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Abstract Given an algebraically closed field k of characteristic zero, a Lie superalgebra
g over k and an associative, commutative k-algebra A with unit, a Lie superalgebra of the
form g ⊗k A is known as a map superalgebra. Map superalgebras generalize important
classes of Lie superalgebras, such as, loop superalgebras (where A = k[t±1]), and cur-
rent superalgebras (where A = k[t]). In this paper, we define Weyl functors, global and
local Weyl modules for all map superalgebras where g is either sl(n, n) with n ≥ 2, or a
finite-dimensional simple Lie superalgebra not of type q(n). Under certain conditions on
the triangular decomposition of these Lie superalgebras we prove that global and local Weyl
modules satisfy certain universal and tensor product decomposition properties. We also
give necessary and sufficient conditions for local (resp. global) Weyl modules to be finite
dimensional (resp. finitely generated).
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1 Introduction

Let g be a Lie algebra and X be a scheme, both defined over a field k. Map Lie algebras
(also known as generalized current Lie algebras) are Lie algebras of regular maps from X

to g. They form a large class of Lie algebras, whose representation theory is an extremely
active area of research. Map Lie algebras generalize loop algebras and current algebras,
which are very important to the theory of affine Kac-Moody Lie algebras.

Given a finite-dimensional, simple Lie algebra g over C, (local) Weyl modules for the
loop algebra g ⊗C C[t±1] were introduced by Chari and Pressley in [4]. These modules
are indexed by dominant integral weights of g and are closely related to certain irreducible
modules for quantum affine algebras. In [7], Feigin and Loktev defined local and global
Weyl modules for map Lie algebras of the form g ⊗C A, where g is a finite-dimensional
semisimple Lie algebra andA is the coordinate ring of an affine variety, both defined overC.
A more general approach was taken in [1], where Chari, Fourier and Khandai studied local
Weyl modules, global Weyl modules, and Weyl functors for map algebras of the form g⊗C

A, where g is a finite-dimensional simple Lie algebra and A is an associative, commutative
algebra with unit, both defined over C. In [6] and [9], the representation theory of local and
global Weyl modules were developed for equivariant map Lie algebras, that is, Lie algebras
of �-equivariant regular maps from an affine scheme of finite type X to a finite-dimensional
simple Lie algebra g, both defined over an algebraically closed field k of characteristic
zero, on which a finite group � acts by automorphisms (both on g and X) and freely on the
rational points of X.

In [2], Calixto, Lemay and Savage initiated the study of Weyl modules for Lie super-
algebras by defining local and global Weyl modules for map superalgebras of the form
g ⊗C A, where g is either a finite-dimensional basic classical Lie superalgebra, or sl(n, n)

with n ≥ 2, and A is an associative, commutative algebra with unit, both defined over C.
Weyl modules for Lie superalgebras also appear in [8] and [15].

In the current paper we study global and local Weyl modules for a more general class of
map superalgebras and initiate the study of Weyl functors in the super setting. In fact, we
consider map superalgebras g ⊗k A, where g is either sl(n, n) with n ≥ 2, or any finite-
dimensional simple Lie superalgebra not of type q(n), and A is an associative, commutative
algebra with unit, both defined over an algebraically closed field k of characteristic zero.

1.1 Main Results

Let k be an algebraically closed field of characteristic zero, g be either sl(n, n) with n ≥ 2,
or a finite-dimensional simple Lie superalgebra not of type q(n), and A be an associative,
commutative algebra with unit, both defined over k.

Since there are non-conjugate Borel subsuperalgebras of simple Lie superalgebras (see
for instance [3, 19, 20]), results for Lie superalgebras (unlike Lie algebras) may depend on
the chosen triangular decomposition g = n− ⊕h⊕n+. In Section 3, Theorem 3.7, we prove
that g admits triangular decompositions satisfying two important conditions (C1) and (C2).
Another important condition on triangular decompositions is what we call parabolic in Def-
inition 4.2. Triangular decompositions satisfying these conditions are important because
the structure of generalized Kac modules, global and local Weyl modules may change
drastically if we choose different triangular decompositions.

In Section 5, Definition 5.4, we define global Weyl modules WA(λ), one of the main
objects of this paper. In Section 6, we introduceAλ, a commutative algebra that is a quotient
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of U(h⊗ A). The global Weyl module WA(λ) admits a structure of (right) Aλ-module. Our
first main result, Theorem 7.6, is the following:

Theorem If A is finitely generated and g is a simple Lie superalgebra not of type q(n), with
a triangular decomposition satisfying condition (C2), then WA(λ) is a finitely-generated
right Aλ-module.

In Section 8, Definition 8.1, we define local Weyl modules W loc
A (ψ), the second main

object of this paper. We proceed to give necessary and sufficient conditions (on the choice of
triangular decomposition of g) for local Weyl modules to be finite dimensional. In order to
do that, we denote by wψ a highest-weight generator of W loc

A (ψ) and define the subalgebra

w
g

ψ = {x ∈ g | (x ⊗ a)wψ = 0 for all a ∈ A} ⊆ g.

Theorem 8.13, the other main theorem of this paper, is the following:

Theorem Let g be a simple Lie superalgebra not of type q(n).

(a) If g is basic classical of type II, thenW loc
A (ψ) is finite dimensional (for every triangular

decomposition).
(b) If g is basic classical of type I, then W loc

A (ψ) is finite dimensional if and only if the
triangular decomposition is not a parabolic one.

(c) If g is either of type p(n) or of Cartan type and x−
θ is in the r-submodule of g generated

by w
g

ψ , then W loc
A (ψ) is finite-dimensional.

(d) If g is either of type p(n) or of Cartan type, and the triangular decomposition of g is
parabolic, then W loc

A (ψ) is infinite-dimensional.

This whole paper is devoted to studying global and local Weyl modules for map Lie
superalgebras. In particular, we prove that the global and local Weyl modules defined
here satisfy universal properties analogous to those satisfied by other important modules.
Namely, when g is a finite-dimensional simple Lie algebra andA = k, global and localWeyl
modules are equal to each other, and they are irreducible finite-dimensional g-modules.
When g is a finite-dimensional simple Lie superalgebra not isomorphic to q(n) and A = k,
global and local Weyl modules are equal to each other, and they are isomorphic to general-
ized Kac modules. Finally, when g is a finite-dimensional simple Lie algebra and A is an
associative, commutative, algebra with unit, local and global Weyl modules defined in the
current paper are isomorphic to local and global Weyl modules that have been extensively
studied in several papers, such as, [1, 4, 7].

2 Preliminaries

Throughout this paper k will denote an algebraically closed field of characteristic zero, Z
will denote the set of integers, Z2 = {0̄, 1̄}will denote the quotient ring Z/2Z,Nwill denote
the set {0, 1, . . . }, and N+ will denote the set {1, 2, . . . }. All vector spaces, algebras, and
tensor products will be considered over the field k (unless otherwise specified).

A Lie superalgebra is a Z2-graded vector space g = g0̄ ⊕ g1̄ with a Z2-graded linear
transformation [·, ·] : g ⊗ g → g which satisfies Z2-graded versions of anticommutativ-
ity and Jacobi identity. Given a Lie superalgebra g, we will denote by U(g) its universal
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enveloping superalgebra. Recall that the superalgebra U(g) admits a PBW-type basis, that
is, if x1, · · · , xm is a basis of g0̄ and y1, . . . , yn is a basis of g1̄, then the monomials

y
j1
1 . . . y

jn
n x

i1
1 . . . xim

m , i1, . . . , im ≥ 0 and j1, . . . , jn ∈ {0, 1},
form a basis of U(g).

Let f = f0̄ ⊕ f1̄, g = g0̄ ⊕ g1̄ be Lie superalgebras, and M = M0̄ ⊕ M1̄, N = N0̄ ⊕
N1̄ be g-modules. Throughout this paper we will assume that every homomorphism of Lie
superalgebras φ : f → g and every homomorphism of g-modules ψ : M → N is even, that
is, φ(f0̄) ⊆ g0̄, φ(f1̄) ⊆ g1̄, ψ(M0̄) ⊆ N0̄, and ψ(M1̄) ⊆ N1̄. Notice that the category of
g-modules is equivalent to the category of left Z2-graded U(g)-modules. In particular, the
universal enveloping superalgebra U(g) is a g-module via left multiplication.

Definition 2.1 (Finitely-semisimple module) Let g be a Lie superalgebra. A g-module is
said to be finitely semisimple if it is equal to the direct sum of its finite-dimensional irre-
ducible submodules. Given a subsuperalgebra t ⊆ g, let C(g,t) denote the full subcategory of
the category of all g-modules whose objects are the g-modules which are finitely semisimple
as t-modules.

The proof of the next result is standard (see, for instance, [14, Section 3.1 and
Appendix D]). Since the category of g-modules is abelian, this result implies that C(g,t) is
also an abelian category.

Lemma 2.2 Category C(g,t) is closed under taking submodules, quotients, arbitrary direct
sums, and finite tensor products.

Given a Lie superalgebra g, a Lie subsuperalgebra t ⊆ g and a t-module M , define the
induced module indgt M to be the g-module

indgt M = U(g) ⊗Ut M,

with action induced by left multiplication.

Lemma 2.3 Let g be a Lie superalgebra, t ⊆ g be a Lie subsuperalgebra and M be a t-
module. If g (via the restriction of its adjoint representation) and M are finitely-semisimple
t-modules, then indgt M is an object in C(g,t).

Proof Let U(g)adt denote U(g) regarded as a t-module via the restriction of the adjoint
representation of g. Since g is assumed to be a finitely-semisimple t-module via the
restriction of its adjoint representation, by Lemma 2.2, we have that g, its tensor alge-
bra and U(g)adt are finitely-semisimple t-modules. Moreover, since M is assumed to be a
finitely-semisimple t-module, by Lemma 2.2,U(g)adt⊗kM a finitely-semisimple t-module.

Now, notice that the map

U(g)adt ⊗k M → Ug ⊗Ut M, u ⊗ m �→ u ⊗ m.

is a surjective homomorphism of t-modules. In fact, for every u ⊗ m ∈ indgt M and every
homogeneous element x ∈ t, we have:

x ·(u⊗m) = xu⊗m = ([x, u]+(−1)p(u)p(x)ux)⊗m = [x, u]⊗m+(−1)p(u)p(x)u⊗x ·m.

This shows that indgt M is a quotient of U(g)adt ⊗k M . The result follows from Lemma 2.2.
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Lemma 2.4 Let g be a Lie superalgebra, t ⊆ g be a Lie subsuperalgebra. If M is a cyclic
t-module given as the quotient of U(t) by a left ideal J � U(t), then indgt M is a cyclic
g-module given as the quotient of U(g) by the left ideal generated by J in U(g).

Proof Using the short exact sequence 0 → J → U(t) → M → 0, this proof is
straightforward.

Finite-dimensional simple Lie superalgebras over an algebraically closed field of char-
acteristic zero were classified by V. Kac in [13], and they can be divided into three groups:
basic classical, strange, and Cartan type (see Table 1). Let g be either sl(n, n) with n ≥ 2,
or a finite-dimensional simple Lie superalgebra. These Lie superalgebras admit a Z-grading
g = ⊕

i≥−2 gi (see Section 3 for more details). Let

r =
{
g0, if g is of Cartan type,
g0̄, otherwise.

(2.1)

For every g, the Lie subsuperalgebra r is a reductive Lie algebra (see Table 1). Denote by r′
the semisimple part of r and by z its center. Fix a Cartan subalgebra h ⊆ g, (in particular,
if g 
∼= q(n), then h = h0̄ is a Cartan subalgebra of r, and, if g ∼= q(n), then h = h0̄ ⊕ h1̄,[h1̄, h1̄] = h0̄ and h0̄ is a Cartan subalgebra of r), consider a triangular decomposition
g = n− ⊕ h ⊕ n+, and let b = h ⊕ n+ be the Borel subsuperalgebra associated to this
decomposition. Notice that a triangular decomposition g = n−⊕h⊕n+ induces a triangular
decomposition r = n

−
0 ⊕ h0̄ ⊕ n

+
0 , where n

±
0 = n± ∩ r = n± ∩ r′ and z ⊆ h0̄.

A g-module V is said to be a weight module when

V =
⊕

μ∈h∗̄
0

Vμ, where Vμ = {v ∈ V | hv = μ(h)v for all h ∈ h0̄}.

Table 1 Finite-dimensional simple Lie superalgebras and sl(n, n)

g r Type

A(m, n), m > n ≥ 0 Am ⊕ An ⊕ k Basic, type I

A(n, n), n ≥ 1 An ⊕ An Basic, type I

sl(n, n), n ≥ 2 An−1 ⊕ An−1 ⊕ k N/A

B(m, n), m ≥ 0, n ≥ 1 Bm ⊕ Cn Basic, type II

C(n + 1), n ≥ 1 Cn ⊕ k Basic, type I

D(m, n), m ≥ 2, n ≥ 1 Dm ⊕ Cn Basic, type II

D(2, 1;α), α 
= 0,−1 A1 ⊕ A1 ⊕ A1 Basic, type II

F(4) A1 ⊕ B3 Basic, type II

G(3) A1 ⊕ G2 Basic, type II

H(n), n ≥ 4 Bn or Dn Cartan

S(n), n ≥ 3 An−1 Cartan

S̃(n), n = 2m,m ≥ 2 An−1 Cartan

W(n), n ≥ 2 An−1 ⊕ k Cartan

p(n), n ≥ 2 An Strange

q(n), n ≥ 2 An Strange
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An element μ ∈ h∗̄
0
is said to be a weight of V when Vμ 
= {0}, and, in this case, Vμ is

said to be a weight space of V , and the elements of Vμ are said to be weight vectors. A
vector v ∈ Vμ \ {0} is said to be a highest-weight vector (with respect to the fixed triangular
decomposition) if n+v = 0. Similarly, λ ∈ h∗̄

0
is said to be the lowest weight of a weight g-

module V if Vλ 
= {0} and n− Vλ = {0}. A g-module V is said to be a highest-weight module
of highest weight λ ∈ h∗̄

0
if V is generated by a highest-weight vector v ∈ Vλ \ {0}. Every

irreducible finite-dimensional g-module is a highest-weight module. Denote by Lb(λ) the
unique irreducible g-module of highest weight λ (with respect to b), and set

X+ = X+(b) = {λ ∈ h∗̄
0

| Lb(λ) is finite dimensional}. (2.2)

3 Triangular Decompositions

If g is a finite-dimensional simple Lie superalgebra, with respect to each choice of triangular
decomposition g = n− ⊕h⊕n+, we have that, as a g-module, g has a lowest weight, which
we will denote by −θ ∈ h∗̄

0
. Let n±

z̄ denote n± ∩ gz̄, z ∈ {0, 1}. In this paper we will be

interested in triangular decompositions g = n−⊕h⊕n+ satisfying the following conditions:

(C1) n
−
0̄

⊆ r.

