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Abstract Let Bung be the moduli space of G-bundles on a smooth complex projective
curve. Motivated by a study of boundary conditions in mirror symmetry, Gaiotto (2016)
associated to any symplectic representation of G a Lagrangian subvariety of T*Bung.
We give a simple interpretation of (a generalization of) Gaiotto’s construction in terms of
derived symplectic geometry. This allows to consider a more general setting where sym-
plectic G-representations are replaced by arbitrary symplectic manifolds equipped with
a Hamiltonian G-action and with an action of the multiplicative group that rescales the
symplectic form with positive weight.
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1 Statement of the Result

We will use the language of derived stacks. Throughout, a ‘stack’ means a ‘derived Artin
stack over k = C’ in the sense of [5] and [11]. We write BG = pt/G for the classifying stack
of a group G. We fix a smooth complex projective variety X and let Ky denote the canonical
bundle. We write G for an algebraic group and Bung (X), resp. Higgs; (X), for the stack
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1004 V. Ginzburg, N. Rozenblyum

of G-bundles, resp. Higgs bundles, on X. One has a canonical isomorphism Bung(X) =
Map(X, BG), where Map(X, Z) denotes a mapping stack that classifies morphisms X —
Z.

Given a G,,-stack ) and a G,,-bundle L — X, there is an associated bundle )); :=
Y xg,, L. Let Sectx (Y1) be the stack of sections of the projection ), — X. By definition,
we have Sectx (VL) = {Idx} Xwmapx,x) Map(X, V). The G,,-action on the first factor
of ) x L descends to a G,,-action along the fibers of );, — X. This induces a natural
G, -action on Sectx ()1).

Remarks 1.1 Let L — X be a G,,-bundle and £ an associated line bundle on X.

(i) We will abuse the notation and write Y, for Y.

(ii) For a Gy,-stack ), there is a canonical isomorphism Y, = V/G,, X sc, X» where
we have used the map X = L/G,, — BG,, = pt/G,, that classifies L.

(i) For a (G x Gp)-stack ), we will often use natural identifications

V/G)L =0 xL)/(GxGp)=)/GC.

Let M be a smooth symplectic algebraic manifold equipped with a G x G,,-action such
that the action of the group G = G x {1} on M is Hamiltonian and the symplectic 2-form
has weight ¢ > 1 with respect to the action of G, = {1} x G,,. Assume that there exists a
line bundle K )1(/ Z, an {-th root of Ky, and fix a choice of K )1(/ K.

Following Gaiotto, [6], we consider the stack Secty (M K ¢/ G). This stack classifies

. . o 1/t .
pairs (P, s), where P is a (G x G,,)-bundleon X ands : P - M x lez isa (G x Gy)-
. . . . L. o 1/t
equivariant morphism that intertwines the natural projections P — X and M x Ky — X.
o 1/t . . .
Here Ky denotes the G,,-bundle obtained from K )1(/ ¢ by removing the zero section. The

group G acts on M x K 1; through its action on the first factor and G,, acts diagonally.
Let g be the Lie algebra of G and g* the dual of g. The group G x G, acts on g*, where
G acts by the coadjoint action and G,,, acts by dilations. The symplectic 2-form on M being
of weight £, the moment map u : M — g* intertwines, for any ¢ € G,,, the r-action on M
with dilation by ¢¢ on g*. It follows that 1 gives a well defined morphism MK)I(/Z — g}k(X,

of stacks over X. Therefore, there is an induced morphism
USect SectX(MK)l(/l/G) — Sectx(gk, /G). (1.1)

We now specialize to the case where X = X is a smooth projective curve and G is
reductive. In such a case, we have Secty (g’;(Z/G) = Higgsg(X) = T*Bung(X). Let
T*Bung(X)"% be an open substack of 7*Bung () that corresponds to the Higgs bundles
whose only automorphisms lie in the center. It is known that 7*Bung(X)"¢8 is a smooth
variety that comes equipped with a natural symplectic 2-form w.

Theorem 1.2 The map sec: is Lagrangian, specifically, the 2-form s, . (w) vanishes on
the preimage of T*Bung (X)"°8.

The above result was discovered by Gaiotto [6] in the linear case, i.e. in the special case
where M is a symplectic representation of G. In this case, G,, acts on M, a symplectic
vector space, by dilations and the symplectic form on M has weight 2.

