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Abstract Let BunG be the moduli space of G-bundles on a smooth complex projective
curve. Motivated by a study of boundary conditions in mirror symmetry, Gaiotto (2016)
associated to any symplectic representation of G a Lagrangian subvariety of T ∗BunG.
We give a simple interpretation of (a generalization of) Gaiotto’s construction in terms of
derived symplectic geometry. This allows to consider a more general setting where sym-
plectic G-representations are replaced by arbitrary symplectic manifolds equipped with
a Hamiltonian G-action and with an action of the multiplicative group that rescales the
symplectic form with positive weight.
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1 Statement of the Result

We will use the language of derived stacks. Throughout, a ‘stack’ means a ‘derived Artin
stack over k = C’ in the sense of [5] and [11]. We writeBG = pt/G for the classifying stack
of a groupG. We fix a smooth complex projective varietyX and letKX denote the canonical
bundle. We write G for an algebraic group and BunG(X), resp. HiggsG(X), for the stack
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of G-bundles, resp. Higgs bundles, on X. One has a canonical isomorphism BunG(X) ∼=
Map(X,BG), where Map(X,Z) denotes a mapping stack that classifies morphisms X →
Z.

Given a Gm-stack Y and a Gm-bundle L → X, there is an associated bundle YL :=
Y ×Gm

L. Let SectX(YL) be the stack of sections of the projection YL → X. By definition,
we have SectX(YL) = {IdX} ×Map(X,X) Map(X,YL). The Gm-action on the first factor
of Y × L descends to a Gm-action along the fibers of YL → X. This induces a natural
Gm-action on SectX(YL).

Remarks 1.1 Let L → X be a Gm-bundle and L an associated line bundle on X.
(i) We will abuse the notation and write YL for YL.
(ii) For a Gm-stack Y , there is a canonical isomorphism YL

∼= Y/Gm ×
BGm

X, where
we have used the map X = L/Gm → BGm = pt/Gm that classifies L.

(iii) For a (G × Gm)-stack Y , we will often use natural identifications
(Y/G)L = (Y × L)/(G × Gm) = (YL)/G.

Let M be a smooth symplectic algebraic manifold equipped with a G × Gm-action such
that the action of the group G = G × {1} on M is Hamiltonian and the symplectic 2-form
has weight � ≥ 1 with respect to the action of Gm = {1} × Gm. Assume that there exists a
line bundle K

1/�
X , an �-th root of KX , and fix a choice of K

1/�
X .

Following Gaiotto, [6], we consider the stack SectX(M
K

1/�
X

/G). This stack classifies

pairs (P, s), where P is a (G × Gm)-bundle on X and s : P → M × ◦
K

1/�

X is a (G × Gm)-

equivariant morphism that intertwines the natural projections P → X and M × ◦
K

1/�

X → X.

Here
◦
K

1/�

X denotes the Gm-bundle obtained from K
1/�
X by removing the zero section. The

group G acts on M × ◦
K

1/�

X through its action on the first factor and Gm acts diagonally.
Let g be the Lie algebra of G and g∗ the dual of g. The group G ×Gm acts on g∗, where

G acts by the coadjoint action andGm acts by dilations. The symplectic 2-form on M being
of weight �, the moment map μ : M → g∗ intertwines, for any t ∈ Gm, the t-action on M

with dilation by t� on g∗. It follows that μ gives a well defined morphism M
K

1/�
X

→ g∗
KX

,

of stacks over X. Therefore, there is an induced morphism

μSect : SectX(M
K

1/�
X

/G) −→ SectX(g∗
KX

/G). (1.1)

We now specialize to the case where X = � is a smooth projective curve and G is
reductive. In such a case, we have Sect�(g∗

K�
/G) ∼= HiggsG(X) ∼= T ∗BunG(�). Let

T ∗BunG(�)reg be an open substack of T ∗BunG(�) that corresponds to the Higgs bundles
whose only automorphisms lie in the center. It is known that T ∗BunG(�)reg is a smooth
variety that comes equipped with a natural symplectic 2-form ω.

Theorem 1.2 The map μSect is Lagrangian, specifically, the 2-form μ∗
Sect(ω) vanishes on

the preimage of T ∗BunG(�)reg .

The above result was discovered by Gaiotto [6] in the linear case, i.e. in the special case
where M is a symplectic representation of G. In this case, Gm acts on M , a symplectic
vector space, by dilations and the symplectic form on M has weight 2.

One of the goals of this paper is to show that Theorem 1.2 is a simple consequence of
some very general results of derived symplectic geometry.
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2 Derived Symplectic Geometry

Let n be an integer and Y a stack equipped with an n-shifted symplectic structure in the
sense of [11]. There is a notion of “Lagrangian structure” on a morphism Z → Y , see
[11, §2.2] and [2]. One has the following result, where part (i) is [11, Theorem 0.4], resp.
part (ii) is [2, Therorem 2.10].