(C2) n
−
0̄

⊆ r and −θ is also a root of r.

In fact, triangular decompositions satisfying (C1) will be important to show that generalized
Kac modules are finite dimensional (see Proposition 4.4), and triangular decompositions
satisfying (C2) will be crucial in the proof that global Weyl modules are finitely-generated
right Aλ-modules (see Theorem 7.6). This section is devoted to constructing triangular
decompositions satisfying these conditions.

3.1 Basic Classical Lie Superalgebras and sl(n, n) with n ≥ 2

In this subsection we assume that g is a basic classical Lie superalgebra, unless otherwise
specified. In these cases, g0̄ is a reductive Lie algebra. A basic classical Lie superalgebra g
is said to be of type II if g1̄ is an irreducible g0̄-module, and g is said to be of type I if g1̄ is
a direct sum of two irreducible g0̄-modules (see Table 1).

A Cartan subalgebra h ⊆ g is defined to be a Cartan subalgebra of g0̄. Under the adjoint
action of h, we have a root space decomposition:

g = h ⊕
⊕

α∈h∗\{0}
gα, where gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h}.

Denote by R the set of roots, {α ∈ h∗ \ {0} | gα 
= {0}}. For α ∈ R, gα is either purely even,
that is, gα ⊆ g0̄, or gα is purely odd, that is, gα ⊆ g1̄. Let R0̄ = {α ∈ R | gα ⊆ g0̄} be the
set of even roots and R1̄ = {α ∈ R | gα ⊆ g1̄} be the set of odd roots.

It is known that g can be realized as a contragradient Lie superalgebra (for details, see
[16, Chapter 5]). Recall that � ⊆ R is a set of simple roots if, for each α ∈ �, there exist
elements xα ∈ gα , yα ∈ g−α , such that: {xα, yα | α ∈ �} ∪ h generates g, and [xα, yβ ] = 0
for α 
= β ∈ �. Denote hα := [xα, yα]. Every choice of a set of simple roots � ⊆ R yields
a decomposition R = R+(�) � R−(�), where R+(�) (resp. R−(�)) denotes the set of
positive (resp. negative) roots (defined in the usual way). Define

�0̄ = � ∩ R0̄, �1̄ = � ∩ R1̄, R±
0̄

= R0̄ ∩ R± and R±
1̄

= R1̄ ∩ R±.
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A choice of simple roots � ⊆ R also induces a triangular decomposition g = n−(�) ⊕ h⊕
n+(�), where n±(�) = ⊕

α∈R±(�) gα . The subsuperalgebra b(�) = h ⊕ n+(�) is said to
be the Borel subsuperalgebra of g corresponding to �.

In order to construct a triangular decomposition satisfying (C2), for each simple odd
isotropic root (that is, β ∈ �1̄ such that β(hβ) = 0), define the odd reflection with respect
to β to be the map

rβ : � → R, rβ(β ′) =
⎧
⎨

⎩

−β, if β ′ = β,

β ′, if β ′ ∈ �, β ′ 
= β, and β(hβ ′) = β ′(hβ) = 0,
β + β ′, if β ′ ∈ �, β ′ 
= β, β(hβ ′) 
= 0 or β ′(hβ) 
= 0.

By [5, Lemma 1.30], the set rβ(�) is a set of simple roots in R, and

R+(rβ(�)) \ {−β} = R+(�) \ {β}.
Now, let �dis = {γ1, . . . , γn} be a distinguished set of simple roots of g (that is, a set of

simple roots that has only one odd root), and let γs denote the unique odd root in �dis (see
[10, Tables 3.54, 3.57-3.60]). The choice of �dis induces a Z-grading g = ⊕

i∈Z gi that is
compatible with the Z2-grading; namely, gi = ⊕

ht(α)=i gα , where ht(α) = ∑k
j=1 ht(γij ) if

α = γi1 + · · · + γik , and ht(γi) = δi,s for all i ∈ {1, . . . , n}. Explicitly:
g0̄ = g0 and g1̄ = g−1 ⊕ g1, if g is of type I, (3.1)

g0̄ = g−2 ⊕ g0 ⊕ g2 and g1̄ = g−1 ⊕ g1, if g is of type II. (3.2)

Moreover, �dis induces a triangular decomposition

g = n−(�dis) ⊕ h ⊕ n+(�dis), where n±(�dis) = n
±
0 ⊕

(
⊕

i>0

g±i

)

. (3.3)

A subsuperalgebra bdis = b(�dis) is called a distinguished Borel subsuperalgebra of
g, and the triangular decomposition given in Eq. 3.3 is called a distinguished triangular
decomposition of g.

Recall that A(n, n) = sl(n, n)/kIn,n, where In,n is the identity matrix in sl(n, n). Hence,
the preimage of the canonical projection sl(n, n) � A(n, n) induces decompositions as in
Eqs. 3.1 and 3.3 on sl(n, n).

Proposition 3.1 Let g be a either a basic classical Lie superalgebra, or sl(n, n) with n ≥ 2,
and let �dis be a distinguished system of simple roots for g.

(a) If g is a basic classical Lie superalgebra of type II, then the triangular decomposition
of g induced by �dis satisfies (C2).

(b) If g is sl(n, n), n ≥ 2, or a basic classical Lie superalgebra of type I, then there exist
a chain of odd reflections ϕ such that the triangular decomposition of g induced by
ϕ(�dis) satisfies (C2).

In particular, g admits at least one triangular decomposition satisfying (C2).

Proof Notice that, since r is defined to be g0̄, we have n
−
0̄

= n−∩g0̄ ⊆ r for every triangular

decomposition g = n− ⊕h⊕n+. That is, we only have to prove that there exists a triangular
decomposition such that the associated lowest root of g is also a root of r.

(a) Recall from Eq. 3.1 that, if g is of type II, the Z-grading associated to �dis is given by
g = g−2⊕g−1⊕g0⊕g1⊕g2. Since n−(�dis) = g−2⊕g−1⊕n

−
0 , and [g−2, g−2⊕g−1] =
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0, it follows that the lowest weight of g−2 as a g0-module is also the lowest weight of
g, in other words g−θ ⊆ g−2. Since g−2 ⊆ g0̄ = r, we obtain that−θ is also a root of r.

(b) Let λ denote the highest root of g with respect to �dis, and let � denote rγs (�dis).
If g = C(n + 1), then one can check that λ(hγs ) 
= 0. (In fact, λ(hγs ) is a purely
positive integer linear combination of the elements of the s-th row of the Cartan matrix
of g.) Thus, it follows from [20, Lemma 10.2] that Lbdis(λ) ∼= Lb(�)(λ − γs). That is,
θ = λ − γs is the highest root of g relative to b(�). Since both λ and γs are odd roots,
θ is an even root. Thus, since r is defined to be g0̄, the lowest root −θ is a root of r. For
the cases where g = A(m, n) or sl(n, n), we need to apply a chain of odd reflections
to obtain the result. Indeed, consider the following chain of odd reflections:

�dis = �0
rεm+1−εm+2→ �1

rεm−εm+2→ �2
rεm−1−εm+2→ · · · rε2−εm+2→ �m

rε1−εm+2→ �m+1 = �′,

where, following [13, § 2.5.4], {εi | i = 1, . . . , m + n + 2} is the standard basis
of the dual space of the diagonal matrices. Since λ = ε1 − εm+n+2, we have that
λ(hεk−εm+2) = 0, for all k ≥ 2, and λ(hε1−εm+2) = 1. Thus, by [20, Lemma 10.2],
Lbdis(λ) ∼= Lb(�′)(εm+2 − εm+n+2), and εm+2 − εm+n+2 is a root of r.

3.2 Cartan Type Lie Superalgebras

In this subsection g will denote a Lie superalgebra of Cartan type (see Table 1). We will
now briefly describe each one of these Lie superalgebras.

Fix n ≥ 2 and let �(n) denote the exterior algebra with generators ξ1, . . . , ξn. The
algebra �(n) is a 2n-dimensional associative anticommutative algebra, which admits a Z×
Z2-grading by setting the degree of ξ1, . . . , ξn to be (1, 1̄). Thus, with respect to the Z-
grading,

�(n) =
n⊕

k=0

�k(n), where �k(n) = spank
{
ξi1 · · · ξik | 1 ≤ i1 < · · · < ik ≤ n

}
,

and with respect to the Z2-grading,

�(n) = �(n)0̄ ⊕ �(n)1̄, where �(n)0̄ =
�n/2�⊕

k=0

�2k(n) and �(n)1̄ =
�n/2�⊕

k=0

�2k+1(n).

If x ∈ �(n)z, z ∈ Z2, we say that x is homogeneous and define p(x) = z.
Given a linear map D : �(n) → �(n), define p(D) = 0̄, if D is even, and p(D) = 1̄, if

D is odd. A homogeneous superderivation of�(n) is defined to be a linear mapD : �(n) →
�(n) that is either even or odd, and satisfies D(xy) = D(x)y + (−1)p(D)p(x)xD(y)

for all homogeneous x, y ∈ �(n). A superderivation of �(n) is a linear combination of
homogeneous superderivations of �(n).

Let W(n) be the Lie superalgebra consisting of superderivations of �(n) endowed with
the unique superbracket satisfying

[D1, D2] = D1 ◦ D2 − (−1)p(D1)p(D2)D2 ◦ D1,

for all homogeneous superderivations D1, D2. The Z-grading on �(n) induces a Z-grading:

W(n) = W(n)−1 ⊕ W(n)0 ⊕ · · · ⊕ W(n)n−1,

where W(n)k consists of derivations that map ξ1, . . . , ξn to �(n)k+1.
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For each i ∈ {1, . . . , n}, denote by ∂i the unique superderivation of �(n) satisfy-
ing ∂i(ξj ) = δi,j for all j ∈ {1, . . . , n}, and for each x ∈ �(n), let Dx denote the
superderivation

∑n
i=1 ∂i(x)∂i . The subspace

H̃ (n) = spank{Dx | x ∈ �(n)} ⊆ W(n)

is a subsuperalgebra of W(n) and inherits a Z-grading H̃ (n) = H̃ (n)−1 ⊕ H̃ (n)0 ⊕ · · · ⊕
H̃ (n)n−2. The simple Lie superalgebra H(n) is defined to be the

H(n) = [H̃ (n), H̃ (n)] = H(n)−1 ⊕ H(n)0 ⊕ · · · ⊕ H(n)n−3.

Now, let div : W(n) → W(n) be the linear transformation given by

div(D) =
n∑

i=1

∂i(D(ξi)) for all D ∈ W(n).

The superalgebra S(n) is the subsuperalgebra of W(n) consisting of all D ∈ W(n) such that
div(D) = 0. The superalgebra S(n) inherits a Z-grading from W(n):

S(n) = S(n)−1 ⊕ S(n)0 ⊕ · · · ⊕ S(n)n−2.

Finally we assume that n ≥ 4 and n is even. Then we define

S̃(n) := {D ∈ W(n) | (1 + ξ1 + · · · + ξn) div(D) + D(ξ1 · · · ξn) = 0}.
This Lie superalgebra does not admit a Z-grading, it admits however a Zn-grading:

S̃(n) = S̃(n)[0] ⊕ · · · ⊕ S̃(n)[n−1],
where S̃(n)[z] = S(n)z for every 0 ≤ z ≤ n−2, and S̃(n)[n−1] = spank{(ξ1 · · · ξn−1)−∂j ) |
j = 1, . . . , n}.

A crucial difference between Cartan type superalgebras and basic classical superalgebras
is that for Cartan type superalgebras, g0̄ is not a reductive Lie algebra. However, as was
described above, if g is a Cartan type superalgebra, then g admits a Z-grading (compatible
with the Z2-grading, if g is not of type S̃(n)) g = g−1 ⊕ g0 ⊕ · · · ⊕ gn−1, and moreover, g0
is a reductive Lie algebra, for all Cartan type Lie superalgebras.

A Cartan subalgebra h of g is defined to be a Cartan subalgebra of g0. Fix the Cartan
subalgebras h of g0 that have the following bases:

{ξk∂k | 1 ≤ k ≤ n} , if g ∼= W(n);
{ξk∂k − ξk+1∂k+1 | 1 ≤ k ≤ n − 1} , if g ∼= S(n), S̃(n);

{
ξk∂k − ξ�n/2�+k∂�n/2�+k | 1 ≤ k ≤ �n/2�} , if g ∼= H(n).

Consider the element

E :=
n∑

i=1

ξi∂i ∈ W(n)0,

and define g = g+kE and h = h+kE . Notice that E does not lie in the the Lie superalgebras
S(n), S̃(n), or H(n), thus

g = g, if g ∼= W(n) and g � g ⊕ kE = g, if g ∼= H(n), S(n), S̃(n).

Also notice that:
[E, x] = zx, for all x ∈ gz and z ∈ Z.

Hence the adjoint action of h on g gives a root space decomposition

g = h ⊕
⊕

α∈h∗\{0}
gα, where gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h}.
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Denote by R the set of roots, {α ∈ h
∗ \ {0} | gα 
= {0}}. For α ∈ R, either gα ⊆ g0̄, or

gα ⊆ g1̄. Let R0̄ = {α ∈ R | gα ⊆ g0̄} be the set of even roots and R1̄ = {α ∈ R | gα ⊆ g1̄}
be the set of odd roots. Moreover, for each α ∈ R, there is z ∈ Z such that gα ⊆ gz. Thus,
we can define the height of α ∈ R to be ht(α) = z, and define Rz to be {α ∈ R | ht(α) = z}.
Notice that

R =
⋃

z∈Z
Rz, R0̄ =

⋃

z∈Z
R2z and R1̄ =

⋃

z∈Z
R2z+1.

Remark 3.2 Notice that E captures the height of the roots. Thus, it helps identifying the
simple roots of g. The addition of E to h will be used in the sequel to construct triangular
decompositions satisfying (C2).

We will describe now the roots and root spaces of g. Notice that, if g ∼= W(n), then
g0 ∼= gl(n), with the basis elements ξi∂j ∈ W(n) corresponding to the basis elements
Eij ∈ gl(n). Recall that h = spank{ξi∂i | 1 ≤ i ≤ n} and, for each 1 ≤ i ≤ n, let εi be the
unique linear map in h∗ satisfying εi(ξj ∂j ) = δi,j , for all 1 ≤ j ≤ n. The set of roots of g is

R = {εi1 + · · · + εik − εj | 1 ≤ i1 < · · · < ik ≤ n, 0 ≤ k ≤ n and 1 ≤ j ≤ n} \ {0},
and the corresponding root spaces are:

gα =
{
k ξi1 · · · ξik ∂j , if α = εi1 + · · · + εik − εj and j 
∈ {i1, . . . , ik},
spank{ξi1 · · · ξik ξj ∂j | j 
∈ {i1, . . . , ik}}, if α = εi1 + · · · + εik .