One of the goals of this paper is to show that Theorem 1.2 is a simple consequence of
some very general results of derived symplectic geometry.
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2 Derived Symplectic Geometry

Let n be an integer and Y a stack equipped with an n-shifted symplectic structure in the
sense of [11]. There is a notion of “Lagrangian structure” on a morphism Z — Y, see
[11, §2.2] and [2]. One has the following result, where part (i) is [11, Theorem 0.4], resp.
part (ii) is [2, Therorem 2.10].

Theorem 2.1 Let X be a smooth projective Calabi-Yau variety of dimension d. Then, one
has:

(i) An n-shifted symplectic structure on a stack Y gives rise to a natural (n — d)-shifted
symplectic structure on Map(X, Y).

(i) A Lagrangian structure f : Z — Y gives rise to a natural Lagrangian structure on
Map(X, Z) — Map(X, Y), the morphism of mapping stacks induced by f.

It was shown, see [11, Corollary 2.6(2)], that part (i) of the theorem implies the following

Corollary 2.2 For any smooth projective Calabi-Yau variety X of dimension d the stack
Higgss (X) has a canonical 2(1 — d)-shifted symplectic structure.

In the case where X is a Fano variety suitable analogs of the statements of Theorem 2.1
were proved by Spaide [14], Theorems 3.3 and 3.5.

Below, we propose a modification of the above results that holds for more general, not
necessarily Calabi-Yau, varieties X.

To this end, we recall some notions from derived algebraic geometry. For a (derived)
stack X, we will denote by QCoh(X') the (unbouded) derived co-category of quasi-coherent
sheaves on X (see, e.g. [5] Vol. 1, Chapter 3, for a detailed account of this co-category).
We will refer to objects of QCoh(X) as “sheaves on X”. Given M € QCoh(X), we will
denote by I'(X', M) = Hom(Ox, M), the (derived) functor of global sections.

Let f : Y — X be amap of stacks and Ly,x € QCoh(Y) the relative cotangent complex
of f.One has a sheaf

AP.(Y) := fu(APLy,x) € QCoh(X),

of relative p-forms. There is also a sheaf /V;(’Cl (Y) € QCoh(X), of relative closed p-forms.

The sheaf AQCI(Y) comes equipped with a forgetful map AQCI &) — flf\f (Y) which

assigns to a closed p-form its underlying p-form (see [4, Sect. 1] or [5, Vol. I, Chapter 9] for

a discussion of relative differential forms). Note that in the derived setting, a closed p-form

is a p-form equipped with additional closure data (as opposed to satisfying a condition).
We will use the following basic result about relative differential forms:

Lemma 2.3 Let

Y, ——=Y]

L,

Xy ——= &)
be a commutative square of stacks. Then, for each i > 0, there is a natural map

ic 8" AR (1) = Ay (1),
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1006 V. Ginzburg, N. Rozenblyum

Moreover, if the square is Cartesian and Ly, /x, is perfect (more generally, it is sufficient to
require Ly, x, be bounded below) then the map ¢, ¢; is an isomorphism.

Definition Let p : ¥ — X be a map of stacks and £ a line bundle on X’. We put
Al (Y /X L) :=T(X, A(Y) ® £), and A*(Y/X; L) :=T(X, A(Y) ® L£).

() Assume the relative cotangent complex of p : Y — X is perfect. An L-
twisted n-shifted relative symplectic structure on Y is a twisted relative closed 2-form
w € Hom(k, Az’d(Y/ X; £)[n]) such that the underlying 2-form is nondegenerate, i.e. it
induces an isomorphism

Ly,x = Ly,x[nl ® p*(L).

(ii) Assume that p : ¥ — X is equipped with an L-twisted n-shifted relative symplectic
structure and let f : Z — Y be a map of stacks with perfect relative cotangent com-
plex. An (L-twisted n-shifted) Lagrangian structure on f is a nullhomotopy of f*(w) €
Hom(k, Ai&Cl(Z ; £)[n]) such that the map

L7/x = Lzyyln = 11® (f o p)*(L),
induced by the nullhomotopy of the underlying 2-form, is an isomorphism.
The proposition below gives a preliminary version of our main construction. In Section 3,

we will describe how to obtain relative twisted symplectic, resp. Lagrangian, structures from
symplectic, resp. Lagrangian, sturctures of a fixed weight on a G,,-stack.

Proposition 2.4 Let X be a smooth projective variety of dimension d and Y, Z a pair of
stacks.

