad class of examples of Gorenstein normal domain
(but not complete intersections) of dimension two that admit an Ulrich module see [10, 4.8].
However there are no examples of Gorenstein local rings R ( but not complete intersections)
with dimR ≥ 3 such that R admits an Ulrich module (note we are not even insisting that R
is reduced).

Even if A is a hypersurface there is essentially a unique way to construct an Ulrich
modules. We show
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Theorem 1.8 [ with hypotheses as in 1.1.] Further assume that either A is a hypersurface
ring of even dimension d ≥ 2 and multiplicity e(A) ≥ 3 OR A is Gorenstein of dimension
two. Then U defines a union of connected components of �(A).

The reason we cannot say anything about Ulrich modules over hypersurface rings of odd
dimension is due to a peculiar nature of AR-sequences, see remark 8.1. Also note that if
e(A) = 2 then any non-free MCM A-module is an Ulrich module.

We now describe our result on:

IV: Symmetries of the AR-quiver:
Let �0(A) be the connected component of �(A) containing the vertex [A]. Set ˜�(A) =
�(A) \ �0(A). Let �(A) denote the stable AR-quiver of A, i.e., we delete the vertex
[A] from �(A) and all arrows connecting to [A]. Also set �0(A) to be the stable part of
�0(A).

Our starting point is the observation that for simple singularities �(A) is trivially isomorphic
to its reverse graph (see [25, p. 95]). Recall if G is a directed graph then it’s reverse graph
Grev is a graph with the same vertices as G and there is an arrow from vertex u to v in Grev

if and only if there is an arrow from vertex v to u in G. In fact we construct

Theorem 1.9 [with hypotheses as in 1.1.] There exists isomorphisms D, λ : �(A) →
�(A)rev as graphs. If A is not a hypersurface ring then

(1) D �= λ.
(2) There exists indecomposable maximal Cohen-Macaulay modules M,N with

λ(M) �= M and D(N) �= N .

The first isomorphism D is just the dual functor i.e., D(M) = HomA(M,A). The next
map λ arises in the theory of horizontal linkage defined by Martsinkovsky and Strooker, see
[20, p. 592]. See 9.1 for the definition of λ. We note that the assumptionA not a hypersurface
is essential for the later part of Theorem 1.9, for in the case of simple singularities it is
known that λ(M) = M for each non-free indecomposable M , see [20, Theorem 3].

For n ≥ 0 let Syzn be the nth syzygy functor. As A is Gorenstein we can also define for
integers n ≤ −1 the nth cosyzygy functor (for maximal Cohen-Macaulaymodules) which
we again denote with Syzn. By the definition of horizontal linkage we have Syz−1 ◦D = λ.
Thus Syz−1 = λ ◦ D−1 and Syz1 = D ◦ λ−1. So under the assumptions as in 1.1 we get
that Syzn : �(A) → �(A) is an isomorphism of graphs for all n ∈ Z.

Remark 1.10 In 9.1 we have shown that using D, Syz1 we can define action of the infinite
Dihedral group on �(A) and its connected components.

We prove:

Theorem 1.11 [ with hypotheses as in 1.1] Let C be a connected component of �(A). For
[M] ∈ C, set I (M) = {n | [Syzn(M)] ∈ C}. Then
(1) I (M) is an ideal in Z (possibly zero).
(2) I (N) = I (M) for all [N ] ∈ C.

If A is not of finite representation type then there is practically no information on con-
nected components of �(A). The only case known is when A is a hypersurface there is
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information on connected components of ˜�(A), see [13, Theorem I]. It is easy to show that
�0(A) has only finitely many components. As an application of Theorem 1.11 we show:

Corollary 1.12 [with hypotheses as in 1.1.] Assume further that A is not a hypersurface
ring. Let D be a connected component of �0(A). Then

(1) D has infinitely many vertices.
(2) The function [M] → e(M) is unbounded on D.

V: Structure of the AR-quiver:
If A is of finite representation type then the structure of the AR-quiver is known, see
[25]. For hypersurface rings which are not of finite representation type there is some
information regarding connected components of A not containing the vertex [A]. For two
dimensional Gorenstein rings we show:

Theorem 1.13 [with hypothesis as in 1.1.] Assume dimA = 2 and e(A) ≥ 3. Let C be a
non-empty component of �(A). Then C is of the form

M1 � M2 � M3 � M4 � · · · � Mn � · · ·
where e(Mn) = ne(M1) for all n ≥ 1. Furthermore

(1) If C = �0(A) then M1 = A. Furthermore M∗
n

∼= Mn for all n ≥ 1.
(2) Assume now that A is not a hypersurface ring. Then

(a) If Mj is periodic with period c for some j then Mn is periodic with period c for
all n ≥ 1.

(b) Let C denote the stable part of C. Let [Mi] ∈ C. If the Poincare series of Mi is
rational then the Poincare series of M is rational for all [M] ∈ C. Furthermore
all of them share a common denominator.

In the Theorem above the Poincare series PM(z) of a module M is
∑

n≥0 dimk

TorAn (M, k)zn. We also note that the structure of all components of �(A) \�0(A) is already
known, see [13, Theorem 17].

We have several interesting consequences of Theorem 1.13. A direct consequence of this
theorem is that if dimA = 2 and e(A) ≥ 3 then for all n ≥ 1 there exist’s an indecom-
posable maximal Cohen-Macaulay A-module Mn of rank n with M∗

n
∼= Mn. I do not know

whether such a result holds for higher dimensional rings.
A simple consequence of Theorem’s 1.17 and 1.15 is the following:

Corollary 1.14 [with hypotheses as in 1.1.] Assume A is not a hypersurface ring. Also
assume dimA = 2. Then Syzn(�0(A)) are distinct components of �(A) for all n ∈ Z.

We now describe in brief the contents of this paper. In section two we discuss some
preliminary results that we need. In section three we discuss lifts of irreducible maps. In the
next section we discuss non-free indecomposable summands of maximal Cohen-Macaulay
approximation of the maximal ideal. In section five we give proof’s of Theorem’s 1.2, 1.4
and 1.6. In the next section we give a proof of Theorem 1.8. In section seven we discuss
our notion of quasi AR-sequences and in the next section we give a proof of Theorem 1.7.
In section nine we prove Theorem 1.8. In the next section we give a few obstructions to
existence of quasi-AR sequences. In section 11 we describe the describe �0(A) when A is
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a two dimensional with e(A) ≥ 3. In section twelve we give a proof of Theorem 1.11 and
Corollary 1.12. In the last section we discuss curvature and complexity of MCM modules
and as an application give a proof of Theorem 1.6.

Remark 1.15 Srikanth Iyengar informed me about the excellent paper [16] where the
authors considered AR-quiver of self-injective Artin algebra’s. Note that commutative Artin
Gorenstein rings is an extremely special case of self-injective Artin Algebra’s. So our results
in this case is sharper than that of [16]. I do not believe that the results of this paper when
A is commutative Artin Gorenstein ring will hold for the more general case of self-injective
Artin algebra’s.

2 Some Preliminaries

In this paper all rings will be Noetherian local. All modules considered are finitely generated.
Let (A,m) be a local ring and let k = A/m be its residue field. Let dimA = d . If M is an
A-module then μ(M) = dimk M/mM is the number of a minimal generating set ofM . Also
let �(M) denote its length. In this section we discuss a few preliminary results that we need.

Let M be an A-module. For i ≥ 0 let βi(M) = dimk TorAi (M, k) be its ith betti-number.
Let PM(z) = ∑

n≥0 βn(M)zn, the Poincare series of M . Set

cx(M) = inf{d | lim sup
βn(M)

nd−1
< ∞} and

curvM = lim sup(βn(M))
1
n .

It is possible that cx(M) = ∞, see [5, 4.2.2]. However curv(M) is finite for any module M

[5, 4.1.5]. It can be shown that if cx(M) < ∞ then curv(M) ≤ 1.
It can be shown that for any A-module M we have

cx(M) ≤ cx(k) and curv(M) ≤ curv(k).

see [5, 4.2.4].
If A is a complete intersection of co-dimension c then for any A-module M we have

cx(M) ≤ c. Furthermore for each i = 0, . . . , c there exists an A-module Mi with cx(Mi) =
i. Also note that cx(k) = c. [5, 8.1.1(2)]. If A is a complete intersection and M is a module
with cx(M) = cx(k) then we say M is extremal.

If A is not a complete intersection then curv(k) > 1. [5, 8.2.2]. In this case we say a
module M is extremal if curv(M) = curv(k).

Let M be an A-module and let FM : · · · → Fn
dn−→ Fn−1 → · · · be a minimal resolution

of M . Set Syzn(M) = ker dn, the nth-syzygy of M . It is well-defined upto (non-unique)
isomorphism.

Let M, N be A-modules and let f : M → N be A-linear. Let FM be a minimal reso-
lution of M and let FN be a minimal resolution of N . Then f induces a lift ˜f : FM →
FN . This map ˜f is unique up to homotopy. The chain map ˜f induces an A-linear map
fn : Syzn(M) → Syzn(N) for all n ≥ 1.
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Denote by β(M,N) the set of A-homomorphisms of M to N which pass through a free
module. That is, an A-linear map f : M → N lies in β(M,N) if and only if it factors as

M

u

��

f

���
��

��
��

F v
�� N

where F ∼= An for some n ≥ 1.

Remark 2.1 If f : M → N is A-linear and if f1, f
′
1 : Syz1(M) → Syz1(N) are two lifts of

f then it is well known and easily verified that f1 − f ′
1 ∈ β(Syz1(M),Syz1(N)).

Recall that an A-module M is called stable if M has no free summands. We need the
following:

Proposition 2.2 Let (A,m) be a Noetherian local ring and let M, N be A-modules. Set
� = EndA(M) and r = rad�. Let f ∈ �. Also suppose there exists A-linear maps
u : M → N and v : N → M . Set g = v ◦ u.

(1) If f (M) ⊆ mM then f ∈ r.
(2) If M is stable and f ∈ β(M, M) then f ∈ r.
(3) If 1 − g ∈ r then u is a split mono and v is a split epi.

Proof (1) This is well known.
(2) Assume f = β ◦ α where α : M → F and β : F → M and F ∼= An. As M is stable

it follows that α(M) ⊆ mF and so f (M) ⊆ mM . The result follows from (1).
(3) Let 1 − g = h where h ∈ r. Then g = 1 − h is invertible in �. So there exists τ ∈ �

with τ ◦ g = g ◦ τ = 1M . The result follows.

Let G(A) = ⊕

n≥0m
n/mn+1 be the associated graded ring of A (with respect to m).

Furthermore if M is an A-module then let G(M) = ⊕

n≥0m
nM/mn+1M be the associated

graded module of M . The Hilbert series of M is the Hilbert series of G(M). Set HM(z) =
∑

n≥0 �(mnM/mn+1M)zn. It is well-known that

HM(z) = hM(z)

(1 − z)r
;

where r = dimM and hM(z) ∈ Z[z] and hM(1) �= 0. We call hM(z) as the h-polynomial
of M . If f is a polynomial then we use f (i) to denote the ith formal derivative of f . Set

ei(M) = h
(i)
M (1)

i! .

Then ei(M) is called the ith-Hilbert coefficient ofM (with respect tom). We denote e(M) =
e0(M) = hM(1); the multiplicity of M .

An element x ∈ m is said to be superficial for M if there exists an integer c > 0 such that

(mnM : Mx) ∩ mcM = mn−1M for all n > c.

Superficial elements always exist if k is infinite [24, p. 7]. A sequence x1, x2, . . . , xr in a
local ring (A,m) is said to be a superficial sequence for M if x1 is superficial for M and xi

is superficial for M/(x1, . . . , xi−1)M for 2 ≤ i ≤ r .
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If depthM > 0 and x is M-superficial then x is also M-regular (see [24, 2.1] for the
case M = A; the proof works in general). Set N = M/xM . We have an equality of Hilbert
coefficients ei(N) = ei(M) for 0 ≤ i ≤ dimN ; see [21, Corollary 10]).