Theorem 2.1 Let X be a smooth projective Calabi-Yau variety of dimension d. Then, one
has:

(i) An n-shifted symplectic structure on a stack Y gives rise to a natural (n − d)-shifted
symplectic structure on Map(X, Y ).

(ii) A Lagrangian structure f : Z → Y gives rise to a natural Lagrangian structure on
Map(X,Z) → Map(X, Y ), the morphism of mapping stacks induced by f .

It was shown, see [11, Corollary 2.6(2)], that part (i) of the theorem implies the following

Corollary 2.2 For any smooth projective Calabi-Yau variety X of dimension d the stack
HiggsG(X) has a canonical 2(1 − d)-shifted symplectic structure.

In the case where X is a Fano variety suitable analogs of the statements of Theorem 2.1
were proved by Spaide [14], Theorems 3.3 and 3.5.

Below, we propose a modification of the above results that holds for more general, not
necessarily Calabi-Yau, varieties X.

To this end, we recall some notions from derived algebraic geometry. For a (derived)
stackX , we will denote by QCoh(X ) the (unbouded) derived∞-category of quasi-coherent
sheaves on X (see, e.g. [5] Vol. 1, Chapter 3, for a detailed account of this ∞-category).
We will refer to objects of QCoh(X ) as “sheaves on X ”. Given M ∈ QCoh(X ), we will
denote by �(X ,M) = Hom(OX ,M), the (derived) functor of global sections.

Let f : Y → X be a map of stacks and LY/X ∈ QCoh(Y ) the relative cotangent complex
of f . One has a sheaf

Ãp
X (Y ) := f∗(∧p

LY/X ) ∈ QCoh(X ),

of relative p-forms. There is also a sheaf Ãp,cl
X (Y ) ∈ QCoh(X ), of relative closed p-forms.

The sheaf Ãp,cl
X (Y ) comes equipped with a forgetful map Ãp,cl

X (Y ) → Ãp
X (Y ) which

assigns to a closed p-form its underlying p-form (see [4, Sect. 1] or [5, Vol. II, Chapter 9] for
a discussion of relative differential forms). Note that in the derived setting, a closed p-form
is a p-form equipped with additional closure data (as opposed to satisfying a condition).

We will use the following basic result about relative differential forms:

Lemma 2.3 Let

Y2 ��

��

Y1

��
X2

g �� X1

be a commutative square of stacks. Then, for each i ≥ 0, there is a natural map

φi,cl : g∗(Ãi,cl
X1

(Y1)) → Ãi,cl
X2

(Y2).
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Moreover, if the square is Cartesian and LY1/X1 is perfect (more generally, it is sufficient to
require LY1/X1 be bounded below) then the map φp,cl is an isomorphism.

Definition Let p : Y → X be a map of stacks and L a line bundle on X . We put

Ai (Y/X ;L) := �(X , Ãi
X (Y ) ⊗ L), andAi,cl(Y/X ;L) := �(X , Ãi,cl

X (Y ) ⊗ L).

(i) Assume the relative cotangent complex of p : Y → X is perfect. An L-
twisted n-shifted relative symplectic structure on Y is a twisted relative closed 2-form
ω ∈ Hom(k,A2,cl(Y/X ;L)[n]) such that the underlying 2-form is nondegenerate, i.e. it
induces an isomorphism

L
∨
Y/X

∼→ LY/X [n] ⊗ p∗(L).

(ii) Assume that p : Y → X is equipped with an L-twisted n-shifted relative symplectic
structure and let f : Z → Y be a map of stacks with perfect relative cotangent com-
plex. An (L-twisted n-shifted) Lagrangian structure on f is a nullhomotopy of f ∗(ω) ∈
Hom(k,A2,cl

X (Z;L)[n]) such that the map

L
∨
Z/X → LZ/Y [n − 1] ⊗ (f ◦ p)∗(L),

induced by the nullhomotopy of the underlying 2-form, is an isomorphism.

The proposition below gives a preliminary version of our main construction. In Section 3,
we will describe how to obtain relative twisted symplectic, resp. Lagrangian, structures from
symplectic, resp. Lagrangian, sturctures of a fixed weight on a Gm-stack.

Proposition 2.4 Let X be a smooth projective variety of dimension d and Y,Z a pair of
stacks.

(i) A KX-twisted relative n-shifted symplectic structure on a morphism Y → X induces
an (n − d)-shifted symplectic structure on SectX(Y ).

(ii) A KX-twisted relative Langrangian structure on Z → Y induces a Lagrangian
structure on

SectX(Z) → SectX(Y ).