(i) A Kx-twisted relative n-shifted symplectic structure on a morphism Y — X induces
an (n — d)-shifted symplectic structure on Sectx (Y).
(i) A Kx-twisted relative Langrangian structure on Z — Y induces a Lagrangian
structure on
Sectx(Z) — Sectx(Y).

Proof Following [11], we consider the evaluation map
Secix(Y) x X 5 Y,
a map of stacks over X. By Lemma 2.3, there is a pull-back morphism in QCoh(X):
ev* : A%(’C[(Y) ®oy Kx — A> (Sectx (Y)) @k Kx.

Using an integration map [y, : I'(X, Kx) — k[—d] provided by Serre duality, one obtains
a map

(Id X /) o ev': A2NY/X; Kx) —> A (Sectx (Y)).
X

Now, the same argument as in [11] shows that if the twisted 2-form @ on Y is
nondegenerate then so is the 2-form

WSect = (Id x /) o ev™)(w).
X

This proves part (i) of Proposition 2.4. The proof of part (ii) is obtained by similarly
tweaking the proof of [2, Therorem 2.10]. O
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Remarks 2.5 (i) The same proof works in a more general setting where X is any strictly
O-compact stack in the sense of [11, Definition 2.1] equipped with a line bundle Kx and a
map fx : I'(X, Kx) — k[—d] that induces a perfect pairing as in [11, Definition 2.4]. For
instance, one can take X be any proper Gorenstein (derived) scheme.

(ii) It is tempting to try to develop a formalism of ‘derived hyper-Kéhler geometry’, at
least a notion of ‘derived twistor space’. One could then consider an analog of Proposi-
tion 2.4, as well as analogs of various results below, with a hyper-Kéhler target ¥ and
hyper-Lagrangian structures Z — Y.

3 Equivariance and Twistings

Let Y be a Gy,-stack. Given an integer m, let Y@ denote the G,,-stack with the same
underlying stack as Y and the G,,-action given by precomposition with the homomorphism
Gn — Gy, t — ™. The space of (closed) p-forms on the G,,-stack Y carries a natural Z-
grading, to be referred to as ‘weight’. Thus, one can consider n-shifted symplectic structures
on Y of weight m.

Given a G,,-stack Z, we say that f is a map from Z to Y of weight m if f is a G-
equivariant map Z — Y. Heuristically, a map f : Z — Y has weight m if f(tz) =
t" f(z) forall t € Gy,.

Definition Fix an n-shifted symplectic structure on Y of weight m. This gives, for each
£ > 1, an n-shifted symplectic structure on ¥ (©) of weight m?.

(i) An equivariant Lagrangian structure is an equivariant map f : Z — Y, of G,,-stacks,
equipped with a nullhomotopy, in the space of closed 2-forms on Z of weight m, of the
pullback of the n-shifted symplectic form, satisfying a non-degeneracy condition.

(i) An equivariant Lagrangian structure f : Z — Y® will be called a Lagrangian
structure of weight £.

Let X be a smooth projective variety of dimension d (or, more generally, a derived stack
with a twisted orientation of degree d as in Remark 2.5). Fix m € Z and a choice, K Im of
an m-th root of the line bundle Ky on X.

Lemma 3.1 Let Y be a Gy,-stack equipped with an n-shifted symplectic form of weight
m > 1 with respect to the G,,-action. Let L be a line bundle on X and L the corresponding
G -torsor. Then the stack Yy — X carries an L& -twisted relative n-shifted symplectic
structure of weight m.

Proof Let A : X x BG,, — BG,, be the map classifying the line bundle £ X O(—1). We
have a diagram with cartesian squares:

Y ——=7Y. /G, ——= X x Y/G,

- |

A
X — > X x BG,, 2% x x BG,,

By Lemma 2.3, we get an isomorphism

AL 56, (YL/Gm) = (px x W (AR pe (X X ¥/G)).

@ Springer



1008 V. Ginzburg, N. Rozenblyum

In particular, the sheaf of weight m relative closed 2-forms on Y}, is given by
ALY (m) ~ L2 @ A2 (Y)(m).
By adjunction, we obtain a map
twisty, : A2 (V) (m) — T'(X, A% (Yp)(m) @ LE™). 3.1

Thus, an n-shifted symplectic form of weight m on Y gives an L& -twisted relative closed
2-form of weight m on Y. Moreover for a G,,-equivariant Lagrangian map f : Z — Y,
functoriality of twist;, induces a relative isotropic structure on f1 : Z; — Y. Now, to see
that the twisted relative closed 2-form on Y7, is nondegenerate (resp. that f;, is Lagrangian),
it suffices to check this locally on X. Thus, we can assume that L is the trivial line bundle
in which case the statement is manifest. O

The following is one of the main results of the paper.