Let us recall the definition of transpose of a module. Let F
f−→ G → M → 0 be a

presentation of M (not necessarily minimal). Then we set Tr(M) = coker(HomA(f,A)).

Note that Tr(M) depends on the presentation of M . However if F ′ f ′
−→ G′ → M → 0 is

another presentation of M then it can be shown that there exists free modules U,V such that
U ⊕ coker(HomA(f,A)) ∼= V ⊕ coker(HomA(f ′, A)). Thus Tr(M) is well defined upto
free summands.

Now assume A is Cohen-Macaulay. Let M,N be maximal Cohen-Macaulay A-modules
and let f : M → N be A-linear. Recall f is said to be irreducible if

(1) f is not a split epimorphism and not a split monomorphism.
(2) If X is a maximal Cohen-Macaulay A-module and if there is a commutative diagram

M

u

��

f

���
��

��
��

X v
�� N

then either u is a split monomorphism or v is a split epimorphism.

Remark 2.3 Let (A,m) be a Cohen-Macaulay local ring. If M is a maximal Cohen-
MacaulayA-module then it is easy to verify that Syzn(M) is stable for each n≥1.

A maximal Cohen-Macaulay module M is said to be Ulrich if e(M) = μ(M). If
x1, . . . , xd is a maximal A⊕M-superficial sequence then note that by 2.12 we get e0(M) =
�(M/xM). Thus M is Ulrich if and only if xM = mM . It follows that M/(x)M ∼= kμ(M) if
M is Ulrich (and conversely).

The following result is well-known. We give a proof for the convenience of the reader.

Proposition 2.4 Let (A,m) be a Cohen-Macaulay local ring of dimension d and with a
canonical module ωA. Assume that the residue field of A is infinite. Let M be a max-
imal Cohen-Macaulay A-module. Set M† = HomA(M,ωA). If M is Ulrich then so
is M†.

Proof Let x1, . . . , xd be aA⊕ωA⊕M⊕M†-superficial sequence. IfE is anA-module then
set E0 = E and Ei = E/(x1, . . . , xi)E for i = 1, . . . , d. Note ωi is a canonical module of
Ai . The exact sequence

0 → ω0
x1−→ ω0 → ω1 → 0

induces an exact sequence

0 → M
†
0

x1−→ M
†
0 → HomA1(M1, ω1) → 0,

(as Ext1A0
(M0, ω0) = 0). So in particular we have that M†

0/x1M
†
0

∼= (M1)
†. Iterating we get

M
†
0/(x1, . . . , xd)M

†
0

∼= (Md)†.

As M is Ulrich we get that M
†
d

∼= kμ(M). As HomAd
(k, ωd) ∼= k it follows that

M
†
0/(x1, . . . , xd)M

†
0 is a k-vector space. Thus M† is also Ulrich.
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Now assume that A is a Henselian Cohen-Macaulay isolated singularity of dimension
d. Also assume that A has a canonical module ωA. Then the category of maximal Cohen-
MacaulayA-modules admits Auslander-Reiten(AR) sequences; see [25, Chapter 3]. Recall

an exact sequence s : 0 → N → E
p−→ M → 0 of maximal Cohen-Macaulay A-modules is

an AR-sequence if

(1) s is not split.
(2) M,N are indecomposable maximal Cohen-Macaulay A-modules.
(3) If L is a maximal Cohen-Macaulay A-module and if q : L → M is a not a split

epimorphism then there exists f : L → E such that q = p ◦ f .

We call s the AR-sequence ending at M (equivalently starting at N ). Also note that N ∼=
HomA(Syzd(Tr(M), ωA); see [25, 3.11]. We set τ(M) = N and call it the Auslander-Reiten
translate of M .

Suppose M is a maximal Cohen-Macaulay over a local Gorenstein ring A. Then M∗ =
HomA(M,A) is also a maximal Cohen-Macaulay module. Furthermore ExtiA(M,A) = 0
for i > 0. We also have (M∗)∗ ∼= M . Notice if

0 → M1
α1−→ M2

α2−→ M3 → 0,

is a short exact sequence of maximal Cohen-Macaulay A-modules then we have the
following short exact sequence

0 → M∗
3

α∗
2−→ M∗

2

α∗
1−→ M∗

1 → 0,

of maximal Cohen-Macaulay A-modules.

Remark 2.5 Let (A,m) be a Gorenstein local ring and letM be a maximal Cohen-Macaulay
A-module. Let 0 → N → G → M∗ → 0 be a minimal presentation of M∗. As M ∼= M∗∗
we have a short exact sequence 0 → M → G∗ → N∗ → 0. Set Syz−1(M) = N∗.
Iteratively define Syz−n(M) = Syz−1(Syz−n+1(M)) for all n ≥ 1. For m ≤ −1 we call
Syzm(M) as the mth co-syzygy of M .

Remark 2.6 Due to 2.19 the following assertions hold:
Let M1,M2 and N1, N2 are maximal Cohen-Macaulay A-modules and let F,G be free
A-modules. Suppose we have exact sequences:

0 → M1 → F → M2 → 0 and 0 → N1 → G → N2 → 0.

If there exists an A-linear map ψ1 : M1 → N1 then:

(1) there exists A-linear maps ψ2 : M2 → N2 and φ : F → G such that the following
diagram commutes:

0 �� M1

ψ1

��

�� F

φ

��

�� M2

ψ2

��

�� 0

0 �� N1 �� G �� N2 �� 0

(2) If ψ ′ : M2 → N2 and φ′ : F → G are another pair of maps such that the above
commutative diagram holds then ψ2 − ψ ′

2 ∈ β(M2, N2).

Definition 2.7 (with hypotheses as in 2.6.) We call ψ2 to be a co-lift of ψ1.
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The following is an easy consequence of 2.19.

Proposition 2.8 Let (A,m) be a local Gorenstein ring and let M,N be maximal Cohen-
Macaulay A-modules. Let f : M → N be A-linear and let f ∗ : N∗ → M∗ be the induced
map. We have:

(1) f is a split mono if and only if f ∗ is a split epi.
(2) f is a split epi if and only if f ∗ is a split mono.
(3) f is irreducible if and only if f ∗ is irreducible.

Let (A,m) be a Gorenstein local ring. Let us recall the definition of Cohen-Macaulay
approximation from [2]. A Cohen-Macaulay approximation of an A-module M is an exact
sequence

0 −→ Y −→ X −→ M −→ 0,

where X is a maximal Cohen-Macaulay A-module and Y has finite projective dimension.
Such a sequence is not unique but X is known to unique up to a free summand and so is well
defined in the stable category CM(A). We denote by X(M) the maximal Cohen-Macaulay
approximation of M .

If M is Cohen-Macaulay then maximal Cohen-Macaulay approximation of M are very
easy to construct. We recall this construction from [2]. Let n = codimM = dimA−dimM .
Let M∨ = ExtnA(M,A). It is well-known that M∨ is Cohen-Macaulay module of codim
n and M∨∨ ∼= M . Let F be any free resolution of M∨ with each Fi a finitely generated

free module. Note F need not be minimal free resolution of M . Set Sn(F) = image(Fn
∂n−→

Fn−1). Then note Sn(F) is maximal Cohen-Macaulay A-module. It can be easily proved
that X(M) ∼= Sn(F)∗ in CM(A). The following result is well-known. We give a proof for
the convenience of the reader.

Proposition 2.9 Let (A,m) be a Gorenstein local ring and let M be an A-module. Then

X(Syz1(M)) ∼= Syz1(X(M)) in CM(A).

Proof Let 0 → Y → X(M) → M → 0 be a MCM approximation of M . Let α : G → Y

and γ : F → M be projective covers of Y and M respectively. Then we have a following
diagram with exact rows:

0 �� G

α

��

�� U

β

��

�� F

γ

��

�� 0

0 �� Y �� X(M) �� M �� 0

Note U is free and β is surjective. So we have an exact sequence

0 → Syz1(Y ) → Syz1(X(M)) ⊕ H → Syz1(M) → 0;
where H is free (possibly zero). We note that Syz1(Y ) has finite projective dimension and
Syz1(X(M)) is maximal Cohen-Macaulay. The result follows.

Now assume (A,m) is a Henselian Gorenstein isolated singularity. Let M be a maximal
Cohen-Macaulay, indecomposable, non-freeA-module. Let τ(M) = Hom(Syzd(Tr(M),A)

be the Auslander-Reiten translate ofM . Then it is well known that τ(M) ∼= Syz2−d(M). We
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give a short proof for the convenience of the reader. Let F
f−→ G → M → 0 be a minimal

presentation of M . Then note that we can choose Tr(M) = (Syz2(M))∗. Notice that

Syzd(TrM) = Syzd((Syz2(M))∗) ∼= (Syz2−d(M))∗.

It follows that τ(M) = Syz2−d(M).

3 Lifts of Irreducible Maps

In this section (A,m) is a Gorenstein local ring, not necessarily an isolated singularity. Also
A need not be Henselian. The following is the main result of this section.

Theorem 3.1 (with hypotheses as above.) Let M,N be stable maximal Cohen-Macaulay
A-modules and let f : M → N be A-linear. Let f1 : Syz1(M) → Syz1(N) be any lift of f .
If f is irreducible then f1 is also an irreducible map.

We need a few preliminaries to prove Theorem 3.1.
We first prove:

Lemma 3.2 Let (A,m) be a local Gorenstein ring and let M,N be stable maximal Cohen-
Macaulay A-modules. Let f : M → N be A-linear and let δ ∈ β(M, N). If f is irreducible
then so is f + δ.

Proof Assume δ = v ◦ u where u : M → F and v : F → N and F ∼= An. As M is stable it
follows that u(M) ⊆ mF and so δ(M) ⊆ mN .

Claim-1: f + δ is not a split mono.
Suppose it is so. Then there exists σ : N → M with σ ◦ (f + δ) = 1M . So
σ ◦ f + σ ◦ δ = 1M . As δ(M) ⊆ mN we get σ ◦ δ(M) ⊆ mM . It follows
that σ ◦ δ ∈ rad EndA(M). By 2.2(3) it follows that f is a split mono. This is a
contradiction as f is irreducible.

Claim-2: f + δ is not a split epi.
Suppose it is so. Then there exists σ : N → M with (f + δ) ◦ σ = 1N . So
f ◦ σ + δ ◦ σ = 1N . Notice

δ ◦ σ(N) ⊂ δ(M) ⊆ mN .

It follows that δ ◦ σ ∈ rad EndA(N). By 2.2(3) it follows that f is a split
epimorphism. This is a contradiction as f is irreducible.

Claim-3: Suppose X is maximal Cohen-Macaulay and we have a commutative diagram

M

g

��

f +δ

���
��

��
��

X
h

�� N

then either g is a split monomorphism or h is a split epimorphism.
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Proof of Claim 3: Notice we have a commutative diagram

M

(g,−u)

��

f

����
��

��
��

�

X ⊕ F
h+v

�� N

As f is irreducible either (g,−u) is a split mono or h + v is a split epi. We assert:

Subclaim-1: If (g,−u) is a split mono then g is a split mono.

Subclaim-2: If h + v is a split epi then h is a split epi.
Notice that Subclaim 1 and 2 will finish the proof of Claim 3. Also Claims 1,2,3 implies
the assertion of the Lemma. We now give:

Proof of Subclaim-1: As (g,−u) is a split mono there exits σ : X ⊕ F → M such that
σ ◦ (g,−u) = 1M . Write σ = σ1 + σ2 where σ1 : X → M and
σ2 : F → M . Thus we have σ1 ◦ g − σ2 ◦ u = 1M . As M is stable
u(M) ⊆ mF . So σ2 ◦ u(M) ⊆ mM . Thus σ2 ◦ u ∈ rad EndA(M).
It follows from 2.2(3) that g is a split mono.
We now give:

Proof of Subclaim-2: As h+v is a split epi there exists σ : N → X⊕F with (h+v)◦σ =
1N . Write σ = (σ1, σ2) where σ1 : N → X and σ2 : N → F . It
follows that h ◦ σ1 + v ◦ σ2 = 1N .