Proof Following [11], we consider the evaluation map

SectX(Y ) × X
ev→ Y,

a map of stacks over X. By Lemma 2.3, there is a pull-back morphism in QCoh(X):

ev∗ : Ã2,cl
X (Y ) ⊗OX

KX → A2,cl(SectX(Y )) ⊗k KX.

Using an integration map
∫
X

: �(X,KX) → k[−d] provided by Serre duality, one obtains
a map (

Id ×
∫

X

)

◦ ev∗ : A2,cl(Y/X;KX) → A2,cl(SectX(Y )).

Now, the same argument as in [11] shows that if the twisted 2-form ω on Y is
nondegenerate then so is the 2-form

ωSect :=
(

Id ×
∫

X

)

◦ ev∗)(ω).

This proves part (i) of Proposition 2.4. The proof of part (ii) is obtained by similarly
tweaking the proof of [2, Therorem 2.10].
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Remarks 2.5 (i) The same proof works in a more general setting where X is any strictly
O-compact stack in the sense of [11, Definition 2.1] equipped with a line bundle KX and a
map

∫
X

: �(X,KX) → k[−d] that induces a perfect pairing as in [11, Definition 2.4]. For
instance, one can take X be any proper Gorenstein (derived) scheme.

(ii) It is tempting to try to develop a formalism of ‘derived hyper-Kähler geometry’, at
least a notion of ‘derived twistor space’. One could then consider an analog of Proposi-
tion 2.4, as well as analogs of various results below, with a hyper-Kähler target Y and
hyper-Lagrangian structures Z → Y .

3 Equivariance and Twistings

Let Y be a Gm-stack. Given an integer m, let Y (m) denote the Gm-stack with the same
underlying stack as Y and the Gm-action given by precomposition with the homomorphism
Gm → Gm, t �→ tm. The space of (closed) p-forms on the Gm-stack Y carries a natural Z-
grading, to be referred to as ‘weight’. Thus, one can consider n-shifted symplectic structures
on Y of weight m.

Given a Gm-stack Z, we say that f is a map from Z to Y of weight m if f is a Gm-
equivariant map Z → Y (m). Heuristically, a map f : Z → Y has weight m if f (tz) =
tmf (z) for all t ∈ Gm.

Definition Fix an n-shifted symplectic structure on Y of weight m. This gives, for each
� ≥ 1, an n-shifted symplectic structure on Y (�) of weight m�.

(i) An equivariant Lagrangian structure is an equivariant map f : Z → Y , of Gm-stacks,
equipped with a nullhomotopy, in the space of closed 2-forms on Z of weight m, of the
pullback of the n-shifted symplectic form, satisfying a non-degeneracy condition.

(ii) An equivariant Lagrangian structure f : Z → Y (�) will be called a Lagrangian
structure of weight �.

Let X be a smooth projective variety of dimension d (or, more generally, a derived stack
with a twisted orientation of degree d as in Remark 2.5). Fix m ∈ Z and a choice, K1/m, of
an m-th root of the line bundle KX on X.

Lemma 3.1 Let Y be a Gm-stack equipped with an n-shifted symplectic form of weight
m ≥ 1 with respect to the Gm-action. Let L be a line bundle on X and L the corresponding
Gm-torsor. Then the stack YL → X carries an L⊗m-twisted relative n-shifted symplectic
structure of weight m.

Proof Let λ : X × BGm → BGm be the map classifying the line bundle L �O(−1). We
have a diagram with cartesian squares:

YL
��

��

YL/Gm
��

��

X × Y/Gm

��
X �� X × BGm

pX×λ �� X × BGm

By Lemma 2.3, we get an isomorphism

Ã2,cl
X×BGm

(YL/Gm) 
 (pX × λ)∗(Ã2,cl
X×BGm

(X × Y/Gm)).
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In particular, the sheaf of weight m relative closed 2-forms on YL is given by

Ã
2,cl
X (YL)(m) 
 L⊗(−m) ⊗ A2,cl(Y )(m).

By adjunction, we obtain a map

twistL : A2,cl(Y )(m) → �(X, Ã2,cl
X (YL)(m) ⊗ L⊗m). (3.1)

Thus, an n-shifted symplectic form of weight m on Y gives an L⊗m-twisted relative closed
2-form of weight m on YL. Moreover for a Gm-equivariant Lagrangian map f : Z → Y ,
functoriality of twistL induces a relative isotropic structure on fL : ZL → YL. Now, to see
that the twisted relative closed 2-form on YL is nondegenerate (resp. that fL is Lagrangian),
it suffices to check this locally on X. Thus, we can assume that L is the trivial line bundle
in which case the statement is manifest.