If g = S(n), then g0 ∼= sl(n). The set of roots of S(n) is the subset of the set of roots of W(n)

obtained from it by removing the roots ε1 + · · · + εn − εj for all 1 ≤ j ≤ n, that is,

R = {εi1 + · · · + εik − εj | 1 ≤ i1 < · · · < ik ≤ n, 0 ≤ k ≤ n − 1 and 1 ≤ j ≤ n} \ {0}.
The corresponding root spaces are thus:

gα =
{
k ξi1 · · · ξik ∂j , if α = εi1 + · · · + εik − εj and j 
∈ {i1, . . . , ik},
spank{ξi1 · · · ξik (ξj ∂j − ξj+1∂j+1) | j, j + 1 
∈ {i1, . . . , ik}}, if α = εi1 + · · · + εik .

If g = S̃(n), then (as for S(n)) g0 ∼= sl(n) and

R = {εi1 + · · · + εik − εj | 1 ≤ i1 < · · · < ik ≤ n, 0 ≤ k ≤ n − 1 and 1 ≤ j ≤ n} \ {0}.
The corresponding root spaces are: g−εi

= spank{(ξ1 · · · ξn − 1)∂i} for all i ∈ {1, . . . , n}
gα = S(n)α if ht(α) ≥ 0, and.

Finally, if g = H(n), then g0 ∼= so(n). Let r = �n/2�, {ε1, . . . , εr } be the elements in
the Cartan subalgebra of g0 that identify with the standard basis of the Cartan subalgebra of
so(n), and δ ∈ h

∗
be the dual of E . If n = 2r , then the set of roots of g is given by

R = {±εi1±· · ·±εik +mδ | 1 ≤ i1< · · ·<ik ≤ r, k−2 ≤ m ≤ n−2, m ≥−1, k−m ∈ 2Z}.
If n = 2r + 1, then the set of roots of g is the set

R = {±εi1 ± · · · ± εik + mδ | 1 ≤ i1 < · · · < ik ≤ r, k − 2 ≤ m ≤ n − 2, m ≥ −1}.
For each root α = d1ε1 + · · · + drεr + mδ with di ∈ {−1, 0, 1}, we have:
gα = spank

{
Dx | x = ξ

a1
1 · · · ξan

n , ai ∈ {0, 1}, a1 + · · · + an = m + 2, ai − ar+i = di for all i
}
.

Remark 3.3 Some properties that hold for roots of semisimple Lie algebras do not hold for
Cartan type Lie superalgebras. For instance, a root may have multiplicity greater than 1, and
R− may be different from−R+. (For more details, see [12, 13, 18, 19].) Also, notice that the
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root space decomposition of g given by the action of h induces the root space decomposition
of g given by the action of h. The roots with respect to h are the restrictions of the elements
of R to h. Hence the set of roots of g with respect to h will be also denoted by R and their
roots will be denoted by the same symbols.

An element h ∈ hR is said to be regular if α(h) 
= 0 for all α ∈ R. Every regular element
h ∈ hR induces a decomposition R = R+(h) � R−(h), where

R+(h) = {α ∈ R | α(h) > 0} and R−(h) = {α ∈ R | α(h) < 0}.
The set R+(h) (resp. R−(h)) is said to be the set of positive (resp. negative) roots of g
relative to h. A regular element h ∈ hR also induces a triangular decomposition

g = n−(h) ⊕ h ⊕ n+(h), where n±(h) =
⊕

α∈R±(h)

gα.

A Lie subsuperalgebra b is a Borel subsuperalgebra of g if b = h⊕ n+(h) for some regular
h ∈ hR.

Following [19], a root α ∈ R+ is said to be simple for a Borel subsuperalgebra b if the set

rα
(
R+) =

{ (
R+ \ {α}) ∪ {−α}, if − α ∈ R,

R+ \ {α}, otherwise
(3.4)

is a set of positive roots relative to some regular element h ∈ hR. In this case, the
subsuperalgebra

rα(b) := h ⊕
⊕

β∈rα(R+)

gβ

is said to be the Borel subsuperalgebra of g obtained from b by the reflection rα .
Choose a Borel subalgebra b0 of g0 such that the set of simple roots associated to it is

given by:

{ε1 − ε2, . . . , εn−1 − εn}, if g ∼= W(n), S(n), S̃(n)

{ε1 − ε2, . . . , εr−1 − εr , εr−1 + εr }, if g ∼= H(2r),

{ε1 − ε2, . . . , εr−1 − εr , εr }, if g ∼= H(2r + 1).

Let R+
0 (resp. R−

0 ) denote the set of positive (resp. negative) roots of g0 associated to the
simple roots above. The subsuperalgebra bmax = b0 ⊕ (⊕

i>1 gi

)
is known as the max-

imal Borel subsuperalgebra of g, and bmin = b0 ⊕ g−1 is known as the minimal Borel
subsuperalgebra of g.

Proposition 3.4 If g is a Cartan type Lie superalgebra, then g admits at least one triangular
decomposition satisfying (C2).

Proof We claim that there exists a triangular decomposition of g for which the highest root
of g is a root of g0. Indeed, since g is simple we have that g ∼= Lbmin(λ) as a g-module,
where λ is its highest root with respect to bmin. For every α ∈ R, let hα := [gα, g−α]. We
now prove our claim case by case:

Let g = W(n). Then we have that λ = −εn and the unique odd simple root for bmin is
α = −ε1. Set b̄1 = rα(bmin). Since

h−εi
= {h ∈ h | εi(h) = 0}, (precisely h−εi

= spank{ξj ∂j | j = 1, . . . , n, j 
= i})
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we have that εn(h−ε1) 
= 0 and hence Lbmin(−εn) ∼= Lb̄1
(−εn + ε1) (see [19, Lemma 5.3]).

To conclude this case, we notice that −εn is a root of g−1 and ε1 is a root of g1, which
implies that (−εn + ε1) is a root of g0, as we want.

The proof for W(n) also works for S(n). The only difference is that

h−εi
= {h ∈ h | εi(h) = 0, (ε1 + · · · + εn)(h) = 0},

but it is still clear that εn(h−ε1) 
= 0 and hence Lbmin(−εn) ∼= Lb̄1
(−εn + ε1).

Now, suppose that g = H(n). For n = 2k, we have that λ = ε1 − δ and the unique odd
simple root for bmin is α1 = −ε1 − δ. Set b̄1 = rα1(bmin). Since

hεi−δ = h−εi−δ = {h ∈ h | εi(h) = δ(h) = 0},
we have that λ(h−ε1−δ) = 0. Hence Lbmin(λ) ∼= Lb̄1

(λ). Now, α2 = −ε2 − δ is an odd

simple root for b̄1. Since λ(h−ε2−δ) 
= 0, we obtain that Lbmin(λ) ∼= Lb̄2
(λ − α2), where

b̄2 = rα2(b̄1). In particular, the highest root of g with respect to b̄2 is ε1 + ε2, which is
clearly a root of g0. Now, we suppose that n = 2k + 1. Observing that h±εi−δ are the same
as in the case n = 2k, we have that the proof of the case n = 2k also works for n = 2k + 1.
This proves the claim.

Notice that for W(n), S(n) and H(n) we have found a triangular decomposition for
which the highest root of g is in R0. Namely, the triangular decomposition induced by b̄1
(resp. b̄2) when g is either W(n) or S(n) (resp. H(n)). Let b1 and b2 be the opposite Borel
subalgebras of b̄1 and b̄2, respectively. It is clear that the triangular decomposition induced
by b1 for g = W(n) and S(n), and by b2 for g = H(n), also satisfy the condition of the
claim. The set of negative roots with respect to b1 and b2 is as follows:

R−
b1

= R−
0 ∪ (R−1 \ {−ε1}) ∪ {ε1}, for g = W(n) or S(n),

R−
b2

= R−
0 ∪ (R−1 \ {−ε1 − δ, −ε2 − δ}) ∪ {ε1 + δ, ε2 + δ}, for g = H(n).

In particular, n−
0̄

⊆ r and hence such triangular decompositions satisfy (C2).
Finaly, consider a triangular decomposition of S(n) satisfying (C2), and let h ∈ hR be a

regular element that induces such a decomposition. This implies that θ(h) > α(h) for any
root α of S(n). Since S̃(n)0 = S(n)0, and every roots of S̃(n) is also a root of S(n), we have
that θ(h) > α(h) for any root α of S̃(n). Thus the result follows.

3.3 Periplectic Lie Superalgebras

For each n ≥ 2, let p(n) be the Lie subsuperalgebra of gl(n + 1, n + 1) consisting of all
matrices of the form

M =
(

A B

C −At

)

, where A ∈ sl(n + 1), B = Bt and Ct = −C. (3.5)

Throughout this subsection, g will denote p(n). Notice that g0̄ is isomorphic to the Lie alge-
bra sl(n + 1), and as a g0̄-module, the structure of g1̄ is the following. Let S2(kn+1) (resp.
�2(kn+1)∗) denote the second symmetric (resp. exterior) power of kn+1 (resp. (kn+1)∗),
with the natural action of sl(n + 1) (by matrix multiplication) in each term. Denote by g

+
1̄

(resp. g−
1̄
) the set of all matrices of the form (3.5) such that A = C = 0 (resp. A = B = 0),

and notice that, as g0̄-modules, g1̄
∼= g

+
1̄

⊕g
−
1̄
, where g+

1̄
∼= S2(kn+1) and g−

1̄
∼= �2(kn+1)∗.

Consider g−1 = g
−
1̄
, g0 = g0̄ and g1 = g

+
1̄
. Then g = g−1 ⊕ g0 ⊕ g1 is a Z-grading of

g that is compatible with the Z2-grading (g0̄ = g0 and g1̄ = g−1 ⊕ g1). Let h ⊆ g0 be a
Cartan subalgebra of g0, recall that g0 is isomorphic to sl(n + 1), and identify h with h∗ via
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the Killing form (A1, A2) = tr(A1A2). If {ε1, . . . , εn} is the standard orthogonal basis of h,
then the roots of g are described as follows:

• Roots of g−1: −εi − εj , where 1 ≤ i < j ≤ n.
• Roots of g0: εi − εj , where i 
= j and 1 ≤ i, j ≤ n.
• Roots of g1: εi + εj , where 1 ≤ i ≤ j ≤ n.

Consider the triangular decomposition

n
−
0 ⊕ h ⊕ n

+
0 , where n

±
0 =

⊕

1≤i<j≤n

g±(εi−εj ).

This triangular decomposition induces a triangular decomposition on g and we have the
following result.

Proposition 3.5 If g is isomorphic to p(n) with n ≥ 2, then the distinguished triangular
decomposition

n− ⊕ h ⊕ n+, where n± = g±1 ⊕ n
±
0

satisfies (C1). In particular, n−
0̄

= n
−
0 and all the roots of g1 are positive.

As usual, let b be the Borel subsuperalgebra h ⊕ n+ ⊆ g, R be the set of roots of g, R+
dis

be the positive roots associated to this decomposition, etc. Notice that R−
dis 
= −R+

dis, since,
for each i ∈ {1, . . . , n}, there exists a positive root of the form 2εi , such that −2εi /∈ R.

Proposition 3.6 If g is isomorphic to p(n) with n ≥ 2, then g admits a triangular
decomposition satisfying (C2).

Proof Recall that g1 ∼= S2(kn+1) as a g0-module. In particular, 2εn+1 (resp. 2ε1) is the low-
est (resp. highest) weight of g1 as a g0-module. This implies that 2ε1 is the highest weight
of g with respect to the distinguished triangular decomposition given in Proposition 3.5,
and 2εn+1 is a simple root of R+

dis. Now, notice that the chain of reflections (as defined in
Eq. 3.4)

R+
dis = R+

0

r2εn+1→ R+
1

rεn+εn+1→ R+
2

rεn−1+εn+1→ · · · rε2+εn+1→ R+
n

rε1+εn+1→ R+
n+1.

is well defined, since 2εn+1 is simple in R+
dis, and each εk + εn+1 is simple in R+

n+1−k .
Denote hα = [gα, g−α] for all α ∈ R. Since 2ε1(h2εn+1) = 0, and 2ε1(hεk+εn+1) = 0, for
all k > 1, it follows from [19, Lemma 5.2], that 2ε1, the highest root of g, is invariant under
r2εn+1 , rεn+εn+1 , . . . , rε2+εn+1 . Since 2ε1(hε1+εn+1) 
= 0, the highest root of g with respect to
R+

n+1 is given by 2ε1 − (ε1 + εn+1) = ε1 − εn+1, which is a root of g0.

3.4 Remarks on Triangular Decompositions

Recall conditions (C1) and (C2). The next result sums up the results that we have obtained
regarding triangular decompositions satisfying these conditions.

Theorem 3.7 If g is either sl(n, n) with n ≥ 2, or a finite-dimensional simple Lie
superalgebra, then g admits at least one triangular decomposition satisfying (C1) and (C2).
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Proof If g � q(n), then the result follows from Propositions 3.1, 3.4, 3.5, and 3.6. If g ∼=
q(n), then every triangular decomposition satisfies (C1) and (C2), as r = q(n)0̄ and every
root of q(n) is both even and odd.

Remark 3.8 Conditions (C1) and (C2) are crucial for the rest of this paper. Namely, (C1) is
used to prove finite-dimensionality of generalized Kac modules for Cartan type Lie superal-
gebras (see Proposition 4.4), and (C2) is used to prove that the global Weyl module WA(λ)

is a finitely-generated Aλ-module (see Theorem 7.6).
Observe that if g is either basic classical or strange, then every triangular decomposition

satisfies (C1), since r = g0̄. Moreover, if g is of type II or q(n), then every distinguished
triangular decomposition also satisfies (C2). However, if g is either of type I or p(n), then
its distinguished triangular decomposition satisfies (C1) but not (C2), as the lowest root of
g is a root of g−1.

If g is of Cartan type, then there are triangular decompositions that do not satisfy (C1).
For instance, the triangular decomposition induced by bmin, as r � g0̄. Moreover, there
are triangular decompositions satisfying (C1) but not (C2). For instance, the triangular
decomposition induced by bmax, since the lowest root of g with respect this triangular
decomposition is a root of g−1 ⊆ g1̄.

If g is of type q(n), then h is not contained in g0̄. Thus, the highest-weight space of an
irreducible finite-dimensional g-module is not always one dimensional. (It is an irreducible
module for a certain Clifford superalgebra.) As it requires a different treatment, this case
will be considered in a future work.