As N is stable σ2(N) ⊆ mF . So v ◦ σ2(N) ⊆ mN . Thus v ◦ σ2 ∈ rad EndA(N). It follows
from 2.2(3) that h is a split epi.

We also need

Lemma 3.3 Let (A,m) be a Gorenstein local ring and let M be a stable maximal Cohen-
Macaulay A-module. Let F = Aμ(M) and let ε : F → M be a minimal map. Set M1 =
ker ε ∼= Syz1(M). Let X be another maximal Cohen-Macaulay A-module (not necessarily
stable) and let η : G → X be a surjective map with G-free (not necessarily minimal). Let
X1 = ker η. Let α : M → X be A-linear and let α1 : M1 → X1 be any lift of α. If α is a
split mono then α1 is a split mono.

Proof We note that M1 is also stable. Let φ : X → M be such that φ ◦ α = 1M . Let
φ1 : X1 → M1 be a lift of φ. Then note that φ1 ◦ α1 is a lift of 1M . Thus φ1 ◦ α1 − 1 ∈
β(M1,M1). The result now follows from 2.2.

The following is a dual version of Lemma 3.3 and can be proved similarly.

Lemma 3.4 Let (A,m) be a Gorenstein local ring and let N be a stable maximal Cohen-
Macaulay A-module. Let F = Aμ(N) and let ε : F → N be a minimal map. Set N1 =
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ker ε ∼= Syz1(N). Let X be another maximal Cohen-Macaulay A-module (not necessarily
stable) and let η : G → X be a surjective map with G-free (not necessarily minimal). Let
X1 = ker η. Let β : X → N be A-linear and let β1 : X1 → N1 be any lift of α. If β is a
split epi then β1 is a split epi.

We now give:

Proof of Theorem 3.1. Set M1 = Syz1(M) and N1 = Syz1(N).

Claim-1: f1 is not a split mono.
Suppose if possible f1 is a split mono. Then there exists σ1 : N1 → M1 with σ1 ◦ f1 =
1M1 . Let σ : N → M be a co-lift of σ (see 2.7 for this notion). Then σ ◦ f is a co-lift of
1M1 . Notice 1M is a co-lift of of 1M1 . Then by 2.6 we get that 1M −σ ◦f ∈ β(M,M). As
M is stable we get by 2.2 that f is a split mono. This is a contradiction as f is irreducible.

Claim-2: f1 is not a split epi.
Suppose if possible f1 is a split epi. Then there exists σ1 : M1 → N1 with f1 ◦σ1 = 1N1 .
Let σ : N → M be a co-lift of σ . Then f ◦ σ is a co-lift of 1N1 . Notice 1N is a co-lift of
of 1N1 . Then by 2.6 we get that 1N −f ◦σ ∈ β(N, N). As N is stable we get by 2.2 that
f is a split epi. This is a contradiction as f is irreducible.

Claim-3: If X1 is a maximal Cohen-Macaulay A-module and if there is a commutative
diagram

M1

u1

��

f1

���
��

��
��

�

X1 v1
�� N1

then either u1 is a split monomorphism or v1 is a split epimorphism.

Proof of Claim-3: By 2.5 there exists an exact sequence

0 → X1 → L → X → 0,

with L1 free and X maximal Cohen-Macaulay.

Let u : M → X be a co-lift of u1 and let v : X → N be a co-lift of v1. Then notice v ◦ u is
a co-lift of f1 = v1 ◦ u1. As f by definition is a co-lift of f1 we get that v ◦ u = f + δ for
some δ ∈ β(M,N).

By 3.2 we get that f +δ is irreducible. So u is a split mono or v is a split epi. By Lemma’s
3.3 and 3.4 we get that u1 is a split mono or v1 is a split epi.

By Claims 1, 2 and 3 the result follows.

4 Indecomposable Non-free Summands of Maximal
Cohen-Macaulay Approximation of theMaximal Ideal

In this section (A,m) is a Henselian Gorenstein local ring. Let X(m) be a maximal Cohen-
Macaulay approximation of the maximal ideal. In this section we are concerned with non-
free indecomposable summands of X(m). Our results are:
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Theorem 4.1 Let (A,m) be a Henselian Gorenstein local ring of dimension d and let
X(m) be a maximal approximation of m. Let M be an indecomposable non-free summand
of X(m). Then M is extremal, i.e.,

(1) If A is a complete intersection of codimension c then cx(M) = cx(k) = c.
(2) If A is not a complete intersection then curv(M) = curv(k) > 1.

We also prove:

Theorem 4.2 Let (A,m) be a Henselian Gorenstein local ring of dimension d ≥ 1 and
infinite residue field k. Let e(A) ≥ 3. Assume either dimA = 2 or A is a hypersurface ring
(with no restriction on dimension) with multiplicity e(A) ≥ 3. Let M be an indecomposable
Ulrich A-module. Then neither M or Syz1(M) is a summand of X(m).

Remark 4.3 Note that Theorem 4.2 is false if e(A) = 2. Note that if e(A) = 2 then A is
a hypersurface with minimal multiplicity. In this case it is known that any stable maximal
Cohen-Macaulay module is Ulrich. For a proof note asM is stable we get thatM = Syz1(L)

for a MCM A-module. Let 0 → M → F → L → 0. We go mod x; a maximal M ⊕A⊕L-
superficial sequence. Set (−) = − ⊗ A/(x). We note that M ⊆ mF . As A has minimal
multiplcity we get that m2 = 0; see [21, Theorem 16]. So mM = 0. It follows that M is
Ulrich; see 2.16. So any non-free indecomposable summand of X(m) is Ulrich.

Motivation: Our motivation to prove the above results is the following: Assume A is
a Gorenstein Henselian isolated singularity. If M is a maximal Cohen-Macaulay non-free
indecomposable module then there exists an irreducible morphism from M → A only if M

is a summand of X(m), see [25, 4.2.1]. In our Theorems we have to show that the vertex
[A] does not belong to certain components of �(A).

We first give:

Proof of Theorem 4.1 By Proposition 2.9 we get that X(m) ⊕ F = Syz1(X(k)) ⊕ G for
some free modules F,G. Thus it suffices to prove that if M is a direct summand of X(k)

then it is extremal. By 2.25 it suffices to prove that if M is a summand of Syzd(k)∗ then
M is extremal. We prove by induction on d that if M is a summand of Syzn(k)∗ for some
n ≥ d then M is extremal.

We first consider the case d = 0. We note that as k is indecomposable Syzn(k) is
indecomposable for all n ≥ 0 (this is a result of Herzog, cf. [25, 8.17]). So Syzn(k)∗ is
indecomposable. Therefore M = Syzn(k)∗. Notice Syzn(Syzn(k)∗) = k. It follows that M

is extremal.
We now assume that d ≥ 1 and the result has been proved for Gorenstein Henselian rings

of dimension d − 1. Let x ∈ m \m2 be a non-zero divisor on A. Set B = A/(x) and for any
A-module N set N = N/xN . We note that for n ≥ d

SyzA
n (k) ∼= SyzB

n (k) ⊕ SyzB
n−1(k).

It follows that
SyzA

n (k)∗ ∼= SyzB
n (k)∗ ⊕ SyzB

n−1(k)∗.

If M is a summand of SyzA
n (k)∗ then M is a summand of SyzA

n k∗. Let E be an irreducible
summand of M . Then by Krull-Schmidt it is an irreducible summand of either SyzB

n (k)∗
or of SyzB

n−1(B)∗. By induction hypothesis we get that E is extremal. It follows that M is
extremal.
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We now give:

Proof of Theorem 4.2

Case 1 We first consider the case when A is a hypersurface of dimension d ≥ 1 and
multiplicity e(A) ≥ 3.

Let M be an indecomposable Ulrich A-module. Suppose if possible M is a summand of
X(m). By Proposition 2.9 we get that X(m)⊕F = Syz1(X(k))⊕G for some free modules
F, G. It follows that Syz−1(M) is a summand of X(k). As M has no free summands we get
Syz1(M) = Syz−1(M). By 2.25 we get Syz1(M) is a summand of Syzd(k)∗. It follows that
Syz1(M)∗ is a summand of Syzd(k). But

Syz1(M)∗ ∼= Syz−1(M
∗) ∼= Syz1(M

∗).

Notice if M is Ulrich then M∗ is also Ulrich; see 2.4. Similarly if we set N = Syz1(M) is
a summand of X(m) then M∗ is a summand of Syzd(k).

By the arguments in the previous paragraph it suffices to prove that if E is an Ulrich A-
module then neither E nor Syz1(E) is a summand of Syzd(k). This we prove by induction
on d.

We first consider the case d = 1. Then as e(A) ≥ 3 we have that m = Syz1(k) is
indecomposable [23, Theorem A].

If E is a summand ofm thenm = E. Let x be E-superficial. Then as E = m is Ulrich we
get that mm = xm. So m2 = xm. So A has minimal multiplicity. It follows that e(A) = 2.
This is a contradiction.

If Syz1(E) is a summand of m then m = Syz1(E). Using [22, Theorem 2] we get the
h-polynomial of m is

hm(z) = μ(m)(1 + z + z2 + · · · + ze−2) where e = e(A) ≥ 3.

Here μ(m) denotes the number of minimal generators of m. Note μ(m) ≥ 2 as A is not
regular. It follows that the h-polynomial of A is

hA(z) = 1 + z(hm(z) − 1) = μ(m)ze−1 + lower terms in z.

This is a contradiction as A is a hypersurface.
Now assume that d ≥ 2 and the result has been proved for hypersurface rings of

dimension d − 1. Let x ∈ m \ m2 be sufficiently general. Then x is A-regular and
A ⊕ E ⊕ SyzA

1 (E)-superficial. Set B = A/(x) and if V is an A-module set V = V/xV .
Then notice

SyzA
d (k) = SyzB

d (k) ⊕ SyzB
d−1(k).

Note E is an Ulrich B-module. Let E = U1 ⊕ U2 ⊕ · · · ⊕ Us where Ui are indecomposable
B-modules. Then each Ui is an Ulrich B-module. We also have

SyzA
1 (E) ∼= SyzB

1 (E) ∼= SyzB
1 (U1) ⊕ · · · ⊕ SyzB

1 (Us).

By [25, 8.17], SyzB
1 (Ui) is an indecomposable B-module for i = 1, . . . , s.

If E is a summand of SyzA
d (k) then E is a summand of SyzA

d (k). So U1 is a sum-
mand of SyzB

d (k) or SyzB
d−1(k). By our induction hypothesis U1 is not a summand of

SyzB
d−1(k). It follows that U1 is a summand of SyzB

d (k). Therefore SyzB
1 (U1) is a summand

of SyzB
d+1(k) ∼= SyzB

d−1(k), a contradiction. A similar argument will show that SyzA
1 (E) is

not a summand of SyzA
d (k).
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Case 2 We now consider the case when A is a Gorenstein local ring of dimension 2 but not
a hypersurface.
Notice e(A) ≥ 4. Let M be an indecomposable non-free, maximal Cohen-Macaulay A-
module. If M is a summand of X(m) then SyzA−1(M) is a summand of X(k). Notice
SyzA−1(M) is an indecomposable non-free A-module. Therefore SyzA−1(M) is a summand of
SyzA

2 (k)∗. By [23, Theorem B], SyzA
2 (k) is an indecomposable maximal Cohen-Macaulay

A-module. It follows that SyzA−1(M) ∼= SyzA
2 (k)∗. Notice

Syz1(M
∗) ∼= SyzA−1(M)∗ ∼= SyzA

2 (k). (4.4.1)

Let x1, x2 be a A ⊕ M∗ ⊕ Syz1(M
∗)-superficial sequence. Set C = A/(x1, x2) and if E is

an A-module, set E = E/(x1, x2)E. We note that

SyzA
2 (k) = SyzC

2 (k) ⊕ SyzC
1 (k)2 ⊕ SyzC

0 (k). (4.4.2)

Set N = M∗. Then SyzA
1 (M∗) ∼= SyzC

1 (N). We now consider two cases.