Theorem 3.2 Let Y be a Gy, -stack equipped with an n-shifted symplectic form of weight
m > 1. Then, one has:
(i) The stack Sectx ( YK 1/m) has a natural (n — d)-shifted symplectic structure of weight m.
X

(i) For any Lagrangian structure f : Z — Y, of weight £, the map Sectx (ZK]/lm) —
X

SectX(YKl /m), induced by f, has a natural Lagrangian structure of weight €.

X
Proof Put L =K )1(/ ™ andlet L — X be the corresponding G,,-torsor. By Lemma 3.1, we
have that Y7 — X has a Kx-twisted relative n-shifted symplectic structure of weight m.
By Proposition 2.4 we obtain an (n — d)-shifted symplectic structure on Secty (Y1), resp.
Lagrangian structure, on Sectx (Z1) — Sectx (Yr). Moreover, since the maps

Sectyx (Yy) < Sectx(Yp) x X — Y,

are (,,-equivariant, the corresponding symplectic structure has weight m. The required
statements now follow from an observation that, for any G,,-stack and a G,,-bundle L — X,

one has natural isomorphisms of G,,-stacks Sectx (Y eom)"™ ~ Sectx(Yim)). O

We apply the above result to get a description of the symplectic structure on cotangent
stacks to mapping stacks.

Proposition 3.3 Let Y = T*[n]Z be the shifted cotangent stack with its n-shifted symplec-
tic structure of weight 1. In this case, there is a natural isomorphism of (n — d)-shifted
symplectic stacks

Sectx (Yky) ~ T*[n — d1Map(X, Z).

Proof The symplectic form on T*[n]Z is given by the deRham differential of the canon-
ical n-shifted 1-form on T*[n]Z. Therefore, it will suffice to construct an isomorphism
of derived stacks Sectx (Yky) =~ T*[n — d]Map(X, Z) such that the transgression of the
canonical 1-form is the canonical 1-form.

Recall that given a stack W together with a quasi-coherent sheaf £ € QCoh(W), we can
form the “total space of £” as the stack T'(£) defined as follows. A map from a test scheme
StoT(E)isamap f : § — W together with a section of f*(£). For instance, the stack
T*[n]Z is the total space of the sheaf ILz[n] on Z and the canonical 1-form on T*[n]Z is
given by the image of the section obtained from the identity map on 7*[n]Z along

p*Lz[n] = Lysuz(nl,
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where p : T*[n]Z — Z is the projection map.

The projection map p : T*[n]Z — Z givesamap f : Yx, — Z x X. In fact, by
construction, Yk, is the total space of the sheaf L.z[n]X K x on Z x X. In particular, we have
a section of ILyKX /x[n]®Kx given by the image of the canonical section of f*(ILz[n]XK x)
along the natural map

[rLz[n1 ¥ Kx) — Ly, /x[n] ® Kx.
Moreover, the map f induces the map
g : Sectx (Yky) — Map(X, Z),
together with a section of ev*(ILyKX/x[n] ® Kx), where
ev: Sectx(Yky) x X — Sectx(Yky)

is the evaluation map. Integrating along X, we obtain a section of 7, (ev*(ILYKX /x[n] ®
Kx)) =~ g*(Lmap(x,z)[n — d]). This gives the desired map of derived stacks

h: Sectx(Yk,) — T*[n —d]Map(X, Z),

which is easily seen to be an isomorphism. Moreover, by construction, the pullback of the
canonical 1-form on 7*[n — d]Map(X, Z) along A is identified with the transgression of
the canonical 1-form on T*[n]Z, as desired. O

In addition to equivariant symplectic structures, we will also need to consider equivariant
Calabi-Yau structures.

Definition Let S be a stack with a G,,-action. A d-Calabi-Yau structure of weight m on §
is a map

(S, Ox) - C[—d]

of weight m satisfying the nondegeneracy condition of [11, Definition 2.4]. Equivalently,
such a structure is given by a map of quasi-coherent sheaves on BG,,

7+(Os/G,,) = Cim)[—d],
where 7 : §/G,, — BG,, is the projection map.