4 Generalized Kac Modules

From now on we assume that g is either sl(n, n) with n ≥ 2, or a finite-dimensional simple
Lie superalgebra not of type q(n). Let h be a fixed Cartan subalgebra of g (in particular,
since g 
∼= q(n), h = h0̄ is a Cartan subalgebra of r), R be the set of roots of g (with respect
to h), and Q ⊆ h∗ the root lattice

∑
α∈R Zα. Fix a set R+ ⊆ R of positive roots, Q+ be the

positive cone
∑

α∈R+ Nα and g = n− ⊕ h⊕ n+ be the associated triangular decomposition
of g. Notice that b = h⊕ n+ is a solvable subsuperalgebra of g, that n± are nilpotent ideals
of b, and that h∗ admits a partial order given by: λ ≤ μ ∈ h∗ if and only if μ − λ ∈ Q+.

Let Rr denote the root system {α ∈ h∗ | rα 
= {0}, α 
= 0} of r, R+
r be the positive

system R+ ∩ Rr, and �r be the simple system of Rr associated to R+
r . Since r

′ is a finite-
dimensional semisimple Lie algebra, for each α ∈ R+

r , one can choose elements xα ∈ rα ,
x−
α ∈ r−α , and hα ∈ h, such that: the subalgebra generated by {x−

α , hα, xα} is isomorphic
to sl(2), [xα, x−

α ] = hα , [hα, x−
α ] = −2xα , and [hα, xα] = 2xα . The triple

(
xα, x−

α , hα

)
is

said to be an sl(2)-triple and the Lie subalgebra generated by {x−
α , hα, xα} will be denoted

slα . Recall that

X+ = X+(b) = {λ ∈ h∗ | Lb(λ) is finite dimensional},

and notice that, for λ ∈ X+, we have λ(hα) ∈ N, for all α ∈ �r (since Lb(λ) is also a
finite-dimensional r′-module).
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Definition 4.1 (Generalized Kac module) Let λ ∈ X+. The generalized Kac module asso-
ciated to λ is defined to be the cyclic g-module K(λ) = Kb(λ) given as a quotient of U(g)

by the left ideal generated by

n+, h − λ(h), (x−
α )λ(hα)+1, for all h ∈ h and α ∈ �r.

Denote the image of 1 ∈ U(g) in K(λ) by kλ, and notice that as a g-module, K(λ) is
generated by the vector kλ ∈ K(λ)0̄, satisfying the following defining relations

n+kλ = 0, hkλ = λ(h)kλ, (x−
α )λ(hα)+1kλ = 0, for all h ∈ h and α ∈ �r. (4.1)

Definition 4.2 (Parabolic triangular decomposition) A triangular decomposition g = n− ⊕
h ⊕ n+ is said to be parabolic if (r + n+) is a Lie subsuperalgebra of g and there exists a
nontrivial subspace g− ⊆ g such that

g = g− ⊕ (r + n+). (4.2)

Remark 4.3 When g is basic classical of type I, isomorphic to sl(n, n) with n ≥ 2, p(n)

or q(n), distinguished triangular decompositions are parabolic. When g is basic classical of
type II, it does not admit any parabolic triangular decomposition, since g1̄ is an irreducible
g0̄-module. When g is of Cartan type, minimal (n± = n

±
0 ⊕ (⊕i>0g±i )) and maximal

(n± = n
±
0 ⊕ (⊕i<0g±i )) triangular decompositions are parabolic.

If g is a basic classical Lie superalgebra or g ∼= sl(n, n), n ≥ 2, then K(λ) coincides with
the generalized Kac module defined in [2, Definition 2.6]. The next result gives necessary
and sufficient conditions for generalized Kac modules to be finite dimensional.

Proposition 4.4 Let λ ∈ X+.

(a) If g is basic classical, isomorphic to sl(n, n) with n ≥ 2, or p(n), then K(λ) is finite
dimensional (for every triangular decomposition).

(b) If g is of Cartan type and the triangular decomposition g = n− ⊕ h ⊕ n+ satisfies
(C1), then K(λ) is finite dimensional.

(c) If g is of Cartan type, the triangular decomposition g = n− ⊕ h ⊕ n+ does not satisfy
(C1) and is parabolic, then K(λ) is infinite dimensional.

Proof (a) In these cases, the proof is similar to that of [2, Proposition 2.7].
(b) Since λ ∈ X+ (thus λ(hα) ∈ N for all α ∈ �r), we can consider the finite-dimensional

irreducible r-module of highest weight λ,L0(λ). Recall that r is a reductive Lie algebra
and z acts as a scalar on L0(λ). Hence L0(λ) is isomorphic to the r-module generated
by a vector uλ with defining relations

xαuλ = 0, huλ = λ(h)uλ, (x−
α )λ(hα)+1uλ = 0, for all h ∈ h and α ∈ �r.

Let W = U(r)kλ be the r-submodule of K(λ) generated by kλ. Since W is cyclic
and kλ satisfies (4.1), there exists a unique (surjective) homomorphism of r-modules
satisfying

ϕ : L0(λ) � W, uλ �→ kλ.
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Since ϕ is surjective and L0(λ) is finite dimensional, this shows that W is finite
dimensional.

If the triangular decomposition g = n−⊕h⊕n+ satisfies (C1), that is, n−
0̄

⊆ r, then

by the PBW Theorem, for any given basis {xi | 1 ≤ i ≤ dim n
−
1̄
} of n−

1̄
, we have that

K(λ) = U(g)kλ = spank{xj1 · · · xjk
W | 1 ≤ j1 < · · · < jk ≤ dim n

−
1̄
}.

Since W is finite dimensional, we conclude that K(λ) is also finite dimensional.
(c) If the triangular decomposition g = n− ⊕ h ⊕ n+ is parabolic, (r + n+) is a Lie

subsuperalgebra of g and there exists a nontrivial subspace g− ⊆ g such that g =
g− ⊕ (r + n+). Now, consider the (r + n+)-module Kr(λ) given as the quotient of
U(r + n+) by the left ideal generated by

gα for all α ∈ R+, h − λ(h) for all h ∈ h, (x−
α )λ(hα)+1 for all α ∈ �r.

Notice that the image of 1 ∈ U(r + n+), which we will denote by uλ, generates Kr(λ).
Now, let

Kr(λ) = indg
r+n+ Kr(λ),

and notice that Kr(λ) is generated by 1 ⊗ uλ. If the triangular decomposition g = n− ⊕
h ⊕ n+ does not satisfy (C1), then g− ∩ g0̄ 
= 0. In particular, Kr(λ) ∼= ⊕

m ⊗ Kr(λ),
where m runs over the set of ordered monomials where the variables form a basis of g−.
Since g− ∩ g0̄ 
= 0, Kr(λ) is infinite dimensional. Finally, notice that there exists a unique
surjective homomorphism of g-modules K(λ) → Kr(λ) satisfying kλ �→ (1 ⊗ uλ). Since
Kr(λ) is infinite dimensional, we conclude that K(λ) is also infinite dimensional.

Example 4.5 If g is of Cartan type, then the minimal triangular decomposition, that is, the
one induced by n+ = n

+
0 ⊕ g−1 is parabolic and does not satisfy (C1). In fact, in this case,

n− = n
−
0 ⊕ (⊕k≥1gk

)
and n− ∩g2k = g2k 
⊆ r for all k ≥ 1. Thus generalized Kac modules

associated to minimal triangular decompositions are infinite dimensional.

Example 4.6 If g is of Cartan type, then the maximal triangular decomposition, that is,
the one induced by n+ = n

+
0 ⊕ (⊕k≥1gk

)
satisfies (C1) and is parabolic. Moreover, one

can check that triangular decompositions induced by the Borel subalgebras b1 and b2 con-
structed in the proof of Proposition 3.4 satisfy (C1) but are not parabolic (in fact, r + n+
is not a subsuperalgebra of g). In particular, generalized Kac modules associated to these
triangular decompositions are finite-dimensional.

Example 4.7 The authors do not know yet any example of a triangular decomposition of a
Lie superalgebra of Cartan type that does not satisfy (C1) and is not parabolic.

The next result generalizes [2, Lemma 2.8] and their proofs are similar.

Proposition 4.8 Let λ ∈ X+. If V is a finite-dimensional g-module generated by a highest-
weight vector of weight λ, then there exists a surjective homomorphism of g-modules
πV : K(λ) � V . Moreover, there exists a unique g-submodule W ⊆ K(λ) such that
V ∼= K(λ)/W .
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Since every irreducible finite-dimensional g-module is generated by a highest-weight
vector of weight λ ∈ X+, Proposition 4.8 applies, in particular, to all irreducible finite-
dimensional g-modules.

5 Global Weyl Modules

Let g be a Lie superalgebra and consider an associative commutative k-algebra A with unit.
The vector space g ⊗ A is a Lie superalgebra when endowed with the Z2-grading given by
(g ⊗ A)j = gj ⊗ A, j ∈ Z2, and the Lie superbracket extending bilinearly

[x1 ⊗ a1, x2 ⊗ a2] = [x1, x2] ⊗ a1a2, for all x1, x2 ∈ g and a1, a2 ∈ A.

We refer to a Lie superalgebra of this form as a map Lie superalgebra. From now on, we
identify g with a subsuperalgebra of g⊗A via the isomorphism g ∼= g⊗k and the inclusion
g ⊗ k ⊆ g ⊗ A.

From now on, let g be either sl(n, n) with n ≥ 2, or a finite-dimensional simple Lie
superalgebra not of type q(n). Let CA denote the category of g⊗A-modules that are finitely
semisimple as r-modules (see Eq. 2.1 for the notation). By Lemma 2.2, CA = C(g⊗A,r) is
an abelian category, closed under taking submodules, quotients, arbitrary direct sums, and
finite tensor products.

Lemma 5.1 If V is a finitely-semisimple r-module, then indg⊗A
r V is a projective object in

CA. Moreover, the category CA has enough projectives.

Proof Recall that g is a finitely-semisimple r-module via the adjoint representation. Since
g ⊗ A ∼= g⊕ dimA as r-modules, Lemma 2.2 implies that g ⊗ A is a finitely-semisimple
r-module. Thus, by Lemma 2.3, indg⊗A

r V is an object in CA.
To prove that indg⊗A

r V is projective, first recall that an object M of CA is projective if
and only if HomCA

(M,−) is an exact functor. By definition, HomCA
(M,N) =

HomU(g⊗A)(M,N) for all M, N in CA. By Frobenius Reciprocity, the functor

HomU(g⊗A)(ind
g⊗A
r V,−) is naturally isomorphic to HomU(r)(V ,−). Since every object

of CA is assumed to be a direct sum of its finite-dimensional r-submodules, that is, every
object of CA is completely reducible as an r-module, the restriction of HomU(r)(V ,−) to

CA is exact. Thus HomCA
(indg⊗A

r V,−) is an exact functor.
Moreover, let M be any object of CA. Since M is assumed to be a finitely-semisimple

r-module, by the first part of this lemma, indg⊗A
r M is projective. Since the unique linear

transformation f : indg⊗A
r M → M satisfying f (u ⊗ m) = um for all u ∈ U(g ⊗ A) and

m ∈ M is a surjective homomorphism of g ⊗ A-modules, we conclude that CA has enough
projectives.

Given a g-module V , define PA(V ) to be the g ⊗ A-module

PA(V ) = indg⊗A
g V. (5.1)

Notice that, if V is a projective g-module, then PA(V ) is a projective g ⊗ A-module.
The next result, which was proved in [2, Proposition 3.2] for the cases where g is either

basic classical or sl(n, n) with n ≥ 2, describes PA(K(λ)) by generators and relations.
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Proposition 5.2 If λ ∈ X+, then PA(K(λ)) is generated as a left U(g ⊗ A)-module, by a
vector pλ ∈ PA(K(λ))0̄ satisfying the following defining relations

n+pλ = 0, hpλ = λ(h)pλ, (x−
α )λ(hα)+1pλ = 0, for all h ∈ h and α ∈ �r. (5.2)

Proof Let pλ = 1 ⊗ kλ ∈ PA(K(λ)). Since kλ ∈ K(λ)0̄ satisfies relations (4.1), pλ ∈
PA(K(λ))0̄ satisfies relations (5.2). The fact that these are defining relations follows from
Lemma 2.4.

Given λ ∈ X+ and M ∈ CA, define

Mλ = M
/ ∑

μ
≤λ

U(g ⊗ A)Mμ. (5.3)

Notice that, if μ is a weight of Mλ, then μ ≤ λ. Let Cλ
A denote the full subcategory of CA

whose objects are the left U(g ⊗ A)-modules M ∈ CA such that Mλ = M . (Notice that Cλ
A

depends on the choice of triagular decomposition g = n− ⊕ h ⊕ n+, even though it is not
shown explicitly in its notation.) The proof of the next result is similar to that of Lemma 5.1.

Lemma 5.3 Let λ ∈ X+ and V be a g-module. If V is finitely semisimple as an r-module,
then PA(V )λ is a projective object in Cλ

A. Moreover, the category Cλ
A has enough projectives.

Definition 5.4 (Global Weyl module) Let λ ∈ X+. The global Weyl module associated to λ

is defined to be
WA(λ) := PA(K(λ))λ.

The image of pλ in WA(λ) will be denoted by wλ.

The next result provides a descriptions of global Weyl modules by generators and
relations, and as a universal object in Cλ

A. Its proof is similar to that of [1, Proposition 4].

Proposition 5.5 For λ ∈ X+, the global Weyl module WA(λ) is generated as a left U(g ⊗
A)-module, by the vector wλ, with defining relations

(n+ ⊗ A)wλ = 0, hwλ = λ(h)wλ, (x−
α )λ(hα)+1wλ = 0, for all h ∈ h and α ∈ �r.

(5.4)
Moreover, if the triangular decomposition of g satisfies (C1), then the global Weyl module
WA(λ) is the unique object of Cλ

A, up to isomorphism, that is generated by a highest-weight
vector of weight λ and admits a surjective homomorphism onto every object of Cλ

A that is
generated by a highest-weight vector of weight λ.

WhenA = k, the global Weyl moduleWA(λ) coincides with the generalized Kac module
K(λ). In this case, the moreover part of Proposition 5.5 reduces to the universal property
given in Proposition 4.8.

6 Weyl Functors

LetA be an associative commutative k-algebra with unit, and g be either sl(n, n)with n ≥ 2,
or a finite-dimensional simple Lie superalgebra not of type q(n), endowed with a trinagular
decomposition satisfying (C1).
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Let λ ∈ X+. Recall from Definition 5.4, that wλ denotes the image of pλ in WA(λ), and
set

Anng⊗A(wλ) = {u ∈ U(g ⊗ A) | uwλ = 0},
Annh⊗A(wλ) = Anng⊗A(wλ) ∩ U(h ⊗ A).