Case 1 M is Ulrich.
Then notice M∗ is also Ulrich; see 2.4. Then N = ka where a = μ(N). Let n be the
maximal ideal of C. Note it is indecomposable as a C-module. By 4.4.2 and 4.4.1 we get

na = SyzC
2 (k) ⊕ SyzC

1 (k)2 ⊕ k.

By Krull-Schmidt we get that k = n. So n2 = 0. It follows that e(A) = e(C) = 2, a
contradiction (here the first equality holds by 2.12).

Case 2 M = SyzA
1 (D) where D is Ulrich.

Then D = SyzA−1(M). It follows that SyzA
2 (k)∗ is Ulrich. Therefore SyzA

2 (k) is also Ulrich.

Therefore SyzA
2 (k) ∼= kl for some l. So by 4.4.2 it follows that n the maximal ideal of C is

isomorphic to k. Therefore n2 = 0 and so e(A) = e(C) = 2 a contradiction.

5 Proofs of Theorem’s 1.2, 1.5 and 1.7

We first give

Proof of Theorem 1.2 We have nothing to prove if A is a hypersurface ring. So we can
consider the case when A is not a hypersurface ring. Let M be an indecomposable peri-
odic maximal Cohen-Macaulay A-module. Let N,L be indecomposable non-free maximal
Cohen-Macaulay A-modules and assume there exists irreducible maps u : N → M and
v : M → L. Let

0 → τ(M) → EM → M → 0, 0 → M → VM → τ−1(M) → 0

be the AR-sequences starting and ending at M .
We first note that Syzi (u) : Syzi (N) → Syzi (M) and Syzi (v) : Syzi (M) → Syzi (L)

are irreducible, see 3.1. Let p be the period of M . Note Syzp(M) ∼= M .
We have irreducible maps Syzip : Syzip(N) → M for all i ≥ 1. As Syzip(N) is inde-

composable maximal Cohen-Macaulay A-module we get that Syzip(N) are factors of EM

for all i ≥ 1. By Krull-Schmidt theorem we get that N is periodic. A dual argument gives
that L is periodic.
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If there exists an irreducible map from M → A then M is factor of X(m) the maximal
Cohen-Macaulay approximation of m. So by 4.1 we get that M is extremal. As A is not a
hypersurface this is a contradiction.

Notice τ(M) = Syz−d+2(M) as A is Gorenstein. If there is an irreducible map from
A → M then A is a factor of EM and so there exit’s an irreducible map from τ(M) →
A. By previous argument we get that τ(M) is extremal. So M is extremal. As A is not a
hypersurface this is a contradiction,

ThusH defines a union of connected components of �(A).

Remark 5.1 In Proposition 5.2 of [3] it is shown that ifA is a self-injective Artin algebra and
M, N are non-projective indecomposable A-modules such that there is an irreducible map
f : M → N then M is a periodic module if and only if N is. To the best of my knowledge
this proof does not generalize to higher dimensions.

We now give

Proof of Theorem 1.4 There is nothing to prove if Q is regular local. So we can consider
the case when Q is not regular. In particular A is not regular. Let M be an indecomposable
maximal Cohen-Macaulay A-module such that projdimQ M is finite. Then M is a periodic
A-module with period ≤ 2. As A is not a hypersurface ring then by proof of previous
Theorem there is no irreducible map from A → M or M → A.

LetN,L be indecomposable non-free maximal Cohen-MacaulayA-modules and assume
there exists irreducible maps u : N → M and v : M → L. Let

0 → τ(M) → EM → M → 0, 0 → M → VM → τ−1(M) → 0

be the AR-sequences starting and ending at M . Notice τ(M) = SyzA−d+2(M) and
τ−1(M) = SyzA

d−2(M). It follows that projdimQ τ(M) and projdimQ τ−1(M) is finite.
Therefore projdimQ EM and projdimQ VM is finite.

By [25, 5.5, 5.6], we get that N,L are direct summands of EM and VM respectively.
It follows that projdimQ N and projdimQ L are finite. Thus PQ determines a union of
connected components of �(A).

Let us recall that a quasi-deformation A → B ←− Q of A is a flat local map A → B

and a deformation Q
η−→ B (i.e., ker η is generated by a Q-regular sequence). We say CI-

dimension of an A-module M is finite if there is a quasi-deformation A → B ←− Q with
projdimQ M ⊗A B is finite.

We now give:

Proof of Theorem 1.5 If A is a hypersurface ring then we have nothing to show. So we
can assume that A is not a hypersurface. Let M be an indecomposable maximal Cohen-
Macaulay A-module which is periodic and has a finite CI-dimension over A. Let A →
B ←− Q be a quasi-deformation of A with projdimQ M ⊗A B finite. As A is not a
hypersurface by proof of Theorem 1.2 there is no irreducible map fromA → M orM → A.

LetN,L be indecomposable non-free maximal Cohen-MacaulayA-modules and assume
there exists irreducible maps u : N → M and v : M → L. Let

0 → τ(M) → EM → M → 0, 0 → M → VM → τ−1(M) → 0

be the AR-sequences starting and ending at M . Notice τ(M) = SyzA−d+2(M) and
τ−1(M) = SyzA

d−2(M).
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Notice τ(M) ⊗A B = SyzB−d+2(M ⊗A B). Thus CI-dimension of τ(M) is finite. As
the quasi-deformations involved are the same we get that EM also has finite CI-dimension
over A. A similar argument yields that VM has finite CI dimension over A. As N and L are
summands of EM and VM respectively we get that CI dimension of N and L are finite. It
follows that PO defines a union of connected components of �(A).

Let C be the union of connected components of �(A) consisting of periodic inde-
composable maximal Cohen-Macaulay A-modules and let CO be the union of connected
components of �(A) consisting of periodic indecomposable maximal Cohen-Macaulay A-
modules having finite CI-dimension overA. Then as CO ⊆ C we get that C\CO is a union of
connected components of �(A). Notice C \CO consists of precisely those periodic maximal
Cohen-Macaulay A-modules which has infinite CI-dimension over A.

6 Proof of Theorem 1.6

We need to recall some preliminaries regarding support varieties. This is relatively simple
in our case since A is complete with algebraically closed residue field.

Let A = Q/(u) where (Q, n) is regular local and u = u1, . . . , uc ∈ n2 is a regular
sequence. We need the notion of cohomological operators over a complete intersection ring.

The Eisenbud operators, [14] are constructed as follows:

Let F : · · · → Fi+2
∂−→ Fi+1

∂−→ Fi → · · · be a complex of free A-modules.

Step 1: Choose a sequence of free Q-modules ˜Fi and maps˜∂ between them:

˜F : · · · → ˜Fi+2
˜∂−→ ˜Fi+1

˜∂−→ ˜Fi → · · ·
so that F = A ⊗˜F

Step 2: Since˜∂2 ≡ 0 modulo (u), we may write˜∂2 = ∑c
j=1 uj˜tj where ˜tj : ˜Fi → ˜Fi−2

are linear maps for every i.
Step 3: Define, for j = 1, . . . , c the map tj = tj (Q, f,F) : F → F(−2) by tj = A ⊗˜tj .

The operators t1, . . . , tc are called Eisenbud’s operator’s (associated to u) . It can be
shown that

(1) ti are uniquely determined up to homotopy.
(2) ti , tj commute up to homotopy.

Let R = A[t1, . . . , tc] be a polynomial ring over A with variables t1, . . . , tc of degree 2.
Let M, N be finitely generated A-modules. By considering a free resolution F of M we get
well defined maps

tj : ExtnA(M,N) → Extn+2
R (M,N) for 1 ≤ j ≤ c and all n,

which turn Ext∗A(M,N) = ⊕

i≥0 Ext
i
A(M,N) into a module over R. Furthermore these

structure depend on u, are natural in both module arguments and commute with the
connecting maps induced by short exact sequences.

Gulliksen, [17, 3.1], proved that Ext∗A(M,N) is a finitely generated R-module. We
note that Ext∗(M, k) is a finitely generated graded module over T = k[t1, . . . , tc].
Define V ∗(M) = V ar(annT (Ext∗(M, k)) in the projective space P

c−1. We call V ∗(M)

the support variety of a module M . Note that in [7] support varities are defined as
V ar(annT (Ext∗(M, k)) in kc. However as the ideal involved is homogeneous we get a
similar notion. We need the following
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Lemma 6.1 Let (Q, n) be a complete regular local ring with algebraically closed residue
field k. Let f = f1, . . . , fc ∈ n2 be a regular sequence. Assume c ≥ 2. Set A = Q/(f) and
let d = dimA. Let W be an irreducible non-empty sub-variety of Pc−1. Then there exists an
indecomposable non-free maximal Cohen-Macaulay A-module M with V ∗(M) = W .

Proof By [9, 2.3], there exists an A-module E with V ∗(E) = W . Then N = Syzd+1(E) is
a maximal Cohen-Macaulay A-module and V ∗(N) = V ∗(E) = W (see [7, 2.4(3)]). Notice
N has no free summands. IfN is indecomposable then we are done. OtherwiseN = N1⊕N2
where N1 and N2 are maximal Cohen-Macaulay A-modules with no free-summands. Let
T = k[t1, . . . , tc] and let Ext∗A(N, k), Ext∗A(N1, k) and Ext∗A(N2, k) be given T -module
structure as above.

As Ext∗(N, k) = Ext∗A(N1, k) ⊕ Ext∗A(N2, k) we get that

annT Ext∗(N, k) = annT Ext∗(N1, k) ∩ annT Ext∗(N2, k).

It follows that
W = W1 ∩ W2 where Wi = V ∗(Ni) for i = 1, 2.

As W is irreducible we get that W = W1 or W = W2. Iterating this procedure we get our
result.

The following result yields Theorem 1.6 as an easy corollary.

Theorem 6.2 Let Q = k[[x1, . . . , xn]] be the formal power series over an algebraically
closed field k. Let u = u1, . . . , uc ∈ n2 be a regular sequence. Assume c ≥ 2. Set A =
Q/(u) and let d = dimA. Assume A is an isolated singularity. Let W be a proper sub-
variety of Pc−1. Let

CW = {M | M is indecomposable MCM A-module with V ∗(M) = W }.
Then CW defines an union of connected components of �(A). If W is irreducible then CW is
non-empty.

Proof Let M ∈ CW . Notice M is not free. As W is a proper subset of Pc−1 we get that
dimW ≤ c − 2. So cxM = dimW + 1 ≤ c − 1. In particular M is not extremal. So there
is no irreducible map M → A. As τ(M) = Syz−d+2(M) is also not extremal there is no
irreducible map τ(M) → A. So there is no irreducible map A → M .

Let N,L be indecomposable non-free maximal Cohen-Macaulay A-modules and sup-
pose there exists an irreducible map u : N → M and an irreducible map v : M → L.

Claim: V ∗(N) = V ∗(M) = W and V ∗(L) = V ∗(M) = W .
Suppose there exists a ∈ V ∗(N) \ V ∗(M). Let D be a maximal Cohen-Macaulay A-
module with V ∗(D) = {a}. As {a} ∩ W = ∅ we get that ExtAi (D, M) = 0 for all
i � 0, see [7, Theorem I]). As V ∗(τ (M)) = V ∗(M) = W (see [7, 2.4(3)]) we also
get ExtAi (D, τ(M)) = 0 for i � 0. Thus ExtAi (D,EM) = 0 for i � 0. As N is a
summand of EM we get that ExtAi (D, N) = 0 for all i � 0. This implies a /∈ V ∗(N), a
contradiction. Thus V ∗(N) ⊆ V ∗(M). We now notice that there exists an irreducible map
M → τ−1(N). By the previous argument we get that V ∗(M) ⊆ V ∗(τ−1(N)) = V ∗(N).
Thus V ∗(N) = V ∗(M) = W .
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As there exist’s an irreducible map v : M → L. Then there exists an irreducible map
from v′ : L → τ−1(M). By the previous argument we get V ∗(L) = V ∗(τ−1(M)). As
V ∗(τ−1(M)) = V ∗(M) = W we get V ∗(L) = W . Thus we have proved our Claim.