The following is one of the main results of the paper.

Theorem 3.2 Let Y be a Gm-stack equipped with an n-shifted symplectic form of weight
m ≥ 1. Then, one has:

(i) The stackSectX(Y
K

1/m
X

) has a natural (n−d)-shifted symplectic structure of weight m.

(ii) For any Lagrangian structure f : Z → Y , of weight �, the map SectX(Z
K

1/�m
X

) →
SectX(Y

K
1/m
X

), induced by f , has a natural Lagrangian structure of weight �.

Proof Put L = K
1/m
X , and let L → X be the corresponding Gm-torsor. By Lemma 3.1, we

have that YL → X has a KX-twisted relative n-shifted symplectic structure of weight m.
By Proposition 2.4 we obtain an (n − d)-shifted symplectic structure on SectX(YL), resp.
Lagrangian structure, on SectX(ZL) → SectX(YL). Moreover, since the maps

SectX(YL) ← SectX(YL) × X → YL

are Gm-equivariant, the corresponding symplectic structure has weight m. The required
statements now follow from an observation that, for anyGm-stack and aGm-bundleL → X,
one has natural isomorphisms of Gm-stacks SectX(YL⊗m)(m) 
 SectX(Y

(m)
L ).

We apply the above result to get a description of the symplectic structure on cotangent
stacks to mapping stacks.

Proposition 3.3 Let Y = T ∗[n]Z be the shifted cotangent stack with its n-shifted symplec-
tic structure of weight 1. In this case, there is a natural isomorphism of (n − d)-shifted
symplectic stacks

SectX(YKX
) 
 T ∗[n − d]Map(X,Z).

Proof The symplectic form on T ∗[n]Z is given by the deRham differential of the canon-
ical n-shifted 1-form on T ∗[n]Z. Therefore, it will suffice to construct an isomorphism
of derived stacks SectX(YKX

) 
 T ∗[n − d]Map(X,Z) such that the transgression of the
canonical 1-form is the canonical 1-form.

Recall that given a stack W together with a quasi-coherent sheaf E ∈ QCoh(W), we can
form the “total space of E” as the stack T (E) defined as follows. A map from a test scheme
S to T (E) is a map f : S → W together with a section of f ∗(E). For instance, the stack
T ∗[n]Z is the total space of the sheaf LZ[n] on Z and the canonical 1-form on T ∗[n]Z is
given by the image of the section obtained from the identity map on T ∗[n]Z along

p∗
LZ[n] → LT ∗[n]Z[n],
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where p : T ∗[n]Z → Z is the projection map.
The projection map p : T ∗[n]Z → Z gives a map f : YKX

→ Z × X. In fact, by
construction, YKX

is the total space of the sheaf LZ[n]�KX onZ×X. In particular, we have
a section ofLYKX

/X[n]⊗KX given by the image of the canonical section of f ∗(LZ[n]�KX)

along the natural map

f ∗(LZ[n] � KX) → LYKX
/X[n] ⊗ KX.

Moreover, the map f induces the map

g : SectX(YKX
) → Map(X,Z),

together with a section of ev∗(LYKX
/X[n] ⊗ KX), where

ev : SectX(YKX
) × X → SectX(YKX

)

is the evaluation map. Integrating along X, we obtain a section of π∗(ev∗(LYKX
/X[n] ⊗

KX)) 
 g∗(LMap(X,Z)[n − d]). This gives the desired map of derived stacks

h : SectX(YKX
) → T ∗[n − d]Map(X,Z),

which is easily seen to be an isomorphism. Moreover, by construction, the pullback of the
canonical 1-form on T ∗[n − d]Map(X,Z) along h is identified with the transgression of
the canonical 1-form on T ∗[n]Z, as desired.

In addition to equivariant symplectic structures, we will also need to consider equivariant
Calabi-Yau structures.

Definition Let S be a stack with a Gm-action. A d-Calabi-Yau structure of weight m on S

is a map

�(S,OX) → C[−d]
of weight m satisfying the nondegeneracy condition of [11, Definition 2.4]. Equivalently,
such a structure is given by a map of quasi-coherent sheaves on BGm

π∗(OS/Gm
) → C(m)[−d],

where π : S/Gm → BGm is the projection map.

Theorem 3.4 Let S be a Gm-stack with a d ′-Calabi-Yau structure of weight m. Let X be a
smooth projective variety of dimension d (or more generally, a derived stack with a twised
orientation KX of degree d as above) together with a choice of K1/m

X . Then:
(i) The stack X̃ := X ×

BGm

S/Gm has a natural (d + d ′) Calabi-Yau structure of weight

m, where the map X → BGm classifies the line bundle K
1/m
X .