Notice that Anng⊗A(wλ) is a left ideal of U(g ⊗ A), and thus, since U(h ⊗ A) is a com-
mutative algebra, Annh⊗A(wλ) is an ideal of U(h ⊗ A). Define the algebra Aλ to be the
quotient

Aλ = U(h ⊗ A)/Annh⊗A(wλ).

By Proposition 5.5 and the PBW Theorem, WA(λ)λ = U(h ⊗ A)wλ. Thus, the unique
homomorphism of U(h ⊗ A)-modules satisfying

φ : U(h ⊗ A) → WA(λ)λ, φ(1) = wλ

induces an isomorphism of h⊗ A-modules between WA(λ)λ and U(h ⊗ A)/Annh⊗A(wλ).
In other words, WA(λ)λ ∼= Aλ as right Aλ-modules.

Lemma 6.1 For all λ ∈ X+ and V ∈ Cλ
A, we have (Annh⊗A(wλ))Vλ = 0.

Proof Let v ∈ Vλ and W = U(g ⊗ A)v. Since V is an object of Cλ
A, the submodule W

is also an object of Cλ
A (Lemma 2.2). Moreover, since v ∈ Vλ, we have (n+ ⊗ A)v = 0

and hv = λ(h)v for all h ∈ h. Thus, by Proposition 5.5, there exists a unique (surjective)
homomorphism of g ⊗ A-modules π : WA(λ) � W satisfying π(wλ) = v. Since π is a
homomorphism of g⊗A-modules and uwλ = 0 for all u ∈ Annh⊗A(wλ), we conclude that
uv = π(uwλ) = 0 for all u ∈ Annh⊗A(wλ).

Recall thatU(h⊗A) is a commutative algebra, so every leftU(h⊗A)-module is naturally
a rightU(h⊗A)-module. Given λ ∈ X+, Lemma 6.1 implies that the left action ofU(g⊗A)

on any object V of Cλ
A induces a left (as well as a right) action of Aλ on Vλ. Since WA(λ)

is an object of Cλ
A generated by wλ ∈ WA(λ)λ as a left U(g ⊗ A)-module, we have a right

action of Aλ on WA(λ) that commutes with the left U(g ⊗ A) action; namely,

(uwλ)u
′ = uu′wλ for all u ∈ U(g ⊗ A) and u′ ∈ U(h ⊗ A). (6.1)

Thus, with these actions, WA(λ) is a (U(g ⊗ A),Aλ)-bimodule.
In this section we will define Weyl functors for Lie superalgebras. These generalize the

Weyl functors defined in [1, p. 525]. Given λ ∈ X+, let Aλ-mod denote the category of left
Aλ-modules and let M ∈ Aλ-mod. Since WA(λ) is a finitely-semisimple r-module and the
action of r on WA(λ) ⊗Aλ

M is given by left multiplication, we have that WA(λ) ⊗Aλ
M is

a finitely semisimple r-module. Since id : WA(λ) → WA(λ) is an even homomorphism of
g ⊗ A-modules, for every M, M ′ ∈ Aλ-mod and f ∈ HomAλ

(M,M ′),

id⊗f : WA(λ) ⊗Aλ
M → WA(λ) ⊗Aλ

M ′

is a homomorphism of g ⊗ A-modules.

Definition 6.2 (Weyl functor) Let λ ∈ X+. The Weyl functor associated to λ is defined to
be

Wλ
A : Aλ-mod → Cλ

A, Wλ
AM = WA(λ) ⊗Aλ

M, Wλ
Af = id⊗f,

for all M, M ′ in Aλ-mod and f ∈ HomAλ
(M,M ′).
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Given λ ∈ X+, notice that there is an isomorphism of g ⊗ A-modulesWλ
AAλ

∼= WA(λ).
Also notice that, for all μ ∈ h∗ and M in Aλ-mod, we have

(Wλ
AM)μ = WA(λ)μ ⊗Aλ

M. (6.2)

Given λ ∈ X+, recall that Lemma 6.1 implies that WA(λ) is a (U(g ⊗ A),Aλ)-bimodule.
This implies in particular, that HomCλ

A
(WA(λ),N) can be viewed as an Aλ-module for any

object N of Cλ
A via

(u · f )(v) = f (v · u) for all u ∈ Aλ, f ∈ HomCλ
A
(WA(λ),N) and v ∈ WA(λ).

Moreover, Lemma 6.1 also implies that the left action of U(g ⊗ A) on an object V in Cλ
A

induces a left action of Aλ on Vλ.

Lemma 6.3 Let λ ∈ X+. For every object N of Cλ
A, the map

HomCλ
A
(WA(λ),N) → Nλ, f �→ f (wλ)

is an isomorphism of Aλ-modules that is functorial in N .

Proof Fix an object N in Cλ
A and a homomorphism f ∈ HomCλ

A
(WA(λ),N). First notice

that, since wλ ∈ WA(λ)λ, then f (wλ) ∈ Nλ, that is, the map f �→ f (wλ) is well-defined.
Now, to show that f �→ f (wλ) is a homomorphism of Aλ-modules, notice that

(u · f )(wλ) = f (wλ · u) = f (uwλ) = u (f (wλ)) for all u ∈ Aλ.

To show that the map f �→ f (wλ) is injective, recall from Proposition 5.5 that WA(λ)

is generated as a left U(g ⊗ A)-module, by wλ. Since f is a homomorphism of U(g ⊗
A)-modules, f is thus uniquely determined by f (wλ).

To finish the proof, we will show that the map f �→ f (wλ) is surjective. Let n ∈
Nλ. Recall that N is an object of Cλ

A, so (n+ ⊗ A)n = 0. Moreover, by Lemma 6.1, we
also have Annh⊗A(wλ)n = 0. Furthermore, since N is a finitely-semisimple r-module,
the r-submodule U(r)n ⊆ N is finite dimensional. By the representation theory of finite-
dimensional semisimple Lie algebras, we thus have that (x−

α )λ(hα)+1n = 0 for all α ∈
�r. Hence, by Proposition 5.5, there exists a unique homomorphism of g ⊗ A-modules
fn : WA(λ) → N satisfying fn(wλ) = n. The result follows.

Given λ ∈ X+ and an object M of Cλ
A, consider Mλ as an Aλ-module. Given

π ∈ HomCλ
A
(V , V ′), the restriction of π to Vλ induces a homomorphism of Aλ-modules

πλ : Vλ → V ′
λ. We can thus define a functor

Rλ
A : Cλ

A → Aλ-mod, Rλ
AV = Vλ, Rλ

A(π) = πλ. (6.3)

Notice that Rλ
A is an exact functor, since every object of Cλ

A is a finitely-semisimple r-
module, and thus a direct sum of its h-weight spaces, and every morphism of Cλ

A preserves
these weight spaces.

7 The Structure of Global Weyl Modules

Throughout this section, we will assume that A is finitely generated and infinite dimen-
sional. Recall from Eq. 2.1 that r is a finite-dimensional reductive Lie algebra with Cartan
subalgebra h, that, for every α ∈ R+

r , the subalgebra slα ⊆ r, which is generated by
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{x−
α , hα, xα}, is isomorphic to sl(2), and recall from Definition 5.4 that, for every λ ∈ X+,

the global Weyl module WA(λ) is generated by its highest-weight vector wλ ∈ WA(λ)λ.

Lemma 7.1 If λ ∈ X+ and α ∈ R+
r , then (x−

α )λ(hα)+1wλ = 0.

Proof The result follows from the invariance of the weights of WA(λ) under the action of
the Weyl group of r.

Given a ∈ A and α ∈ R+
r , define a power series in an indeterminate u and with

coefficients in U(h ⊗ A) as follows:

p(a, α) = exp

(

−
∞∑

i=1

hα ⊗ ai

i
ui

)

. (7.1)

For i ≥ 0, let p(a, α)i denote the coefficient of ui in p(a, α), and notice that p(a, α)0 = 1.
The following lemma was proved by H. Garland (see [11, Lemma 7.5]).

Lemma 7.2 Let m ∈ N, a ∈ A and α ∈ R+
r . Then

(xα ⊗ a)m(x−
α )m+1 − (−1)m

m∑

i=0

(x−
α ⊗ am−i )p(a, α)i ∈ U(slα ⊗ A)(gα ⊗ A),

where U(slα ⊗ A)(gα ⊗ A) denotes the left ideal of U(slα ⊗ A) generated by gα ⊗ A =
kxα ⊗ A.

The next two lemmas will be used in the proof of our first main result, Theorem 7.6. This
first one is technical and part of its proof will be used in the proof of Lemma 7.4

Lemma 7.3 Let λ ∈ X+, α ∈ R+
r , and a1, . . . , at ∈ A. Then, for every m1, . . . , mt ∈ N,

we have:

(x−
α ⊗ a

m1
1 · · · amt

t )wλ ∈ spank {(x−
α ⊗ a

�1
1 · · · a�t

t )wλAλ | 0 ≤ �1, . . . , �t < λ(hα)}. (7.2)

In particular, (r ⊗ A)wλ is a finitely-generated right Aλ-module.

Proof We will use induction on t . First assume that t = 1, and fix a ∈ A. From Lemma 7.2,
the first relation in (5.5), and Lemma 7.2, we have:

0 = (xα ⊗ a)m(x−
α )m+1wλ =

m∑

i=0

(−1)m(x−
α ⊗ am−i )p(a, α)iwλ for all m ≥ λ(hα).

Thus, using the fact that p(a, α)0 = 1 and induction on m, we conclude that

(x−
α ⊗ am)wλ ∈ spank{(x−

α ⊗ a�)wλAλ | 0 ≤ � < λ(hα)} for all m ∈ N.

This proves the case t = 1.
Now, let s > 1, assume that (7.2) holds for all t ≤ s, and fix a1, . . . , as+1 ∈ A. Since

[x−
α , hα] = 2x−

α and A is assumed to be commutative, (7.3)

we have:

2(x−
α ⊗a

m1
1 · · · ams+1

s+1 )wλ = (x−
α ⊗a

m1
1 · · · ams

s )(hα ⊗a
ms+1
s+1 )wλ − (hα ⊗a

ms+1
s+1 )(x−

α ⊗a
m1
1 · · · ams

s )wλ,
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for all m1, . . . , ms+1 ∈ N. Thus, using the fact that (hα ⊗ a
ms+1
s+1 )wλ ∈ wλAλ and the

induction hypothesis (for t = s), we see that

(x−
α ⊗ a

m1
1 · · · ams+1

s+1 )wλ ∈ spank{(x−
α ⊗ a

�1
1 · · · a�s

s )wλAλ | 0 ≤ �i < λ(hα), i = 1, . . . , s}
+ spank{(hα ⊗ a

ms+1
s+1 )(x−

α ⊗ a
�1
1 · · · a�s

s )wλ | 0 ≤ �i < λ(hα),

i =1, . . . , s},
for all m1, . . . , ms+1 ∈ N. Using (7.3) again, we have:

(hα ⊗ a
ms+1
s+1 ) (x−

α ⊗ a
�1
1 · · · a�s

s )wλ

= (x−
α ⊗ a

�1
1 · · · a�s

s )(hα ⊗ a
ms+1
s+1 )wλ − 2(x−

α ⊗ a
�1
1 · · · a�s

s a
ms+1
s+1 )wλ

= (x−
α ⊗ a

�1
1 · · · a�s

s )(hα ⊗ a
ms+1
s+1 )wλ+(hα ⊗ a

�1
1 )(x−

α ⊗ a
�2
2 · · · a�s

s a
ms+1
s+1 )wλ

−(x−
α ⊗ a

�2
2 · · · a�s

s a
ms+1
s+1 )(hα ⊗ a

�1
1 )wλ,

for all 0 ≤ �1, . . . , �s < λ(hα) and ms+1 ∈ N. Thus, using the induction hypothesis again
(for t = s) on (hα⊗a

�1
1 )(x−

α ⊗a
�2
2 · · · a�s

s a
ms+1
s+1 )wλ and (x−

α ⊗a
�2
2 · · · a�s

s a
ms+1
s+1 )(hα⊗a

�1
1 )wλ,

we see that

(hα ⊗ a
ms+1
s+1 ) (x−

α ⊗ a
�1
1 · · · a�s

s )wλ

∈ spank{(x−
α ⊗ a

k1
1 · · · aks+1

s+1 )wλAλ | 0 ≤ ki < λ(hα), i = 1, . . . , s + 1}
+ spank{(hα ⊗ a

�1
1 )(x−

α ⊗ a
k2
2 · · · aks+1

s+1 )wλ |0≤ki < λ(hα), i = 2, . . . , s+1},
for all 0 ≤ �1, . . . , �s < λ(hα) and ms+1 ∈ N. Finally, using (7.3) again, we have:

(hα ⊗ a
�1
1 ) (x−

α ⊗ a
k2
2 · · · aks+1

s+1 )wλ

= (x−
α ⊗ a

k2
2 · · · aks+1

s+1 )(hα ⊗ a
�1
1 )wλ − 2(x−

α ⊗ a
�1
1 a

k2
2 · · · aks+1

s+1 )wλ

∈ spank{(x−
α ⊗ a

n1
1 · · · ans+1

s+1 )wλAλ | 0 ≤ ni < λ(hα), i = 1, . . . , s + 1},
for all 0 ≤ �1, k2, . . . , ks+1 < λ(hα). Hence, Eq. 7.2 follows.

In particular, using (7.2) and the assumptions that A is finitely generated and r is a
finite-dimensional Lie algebra, we conclude that (r ⊗ A)wλ is a finitely-generated right
Aλ-module.

Lemma 7.4 Let λ ∈ X+, α ∈ R+
r , x1, . . . , xk ∈ n+ and a1, . . . , at ∈ A. Then, for all

m1, . . . , mt ∈ N, the element ([x1, [x2, . . . [xk, x
−
α ] . . . ]] ⊗ a

m1
1 · · · amt

t )wλ is in

spank{([x1, [x2, . . . [xk, x
−
α ] . . . ]] ⊗ a

�1
1 · · · a�t

t )wλAλ | 0 ≤ �1, . . . , �t < λ(hα)}.