By our claim and as there are no irreducible maps from M → A and A → M we get
that CW is a union of connected components of �(A). If W is irreducible then by 6.1 we get
that CW is non-empty.

We now give

Proof of Theorem 1.6 By 6.2 the result follows.

7 Quasi AR-sequences

Setup: In this section (A,m) is a Henselian Gorenstein local ring with algebraically closed
residue field k. We also assume A is an isolated singularity. For the notion of AR -sequences
see [25, Chapter 2]. In this section we introduce the notion of quasi AR-sequences.

Definition 7.1 Let M be an indecomposable non-free maximal Cohen-Macaulay A-
module. By a quasi-AR sequence ending at M we mean an exact sequence s : 0 → K →
E

φ−→ M such that

(1) E is a stable maximal Cohen-Macaulay A-module.
(2) φ is irreducible.
(3) If L is a stable maximal Cohen-Macaulay A-module and if there is an A-linear map

σ : L → M which is not a split epi then there exist’s a map ξ : L → E such that
φ ◦ ξ − σ ∈ β(L, M).

Remark 7.2 Unlike AR-sequences the module K need not be maximal Cohen-Macaulay.
Also the map φ need not be surjective.

A consequence of the definition of quasi AR-sequence is the following:

Proposition 7.3 [with hypothesis as in 7.1.] Suppose σ is irreducible. Then ξ is a split
monomorphism.

Proof By 3.2, φ ◦ ξ is irreducible. Now φ is irreducible. So in particular it is not a split epi.
It follows that ξ is a split mono.

We need the following analogue to Corollary 2.12 from [25].

Lemma 7.4 Let (A,m) be a Henselian Gorenstein local ring with algebraically closed
residue field k. Let M,L be indecomposable non-free maximal Cohen-MacaulayA-modules

and let s : 0 → K → E
φ−→ M be a quasi AR-sequence ending at M . Then the following

two conditions are equivalent:

(i) There is an irreducible morphism from L to M .
(ii) L is isomorphic to a direct summand of E.
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Proof (i) =⇒ (ii). This follows from 7.3.
(ii) =⇒ (i). Assume the decomposition of E is given by E = L ⊕ Q. Denote

φ = (f, g) along this decomposition. We claim that f is irreducible.
Clearly f is not a split epi as φ is not a split epi. If f is a split mono then as L and M

are indecomposable we get that f is an isomorphism and so a split epi, a contradiction.
The rest of the proof is similar to the proof of (ii) =⇒ (i) of Corollary 2.12 from

[25].

We give two constructions of quasi AR-sequences. The first one comes from AR
sequences.

Proposition 7.5 Let (A,m) be a Henselian Gorenstein local ring with algebraically closed
residue field k. LetM be an indecomposable non-free maximal Cohen-MacaulayA-modules

and let l : 0 → N → EM
p−→ M → 0 be an AR-sequence ending at M . Suppose EM =

E ⊕F where F is a free A-module and E has no free summands. Denote p = (φ, ψ) along

this decomposition. Assume E �= 0. Let K = kerφ. Then s : 0 → K → E
φ−→ M is a quasi

AR-sequence ending at M .

Proof By Corollary 2.12 from [25] we get that φ is an irreducible map. Now letL be a stable
maximal Cohen-Macaulay A-module and let f : L → M be A-linear which is not a split
epi. Then as l is an AR sequence ending at M there exist’s an A-linear map g : L → EM

with f = p ◦ g. Suppose

g =
(

σ

δ

)

where σ : L → E and δ : L → F .

So we get f = φ ◦ σ + ψ ◦ δ. Notice ψ ◦ δ ∈ β(L, M). It follows that s is a quasi AR
sequence ending at M .

Let l : 0 → N → EM
p−→ M → 0 be an AR-sequence ending at M then it is not true

that a lift of p; q : Syz1(E) → Syz1(M) is surjective and defines a AR sequence ending at
Syz1(M). The great advantage of quasi AR sequences is that it behaves well under lifting
(and also co-lifting).

Theorem 7.6 Let (A,m) be a Henselian Gorenstein local ring with algebraically closed
residue field k. LetM be an indecomposable non-free maximal Cohen-MacaulayA-modules

and let s : 0 → K → E
φ−→ M be a quasi AR-sequence ending at M . Let ψ be any lift of φ.

Set K ′ = kerψ . Then s′ : 0 → K ′ → Syz1(E)
ψ−→ Syz1(M) is a quasi AR sequence ending

at Syz1(M). Similarly if θ is any co-lift of φ. Then s̃ : 0 → ˜K → Syz−1(E)
θ−→ Syz−1(M)

is a quasi AR sequence ending at Syz−1(M).

Proof As E is a stable maximal Cohen-Macaulay A-module we get that Syz1(E) is also a
stable maximal Cohen-Macaulay A-module. By Theorem 3.1 we get that ψ is an irreducible
map.

Let L be a stable maximal Cohen-Macaulay A-module and let f : L → Syz1(M) be an
A-linear map which is not a split epi. Let g : Syz−1(L) → M be any co-lift of f . Then by
3.3 we get that g is not a split epi. It follows that there exists ξ : Syz−1(L) → M such that
φ ◦ξ −g = δ where δ ∈ β(Syz−1(L),M). Let ξ ′ : L → Syz1(M) be a lift of ξ . Then notice
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by construction ψ ◦ ξ ′ − g is a lift of δ. It follows that ψ ◦ ξ ′ − g ∈ β(L, Syz1(M)). Thus
s′ is a quasi AR-sequence ending at Syz1(M).

The assertion regarding s̃ can be proved similarly.

Till now we have not used the fact that k, the residue field of A is algebraically closed.
We will now use this fact. Let us recall the following notion from [25, Chapter 5].

Let M,N be maximal Cohen-Macaulay A-modules. Set (M,N) = HomA(M,N).
Decompose M = ⊕m

i=1 Mi and N = ⊕n
j=1 Nj where Mi, Nj are indecomposable

A-modules for all i, j For g ∈ (M,N) decompose g = (gij ) where gij : Mi → Nj .

Definition 7.7 We say g ∈ (M,N)∗ if no gij is an isomorphism.

We define the following descending chain {(M,N)n}n≥1 of A-submodules of (M,N) as
follows:

(M,N)n consists of those f ∈ (M,N) such that there is a sequence X0, . . . , Xn of
maximal Cohen-Macaulay A-modules with X0 = M and Xn = N and fi ∈ (Xi−1, Xi)∗
such that f = fn ◦ fn−1 ◦ · · · ◦ f1.

It is easy to see that (M,N)n are A-submodules of (M,N) and that

(M,N) ⊇ (M,N)1 ⊇ · · · ⊇ (M,N)n ⊇ (M,N)n+1 ⊇ · · · .
It is not difficult to see that (M,N)1/(M, N)2 is a k = A/m vector space. It is finite
dimensional since it is finitely generated as an A-module. Set

irr(M,N) = dimk

(M,N)1

(M,N)2
.

Let us restate the following basic result from [25, 5.5].

Lemma 7.8 [with hypothesis as in 7.1.] Let M,N be indecomposable maximal Cohen-
Macaulay A-modules. Assume there is an AR-sequence ending at M

0 → τ(M) → EM → M → 0.

Let n be the number of copies of N in direct summands of EM (note that n = 0 is possible).
Then the following equality holds:

irr(N,M) = n.

We note that the assumption k is algebraically closed is used in the proof of Lemma 7.8.
The following is a basic result in our theory of quasi AR-sequences.

Theorem 7.9 [with hypothesis as in 7.1.] Let M,N be indecomposable non-free maximal

Cohen-Macaulay A-modules. Let 0 → K → E
φ−→ M be a quasi AR sequence ending

at M . Let n be the number of copies of N in direct summands of E (note that n = 0 is
possible). Then the following equality holds:

irr(N,M) = n.
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Proof Set S(N,E) = (N,E)/(N,E)1. Then by proof of Lemma 5.5. in [25] it follows that
S(N,E) ∼= kn. Define

θ : S(N,E) → (N,M)1

(N,M)2
,

[f ] → [φ ◦ f ].
By 7.4 we get that θ is a well-defined k-linear map.

We first show that θ is surjective. Let σ : N → M be an irreducible map. Denote by [σ ]
it’s class in (N,M)1/(N,M)2. By our definition of quasi AR sequence there exists ξ : N →
E such that φ ◦ ξ − σ = g ∈ β(N, M). By 7.3 we get that ξ is a split monomorphism. As
N,M are both non-free indecomposable A-modules we get that g ∈ (N,M)2. Therefore
we get θ([ξ ]) = [σ ].

Next we show that θ is injective . Let [h] ∈ S(N,E) be non-zero. Thus h : N → E

is a split mono. Then by 7.4 we get that φ ◦ h : N → M is an irreducible map. Thus
θ([h]) = [φ ◦ h] �= 0. Therefore θ is injective.

A consequence of the previous two results is the following:

Corollary 7.10 [with hypothesis as in 7.1.] Let M be indecomposable non-free maximal
Cohen-Macaulay A-module. Suppose the following is an AR-sequence ending at M:

t : 0 → τ(M) → EM
p−→ M → 0.

Further assume EM has no free summnads. Let

s : 0 → K → E
φ−→ M

be a quasi AR sequence ending at M . Then E ∼= EM and φ is surjective. Furthermore s is
also an AR-sequence ending at M (and so K ∼= τ(M)).

Proof By 7.8 and 7.9 it follows that E ∼= EM . As p : EM → M is an indecomosable
map, by defining property of quasi AR-sequences there exists a map ξ : EM → E such that
φ ◦ ξ − p = δ ∈ β(EM,M). As p is indecomposable, by 7.3 we get ξ is a split mono. As
E ∼= EM , by Krull-Schmidt we get ξ is an isomorphism. It follows that

φ − p ◦ ξ−1 = δ ◦ ξ−1 := η ∈ β(E, M).

Set ψ = p ◦ ξ−1 : E → M . Notice ψ is surjective. As E,M has no free summands we
get that η(E) ⊆ mM . It follows that the maps φ, ψ : E/mE → M/mM are equal. As
ψ is surjective, it follows that φ is surjective. So by Nakayama’s Lemma we get that φ is
surjective.

We now use that t is an AR-sequence. As φ is irreducible, it is not a split epi. Therefore
there exists θ : E → EM such that p ◦ θ = φ. As φ is irreducible we get that θ is a split
mono. Since E ∼= EM , by Krull-Schmidt we get θ is an isomorphism. Note there exists
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f : K → τ(M) which makes the following diagram commute:

s : 0 �� K

f

��

�� E

θ

��

φ �� M

1M

��

�� 0

t : 0 �� τ(M) �� EM

p �� M �� 0

By Snake Lemma we get that f is also an isomorphism. So K ∼= τ(M). In the terminology
of [25, 2.3] we get s ∼ t . So s is an AR-sequence ending at M .

The following consequence of Corollary 7.10 is significant:

Lemma 7.11 [with hypothesis as in 7.1.] Let M be an indecomposable maximal Cohen-

Macaulay non-free A-module. Let t : 0 → τ(M) → EM
p−→ M → 0 be an AR-sequence

ending at M . If there is no irreducible maps A → M and A → Syz1(M) then we have

μ(EM) = μ(M) + μ(τ(M)).