(ii) Given an n-shifted symplectic stack Y , there is a natural Gm-equivaraint equivalence
of (n − d − d ′)-shifted symplectic stacks of weight m

Map(X̃, Y ) 
 SectX(Map(S, Y )
K

1/m
X

).
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Proof We have the Cartesian square of stacks

X̃ ��

��

S/Gm

π

��
X

l �� BGm

Therefore, by base change, we have

�(X̃,OX) 
 �(X, l∗π∗(OS/Gm
)).

The desired Calabi-Yau structure on X̃ is then given as the composition of Calabi-Yau
structures on S and X:

�(X, l∗π∗(OS/Gm
)) → �(X, l∗(C(m)[d ′])) → �(X,KX[d ′]) → C[d + d ′].

Now, we have isomorphisms

Map(X̃, Y ) 
 SectX(Map/X(X̃, Y × X)) 
 SectX(Map(S, Y )K1/m),

which by construction of the Calabi-Yau structure on X̃ are compatible with the (n − d −
d ′)-shifted symplectic structures of weight m.

4 The Case of G-Bundles

For any stack Y and an integer n, the n-shifted cotangent stack T ∗[n]Y comes equipped
with a natural n-shifted symplectic form, see [11, Proposition 1.21] and also [3]. This 2-
form has weight 1 with respect to the Gm-action on T ∗[n]Y by dilations along the fibers of
the cotangent bundle. The zero section Y ↪→ T ∗[n]Y has a natural Lagrangian structure.

One has a canonical isomorphism g∗/G = T ∗[1]BG, which provides the stack g∗/G

with a natural 1-shifted symplectic structure of weight 1.
In what follows, it will be convenient to have another description of this 1-shifted sym-

plectic stack as a mapping stack. Recall that an Ad-invaraint nondegenerate symmetric
bilinear form κ on g gives a 2-shifted symplectic structure on the stack BG. Now, let
S = B̂Ga , the formal completion of BGa at a point, with its natural Gm action. We have
that �(S,OS) 
 C[ε], where |ε| = 1 and the map C[ε] → C[−1], given by ε �→ 1 gives
S a 1-Calabi-Yau structure of weight 1. We then have:

Lemma 4.1 There is a canonical isomorphism of 1-shifted symplectic stacks of weight 1

Map(S, BG) 
 T ∗[1]BG.

Proof We have a Gm-equivariant isomorphism of derived stacks Map(S, BG) 

T [−1]BG 
 g/G. Recall that the 2-shifted symplectic structure on BG is given by the
image of an Ad-invariant symmetric bilinear form κ on g under the natural map

(
⊕i≥0Sym2+i (g∗)[−2 − 2i]

)G → A2,cl(BG).

Unraveling the definitions, we have that the composite map
(
⊕i≥0Sym2+i (g∗)[−2 − 2i]

)G → A2,cl(BG) → A2,cl(g/G)[−1]
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factors through the map
(⊕p+q≥l�

p(g) ⊗C Symq(g∗)[2 − p − 2q]))G → A2,cl(g/G),

where the differential in the complex on the left is given by the sum of the internal differen-
tial and the deRham differential on g. Thus, we obtain that the only nonzero component of
the 1-shifted symplectic structure on g/G is given by the image of κ along the map

Sym2(g∗) → �1(g) ⊗ g∗ 
 g∗ ⊗ g∗ ⊗ Og.

It follows that the Gm equivariant identification g/G 
 g∗/G induced by κ upgrades to an
isomorphism of 1-shifted symplectic stacks of weight 1.

The map 0/G → g∗/G, induced by the imbedding {0} ↪→ g∗, may be identified with
the zero section ı : BG → T ∗[1]BG.

Let M be a smooth symplectic variety equipped with a Hamiltonian G-action. It was
observed by Calaque [2], that the map M/G → g∗/G, induced by the moment map μ :
M → g∗, has a natural Lagrangian structure. Hence, from Theorem 3.2 in the special case
where Y = g∗/G and n = 1 we deduce the following result.

Corollary 4.2 (i) For anym ≥ 1, the stack SectX(g∗
K

1/m
X

/G) has a canonical (1−d)-shifted

symplectic structure structure of weight m.
(ii) For a smooth symplectic G × Gm-variety M such that the action of the group G is

hamiltonian and the symplectic 2-form has weight � ≥ 1 with respect to the Gm-action, the
map SectX(M

K
1/m�
X

) → SectX(g∗
K

1/m
X

/G), induced by the moment map M → g∗, has a
natural Lagrangian structure of weight �.

We now specialize to the case where � = X is a smooth projective curve. The stack
of Higgs bundles on � is defined as HiggsG(�) := Map(�Dol, BG), where �Dol is the
Dolbeault stack, see [11]. Since d = dim� = 1, the stack HiggsG(�) is equipped with a
0-shifted symplectic structure, by [11, Corollary 2.6(2)].