Proof The proof is by induction on k. First assume that k = 1 and let x ∈ n+. Using (7.2)
and the first relation in (5.5), for all m1, . . . , mt ∈ N, we have:

([x, x−
α ] ⊗ a

m1
1 · · · amt

t )wλ = [x ⊗ 1, x−
α ⊗ a

m1
1 · · · amt

t ]wλ

= (x ⊗ 1)(x−
α ⊗ a

m1
1 · · · amt

t )wλ

∈ spank{([x, x−
α ] ⊗ a

�1
1 · · · a�t

t )wλAλ |0≤ �1, . . . , �t < λ(hα)}.
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This proves the case k = 1. Now assume k > 1 and let x1, . . . , xk ∈ n+. Using the first
relation in (5.5) and the induction hypothesis, for all m1, . . . , mt ∈ N, we have:

([x1, [x2, · · · [xk, x
−
α ] · · · ]] ⊗ a

m1
1 · · · amt

t )wλ

= [(x1 ⊗ 1), ([x2, [x3, · · · [xk, x
−
α ] · · · ]] ⊗ a

m1
1 · · · amt

t )]wλ

= (x1 ⊗ 1)([x2, [x3, · · · [xk, x
−
α ] · · · ]] ⊗ a

m1
1 · · · amt

t )wλ

∈ {([x1, [x2, · · · [xk, x
−
α ] · · · ]] ⊗ a

�1
1 · · · a�t

t )wλAλ | 0≤ �1, . . . , �t < λ(hα)}.

Let U(n− ⊗ A) = ∑
n≥0 Un(n

− ⊗ A) be the filtration on U(n− ⊗ A) induced from the
usual grading of the tensor algebra T (n− ⊗ A) = ⊕

d≥0(n
− ⊗ A)⊗d .

Lemma 7.5 If g is a finite-dimensional simple Lie superalgebra, not of type q(n), endowed
with a triangular decomposition satisfying (C2), then there exists n0 ∈ N such that

Un(n
− ⊗ A)wλAλ = WA(λ), for all n ≥ n0.

Proof First, recall that WA(λ) = U(n− ⊗ A)wλAλ. Then, by the PBW Theorem,

WA(λ) = U(n−
1̄

⊗ A)U(n−
0̄

⊗ A)wλAλ,

where, by abuse of notation, we are denoting by U(n−
1̄

⊗ A) the subspace of U(g ⊗ A)

whose basis consists of all the elements in the PBW basis of U(g ⊗ A) which have no even
component. Since we are assuming that the triangular decomposition g = n− ⊕ h ⊕ n+
satisfies (C2), we have n−

0̄
= n

−
0 . Hence, U(n−

0̄
⊗ A)wλ, which is the (r ⊗ A)-submodule

of WA(λ) generated by wλ, is a quotient of the Weyl (r ⊗ A)-module of highest weight
λ. This is a finitely-generated Aλ-module by [1, Theorem 2(i)]. Thus U(n−

0̄
⊗ A)wλ is a

finitely-generated Aλ-module, that is, there exist f1, . . . , fk ∈ n
−
0̄

⊗ A such that

U(n−
0̄

⊗ A)wλAλ =
∑

1≤i1≤···≤it≤k

fi1 · · · fit wλAλ.

Now, recall that −θ denotes the lowest root of g and that we have fixed a triangular
decomposition of g satisfying (C2). Hence θ ∈ R+

r . Notice that, since g is assumed to
be finite dimensional, there exists k0 ∈ N such that [x1, [x2, . . . [xk, x

−
θ ] . . . ]] = 0, for

all k > k0 and x1, . . . , xk ∈ n+. Moreover, since g is assumed to be simple and x−
θ is a

lowest-weight vector in the g-module g, we have

n− ⊆ spank{[x1, [x2, · · · [xk, x
−
θ ] · · · ]] | x1, . . . , xk ∈ n+ and 0 ≤ k ≤ k0}. (7.4)

Hence, it follows from Lemma 7.4 that, for each α ∈ R+, the space (g−α ⊗ A)wλ is a
finitely-generated Aλ-module. Thus, (n−

1̄
⊗ A)wλ is a finitely-generated Aλ-module, that

is, there exist g1, . . . , g� ∈ n
−
1̄

⊗ A such that

(n−
1̄

⊗ A)wλAλ =
∑

1≤j1≤···≤js≤�

gj1 · · · gjs wλAλ.

Moreover, notice that [n−
0̄

⊗A, n−
1̄

⊗A] ⊆ n
−
1̄

⊗A. Then one can use induction on s and
t (similar to the proof of Lemma 7.3) to prove that

U(n−
1̄

⊗ A)U(n−
0̄

⊗ A)wλAλ =
∑

1≤i1≤···≤it ≤k

1≤j1≤···≤js≤�

gj1 · · · gjs fi1 · · · fit wλAλ.
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The result follows.

We now state and prove the first main result of the paper. Notice that the existence of a
triangular decomposition satisfying (C2) will be crucial in the proofs of Theorem 7.6 and
Proposition 7.8 (see Example 7.7).

Theorem 7.6 Let g be a finite-dimensional simple Lie superalgebra not of type q(n)

endowed with a trinagular decomposition satisfying (C2). For all λ ∈ X+, the global Weyl
module WA(λ) is finitely generated as a right Aλ-module

Proof We will show that, for every n ≥ 0, Un(n
− ⊗ A)wλAλ is a finitely-generated Aλ-

module. Recall that −θ denotes the lowest root of g. Also recall that A is assumed to be
finitely generated and let a1, a2, . . . , at be generators of A. Denote by Bn− a (finite) basis
of n− extracted from the right side of Eq. 7.4 and let Bn−⊗A be the (finite) set

{y ⊗ a
�1
1 · · · a�t

t | y ∈ Bn− and 0 ≤ �1, . . . , �t < λ(hθ )}.
We will use induction to prove that, for every n ∈ N+,
Un(n

− ⊗ A)wλ ⊆ spank{Yn1
1 · · ·Ynt

t wλAλ | t ≥ 0, Y1, . . . , Yt ∈ Bn−⊗A and n1 + · · · + nt ≤ n}.
For n = 1, the result follows from Lemma 7.4 and the construction ofBn−⊗A. Suppose now
n > 1. Without loss of generality, let u = u1un−1 be a monomial, with u1 ∈ U1(n

− ⊗ A)

and un−1 ∈ Un−1(n
− ⊗ A). By induction hypothesis, we have:

uwλ = u1un−1wλ ∈ spank{u1Yn1
1 · · · Ynt

t wλAλ | t ≥ 0, Y1, . . . , Yt ∈ Bn−⊗A, n1+· · ·+nt ≤ n−1}.

Let u′ be an element in spank{Yn1
1 · · · Ynt

t wλAλ | t ≥ 0, Y1, . . . , Yt ∈ Bn−⊗A, n1 + · · · +
nt ≤ n − 1}, and without loss of generality assume that u1 and u′ are homogeneous. By
induction hypothesis, we have:

u1u
′wλ = [u1, u′]wλ + (−1)p(u1)p(u′)u′u1wλ

∈ Un−1(n
− ⊗ A)wλAλ + spank{u′YwλAλ | Y ∈ Bn−⊗A}

⊆ spank{Yn1
1 · · · Ynt+1

t+1 wλAλ | t ≥ 0, Y1, . . . , Yt+1 ∈ Bn−⊗A and n1 + · · · + nt+1 ≤ n}.
This shows that Un(n

− ⊗A)wλAλ is a finitely-generated Aλ-module for each n ≥ 0. Since
there exists n0 ∈ N+ such that Un(n

− ⊗ A)wλAλ = WA(λ) for all n ≥ n0 (by Lemma 7.5),
the result follows.

In the non-super setting, Theorem 7.6 was proved in [1, Theorem 2(i)] for the untwisted
case, and in [9, Theorem 5.10] for the twisted case. Notice that in the non-super setting the
analogues of Theorem 7.6 do not depend on the choice of the triangular decomposition of g.

Example 7.7 Let g be either a basic classical Lie superalgebra of type I or isomorphic
to p(n), S(n), H(n), or W(n), and A be an associative, commutative, finitely-generated
infinite-dimensional k-algebra. We will show that, for all λ ∈ X+, the global Weyl module
WA(λ) associated to a parabolic triangular decomposition (recall Definition 4.2) g = n− ⊕
h ⊕ n+, is not finitely generated. Notice that a parabolic triangular decomposition cannot
satisfy (C2), since r + n+ is not a subalgebra if the triangular decomposition satisfies (C2).

In fact, in this case we have:

g ⊗ A = (
g− ⊗ A

) ⊕ (
(r + n+) ⊗ A

)
,
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where r+n+ is a subsuperalgebra and g− is a nontrivial subspace of g. Thus we can consider
the (r+ n+) ⊗ A-module W r(λ) given as the quotient of U((r+ n+) ⊗ A) by the left ideal
generated by

gα ⊗ A for all α ∈ R+, h − λ(h) for all h ∈ h, (x−
α )λ(hα)+1 for all α ∈ �r.

Notice that the image of 1 ∈ U((r+n+)⊗A), which we will denote by uλ, generatesW r(λ).
Now, let

W r(λ) = indg⊗A

(r+n+)⊗A
W r(λ),

and notice thatW r(λ) is generated by 1⊗uλ. Also notice that there exists a unique surjective
homomorphism of g⊗A-modules WA(λ) → W r(λ) satisfying wλ �→ (1⊗uλ), thus W r(λ)

admits a structure of right Aλ-module (cf. Lemma 6.1). Moreover, (g− ⊗ A) ⊗ W r(λ) is a
right Aλ-submodule of W r(λ). Since A is assumed to be infinite dimensional, we have that
W r(λ) is not finitely generated as a right Aλ-module. This concludes that WA(λ) is also not
finitely generated as an Aλ-module.

Proposition 7.8 Let g be a finite-dimensional simple Lie superalgebra not of type q(n)

endowed with a triangular decomposition that satisfies (C2). For all λ ∈ X+, the algebra
Aλ is finitely generated.

Proof Since Aλ is defined to be U(h⊗A)/Annh⊗A(wλ), to prove that Aλ is finitely gener-
ated is equivalent to proving that there exist finitely many elements H1, . . . , Hn ∈ U(h⊗A)

such that
U(h ⊗ A)wλ = spank{Hk1

1 · · · Hkn
n wλ | k1, . . . , kn ≥ 0}.

Moreover, since U(h ⊗ A) is a commutative algebra generated by h ⊗ A, this is equivalent
to proving that

(h ⊗ A)wλ ⊆ spank{Hk1
1 · · · Hkn

n wλ | k1, . . . , kn ≥ 0}. (7.5)

In order to prove (7.5), first recall that A is assumed to be finitely generated and let
a1, a2, . . . , at be generators of A. Now denote by −θ the lowest root of g. Notice that,
since we have fixed a triangular decomposition of g satisfying (C2), we have θ ∈ R+

r .
Also notice that, since g is assumed to be finite dimensional, there exists k0 ∈ N such that
[x1, [x2, . . . [xk, x

−
θ ] . . . ]] = 0, for all k > k0 and x1, . . . , xk ∈ n+. Moreover, since g is

assumed to be simple and x−
θ is a lowest-weight vector in the g-module g, we have

h⊗A ⊆ spank{[x1, [x2, · · · [xk, x
−
θ ] · · · ]]⊗a

m1
1 · · · amt

t | x1, . . . , xk ∈ n+,0< k ≤ k0, 0 ≤ m1, . . . , mt }.
Using arguments similar to those used in the proof of Lemma 7.3, we see that for

every k ∈ N+ and x1, . . . , xk ∈ n+ such that [x1, [x2, . . . [xk, x
−
θ ] . . . ]] ∈ h, the element

([x1, [x2, . . . [xk, x
−
θ ] . . . ]]⊗a

m1
1 · · · amt

t )wλ is a linear combination of elements of the form

([x1, [x2, . . . [xk, x
−
θ ] . . . ]] ⊗ a

�1
1 · · · a�t

t )P (θ, k1, . . . , kt )wλ,

where 0 ≤ �1, . . . , �t < λ(hθ ), 0 ≤ k1, . . . , kt ≤ λ(hθ ), and P(θ, k1, . . . , kt ) is a finite
product of elements of U(h⊗A) of the form (hθ ⊗a

k1
1 · · · akt

t ). Thus the result follows.

Example 7.9 Given k > 0, let Sk denote the symmetric group on k letters, let (A⊗k)Sk

denote the subalgebra of A⊗k consisting of all the fixed points under the natural action of Sk

on A⊗k . When g is either of type II, or isomorphic to S(n) or H(n), r is a finite-dimensional
semisimple Lie algebra. In particular, X+ ⊆ P +

r , where P +
r denote the set of dominant
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integral weights of r. Thus, in these cases (as described in [1, Theorem 4]), the algebra
Aλ is isomorphic to the algebra (A⊗r1)Sr1 ⊗ · · · ⊗ (A⊗rn )Srn , where r1, . . . , rn are unique
non-negative integers such that λ = r1ω1 + · · · + rnωn, and where ω1, . . . , ωn denote the
fundamental integral weights of r. If g is either basic classical of type I or isomorphic to
W(n), then r = z⊕ r′, where z is the 1-dimensional center and r′ is the semisimple part of r,
and h = z⊕ h′, where h′ is a Cartan subalgebra of r′. If λ|z = 0, then Aλ is also isomorphic
to the algebra (A⊗r1)Sr1 ⊗ · · · ⊗ (A⊗rn )Srn . If λ(z) 
= 0 for some z ∈ z, there exist � ∈ P +

r′
and η ∈ z∗ such that λ(z, h) = η(z) + �(h) for every z ∈ z, h ∈ h′. Then by the proof of
Proposition 7.8 we have that

U(z ⊗ A)wλ ⊆ k[z ⊗ a
�i

i ]U(h′ ⊗ A)wλ,

where 0 ≤ �i < λ(hθ ), for all i = 1, . . . , t . In particular, since U(h ⊗ A) ∼= U(z ⊗ A) ⊗
U(h′ ⊗ A), this yields a surjective homomorphism of algebras

k[z ⊗ a
�i

i ] ⊗ (A⊗r1)Sr1 ⊗ · · · ⊗ (A⊗rn )Srn � Aλ,

where now r1, . . . , rn are the unique non-negative integers such that � = r1ω1+· · ·+rnωn.

The next result follows directly from Theorem 7.6.

Corollary 7.10 Let g be a finite-dimensional simple Lie superalgebra not of type q(n)

endowed with a triangular decomposition that satisfies (C2). If M is a finitely-generated
Aλ-module (resp. finite dimensional), thenWλ

AM is a finitely-generated g⊗A-module (resp.
finite dimensional).

8 Local Weyl Modules

In this section we will assume that g is either sl(n, n) with n ≥ 2, or a finite-dimensional
simple Lie superalgebra not of type q(n), and that A is an associative commutative finitely-
generated k-algebra with unit.