Proof Set N = τ(M), M1 = Syz1(M) and E1 = Syz1(E). As there is no irreducible maps
from A → M we get that EM is stable. In particular t is a quasi AR-sequence, see 7.5. Let
φ : E1 → M1 be any lift of p. Then we have a quasi AR-sequence

s : 0 → K1 → E1
φ−→ M1.

As there are no irreducible maps from A → M1 we get that EM1 is stable. Therefore
by Corollary 7.10 we get that φ is surjective and s is an AR-sequence ending at M1.
Furthermore E1 ∼= EM1 and K1 ∼= τ(M1).

Let F → EM and G → M be projective covers. Then we have an exact sequence

0 �� E1

φ

��

�� F

θ

��

�� EM

p

��

�� 0

0 �� M1 �� G �� M �� 0

Set N = τ(M). As φ, p are surjective we get θ is surjective. As G is free it is in fact a split
epi. Set H = ker θ . Then H is free and μ(H) = μ(EM) − μ(M).

As φ is surjective we get by Snake Lemma that the induced map H → N is surjective.
It follows that μ(N) ≤ μ(EM) − μ(M). As there is an exact sequence 0 → N → EM →
M → 0 it follows (after tensoring with A/m) that μ(N) ≥ μ(EM) − μ(M). The result
follows.

8 Proof of Theorem 1.8

In this section we give a proof of Theorem 1.8.
[with hypotheses as in 1.1.] Recall if M is an indecomposable non-free A-module then

it’s AR-translate is τ(M) = Syz−d+2(M). So if d = 2 or if A is a hypersurface of even
dimension then τ(M) = M .
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We now give:

Proof of Theorem 1.8. Let M be an idecomposable Ulrich A-module. By 8.1 we get that
τ(M) = M . Then by 4.2 there is no irreducible map from M → A and Syz1(M) → A. By
our assumptions on the ring there is no irreducible map from A → M and A → Syz1(M).
Let s : 0 → M → EM → M → 0 be the AR-sequence ending at M . Then by 7.11 we get
μ(EM) = 2μ(M). Also note that e(EM) = 2e(M). So e(EM) = μ(EM). Therefore EM is
Ulrich A-module.

Let N be a non-free indecomposable maximal Cohen-Macaulay A-module. If there is an
irreducible morphism N → M then N is a summand of EM . As EM is Ulrich we also get
N is Ulrich. If there is an irreducible morphism from M → N then by our assumptions on
the ring there is also an irreducible morphism from N → M . By our earlier argument we
get N is Ulrich.

As there is no irreducible map from A → M or from M → A it follows that U defines
a union of connected components of �(A).

Remark 8.1 IfA = Q/(f ) is a hypersurace ring with dimA is odd then note that Auslander-
Reiten translate τ(M) = SyzA

1 (M) which in general is not an Ulrich module (even if M is
Ulrich), see [22, Theorem 2]. So for odd dimensions our technique to produce an infinite
family of indecomposable Ulrich modules with unbounded multiplicities fails.

9 Proof of Theorem 1.9

In this section we give a proof of Theorem 1.9.
We recall the definition of linkage of modules as given in [20]. Throughout (A,m) is a

Gorenstein local ring of dimension d .

Let us recall the definition of transpose of a module. Let F1
φ−→ F0 → M → 0 be a

minimal presentation of M . Let (−)∗ = Hom(−, A). The transpose Tr(M) is defined by
the exact sequence

0 → M∗ → F ∗
0

φ∗
−→ F ∗

1 → Tr(M) → 0.

Set λ(M) = Syz1(Tr(M)). We note that if M is a stable maximal Cohen-Macaulay A-
module then Tr(M) = (Syz2(M))∗.

Definition 9.1 Two A-modules M and N are said to be horizontally linked if M ∼= λ(N)

and N ∼= λ(M).

If E is a stable maximal Cohen-Macaulay A-module then it is known that E is linked
to λ(E), i.e., λ2(E) = E see [20, Corollary 7]. Note if M is an indecomposable non-free
maximal Cohen-Macaulay A-module then so is λ(M).

Proof of Theorem 1.9 We prove the result only for λ. The proof for D is in fact simpler.
Let M,N be indecomposable non-free maximal Cohen-Macaulay A-modules. Using

terminology from 7.11 it suffices to prove that there exists an isomorphism

φ : (M,N)1

(M,N)2
→ (λ(N), λ(M))1

(λ(N), λ(M))2
.

Let f ∈ (M,N)1. Then as M, N are indecomposable we get that f is not an isomorphism.
In particular it is not a split mono. Let f2 : Syz2(M) → Syz2(N) be a lift of f . By 3.3 and
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2.8 it follows that f2 is not a split mono. Let f ∗
2 : Tr(N) → Tr(M) be the dual of f2. Then

f ∗
2 is not a split epi. Let gf : λ(N) → λ(M) be any lift of f ∗

2 . Define

˜φ : (M,N)1 → (λ(N), λ(M))1

(λ(N), λ(M))2
,

f �→ gf + (λ(N), λ(M))2.

We first show that this map is independent of the choices we made. If f ′
2 is another

lift of f then f2 − f ′
2 ∈ β(Syz2(M), Syz2(N)). So f ∗

2 − (f ′
2)

∗ ∈ β(Tr(N),Tr(M)). We
know that if σ ∈ β(Tr(N),Tr(M)) then any lift of σ is in β(λ(N), λ(M)). Thus we have
gf − g′

f = δ ∈ β(λ(N), λ(M)). As λ(N), λ(M) are indecomposable and non-free we get

that δ ∈ (λ(N), λ(M))2. Thus ˜φ is well-defined. It is elementary to show that ˜φ is A-linear.
Now let f ∈ (M,N)2. Then there exists a maximal Cohen-Macaulay A-module X and

a commutative diagram
M

u

��

f

���
��

��
��

X v
�� N

such that u is not a split mono and v is not a split epi. Let u2 : Syz2(M) → Syz2(X) be a
lift of u and v2 : Syz2(X) → Syz2(N) be a lift of v. By 3.3 and 3.4 we get that u2 is not a
split mono and v2 is not a split epi. Then f2 = v2 ◦u2 is a lift of f . Then f ∗

2 = u∗
2 ◦v∗

2 . Also
u∗
2 is not a split epi and v∗

2 is not a split mono. Let Syz1(u
∗
2) be a lift of u∗

2 and Syz1(v
∗
2)

be a lift of v∗
2 . Then gf = Syz1(u

∗
2) ◦ Syz1(v

∗
2) is a lift of f ∗

2 . By 3.3 and 3.4 we get that
Syz1(u

∗
2) is not a split epi and Syz1(v

∗
2) is not a split mono. So gf ∈ (λ(N), λ(M))2. Thus

we have a well-defined A-linear map

φ : (M,N)1

(M,N)2
→ (λ(N), λ(M))1

(λ(N), λ(M))2
.

As λ2(M) = M and λ2(N) = N we have a well defined A-linear map

ψ : (λ(N), λ(M))1

(λ(N), λ(M))2
→ (M,N)1

(M,N)2
.

Finally it is tautological that φ and ψ are inverses of each other. Thus λ : �(A) → �(A)rev

is an isomorphism.
Now assume thatA is not a hypersurface ring.We first note that Syz1(λ(M)) = M∗ when

M is stable maximal Cohen-Macaulay A-module. If λ(M) = D(M) for all indecomposable
maximal non-free A-modules then M∗ (and so M) has a periodic resolution with period 1.
It follows that A is a hypersurface ring, a contradiction.

Next we show that there exists E with D(E) �= E. As A is not a hypersurface there
exists an MCM module M which is not periodic. Let M1 = Syz1(M). As M is not periodic
either M �= M∗ or M1 �= M∗

1 .
If λ(M) = M for all indecomposable maximal Cohen-Macaulay non-free M then note

that Syz1(M) = M∗ for all such M . We now note that

Syz−2(M
∗) ∼= (Syz2(M))∗ ∼= Syz1(Syz2(M)) = Syz3(M)

We now note that

Syz−2(M
∗) = Syz−2(Syz1(M)) = Syz−1(M)

It follows that M is periodic for all indecomposable maximal Cohen-Macaulay non-free M .
Thus A is a hypersurface, a contradiction.
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Thus λ, D : �(A) → �(A)rev are distinct isomorphism’s if A is not a hypersurface ring.
Furthermore λ �= 1 and D �= 1.

The following result is immediate:

Corollary 9.2 (with hypotheses as in 1.1). For all n ∈ Z the map Syzn : �(A) → �(A) is
an isomorphism of graphs

Proof We have Syz1 ◦λ = D. So Syz1 = D ◦λ and Syz−1 = λ◦D. The result follows.

Remark 9.3 Let G = {g, h | h2 = 1; gn �= 1 for all n �= 1; gh = hg−1} be the infinite
dihedral group. Then G acts on �(A) via g[M] = [Syz1(M)] and h[M] = [M∗]. Our
results show that we also have an action on the connected components of �(A).

We now give

Proof of Theorem 1.11. Let [M] in C. Recall
I (M) = {n | [Syzn(M)] ∈ C}.

We first show that I (M) is an ideal in Z. As M = Syz0(M) we get 0 ∈ I (M). Now let n ∈
I (M). The isomorphism Syz−n : �(A) → �(A) maps C to itself since Syz−n(Syzn(M)) =
M . In particular we have [Syz−n(M)] = Syz−n([M]) ∈ C. If m, n ∈ C then note that
the isomorphism Syzn : �(A) → �(A) maps C to itself as Syzn([M]) = [Syzn(M)] ∈ C.
Therefore [Syzn+m(M)] = Syzn([Syzm(M)]) ∈ C. Thus I (M) is an ideal in Z. In particular
there exists a unique non-negative integer i(M) such that I (M) = i(M)Z.

To prove rest of the assertion of the theorem we first make a convention: if [X], [Y ] ∈ C

then write [X] ←→ [Y ] if there is an irreducible map fromX to Y OR there is an irreducible
map from [Y ] to [X].

As [M], [N ] are in C there is a sequence

[M = X0] ←→ [X1] ←→ · · · ←→ [Xn−1] ←→ [Xn = N ],
in C. Set a = i(M) and b = i(N). By 9.2 we have the following sequence in �(A):

[Syza(M)] ←→ [Syza(X1)] ←→ · · · ←→ [Syza(N)].
As [Syza(M)] ∈ C we get [Syza(N)] ∈ C. So a ∈ I (N) and therefore I (M) ⊆ I (N).
Similarly we get I (N) ⊆ I (M). Thus I (M) = I (N).

We now give

Proof of Corollary 1.12 (1) Suppose if possible D has only finitely many vertices. Then
Syzn(D) cannot be a component of ˜�(A) = �(A) \ �0(A). As �0(A) has only finitely
many components we get Syzn(D) = Syzm(D) for some n > m. Set c = n − m. Then
Syzc(D) = D. Therefore Syzlc(D) = D for all l ∈ Z.

We note that the function Syzlc permutes vertices of D among itself. As D is finite it
follows that all modules in D is periodic.

As D is a connected component of �0(A) it follows that there exists [M] ∈ D such that
there is an irreducible map either from M to A or an irreducible map from A to M . In the
first case M is a component of X(m) the maximal Cohen-Macaulay approximation of m.
By 4.1 we get that M is extremal. As M is periodic we get that A is a hypersurface ring, a
contradiction. In the second case there is an irreducible map from Syz−d+2(M) → A. Note
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as M is periodic then so is Syz−d+2(M). An argument similar to the earlier case yields that
A is a hypersurface ring, a contradiction.