Lemma 4.3 There are natural isomorphisms of 0-shifted symplectic stacks

Map(�Dol, BG) 
 Sect�(g∗
K/G) 
 T ∗BunG(�).

Proof By definition, �Dol is identified with X ×
BGm

S, where the map X → BGm classifies

KX . Moreover, by construction of the Calabi-Yau structure in Theorem 3.4(i), this isomor-
phism gives an isomorphism of 1-CY stacks. The first, resp. second, isomorphism of the
lemma then follows from Theorem 3.4(ii), resp. Proposition 3.3.

Using the above lemma, from Corollary 4.2 we deduce

Theorem 4.4 Let M be a smooth symplectic G × Gm-variety such that the action of the
group G is hamiltonian and the symplectic 2-form has weight � ≥ 1 with respect to the
Gm-action. Then, the map

Sect�(M
K

1/�
�

/G) −→ Sect�(g∗
K�

/G) = T ∗BunG(�), (4.1)

induced by the moment map M → g∗, has a natural Lagrangian structure of weight �.
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To complete the proof of Theorem 1.2 one observes that, on the locus T ∗BunG(�)reg

where T ∗BunG(�) is a smooth variety, the 0-shifted symplectic 2-form is nothing but the
standard symplectic 2-form ω on T ∗BunG(�)reg in the ordinary sense. Similarly, if 
 is a
smooth variety and a map f : 
 → T ∗BunG(X)reg has a Lagrangian structure then one
has f ∗ω = 0. Thus, Theorem 1.2 follows from Theorem 4.4.

5 Additional Comments and Speculations

5.1 A Generalization of Gaiotto’s Argument

In the linear case, an ‘infinite dimensional’ approach to Theorem 1.2 is explained in [6].
Gaiotto’s approach is based on a standard differential geometric interpretation of BunG(�)

as a quotient of an infinite dimensional space of ∂̄-connections by a gauge group. It was
suggested to us by Gaiotto that the argument in [6] can be adapted to the more general,
nonlinear setting of Theorem 1.2 as follows. Below, we assume that � = 2, for simplicity.

Fix a principal C∞-bundle P
G−→ � and let Conn∂̄ (P ) be (an infinite dimensional)

space of ∂̄-connections on P . Further, let Sect�,C∞(M
K

1/2
�

×G P ) be (an infinite dimen-

sional) space of C∞-sections of an associated bundle M
K

1/2
�

×G P → �. Let z ∈
Sect�,C∞(M

K
1/2
�

×G P ) be such a section and A ∈ Conn∂̄ (P ) a ∂̄-connection. Then ∇
A
z, a

covariant derivative of z with respect to A, is a C∞-section of z∗TM ⊗ K
1/2
� ⊗ �

0,1
� , where

TM stands for the holomorphic tangent sheaf on M and �
p,q
� is the sheaf of C∞ differen-

tial forms on � of type (p, q). Further, let λM = ieuM
ωM , where ωM is the (holomorphic)

symplectic form on M and euM is the Euler field that generates the Gm-action on M . Thus,
z∗λM is a C∞-section of z∗T ∗

M ⊗K
1/2
� . Using the canonical pairing 〈−, −〉 of holomorphic

vector fields and holomorphic 1-forms on M , we obtain a C∞-section 〈∇
A
z, z∗λM 〉 of the

sheaf K
1/2
� ⊗ �

0,1
� ⊗ K

1/2
� = K� ⊗ �

0,1
� = �

1,1
� .

In the above setting, the role of the potential from [6, formula (2.3)] is played by a
function on Sect�,C∞(M

K
1/2
�

×G P ) × Conn∂̄ (P ) defined by the formula

W(z,A) =
∫

�

〈∇
A
z, z∗λM 〉. (5.1)

To prove that the map μSect in Theorem 1.2 is Lagrangian we show, by a calculation
similar to the one in [6, Appendix A], that Eq. 5.1 is a generating function (aka ‘Lagrange
multiplier’) for Sect�(M

K
1/2
�

/G).