Definition 8.1 (Local Weyl module) Assume that ψ ∈ (h ⊗ A)∗ and ψ |h ∈ X+. The local
Weyl module W loc

A (ψ) associated to ψ is defined to be the cyclic g⊗A-module given as the
quotient of U(g) ⊗ A by the left ideal generated by

n+ ⊗ A, h − ψ(h), (x−
α )ψ(hα)+1, for all h ∈ h ⊗ A and α ∈ �r.

Denote the image of 1 ∈ U(g⊗A) in W loc
A (ψ) by wψ , and notice that as a g⊗A-module,

W loc
A (ψ) is generated by the vector wψ , satisfying the following defining relations:

(n+⊗A)wψ =0, hwψ = ψ(h)wψ, (x−
α )ψ(hα)+1wψ =0, for all h ∈ h ⊗ A and α ∈ �r.

(8.1)
The next result describes local Weyl modules as universal objects. Its proof is similar to

that of [2, Proposition 4.13].

Proposition 8.2 Let ψ ∈ (h ⊗ A)∗ such that ψ |h = λ ∈ X+. Assume that W ∈ Cλ
A is a

finite-dimensional g ⊗ A-module that is generated by a highest weight vector w ∈ W such
that xv = ψ(x)v, for all x ∈ h ⊗ A. Then there exists a surjective homomorphism from
W loc

A (ψ) to W sending wψ to w. Moreover, if the triangular decomposition of g satisfies
(C1), then W loc

A (ψ) is the unique object in Cλ
A with this property.
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Notice that, since Aλ is a commutative algebra, every irreducible finite-dimensional Aλ-
module is one-dimensional. For ψ ∈ (h ⊗ A)∗ such that ψ |h ∈ X+, let kψ denote the
one-dimensional irreducible Aλ-module, where xv = ψ(x)v for all x ∈ Aλ and v ∈ kψ .

Remark 8.3 Recall that W loc
A (ψ) is generated by wψ , that is, W loc

A (ψ) = U(g ⊗ A)wψ .
Thus, since wψ satisfies (n+ ⊗ A)wψ = 0 and hwψ = ψ(h)wψ for all h ∈ h⊗ A, we have

R
ψ |h
A W loc

A (ψ) = kwψ . Moreover, notice that kwψ is isomorphic to kψ as a Aλ-module.

For the remainder of this section we fix a triangular decomposition of g satisfying (C2).
The next result describes local Weyl modules via Weyl functors.

Theorem 8.4 Assume that g is a finite-dimensional simple Lie superalgebra not isomorphic
to q(n). Let ψ ∈ (h ⊗ A)∗ such that ψ |h = λ ∈ X+. ThenWλ

Akψ
∼= W loc

A (ψ).

Proof First recall from Remark 8.3 that W loc
A (ψ) = U(g⊗A)wψ and Rλ

AW loc
A (ψ) = kwψ .

Thus, there exists a unique homomorphism of g⊗A-modules εW loc
A (ψ) : Wλ

AR
λ
AW loc

A (ψ) →
W loc

A (ψ) satisfying

εW loc
A (ψ)(u ⊗ wψ) = uwψ for all u ∈ Ug ⊗ A.

Moreover, εW loc
A (ψ) is surjective.

Now, notice that Wλ
AR

λ
AW loc

A (ψ) is a g ⊗ A-module generated by the highest-weight
vector 1 ⊗ wψ (see Remark 8.3). Moreover, by Corollary 7.10, Wλ

AR
λ
AW loc

A (ψ) is finite
dimensional. Thus, 1⊗wψ satisfies all the relations (5.4). This implies that we have a unique
homomorphism of g ⊗ A-modules η : W loc

A (ψ) → Wλ
AR

λ
AW loc

A (ψ) satisfying η(wψ) =
1⊗wψ . Moreover, η is surjective, η◦εW loc

A (ψ) = idW loc
A (ψ), and εW loc

A (ψ)◦η = idWλ
AR

λ
AW loc

A (ψ).
The result follows.

The next result follows directly from Theorems A.6 and 8.4.

Corollary 8.5 Let A and B be finite-dimensional commutative, associative k-algebras with
unit, ψ ∈ (h ⊗ A)∗ such that ψ |h = λ ∈ X+ and ϕ ∈ (h ⊗ B)∗ such that ϕ|h = μ ∈ X+
and λ + μ ∈ X+. Then

Wλ+μ
A⊕B

(
�∗

λ,μ(kψ+ϕ)
) ∼= π∗

A(W loc
A (ψ)) ⊗ π∗

B(WB(ϕ))

as g ⊗ (A ⊕ B)-modules.

The next result gives a homological characterization of local Weyl modules, and its proof
is similar to that of [9, Lemma 7.5].

Corollary 8.6 Let ψ ∈ (h⊗A)∗ such that ψ |h = λ ∈ X+. A g⊗A-module V is isomorphic
to the local Weyl module W loc

A (ψ) if and only if it satisfies all of the following conditions:

(a) V ∈ Cλ
A;

(b) Rλ
AV ∼= kψ ;

(c) HomCλ
A
(V ,U) = 0 and Ext1Cλ

A

(V ,U) = 0, for all finite-dimensional irreducible U ∈
Cλ

A with Uλ = 0.
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Now we give necessary and sufficient conditions for local Weyl modules to be finite
dimensional. We begin by giving a sufficient condition. In the non-super setting, this result
was proved in [4, Theorem 1] for A = k[t±1], and in [7, Theorem 1], for the case where
A is the algebra of functions on a complex affine variety. For the case where g is either
basic classical or sl(n, n) with n ≥ 2, and A is finitely generated, it was proved in [2,
Theorem 4.12]. In our curent setting, the result is a direct consequence of Corollary 7.10
and Theorem 8.4.

Theorem 8.7 Let ψ ∈ (h ⊗ A)∗ with ψ |h ∈ X+. If g is either isomorphic to sl(n, n) with
n ≥ 2, or a finite-dimensional simple Lie superalgebra not of type q(n), and the triangular
decomposition g = n− ⊕h⊕n+ satisfies (C2), then the local Weyl module W loc

A (ψ) is finite
dimensional.

In what follows we give a necessary condition over triangular decompositions of g for
local Weyl modules to be finite dimensional. We begin with a technical lemma.

Lemma 8.8 If ψ ∈ (h ⊗ A)∗ is such that ψ |h = λ ∈ X+, then there exists a finite-
codimensional ideal I ⊆ A such that (n−

0 ⊗ I )W loc
A (ψ)λ = 0.

Proof Let α ∈ R+
r and let Iα be the kernel of the linear map

A −→ Homk

(
g−α ⊗ W loc

A (ψ)λ, (g−α ⊗ A)wψ

)

a �−→ [u ⊗ v �→ (u ⊗ a)v], a ∈ A, u ∈ g−α, v ∈ W loc
A (ψ)λ.

Since g−α is finite dimensional for all α ∈ R+
r , and since W loc

A (ψ)λ = U(h ⊗ A)wψ =
kwψ , Lemma 7.3 implies that (g−α ⊗ A)wψ is finite dimensional. Thus, Iα is a finite-
codimensional linear subspace of A. We claim that Iα is, in fact, an ideal of A. Indeed, since
α 
= 0, we can fix h ∈ h such that α(h) 
= 0. Then, for all a ∈ A, b ∈ Iα , v ∈ W loc

A (ψ)λ,
and y ∈ g−α , we have

0 = (h⊗a)(y⊗b)v = [h⊗a, y⊗b]v+(y⊗b)(h⊗a)v = −α(h)(y⊗ab)v+(y⊗b)(h⊗a)v.

Since (h ⊗ a)v ∈ W loc
A (ψ)λ and b ∈ Iα , we have (y ⊗ b)(h ⊗ a)v = 0; and since we

have assumed that α(h) is nonzero, this implies that (y ⊗ ab)v = 0. As this holds for all
v ∈ W loc

A (ψ)λ and y ∈ g−α , we have that ab ∈ Iα . Hence Iα is an ideal of A.
Let I = ⋂

α∈R+
r

Iα , and notice that (n−
0 ⊗ I )W loc

A (ψ)λ = 0. Since R+
r is a finite set, I

is an intersection of finitely many finite-codimensional ideals, and thus I is also a finite-
codimensional ideal of A.

Definition 8.9 For ψ ∈ (h ⊗ A)∗ with ψ |h ∈ X+, let Iψ be the sum of all ideals I ⊆ A

such that (n−
0 ⊗ I )wψ = 0.

Remark 8.10 It follows from Lemma 8.8, that Iψ is a finite-codimensional ideal of A and
from Definitions 8.1 and 8.9 that ((n−

0 ⊕ n+) ⊗ Iψ)wψ = 0. Furthermore, since Iψ has
finite codimension and A is assumed to be finitely generated, we have that In

ψ has finite
codimension, for all n ∈ N (see [2, Lemma 2.1(a),(b)]).

Given ψ ∈ (h ⊗ A)∗ such that ψ |h ∈ X+, let wg

ψ denote the set

{x ∈ g | (x ⊗ a)wψ = 0 for all a ∈ A}.
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Notice that wg

ψ is a subalgebra of g and n+ ⊆ w
g

ψ (by Definition 8.1).

Lemma 8.11 Let g be a finite-dimensional simple Lie superalgebra not of type q(n), and
ψ ∈ (h ⊗ A)∗ be such that ψ |h = λ ∈ X+. If x−

θ is in the r-submodule of g generated by

w
g

ψ , then there exists nψ ∈ N such that
(
g ⊗ I

nψ

ψ

)
wψ = 0.

Proof Assume that x−
θ is in the r-submodule of g generated by w

g

ψ . Since r is a reductive

Lie algebra, x−
θ is in

spank{[x−
β1

, [. . . , [x−
βk

, [xγ1 , [. . . , [xγ�
, z] . . . ]]] . . . ]] |k, � ∈ N, β1, . . . , βk, γ1, . . . , γ� ∈ R+

r , z ∈ w
g

ψ }.
Now, since xγ ∈ w

g

ψ for all γ ∈ R+
r , w

g

ψ is a subalgebra of g and r is finite dimensional,
there exists N ∈ N such that

x−
θ ∈ spank{[x−

β1
, [. . . , [x−

βk
, z] . . . ]] | k ≤ N,β1, . . . , βk ∈ R+

r , z ∈ w
g

ψ }.
Thus, since (x−

β ⊗ b)wψ = 0 for all β ∈ R+
r and b ∈ Iψ (by Definition 8.1), we see that

(x−
θ ⊗ a)wψ = 0 for all a ∈ IN

ψ . Hence, since g = spank{[xα1 , [· · · , [xαn, x
−
θ ] · · · ]] | n ∈

N, α1, . . . , αn ∈ R+}, it follows that (g ⊗ IN
ψ )wψ = 0.

Lemma 8.12 Let g be a finite-dimensional simple Lie superalgebra not of type q(n), and
ψ ∈ (h ⊗ A)∗ be such that ψ |h = λ ∈ X+.

(a) If g is basic classical of type II, then, for every choice of triangular decomposition
g = n− ⊕ h ⊕ n+, x−

θ is in the r-submodule of g generated by w
g

ψ .

(b) If g is basic classical of type I, then x−
θ is in the r-submodule of g generated by w

g

ψ if

and only if the triangular decomposition g = n− ⊕ h ⊕ n+ is not a parabolic one.

Proof Assume first that g is basic classical of type II. Since (n+ ⊗ A)wψ = 0, we have
(z′ ⊗ a)wψ = 0 for all z′ ∈ gα , α ∈ R+ and a ∈ A. Since r = g0̄ is a finite-dimensional
simple Lie algebra and g1̄ is an irreducible r-module, then there exist α ∈ R+ and z′ ∈ gα

such that

x−
θ ∈ spank{[x−

β1
, [. . . , [x−

βk
, [xγ1 , [. . . , [xγ�

, z′] . . . ]]] . . . ]] | k, � ∈ N, β1, . . . , βk, γ1, . . . , γ� ∈ R+
r }.

Let z = [xγ1 , [. . . , [xγ�
, z′] . . . ]], and notice that (z ⊗ a)wψ = 0 for all a ∈ A.

Now assume that g is basic classical of type I. Recall that in these cases g admits a
Z-grading g−1 ⊕ g0 ⊕ g1, g0̄ = g0 = r, and g1̄ = g−1 ⊕ g1, where g1 and g−1 are
irreducible r-modules. If we choose a triangular decomposition g = n− ⊕ h ⊕ n+ that is
not a parabolic one, for each i ∈ {−1, 0, 1}, there exists βi ∈ R+ such that gβi

⊆ gi ∩ n+.
In particular, gβ−1 , gβ0 , gβ1 ⊆ w

g

ψ . Since x−
θ is not in the center of g, and since g−1, r′ and

g1 are irreducible r-modules, it follows that x−
θ is in the r-submodule of g generated by

gβ−1 ⊕ gβ0 ⊕ gβ1 ⊆ w
g

ψ .

Conversely, if g = n− ⊕h⊕n+ is a parabolic triangular decomposition, then x−
θ belongs

to either g−1 or g1. In any case, we have that x−
θ is not in the r-submodule of g generated

by w
g

ψ (in fact, if x−
θ ∈ g±1, then the r-submodule of g generated by w

g

ψ is g0 ⊕ g∓1).

This next result gives, for basic classical Lie superalgebras, a necessary and sufficient
condition for a local Weyl module to be finite dimensional, and when g is either p(n) or of

751



I. Bagci et al.

Cartan type, a sufficient condition and a necessary condition for a local Weyl module to be
finite dimensional.

Theorem 8.13 Let g be a finite-dimensional simple Lie superalgebra not of type q(n) with
a triangular decomposition g = n− ⊕ h ⊕ n+, let ψ ∈ (h ⊗ A)∗ be such that ψ |h ∈ X+,
and let A be infinite dimensional.

(a) If g is basic classical of type II, thenW loc
A (ψ) is finite dimensional (for every triangular

decomposition).
(b) If g is basic classical of type I, then W loc

A (ψ) is finite dimensional if and only if the
triangular decomposition is not a parabolic one.

(c) If g is either of type p(n) or of Cartan type, and the x−
θ is in the r-submodule of g

generated by w
g

ψ , then W loc
A (ψ) is finite-dimensional.

(d) If g is either of type p(n) or of Cartan type, and the triangular decomposition of g is
parabolic, then W loc

A (ψ) is infinite-dimensional.