Theorem 3.4 Let S be a G,,-stack with a d’-Calabi-Yau structure of weight m. Let X be a
smooth projective variety of dimension d (or more generally, a derived stack with a twised
orientation Kx of degree d as above) together with a choice of K )l(/ " Then:

(i) The stack X := X x S/Gyy, has a natural (d + d') Calabi-Yau structure of weight
BGm
1/m

m, where the map X — BG,, classifies the line bundle K,/ ™.
(i) Given an n-shifted symplectic stack Y, there is a natural G, -equivaraint equivalence
of (n — d — d’)-shifted symplectic stacks of weight m

Map(f(, Y) >~ Sectx Map(S, Y)K]/m).
X
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1010 V. Ginzburg, N. Rozenblyum

Proof We have the Cartesian square of stacks

X ——= S/G,,

|,k

X —'~ BG,
Therefore, by base change, we have
I'(X, Ox) ~ (X, *7.(Os/G,))-

The desired Calabi-Yau structure on X is then given as the composition of Calabi-Yau
structures on S and X:

I'(X,I*n.(Osg,)) = T'(X,I*(C(m)[d"])) - I'(X, Kx[d']) - C[d +d'].
Now, we have isomorphisms

Map(X, Y) = Secty(Map, x (X, Y x X)) =~ Secty (Map(S. Y) g1/n).

which by construction of the Calabi-Yau structure on X are compatible with the (n — d —
d")-shifted symplectic structures of weight m. (]

4 The Case of G-Bundles

For any stack ) and an integer n, the n-shifted cotangent stack 7*[n])) comes equipped
with a natural n-shifted symplectic form, see [11, Proposition 1.21] and also [3]. This 2-
form has weight 1 with respect to the G,,-action on 7*[n]) by dilations along the fibers of
the cotangent bundle. The zero section ) < T*[n]) has a natural Lagrangian structure.

One has a canonical isomorphism g*/G = T*[1]1BG, which provides the stack g*/G
with a natural 1-shifted symplectic structure of weight 1.

In what follows, it will be convenient to have another description of this 1-shifted sym-
plectic stack as a mapping stack. Recall that an Ad-invaraint nondegenerate symmetric
bilinear form « on g gives a 2-shifted symplectic structure on the stack BG. Now, let
S = BGy, the formal completion of BG, at a point, with its natural G,, action. We have
that I'(S, Os) =~ Cle], where |¢| = 1 and the map C[e] — C[—1], given by € > 1 gives
S a 1-Calabi-Yau structure of weight 1. We then have:

Lemma 4.1 There is a canonical isomorphism of 1-shifted symplectic stacks of weight 1

Map(S, BG) ~ T*[1]BG.

Proof We have a G,,-equivariant isomorphism of derived stacks Map(S, BG) =~
T[-1]BG =~ g/G. Recall that the 2-shifted symplectic structure on BG is given by the
image of an Ad-invariant symmetric bilinear form « on g under the natural map

. G
(@izoSym™ (@[-2-201) — A>I(BG).

Unraveling the definitions, we have that the composite map

(@iz0Sym™ (@12 - 2iJ)G — AUBG) — A (g/G)[-1]
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factors through the map

(@ 142127 (8) ®c Sym? (g9)[2 — p — 2q1))¢ — A>(g/G),

where the differential in the complex on the left is given by the sum of the internal differen-
tial and the deRham differential on g. Thus, we obtain that the only nonzero component of
the 1-shifted symplectic structure on g/ G is given by the image of « along the map

Sym*(g*) - Q' (9 ® ¢* ~ ¢* @ ¢* ® Oy.

It follows that the G,, equivariant identification g/G =~ g*/G induced by x upgrades to an
isomorphism of 1-shifted symplectic stacks of weight 1. O

The map 0/G — g¢*/G, induced by the imbedding {0} < g*, may be identified with
the zero section: : BG — T*[1]BG.

Let M be a smooth symplectic variety equipped with a Hamiltonian G-action. It was
observed by Calaque [2], that the map M/G — g*/G, induced by the moment map p :
M — g*, has a natural Lagrangian structure. Hence, from Theorem 3.2 in the special case
where Y = g*/G and n = 1 we deduce the following result.

Corollary 4.2 (i) For anym > 1, the stack Sectx (g*[‘(l/m /G) has a canonical (1—d)-shifted
X

symplectic structure structure of weight m.