To this end, observe that an infinitesimal variation of z is given by a section
.
z of z∗TM ⊗

K
1/2
� . The corresponding variation of the (1, 1)-form 〈∇

A
z, z∗λM 〉 reads

δ〈∇
A
z, z∗λM 〉
δz

(
.
z) = ∂̄〈∇

A

.
z, z∗λM 〉 + (dλM)(∇

A
z,

.
z),

where the operator ∂̄ that appears in the first summand on the right is the Dolbeault differ-
ential ∂̄ : �

1,0
� → �

1,1
� . Using that dλM = ωM and that, on �

1,0
� , one has ∂̄ = d, we find

that the variation of Eq. 5.1 equals

δW

δz
(
.
z) =

∫

�

d〈∇
A

.
z, z∗λM 〉 +

∫

�

ωM(∇
A
z,

.
z).
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The first summand on the right vanishes by Stokes’ theorem. Hence, the form ωM being
nondegerate, we deduce that the equation δW

δz
(
.
z) = 0 holds for all

.
z if and only if ∇

A
z = 0,

that is, if and only if the section z is holomorphic with respect to the complex structure on
M

K
1/2
�

×G P determined by the ∂̄-connection A.

Next, let
.

A be an infinitesimal variation of A. Then, it is easy to check that δW
δA

(
.

A) =
μSect(z, A)(

.

A), proving that W is a generating function for Sect�(M
K

1/2
�

/G).

Remark 5.1 Let eu, resp. euSect, be the Euler vector field on T ∗BunG(�), resp.
Sect�(M

K
1/2
�

/G), that generates the Gm-action. Recall that ω = dλ where λ = ieuω is the

Liouville 1-form on T ∗BunG(�). The map μSect in Eq. 1.1 being of weight �, one finds:

μ∗
Sect(λ) = μ∗

Sect(ieuω) = 1

�
· ieuSectμ

∗(ω).

It follows, as has been observed by Hitchin [8], that Theorem 4.4 is equivalent to the
equation μ∗

Sect(λ) = 0.

5.2 Relation to the Global Nilpotent Cone

Let B be a Borel subgroup of G, so G/B is the flag variety. The symplectic form on
T ∗(G/B) has weight 1 and the moment map μ : T ∗(G/B) → g∗ is the Springer resolu-
tion T ∗(G/B) → N , where N ⊂ g∗ is the nilpotent cone. The stack Sect�((N /G)K� )

can be identified with N� , the global nilpotent cone in T ∗BunG(�). Further, the stack
Sect�((T ∗(G/B)K� /G) can be identified with T ∗BunB(�). Explicitly, writing n for the
nilradical of LieB, the stack T ∗BunB(�) classifies triples (P, σ, φ), where P is a G-
bundle on �, σ : � → P/B is a section, i.e. a reduction of P to a B-bundle, and
φ : P ×B n → (P ×B n) ⊗ K� is a Higgs field. Assume that the genus of the curve � is
greater than 1. Then, the derived stacks T ∗BunG(�) and T ∗BunB(�) are concentrated in
homological degree 0, i.e. they are actually non-derived stacks. The stackN� is not concen-
trated in homological degree 0, and one can considerN classical

� , its non-derived counterpart,
which is an ordinary substack of T ∗BunG(�).

The map (P, σ, φ) �→ (P, φ), that forgets reduction of the structure group, may be
identified with the composition

μSect : T ∗BunB(�)
π1−→ N�

π2−→ T ∗BunG(�). (5.2)

The map μSect has a Lagrangian structure by Corollary 4.2. One can show that the map π2
has a natural coisotropic structure in the sense of [9]. However, this coisotropic structure is
easily seen to be not Lagrangian.

On the other hand, it was shown in [7] that, for any field extension K/k, the map
πclassical
1 : T ∗BunB(�)(SpecK) → N classical

� (SpecK), of K-points of the corresponding
non-derived stacks, is surjective. This result was used in [7] to prove that N classical

� is (as
opposed to its derived analog) a Lagrangian substack of T ∗BunG(�) in the sense explained
in loc cit.

More generally, let Ỹ → Y be a (G × Gm)-equivariant symplectic resolution such that
Y is affine, the Gm-action on Y is a contraction to a unique Gm-fixed point and, moreover,
the symplectic form on Ỹ has weight m ≥ 1. Then, we have k[Ỹ ] = k[Y ], so the Poisson
bracket on the algebra k[Ỹ ] provides Y with a (G×Gm)-equivariant Poisson structure. Also,
the moment map Ỹ /G → g∗/G factors through Y/G. Therefore, there is a chain of induced



1014 V. Ginzburg, N. Rozenblyum

maps Sect�((Ỹ /G)
K

1/m
�

)
π1−→ Sect�(Y

K
1/m
�

/G)
π2−→ T ∗BunG(�) such that π2 ◦ π1 = μSect.

The map μSect has a Lagrangian structure, by Theorem 4.4. Again, one can show that the

map π2 : Sect�(Y
K

1/m
�

/G)
π2−→ T ∗BunG(�) has a natural coisotropic structure.