(2) Suppose if possible the function f : V ert (D) → Z given by f ([M]) = e(M) is
bounded. As e(M) ≥ μ(M) and e(Syz1(M)) = e(A)μ(M) − e(M), it follows that the
multiplicity function on V ert (Syz1(D)) is bounded. Iterating we get that the multiplcity
function on V ert (Syzn(D)) is bounded for each n ≥ 1. Then Syzn(D) cannot be a com-
ponent of ˜�(A) = �(A) \ �0(A). As �0(A) has only finitely many components we get
Syzn(D) = Syzm(D) for some n > m. Set c = n − m. Then Syzc(D) = D. Therefore
Syzlc(D) = D for all l ∈ Z. In particular there exists c such that

(∗∗) βil(M) ≤ c for all l ≥ 0 and all [M] in D.

As D is a connected component of �0(A) it follows that there exists [M] ∈ D such that
there is an irreducible map either from M to A or an irreducible map from A to M . In the
first case M is a component of X(m) the maximal Cohen-Macaulay approximation of m.
By 4.1 we get that M is extremal. As A is not an hypersurface we get the following

(1) If A is a complete intersection of codimension c ≥ 2 then cx(M) = c. Furthermore
limβi(M) = ∞. In particular the sequence {βil(M)} is unbounded. Thus (**) is not
possible in this case.

(2) If A is Gorenstein but not a complete intersection then
curv(M) = curv(k) > 1. So there exists r > 1 such that βi(M) > ri for all i � 0.
Thus (**) is not possible in this case too.

In the second case note that there is an irreducible map from N = Syz−d+2(M) to A.
We then have that for all i ≥ 0

βil+d−2(N) ≤ c

Then an argument similar to above gives a contradiction.

10 Obstruction to quasi AR-sequences

Let the setup be as in 1.1. Let M be a non-free maximal Cohen-Macaulay indecomosable
A-module.

Let s : 0 → τ(M) → EM → M → 0 be the AR-sequence ending at M . Then using
Proposition 7.5 we get the following:
There is no quasi-AR sequence ending at M ⇐⇒ EM is free.

The next result gives an essential obstruction to non-existence of quasi AR-sequences.

Lemma 10.1 [with hypothesis as in 1.1] Further assume d �= 1. Suppose there is a non-
free indecomposable maximal Cohen-Macaulay module M such that there is no quasi AR-
sequence ending at M . Then A is a hypersurface ring.

Proof By 10.1 it follows that τ(M) = Syz1(M). By construction
τ(M) = Syz−d+2(M). Therefore we get that M ∼= Syz−d+1(M). As d �= 1 we get that M

(and so τ(M)) is periodic.
EM is non-zero and free. In particular it has A as a summand. So there is an irreducible

map from τ(M) → A. It follows that τ(M) is a summand of X(m), the maximal Cohen-
Macaulay approximation of m. By 4.1 we get that τ(M) is extremal A-module. It is also
periodic. So A is a hypersurface ring.
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We now analyze hypersuface rings having perhaps modules M such that there is no quasi
AR-sequence ending at M . Let < M > denote the isomorphism class of a module M . Set

Qc(A) = {< M >| [M] ∈ �(A) with no quasi AR-sequence ending at M}.
We show

Proposition 10.2 Let (A,m) be a complete equicharacteristic hypersurface isolated singu-
larity. Assume d = dimA is even and non-zero. Also assume that k = A/m is algebraically
closed. Then

(1) Qc(A) is a finite set (possibly empty).
(2) If A is not of finite representation type and Syzd(k) is indecomposable then Qc(A) is

empty.
(3) If Qc(A) is non-empty and if < M > ∈ Qc(A) then

(a) Syzn(M) = M for all n ∈ Z.
(b) [M] is an isolated component of �(A).

Proof We note that as A is a hypersurface and d is even we get that τ(M) = M for any
non-free maximal Cohen-Macaulay indecomposable A-module M .

(1) If < M >∈ QC(A) then there is an irreducible map from M = τ(M) → A. So M

is a component of X(m). It follows that Qc(A) is a finite set.
(2) As Syzd(k) is indecomposable there is a unique non-free component of X(m). It

follows that �Qc(A) ≤ 1. If < M >∈ Qc(A) then note that [M] � [A] is a
connected component of �(A). It follows that A is of finite representation type, a
contradiction.

(3)(a) As there is no quasi AR-sequence ending at M we get that EM is free. So τ(M) =
Syz1(M). As dimA is even we get M = τ(M). As A is a hypersurface we get
Syzn(M) = M for all n ∈ Z.

(3)(b) Notice [M] is only connected to [A]. So we get that [M] is an isolated component
in �(A).

11 Structure of �0(A)

In this section we completely determine the structure of �0(A) when dimA = 2 and its
multiplicity e(A) ≥ 3.

Theorem 11.1 [with hypothesis as in 1.1.] Assume dimA = 2 and e(A) ≥ 3. Set M1 = A.
Then �0(A) is of the form

M1 � M2 � M3 � M4 � · · · � Mn � · · ·
where e(Mn) = ne(M1) for all n ≥ 1. Furthermore

(1) X(m) = M2 ⊕ F where F is free.
(2) M∗

n = Mn for all n ≥ 1.
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Remark 11.2 We do not have any idea of the structure of �0(A) when e(A) = 2 (so nec-
essarily A is a hypersurface) and A is of infinite representation type. The reason is that
Proposition 11.3 given below breaks down in the case e(A) = 2.

The following result is essential in our proof of Theorem 11.1.

Proposition 11.3 (with hypotheses as in Theorem 11.1). Let X(m) be a MCM approx-
imation of m. Write X(m) = M ⊕ F where F is free and M has no free summands.
Then

(1) M is indecomposable.
(2) rankM = 2.
(3) M ∼= M∗.

Proof (1) By [23, Theorem B]; SyzA
2 (k) is indecomposable. So X(k) = SyzA

2 (k)∗ is
indecomposable. As X(m) = SyzA

1 (X(k)) ⊕ G where G is free we get that M =
SyzA

1 (SyzA
2 (k)∗) is indecomposable by [25, 8.17].

(2) We get M∗ = SyzA−1(Syz
A
2 (k)). Let x, y be a A ⊕ M ⊕ SyzA

2 (k)-superficial sequence.
Set C = A/(x, y). If E is an A-module then set E = E/(x, y)E. Notice

M∗ ∼= SyzC
−1(Syz

A
2 (k)) and SyzA

2 (k) ∼= SyzC
2 (k) ⊕ SyzC

1 (k)2 ⊕ SyzC
0 (k).

Therefore
M∗ ∼= SyzC

1 (k) ⊕ SyzC
0 (k)2 ⊕ SyzC

−1(k).

We note that as we have an exact sequence 0 → k = soc(C) → C → C/ soc(C) →
0. Thus SyzC

−1(k) = C/ soc(C). Let n be the maximal ideal of C. Thus we have

M∗ ∼= n ⊕ k2 ⊕ C/ soc(C).

So �(M∗) = 2�(C). Therefore

e(M) = e(M∗) = e(M∗) = �(M∗) = 2�(C) = 2e(C) = 2e(A);
(here the second and the last equality holds by 2.12). It follows that rankM = 2.

(3) As there is an irreducible map M → A there exists an irreducible map A → M∗. As
dimA = 2 we have τ(M∗) = M∗. So there is an irreducible map from M∗ → A.
Thus M∗ is a non-free irreducible component of X(m). By (1) we have M∗ ∼= M .

We now give

Proof of Theorem 11.1. SetX(m) = M2⊕F where F is free andM2 has no free summands.
By Proposition 11.3 we get that M2 is indecomposable of rank 2. We have the AR-sequence

0 → M2 → Ma
1 ⊕ X → M2 → 0.

Thus a + rankX = 4. By Lemma 10.1 and Proposition 10.2(2) we get that X �= 0. Thus
1 ≤ a ≤ 3. We assert a = 1. We prove this by showing that the cases a = 2 or 3 do not
occur.

Claim 1: a �= 3.
Suppose if possible a = 3 then rank X is one. So X is indecomposable. As
dimA = 2 and there is an irreducible map from X to M2, there is an irreducible
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map from M2 → X. By rank considerations we get that the AR-quiver ending
at X is

0 → X → M2 → X → 0.

It follows that M1,M2 and X constitute a connected component of �0(A) and so
it is equal to �0(A). Therefore A has finite representation type, a contradiction.

Claim 2: a �= 2.
If possible assume a = 2. It follows that rankX = 2. We assert:

Subclaim 3: X is indecomposable.
Suppose if possibleX = X1⊕X2 where rankXi = 1. As dimA = 2 and there is
an irreducible map from Xi to M2, there is an irreducible map from M2 → Xi .
By rank considerations we get that the AR-quiver ending at Xi for i = 1, 2 is

0 → Xi → M2 → Xi → 0.

It follows that M1,M2, X1 and X2 constitute a connected component of �0(A)

and so it is equal to �0(A). It follows that A has finite representation type, a
contradiction. Thus X is indecomposable.

The AR-sequence ending at X is

0 → X → M2 ⊕ X1 → X → 0.

By an argument similar to Subclaim-3 we get that X1 is indecomposable of rank 2. Set
X0 = X.

For i ≥ 1, by an argument similar to Subclaim-3 we get that there exists indecomposable
module Xi+1 of rank 2 such that the AR-sequence ending at Xi is

0 → Xi → Xi−1 ⊕ Xi+1 → Xi → 0.

Thus �0(A) consists of the modules {M1, M2, Xi | i ≥ 0}, Also rank Xi = 2. This implies
that A is of finite representation type (see [25, 6.2]), a contradiction.

By claims 1, 2 we get a = 1. Thus rankX = 3.

Claim 4: X is indecomposable.
Suppose if possible this is not so. Then either

Subcase 5: X = X1 ⊕ X2 ⊕ X3 where rankXi = 1 for 1 ≤ i ≤ 3, OR

Subcase 6: X = X1 ⊕ X2 where rankXi = i for i = 1, 2.
We show that subcase 5, 6 are not possible. If subcase 5 occurs then by rank
considerations the AR-quiver ending at Xi is

0 → Xi → M2 → Xi → 0 for i = 1, 2, 3.

Thus the vertices of �0(A) will be

{M1, M2, X1, X2, X3}.
This implies that A has finite representation type, a contradiction.

If subcase 6 occurs then by rank considerations the AR-quiver ending at X1 is

0 → X1 → M2 → X1 → 0.
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Furthermore the AR-quiver ending at X2 is

0 → X2 → M2 ⊕ X3 → X2 → 0.

Note rankX3 = 2. By an argument similar to that of subcase 5 we get that X3 is indecom-
posable. Iterating we obtain rank two indecomposable modules Xi for i ≥ 4 such that the
AR-quiver ending at Xi is

0 → Xi → Xi+1 ⊕ Xi−1 → Xi → 0.

It follows that the vertices of �0(A) is

{M1,M2, Xi | i ≥ 1}.
As there is a bound on the ranks of vertices of �0(A) it follows that A is of finite
representation type, a contradiction.

Set M3 = X. We have rank M3 = 3 and that M3 is indecomposable. Inductively assume
that we have indecomposable MCM A-modules M1, . . . , Mn with n ≥ 3 and rankMi = i

such that the AR-sequence ending at Mj for j ≤ n − 1 is

0 → Mj → Mj ⊕ Mj+1 → Mj → 0.

Let the AR-sequence ending at Mn be

0 → Mn → Mn−1 ⊕ Y → Mn → 0.

Clearly rankY = n + 1. If we prove that Y is indecomposable then we can set Mn+1 = Y

and we will be done by induction.
Let Z be an indecomposable summand of Y . Then the AR-sequence ending at Z is

0 → Z → Mn ⊕ W → Z → 0,

where W is an MCM A-module (possibly zero). Nevertheless we get that rankZ ≥ n/2.
As n ≥ 3, rankY = n + 1 and an indecomposable summand Z of Y has rank atleast n/2

it follows that Y has at most two indecomposable summnads.
We want to prove that Y is indecomposable. Suppose it is not so. Then by our previous

argument it has two indecomposable summands say Y1 and Y2. Suppose rank Y1 ≤ rankY2.
Then we have

n

2
≤ rankY1 ≤ n + 1

2
.