(i) For a smooth symplectic G x Gy,-variety M such that the action of the group G is
hamiltonian and the symplectic 2-form has weight £ > 1 with respect to the G,-action, the
map Secty (M l/ml) — Sectx (g* 1/m/G) induced by the moment map M — g*, has a

natural Lagranglan structure of welght L.

We now specialize to the case where ¥ = X is a smooth projective curve. The stack
of Higgs bundles on X is defined as Higgs;(X) := Map(Xpy, BG), where Xp,y; is the
Dolbeault stack, see [11]. Since d = dim X = 1, the stack Higgss(X) is equipped with a
0-shifted symplectic structure, by [11, Corollary 2.6(2)].

Lemma 4.3 There are natural isomorphisms of 0-shifted symplectic stacks
Map(E por, BG) ~ Sects (g /G) ~ T*Bung (X).

Proof By definition, X p,; is identified with X x S, where the map X — BG,, classifies
BG,,

K x. Moreover, by construction of the Calabi-Yau structure in Theorem 3.4(i), this isomor-
phism gives an isomorphism of 1-CY stacks. The first, resp. second, isomorphism of the
lemma then follows from Theorem 3.4(ii), resp. Proposition 3.3. O

Using the above lemma, from Corollary 4.2 we deduce
Theorem 4.4 Let M be a smooth symplectic G x Gy,-variety such that the action of the

group G is hamiltonian and the symplectic 2-form has weight £ > 1 with respect to the
Gy, -action. Then, the map

Secty (M 10/ G) —> Secty, (9% /G) = T*Bung (%), 4.1)
z

induced by the moment map M — g*, has a natural Lagrangian structure of weight (.
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1012 V. Ginzburg, N. Rozenblyum

To complete the proof of Theorem 1.2 one observes that, on the locus 7*Bung (X)"%8
where T*Bung (X) is a smooth variety, the O-shifted symplectic 2-form is nothing but the
standard symplectic 2-form w on T*Bung(X)"“® in the ordinary sense. Similarly, if A is a
smooth variety and a map f : A — T*Bung(X)"® has a Lagrangian structure then one
has f*w = 0. Thus, Theorem 1.2 follows from Theorem 4.4.

5 Additional Comments and Speculations
5.1 A Generalization of Gaiotto’s Argument

In the linear case, an ‘infinite dimensional’ approach to Theorem 1.2 is explained in [6].
Gaiotto’s approach is based on a standard differential geometric interpretation of Bung (%)
as a quotient of an infinite dimensional space of d-connections by a gauge group. It was
suggested to us by Gaiotto that the argument in [6] can be adapted to the more general,
nonlinear setting of Theorem 1.2 as follows. Below, we assume that ¢ = 2, for simplicity.

Fix a I_Jrincipal C*-bundle P E) % and let Connz(P) be (an infinite dimensional)
space of d-connections on P. Further, let Sects, coo (M K2 XG P) be (an infinite dimen-
z

sional) space of C®°-sections of an associated bundle M K2 XG P — Y. Lletz €
x

Secty, ¢ (MK1/2 x G P) be such a section and A € Connz(P) a d-connection. Then V,z,a
z

covariant derivative of z with respect to A, is a C*®-section of z*Ty ® K %/ 2 ® Q%! , Where

Ty stands for the holomorphic tangent sheaf on M and Qg’q is the sheaf of C*° differen-
tial forms on X of type (p, g). Further, let Ay = icy,,wm, Where wyy is the (holomorphic)
symplectic form on M and euy, is the Euler field that generates the G, -action on M. Thus,

Z*Apy is a C*-section of *Ty; ® K)lz/z. Using the canonical pairing (—, —) of holomorphic
vector fields and holomorphic 1-forms on M, we obtain a C*-section (V, z, z*Ay) of the

sheaf Ki/* ® Q%' @ K/* = Ky ® Q%' = QL.

In the above setting, the role of the potential from [6, formula (2.3)] is played by a
function on Secty, ¢ (MKI/Z xG P) x Connz(P) defined by the formula
z

Wiz, A) = f (Vaz, 2%Am). 5.1
p)

To prove that the map pse; in Theorem 1.2 is Lagrangian we show, by a calculation
similar to the one in [6, Appendix A], that Eq. 5.1 is a generating function (aka ‘Lagrange
multiplier’) for Sects (My112/G).

z

To this end, observe that an infinitesimal variation of z is given by a section z of z*Ty; ®

K é/ 2. The corresponding variation of the (1, 1)-form (V, z, z*A ) reads

8(V,z, 2" Am)