Question 5.2 Is Sect�(Y
K

1/m
�

/G)classical, a non-derived counterpart of Sect�(Y
K

1/m
�

/G),

isotropic in the sense of [7], specifically, is it possible to partition Sect�(Y
K

1/m
�

/G)classical

as a disjoint union of substacks such that the pull-back of the symplectic 2-form on
T ∗BunG(�) to each of these substacks vanishes?

5.3 Hamiltonian Reduction

Let M be a stack equipped with a 0-shifted symplectic structure and with a Hamiltonian
G-action with moment map μ. The stack μ−1(0)/G, a stacky Hamiltonian reduction of
M , comes equipped with a canonical 0-shifted symplectic structure. On the other hand, let

1 = 0/G → g∗/G be the map induced by the imbedding {0} ↪→ g∗ and 
2 = M/G →
g∗/G be the map induced by μ. One has a natural isomorphism, see [13],


1 ×g∗/G 
2 = 0/G ×g∗/G M/G ∼= μ−1(0)/G. (5.3)

Recall that the stack g∗/G has the canonical 1-shifted symplectic structure and each of the
two maps 
i → g∗/G, i = 1, 2, has a Lagrangian structure, cf. §4. Further, according to
[11, Theorem 0.5], for any stack Y equipped with an n-shifted symplectic structure and a
pair 
i → Y, i = 1, 2, of Lagrangian structures, the stack 
1×Y 
2 has a natural (n−1)-
shifted symplectic structure. Therefore, the stack 0/G ×g∗/G M/G comes equipped with a
0-shifted symplectic structure. It was shown by Calaque [2] that the isomorphism in Eq. 5.3
respects the 0-shifted symplectic structures.

Next, we fix a smooth projective curve � and let K = K� . The stack g∗
K/G =

T ∗BunG(�), a global counterpart of g∗/G, has the 0-shifted symplectic structure of
weight 1. Also, the Lagrangian structure on the map 0/G → g∗/G induces, for any
�, a weight � Lagrangian structure Sect�((0/G)K1/� ) → Sect�((g∗/G)K). The lat-
ter Lagrangian structure corresponds, via the isomorphisms T ∗BunG(�) ∼= g∗

K/G and
BunG(�) ∼= Sect�((0/G)K), to an obvious Lagrangian structure on the zero section
BunG(�) → T ∗BunG(�). (We have used here that for any variety Y equipped with a triv-
ialGm-action and anyGm-bundle L on �, one has SectX(YL) = Map(�,Y), in particular,
we have Sect�((0/G)K) = Map(�,BG) = BunG(�).)

Now, let M be a symplectic manifold equiped with a (G × Gm)-action such that the
symplectic 2-form has weight � ≥ 1 and the G-action is Hamiltonian. One has canonical
isomorphisms

Sect�((0/G)K1/� ) ×T ∗BunG(�) Sect�((M/G)K1/� ) ∼= Sect�
(
(0/G)K1/� ×g∗

K/G (M/G)K1/�

)

∼= Sect�((μ−1(0)/G)K1/� ). (5.4)

Here, the fiber product on the left involves the map (4.1), which has a weight � Lagrangian
structure, by Theorem 4.4. Thus, according to [11, Theorem 0.5], the fiber product of
Lagrangians on the left of Eq. 5.4 has a (−1)-shifted symplectic structure. On the other
hand, the 0-shifted symplectic structure on μ−1(0)/G induces, by Theorem 3.2(i), a (−1)-
shifted symplectic structure of weight � on Sect�((μ−1(0)/G)K1/� ), the stack on the right of
Eq. 5.4. One can check that the composite isomorphism in Eq. 5.4 respects the (−1)-shifted
symplectic structures described above.
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Let X be a stack and assume there is a line bundle K
1/2
X , a square root of the dualizing

complex ofX . In [12], Pridham shows that an (−1)-shifted symplectic structure onX gives
rise to a canonical self-dual quantization of K

1/2
X . Moreover, associated with that quanti-

zation, there is a constructible complex on X , of vanishing cycles. Therefore, one might
expect that, in the setting of the previous paragraph, the stack Sect�((μ−1(0)/G)K1/� )

comes equipped (perhaps, under some additional assumptions) with a natural constructible
complex of vanishing cycles.

The linear case, where � = 2 and M is a linear symplectic representation of G, has
been considered in the physics literature in the framework of Coulomb branches for 3-
dimensional gage theories, cf. [6] and references therein. The special case where M =
E ⊕ E∗ is a direct sum of a pair of dual representations of G is simpler than the general
case. In that case, the geometry of Sect�((μ−1(0)/G)K1/2) can be reduced, in a sense, to
the geometry of Sect�(EK1/2). Such a reduction allows to avoid the use of vanishing cycles.
A mathematical theory of Coulomb branches in the case M = E ⊕ E∗ was developed by
H. Nakajima [10], cf. also [1].
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