We consider two cases:

Case 1: n = 2m + 1 is odd.
We get rank Y1 = m + 1. So rankY2 = m + 1 also. Let the AR-sequence ending at Y1 be

0 → Y1 → Mn ⊕ T → Y1 → 0.

Thus T has rank 1. The AR-sequence ending at T is

0 → T → Y1 ⊕ L → T → 0.

As m + 1 ≤ 2 we get m ≤ 1. As m ≥ 1 we get m = 1. Therefore n = 2m + 1 = 3. Now
consider the case n = 3. We get rankYj = 2 for j = 1, 2 and rank T = 1. Furthermore
L = 0. Similarly the AR-sequence ending at Y2 will be

0 → Y2 → M3 ⊕ T ′ → Y2 → 0,

where T ′ has rank 1. The AR-sequence ending at T ′ is
0 → T ′ → Y2 → T ′ → 0.
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It follows that the vertices of �0(A) will be

{M1,M2, M3, Y1, Y2, T , T ′}.
It follows that A has finite representation type, a contradiction.

Case 2: n = 2m is even.
We get rank Y1 = m and rankY2 = m + 1. The AR sequence ending at Y1 is

0 → Y1 → Mn → Y1 → 0.

The AR sequence ending at Y2 is

0 → Y2 → Mn ⊕ T → Y2 → 0.

It follows that rank T = 2. We have to consider two sub cases:

Subcase-1: T is decomposable. In this case T = T1 ⊕ T2 where rank Ti = 1 for i = 1, 2.
The AR-sequence ending at T1 is

0 → T1 → Y2 ⊕ L → T1 → 0.

We have 2 = m + 1 + rankL. As m ≥ 1 we get m = 1 and L = 0. So n = 2. We have
already dealt with this case.

Subcase-2: T is indecomposable. The AR-sequence ending at T is

0 → T → Y2 ⊕ W → T → 0.

We have 4 = m + 1 + rankW . As m ≥ 1 the possibilities for m is 1, 2, 3. If m = 1 then
n = 2. This case has been discussed earlier. Next we consider the case m = 3. In this
case W = 0. So the vertices of �0(A) will be

{Mi, Y1, Y2, T | 1 ≤ i ≤ n}.
It follows that A has finite representation type, a contradiction.

Finally we consider the case when m = 2. So n = 4. Thus rankW = 1. The AR-
sequence ending at W is

0 → W → T → W → 0.

Thus the vertices of �0(A) will be

{Mi, Y1, Y2, T , W | 1 ≤ i ≤ n}.
It follows that A has finite representation type, a contradiction.

(2) We note that the dual map D : �(A) → �(A)rev is an isomorphism of graphs. As
D(M2) = M∗

2
∼= M2 and as �0(A) is connected we get that D maps �0(A) to itself.

Comparing ranks we get M∗
n

∼= Mn for all n ≥ 3.

12 Proof of Theorem 1.13 and Corollary 1.14

In this sectionwe prove results as stated in the title of the section. Throughout (A,m) is an equi-
characteristic Gorenstein isolated singularity of dimension two. We also assume that A is
complete and the residue field k is algebraically closed. Furthermorewe assume that e(A)≥3.

We first give

Proof of Corollary 1.14 It suffices to show that Syzn(M) /∈ �0(A) for all M ∈ �0(A) and
for all n �= 0. Using the terminology of Theorem 1.11 we need to show I (M) = 0 for all M
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in �0(A). We also recall that I (M) = I (N) for all M,N ∈ �0(A). We denote this common
value by c.

We want to show c = 0. If possible assume c > 0. Set

V = {|i − j | | Mj = Syzn Mi for some n �= 0} and r = minV .

Notice c �= 0 if and only if V �= ∅.
We first consider the case when r = 0. Say Mi = Syzn Mi for some n �= 0. We may

assume n > 0. Then Mi is periodic. As A is not a hypersurface this is a contradiction by
Theorems 1.2 and 4.1.

We now assume r ≥ 1. Say Mi+r = Syzn(Mi) for some r > 0 and for some n �= 0. Note
we are not assuming n > 0. As we have an irreducible morphism from Mi+r−1 → Mi+r

we have an irreducible map from

Syz−n(Mi+r−1) → Mi .

So we have Mi+1 = Syz−n(Mi+r−1) or Mi−1 = Syz−n(Mi+r−1). The first case cannot
occur as r = minV . So Mi−1 = Syz−n(Mi+r−1) and therefore Mi+r−1 = Syzn(Mi−1).
Iterating this procedure we get that M2+r = Syzn(M2). We have irreducible maps
from M2+r−1 and M2+r+1 to M2+r = Syzn(M2). So we have an irreducible map from
Syz−n(M2+r−1) and Syz−n(M2+r+1) to M2. It follows that atleast one of Syz−n(M2+r−1)

and Syz−n(M2+r+1) is A. This is a contradiction.

Next we give

Proof of Theorem 1.13 The assertion on the structure of C follows from Theorem 11.1 and
[8, 4.16.2].

(1) This follows from Theorem 11.1.
(2)(a) Let C be a connected component of �(A) such that [M] ∈ V ert (C) is a periodic

module. Then by Theorem 1.2 all the modules N in V ert (C) is periodic. We note
that Syzn(C) consists of periodic modules and so [A] /∈ V ert (Syzn(C) for all n ∈ Z

(see Theorem 4.1). Using Theorem 7.6 and Corollary 7.10 we get that if [M] ∈
V ert (C) and if 0 → M → EM → M → 0 is an AR sequence ending at M then
for all n ∈ Z the AR-sequence ending at Syzn(M) is of the form 0 → Syzn(M) →
Syzn(E) → Syzn(M) → 0.

Now consider the structure of C as given in (1). Let period of M1 be c. We first
show that I (M1) = cZ (notation as in Theorem 1.11). Note c ∈ I (M1). If I (M1) �=
cZ then there exists a with 1 < a < c such that [Syza(M1)] ∈ V ert (C). We note
that 0 → Syza(M1) → Syza(M2) → Syza(M1) → 0 is the AR sequence ending
at Syza(M1). As M1 is the unique vertex in C which is connected to only one other
vertex we get that Syza(M1) = M1. This contradicts the fact that period of M1 is c.

We show by induction on n ≥ 2 that the period of Mn is c. We first consider the
case n = 2. As period of M1 is c we get that 0 → M1 → Syzc(M2) → M1 → 0
is also an AR-sequence ending at M1. By uniqueness of AR sequences we get
M2 ∼= Syzc(M2). Suppose for some a with 1 ≤ a < c we have Syza(M2) = M2
then note that a ∈ I (M2) = I (M1) = cZ, a contradiction. Thus period of M2 is c.

Now assume that period of M1, . . . , Mn is c. We prove that period of Mn+1 is
also c. As the period of Mn−1 and Mn is c we get that 0 → Mn → Mn−1 ⊕
Syzc(Mn+1) → Mn → 0 is another AR-sequence ending at Mn. By uniqueness
of AR-sequences we get that Mn+1 ∼= Syzc(Mn+1). Suppose for some a with 1 ≤
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a < c we have Mn+1 = Syza(Mn+1). Then a ∈ I (Mn+1) = I (M1) = cZ, a
contradiction. Thus period of Mn+1 is c. The result follows.

(2)(b) By 1.14 there exists at-most one m0 ≥ 1 such that Syzm0
(C) = �0(A). Thus for

n > m0 we have that [A] /∈ V ert (Syzn(C)). Set M0 = 0. We have that for all n >

m0 the sequence 0 → Syzn(Mi) → Syzn(Mi−1)⊕Syzn(Mi+1) → Syzn(Mi) → 0
is the AR quiver ending at Mi for all i ≥ 1. By Lemma 7.11 we get that for all
n > m and for all i ≥ 1

2βn(Mi) = βn(Mi−1) + βn(Mi+1).

As M0 = 0 an easy recursion yields that βn(Mi) = iβn(M1). The result follows.

13 Curvature and Complexity

If (A,m) is a complete intersection of codimension c then it is known that for any non-
zero module M we have 0 ≤ cxM ≤ c. Furthermore for any integer i with 0 ≤ i ≤ c

there exists an A-module M with complexity i. If A is not a complete intersection then
cx k = ∞. To deal with this situation the notion of curvature was introduced. It can be
shown that 1 < curv k < ∞ (see [5, 8.2.2]) and for any non-zero module with infinite
projective dimension we have 1 ≤ curvM ≤ curv k [5, 4.1.9]). Furthermore if cxM < ∞
then curvM = 1. We first prove

Proposition 13.1 Let (A,m) be an equi-charactersitic complete Gorenstein isolated sin-
gularity with algebraically closed residue field k. Assume A is not a complete intersection.
Then

(1) For any i ≥ 1 the modules M with complexity i form a union of connected components
of �(A).

(2) For any α ∈ [1, curv k) the modules M with curvature α form a union of connected
components of �(A).

We first show

Lemma 13.2 [with hypotheses as in Proposition 13.1] Let 1 ≤ α < curv k. Let Vα be
the collection of all indecomposable modules M with curvM ≤ α. Then Vα is a union of
connected components of �(A). Furthermore �0(A) � Vα .

Proof Let M ∈ Vα . Note that τ(M) = Syz−d+2(M) ∈ Vα . As α < curv k it follows that
there is no irreducible map from M to A or from A to M , see 4.1.

Clearly Syzn(M) ∈ Vα for all n ∈ Z. By a similar argument as before there is no
irreducible map from Syzn(M) to A or from A to Syzn(M) for all n ∈ Z.

Let 0 → τ(M) → EM → M → 0 be the AR-sequence ending at M . By 7.9 and 7.10
we get that

(1) 0 → Syzn(τ (M)) → Syzn(EM) → Syzn(M) → 0 is the AR-sequence ending at
Syzn(M) for all n ≥ 0.

(2) βn(EM) = βn(M) + βn(τ(M)) for all n ≥ 0.
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Thus we have curv(E) ≤ α. If there is an irreducible map from N to M then N is a factor
of EM and so curv(N) ≤ curv(E) ≤ c. Thus N ∈ Vα . In a similar fashion if there is
an irreducible map from M to N then also N ∈ Vα . Thus Vα is a union of connected
components of �(A). Also clearly �0(A) � Vα .

As an immediate consequence we get

Corollary 13.3 [with hypotheses as in Proposition 13.1] Let 1 < β < curv k. Let Uβ be
the collection of all indecomposable modules M with curvM < β. Then Uβ is a union of
connected components of �(A). Furthermore �0(A) � Uβ .

Proof Let 1 = α1 < α2 < · · · < αn < αn+1 < · · · be any strictly monotonically increasing
sequence converging to β. Notice

Uβ =
⋃

n≥1

Vαn

The result now follows from Lemma 13.2.

We now give

Proof of Proposition 13.1 We first prove (2). Let Cα = the collection of modules with
complexity α. Notice (with notation as in Lemma 13.2 and Corollary 13.3

(a) C1 = V1.
(b) For 1 < α < curv(k) we have Cα = Vα − Uα .

Thus (2) follows.
(1) This is similar to (2). We have to prove results analogous to Lemma 13.2 and

Corollary 13.3 first.

We now give

Proof of Theorem 1.7 SupposeA has a moduleM with bounded betti-numbers but not peri-
odic. Then note that A is not a complete intersection. We note that a MCM A-module M

will have bounded betti-numbers if and only if cx(M) ≤ 1. By Proposition 13.1, D the
collection of all such modules defines a union of connected components of �(A). We note
that modules M having a periodic resolution will form a subset C of D. By Theorem 1.2
we get that C is a union of connected components of �(A). It follows that D \ C is a union
of connected components of �(A). If M is not periodic but has a bounded resolution then
[M] ∈ D \ C. The result follows.

Acknowledgements I thank Dan Zacharia, Srikanth Iyengar and Lucho Avramov for some useful
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