5 (2) = 0(V,z, Z"An) + (dAp)(V,2, 2),

where the operator 9 that appears in the first summand on the right is the Dolbeault differ-
ential 3 : Q}E’O — Q;l. Using that dAy = wy and that, on Q;’O, one has 8 = d, we find

that the variation of Eq. 5.1 equals

W . .
— @)= dV,z, 7" )+ | om(V,z,2).
8z b b
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The first summand on the right vanishes by Stokes’ theorem. Hence, the form wys being
nondegerate, we deduce that the equation % (z) = 0 holds for all z if and only if V,z = 0,
that is, if and only if the section z is holomorphic with respect to the complex structure on
M K12 X P determined by the d-connection A.

Next, let A be an infinitesimal variation of A. Then, it is easy to check that ‘;—VX(A) =

sect(z, A)(A), proving that W is a generating function for Sects (M «12/G).
z

Remark 5.1 Let eu, resp. eusec, be the Euler vector field on T*Bung(X), resp.
Sects, (MKI/Z/G), that generates the G,,-action. Recall that w = dA where A = ieyw is the
z

Liouville 1-form on T*Bung(X). The map psecs in Eq. 1.1 being of weight £, one finds:

* * . 1 . *
WSee; (M) = M gee(feuw) = 7 leuselt (w).

It follows, as has been observed by Hitchin [8], that Theorem 4.4 is equivalent to the
equation us,.,(A) = 0.

5.2 Relation to the Global Nilpotent Cone

Let B be a Borel subgroup of G, so G/B is the flag variety. The symplectic form on
T*(G/B) has weight 1 and the moment map u : T*(G/B) — g* is the Springer resolu-
tion T7*(G/B) — N, where N' C g* is the nilpotent cone. The stack Sects (N/G)ky)
can be identified with Ny, the global nilpotent cone in T*Bung(X). Further, the stack
Sects ((T*(G/B)ky/G) can be identified with T*Bung(X). Explicitly, writing n for the
nilradical of Lie B, the stack T*Bung(X) classifies triples (P, o, ¢), where P is a G-
bundle on ¥, 0 : ¥ — P/B is a section, i.e. a reduction of P to a B-bundle, and
¢ : P xpn— (P xpn)® Ky is a Higgs field. Assume that the genus of the curve X is
greater than 1. Then, the derived stacks T*Bung(X) and T*Bung(X) are concentrated in
homological degree 0, i.e. they are actually non-derived stacks. The stack s is not concen-
trated in homological degree 0, and one can consider N ga“ical, its non-derived counterpart,
which is an ordinary substack of 7*Bung(X).

The map (P, o, ¢) — (P, ¢), that forgets reduction of the structure group, may be
identified with the composition

Wseet : T*Bung (D) 25 Ny 2> T*Bung(3). (5.2)

The map psec: has a Lagrangian structure by Corollary 4.2. One can show that the map 7,
has a natural coisotropic structure in the sense of [9]. However, this coisotropic structure is
easily seen to be not Lagrangian.

On the other hand, it was shown in [7] that, for any field extension K/k, the map
nfla“ical : T*Bung(Z)(Spec K) — N, gaSSical(Spec K), of K-points of the corresponding
non-derived stacks, is surjective. This result was used in [7] to prove that N gassml is (as
opposed to its derived analog) a Lagrangian substack of 7*Bung (X) in the sense explained
in loc cit. _

More generally, let Y — Y be a (G x Gy,)-equivariant symplectic resolution such that
Y is affine, the Gm-actiog on Y is a contraction to a unique G, -ﬁxed point and, moreover,
the symplectic form on Y has weight m > 1. Then, we have k[Y] = k[Y], so the Poisson
bracket on the alggbra k[Y] provides Y with a (G x G,,)-equivariant Poisson structure. Also,
the moment map Y /G — g*/ G factors through Y/ G. Therefore, there is a chain of induced
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maps Secty, ((?/G)Kl/m) T Secty (Yiiym/G) EiE T*Bung () such that mp 0 11 = (USecr-
z z
The map ptsecr has a Lagrangian structure, by Theorem 4.4. Again, one can show that the

map 7, : Secty (YKI/M/G) KN T*Bung (X) has a natural coisotropic structure.
z

Question 5.2 1s SeCtE(YKI/m /G)ClaSSical, a non-derived counterpart of SeCtE(YKl/m/ G),
= z .
isotropic in the sense of [7], specifically, is it possible to partition Sects (Y 1/m / G)classical

as a disjoint union of substacks such that the pull-back of the symplectic 2-form on
T*Bung (X) to each of these substacks vanishes?