Proof The proofs thatW loc
A (ψ) are finite dimensional (that is, item (a), the if part of item (b)

and item (c)) follow from Lemmas 8.11 and 8.12 using standard arguments.
To prove the only if part of item (b) and item (d), suppose that g is either basic classical

of type I, or of type p(n), or of Cartan type, and that the triangular decomposition g =
n− ⊕ h ⊕ n+ is parabolic, that is, (r + n+) is a Lie subsuperalgebra of g and there exists
a nontrivial subspace g− ⊆ g such that g = g− ⊕ (r + n+). Thus, we can consider the
(r+n+)⊗A-module W r(ψ) defined to be the quotient of U((r+n+)⊗A) by the left ideal
generated by

gα ⊗ A for all α ∈ R+, h − ψ(h) for all h ∈ h⊗ A, (x−
α )ψ(hα)+1 for all α ∈ �r.

Notice that the image of 1 ∈ U((r + n+) ⊗ A), which we will denote by uψ , generates
W r(ψ).

Now, let
W r(ψ) = indg⊗A

(r+n+)⊗A
W r(ψ),

and notice that W r(ψ) is generated by 1 ⊗ uψ . Moreover, since A is assumed to be infinite
dimensional, we have that g− ⊗ A is infinite dimensional, which implies that W r(ψ) is
infinite dimensional. Finally, notice that there exists a unique surjective homomorphism of
g ⊗ A-modules W loc

A (ψ) → W r(ψ) satisfying wψ �→ (1 ⊗ uψ). Since W r(ψ) is infinite
dimensional, we conclude that W loc

A (ψ) is also infinite dimensional.

Example 8.14 Let g be a simple Lie superalgebra of Cartan type, and let ψ ∈ (h ⊗ A)∗ be
such that ψ |h ∈ X+. If one chooses either the maximal or the minimal triangular decom-
position (see Section 3.2), then x−

θ is not in the r-submodule generated by w
g

ψ . In these

cases, W loc
A (ψ) will not be finite dimensional. On the other hand, if one chooses a tri-

angular decomposition of g satisfying (C2) (see Proposition 3.4), then W loc
A (ψ) is finite

dimensional.

Remark 8.15 Traditionally, local Weyl modules are universal objects in certain categories
of finite-dimensional modules (see, for instance, [4, Proposition 2.1(iii)], [7, Theorem 5],
[1, Proposition 5], [6, Corollary 4.6] and [2, Proposition 4.13]). In the current setting, we
have proved in Proposition 8.2 that the local Weyl module W loc

A (ψ) is a universal object in
the category Cλ

A (λ = ψ |h). However, if g is a Lie superalgebra of type I, p(n) or Cartan,
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with a parabolic triangular decomposition, then local Weyl modules are infinite-dimensional
(see Theorem 8.13(b), (d)). In these cases, there is no finite dimensional g ⊗ A-module of
highest-weight λ of which every finite dimensional g ⊗ A-module of highest-weight λ is a
quotient.

We illustrate this claim with a concrete example. Let A = k[t], g be a Lie superalgebra
of type I with a distinguished triangular decomposition (which is parabolic), and let ψ = 0.
Notice that, in this case, W loc

k[t](ψ) is free as a left U(n−
1̄

⊗ k[t])-module. Now, for every
k > 0, consider the g ⊗ k[t]-module Wk given as the quotient of U(g ⊗ k[t]) by the left
ideal generated by

n+ ⊗ k[t], h ⊗ k[t], x−
α , y ⊗ tk, for all α ∈ �r and y ∈ n

−
1̄
.

Notice that Wk ∈ Cλ
k[t] is a quotient of W loc

k[t](ψ) and that dimWk = 2k dimn
−
1̄ for all k ≥ 0.

Since there is no upper bound for k, we see that there is no finite-dimensional g ⊗ k[t]-
module of highest-weight λ that projects onto Wk for all k ≥ 0.

Corollary 8.16 Let g be either of type p(n) or a basic classical Lie superalgebra, and let
L(h ⊗ A) = {ψ ∈ (h ⊗ A)∗ | ψ(h ⊗ I ) = 0 for some finite-codimensional ideal I of A}.
(a) If g is basic classical of type II, then W loc

A (ψ) = 0 if ψ /∈ L(h ⊗ A).
(b) If g is either of type p(n) or basic classical of type I, and the triangular decomposition

is not a parabolic one, then W loc
A (ψ) = 0 if ψ /∈ L(h ⊗ A).

(c) If g is of Cartan type and x−
θ is in the r-submodule of g generated by w

g

ψ , then

W loc
A (ψ) = 0 if ψ 
∈ L(h ⊗ A).

Proof In each one of these cases, W loc
A (ψ) is finite dimensional. Thus, there exists a finite

codimensional ideal I of A such that (g ⊗ I )wψ = 0. In particular, (h ⊗ a)wψ = ψ(h ⊗
a)wψ = 0 for all a ∈ I . If ψ /∈ L(h ⊗ A), then there exists a ∈ I such that ψ(h ⊗ a) 
= 0.
In this case, wψ = 0. Thus W loc

A (ψ) = U(n− ⊗ A)wψ = 0.

We finish this section with two results regarding tensor products of local Weyl modules.
They generalize well-known results.

Lemma 8.17 Let Jψ be the sum of all ideals I ⊆ A such that (g ⊗ I )W(ψ) = 0. Then Jψ

is a finite-codimensional ideal of A.

Proof By [17, Proposition 8.1], all ideals of g⊗A are of the form g⊗ I , where I is an ideal
of A. In particular, the annihilator of the action of g ⊗ A on W loc

A (ψ) is of the form g ⊗ I ,
for some ideal I of A. Since W loc

A (ψ) is finite dimensional and (g⊗A)/(g⊗ I ) ∼= g⊗A/I ,
we see that I must be a finite-codimensional ideal of A. Now the result follows from the
fact that I ⊆ Jψ .

Given an ideal I of A, we define its support to be the set Supp(I ) = {m ∈ MaxSpec(A) |
I ⊆ m}. The next result generalizes [2, Theorem 4.15].

Proposition 8.18 Let ψ, ϕ ∈ (h ⊗ A)∗, ψ |h = λ, ϕ|h = μ, and suppose that λ, μ ∈ X+
are such that λ+μ ∈ X+. If Supp(Jψ)∩Supp(Jϕ) = ∅, then (omitting the pull back maps)
we have

W loc
A (ψ + ϕ) ∼= W loc

A (ψ) ⊗ W loc
A (ϕ),

as g ⊗ A-modules.
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Proof Using the fact that Supp(Jψ)∩Supp(Jϕ) = ∅, one can prove that the action of g⊗A

on the tensor product W loc
A (ψ) ⊗ W loc

A (ϕ) descends to an action of g⊗ (A/Jψ ⊕ A/Jϕ) on
W loc

A (ψ)⊗W loc
A (ϕ). By Lemma 8.17, both algebras A/Jψ and A/Jϕ are finite dimensional.

Thus we can use Corollary 8.5. The result follows from Theorem A.6.
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Appendix: Homological Properties of Weyl Functors

The results of this section show that the Weyl functors defined in the current paper satisfy
properties similar to the ones satisfied by Weyl functors defined in the non-super setting.
Since the proofs of ther results of this appendix are very similar to those in the non-super
setting, we refer to [1, §3.7] and [9, §4] for the details.

Throughout this appendix, we assume that g is either sl(n, n) with n ≥ 2, or a
finite-dimensional simple Lie superalgebra not of type q(n), endowed with a triangular
decomposition satisfying (C1). We will also assume that A, B and C are associative,
commutative k-algebras with unit.

Proposition A.1 Let λ ∈ X+.

(a) For every Aλ-module M , there is an isomorphism of Aλ-modules Rλ
AW

λ
AM ∼= M that

is functorial in M .
(b) Wλ

A : Aλ-mod → Cλ
A is left adjoint to Rλ

A : Cλ
A → Aλ-mod.

(c) Wλ
A is fully faithful.

(d) If M is a projective Aλ-module, thenWλ
AM is a projective object in Cλ

A.

Corollary A.2 For each λ ∈ X+, the module WA(λ) is projective in Cλ
A and the

module K(λ) is projective in Cλ
A. Moreover, there is an isomorphism of algebras

HomCλ
A

(WA(λ), WA(λ)) ∼= Aλ.

Notice that, despiteWλ
A being a fully faithful functor (by Proposition A.1(c)), it is not an

equivalence of categories, as it is not essentially surjective. In fact, if μ < λ, then WA(μ)

is an object of Cλ
A for which there exists no Aλ-module N satisfying Wλ

AN ∼= WA(μ). (If
Wλ

AN ∼= WA(μ), then N ∼= Rλ
AW

λ
AN ∼= Rλ

AWA(μ) = 0.) Theorem A.3 describes for
which objects M of Cλ

A there exists an Aλ-module N satisfying Wλ
AN ∼= M .

Theorem A.3 Let M be an object of Cλ
A. Then M ∼= Wλ

AR
λ
AM if and only if, for each object

N of Cλ
A that satisfies Nλ = 0, we have

HomCλ
A

(M, N) = Ext1Cλ
A

(M,N) = 0.

Corollary A.4 The functorWλ
A is exact if and only if, for each object N of Cλ

A that satisfies
Nλ = 0, we have

Ext2Cλ
A

(Wλ
A−, N) = 0.
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Similar to the definition of Aλ in Section 6, for each λ ∈ X+, let

Bλ = U(h ⊗ B)/Annh⊗B(wλ) and Cλ = U(h ⊗ C)/Annh⊗C(wλ).

Remark A.5

(a) Every homomorphism of k-algebras π : C → A induces a unique (even) homomor-
phism of Lie superalgebras (which we denote by the same symbol) π : g⊗C → g⊗A

satisfying
π(x ⊗ c) = x ⊗ π(c) for all x ∈ g and c ∈ C.

This latter homomorphism induces an action of g⊗C on any g⊗A-module M via the
pull-back. Let π∗M denote such a g ⊗ C-module.

(b) Let λ ∈ X+ and π : C → A be a homomorphism of k-algebras. Using item (a), we
see that π also induces a homomorphism of associative superalgebras (which we keep
denoting by the same symbol), π : U(g ⊗ C) → U(g ⊗ A). Notice that by construc-
tion, π(n+⊗C) ⊆ n+⊗A, π(h)−λ(h) = h−λ(h) for all h ∈ h, and π(x−

α )k = (x−
α )k

for all α ∈ �r and k ≥ 0. Hence

π
(
Anng⊗C(wλ)

) ⊆ Anng⊗A(wλ) and π
(
Annh⊗C(wλ)

) ⊆ Annh⊗A(wλ).

Thus π induces a homomorphism of k-algebras π : Cλ → Aλ, and every Aλ-module
V admits a structure of Cλ-module via the pull-back along π . Denote this Cλ-module
by π∗V .

(c) Let λ, μ ∈ X+ be such that λ + μ ∈ X+, and recall that the action of the superalgebra
U(g ⊗ A) on WA(λ) ⊗ WA(μ) is induced by the comultiplication � : U(g ⊗ A) →
U(g⊗A)⊗U(g⊗A). In particular, we have x(wλ⊗wμ) = (xwλ)⊗wμ+wλ⊗(xwμ)

for all x ∈ g ⊗ A, and thus wλ ⊗ wμ is a highest-weight vector in WA(λ) ⊗ WA(μ).
Hence, there exists a unique surjective homomorphism of g ⊗ A-modules ξ : WA(λ +
μ) � WA(λ) ⊗ WA(μ) satisfying ξ(wλ+μ) = wλ ⊗ wμ. Now, notice that R

λ+μ
A ξ is a

surjective homomorphism of U(h ⊗ A)-modules:

Rλ+μ
A ξ : U(h ⊗ A)wλ+μ � U(h ⊗ A)wλ ⊗ U(h ⊗ A)wμ.

Moreover, since U(h ⊗ A)wν
∼= Aν for all ν ∈ X+, Rλ+μ

A ξ induces a homomorphism
of commutative k-algebras �λ,μ : Aλ+μ → Aλ ⊗ Aμ. Thus, given an Aλ-module M

and an Aμ-module N , their tensor product M ⊗ N admits an Aλ+μ-module structure
via the pull-back along �λ,μ. Denote this Aλ+μ-module by �∗

λ,μ(M ⊗ N).

Theorem A.6 Let g be a finite-dimensional simple Lie superalgebra not of type q(n), with
a fixed triangular decomposition satisfying (C2). Suppose also that A and B are finite-
dimensional commutative, associative k-algebras with unit and let πA : A ⊕ B � A and
πB : A ⊕ B � B be the canonical projections. Let λ, μ ∈ X+ be such that λ + μ ∈ X+.
If M ∈ Aλ-mod, N ∈ Bμ-mod are finite dimensional, then there is an isomorphism of
g ⊗ (A ⊕ B)-modules

Wλ+μ
A⊕B

(
�∗

λ,μ(M ⊗ N)
) ∼= π∗

A(Wλ
AM) ⊗ π∗

B(Wμ
BN).

References

1. Chari, V., Fourier, G., Khandai, T.: A categorical approach to Weyl modules. Transform. Groups 15(3),
517–549 (2010)

755



I. Bagci et al.

2. Calixto, L., Lemay, J., Savage, A.: Weyl modules for Lie superalgebras. Proc. Amer. Math. Soc. To
appear. Preprint available at arXiv:1505.06949

3. Coulembier, K.: Bott-Borel-Weil theory and Bernstein-Gel’fand-Gel’fand reciprocity for Lie superalge-
bras. Transform. Groups 21(3), 681–723 (2016)

4. Chari, V., Pressley, A.: Weyl modules for classical and quantum affine algebras. Represent. Theory 5,
191–223 (2001). (electronic)

5. Cheng, S.-J., Wang, W.: Dualities and Representations of Lie Superalgebras, Volume 144 of Graduate
Studies in Mathematics American Mathematical Society. Providence (2012)

6. Fourier, G., Khandai, T., Kus, D., Savage, A.: Local Weyl modules for equivariant map algebras with
free abelian group actions. J. Algebra 350, 386–404 (2012)

7. Feigin, B., Loktev, S.: Multi-dimensionalWeyl modules and symmetric functions. Commun.Math. Phys.
251(3), 427–445 (2004)

8. Feigin, E., Makedonskyi, I.: Weyl modules for osp(1; 2) and nonsymmetric Macdonald polynomials.
arXiv:1507.01362

9. Fourier, G., Manning, N., Savage, A.: Global Weyl modules for equivariant map algebras, vol. 7 (2015)
10. Frappat, L., Sciarrino, A., Sorba, P.: Dictionary on Lie Algebras and Superalgebras. Academic Press,

Inc., San Diego (2000)
11. Garland, H.: The arithmetic theory of loop algebras. J. Algebra 53(2), 480–551 (1978)
12. Gavarini, F.: Algebraic supergroups of Cartan type. Forum Math. 26(5), 1473–1564 (2014)
13. Kac, V.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)
14. Kumar, S.: Kac-Moody Groups, their Flag Varieties and Representation Theory, Volume 204 of Progress
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