5.3 Hamiltonian Reduction

Let M be a stack equipped with a 0-shifted symplectic structure and with a Hamiltonian
G-action with moment map u. The stack 1~ (0)/G, a stacky Hamiltonian reduction of
M, comes equipped with a canonical 0-shifted symplectic structure. On the other hand, let
A1 =0/G — g*/G be the map induced by the imbedding {0} < g*and A, = M/G —
g*/ G be the map induced by p. One has a natural isomorphism, see [13],

A] Xg*/G AZZO/G Xg*/G M/Gguil(O)/G. (53)

Recall that the stack g*/G has the canonical 1-shifted symplectic structure and each of the
two maps A; — g*/G, i = 1,2, has a Lagrangian structure, cf. §4. Further, according to
[11, Theorem 0.5], for any stack ) equipped with an n-shifted symplectic structure and a
pair A; — Y, i = 1,2, of Lagrangian structures, the stack A xy Aj has a natural (n — 1)-
shifted symplectic structure. Therefore, the stack 0/ G x g+, M /G comes equipped with a
0-shifted symplectic structure. It was shown by Calaque [2] that the isomorphism in Eq. 5.3
respects the 0-shifted symplectic structures.

Next, we fix a smooth projective curve ¥ and let K = Kyx. The stack g% /G =
T*Bung(X), a global counterpart of g*/G, has the O-shifted symplectic structure of
weight 1. Also, the Lagrangian structure on the map 0/G — g*/G induces, for any
¢, a weight ¢ Lagrangian structure Sects((0/G)gie) — Sects((g*/G)k). The lat-
ter Lagrangian structure corresponds, via the isomorphisms 7*Bung(X) = g% /G and
Bung(X) = Sects((0/G)k), to an obvious Lagrangian structure on the zero section
Bung(X) — T*Bung(X). (We have used here that for any variety ) equipped with a triv-
ial G,-action and any G,,-bundle L on X, one has Sectx ();) = Map(Z, ), in particular,
we have Sects ((0/G)k) = Map(X, BG) = Bung(X).)

Now, let M be a symplectic manifold equiped with a (G x G, )-action such that the
symplectic 2-form has weight £ > 1 and the G-action is Hamiltonian. One has canonical
isomorphisms

Sects ((0/G) g17e) X T*Bung () Sects (M/G)gie) = SeClz((O/G)Kl/l X gt /G (M/G)K]/l)
= Sects (11 0)/G) g1ye). (5.4)

Here, the fiber product on the left involves the map (4.1), which has a weight £ Lagrangian
structure, by Theorem 4.4. Thus, according to [11, Theorem 0.5], the fiber product of
Lagrangians on the left of Eq. 5.4 has a (—1)-shifted symplectic structure. On the other
hand, the 0-shifted symplectic structure on T (0)) /G induces, by Theorem 3.2(i), a (—1)-
shifted symplectic structure of weight £ on Secty ((w=10) / G) g1/¢), the stack on the right of
Eq. 5.4. One can check that the composite isomorphism in Eq. 5.4 respects the (—1)-shifted
symplectic structures described above.
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Let X be a stack and assume there is a line bundle K / 2, a square root of the dualizing

complex of X In [12], Pridham shows that an (—1)-shifted symplectic structure on X gives

rise to a canonical self-dual quantization of K{lv/z. Moreover, associated with that quanti-

zation, there is a constructible complex on X, of vanishing cycles. Therefore, one might
expect that, in the setting of the previous paragraph, the stack Secty ((n=10)/6) K1/t)
comes equipped (perhaps, under some additional assumptions) with a natural constructible
complex of vanishing cycles.

The linear case, where £ = 2 and M is a linear symplectic representation of G, has
been considered in the physics literature in the framework of Coulomb branches for 3-
dimensional gage theories, cf. [6] and references therein. The special case where M =
E @ E* is a direct sum of a pair of dual representations of G is simpler than the general
case. In that case, the geometry of Sects ((n=1(0) /G)1/2) can be reduced, in a sense, to
the geometry of Sects, (E g1/2). Such a reduction allows to avoid the use of vanishing cycles.
A mathematical theory of Coulomb branches in the case M = E & E* was developed by
H. Nakajima [10], cf. also [1].
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