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Abstract Given an algebraically closed field k of characteristic zero, a Lie superalgebra
g over k and an associative, commutative k-algebra A with unit, a Lie superalgebra of the
form g ®x A is known as a map superalgebra. Map superalgebras generalize important
classes of Lie superalgebras, such as, loop superalgebras (where A = k[t*!]), and cur-
rent superalgebras (where A = k[¢]). In this paper, we define Weyl functors, global and
local Weyl modules for all map superalgebras where g is either sl(n, n) withn > 2, or a
finite-dimensional simple Lie superalgebra not of type q(n). Under certain conditions on
the triangular decomposition of these Lie superalgebras we prove that global and local Weyl
modules satisfy certain universal and tensor product decomposition properties. We also
give necessary and sufficient conditions for local (resp. global) Weyl modules to be finite
dimensional (resp. finitely generated).
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1 Introduction

Let g be a Lie algebra and X be a scheme, both defined over a field k. Map Lie algebras
(also known as generalized current Lie algebras) are Lie algebras of regular maps from X
to g. They form a large class of Lie algebras, whose representation theory is an extremely
active area of research. Map Lie algebras generalize loop algebras and current algebras,
which are very important to the theory of affine Kac-Moody Lie algebras.

Given a finite-dimensional, simple Lie algebra g over C, (local) Weyl modules for the
loop algebra g ®c C[+*!] were introduced by Chari and Pressley in [4]. These modules
are indexed by dominant integral weights of g and are closely related to certain irreducible
modules for quantum affine algebras. In [7], Feigin and Loktev defined local and global
Weyl modules for map Lie algebras of the form g ®c A, where g is a finite-dimensional
semisimple Lie algebra and A is the coordinate ring of an affine variety, both defined over C.
A more general approach was taken in [1], where Chari, Fourier and Khandai studied local
Weyl modules, global Weyl modules, and Weyl functors for map algebras of the form g @c
A, where g is a finite-dimensional simple Lie algebra and A is an associative, commutative
algebra with unit, both defined over C. In [6] and [9], the representation theory of local and
global Weyl modules were developed for equivariant map Lie algebras, that is, Lie algebras
of I'-equivariant regular maps from an affine scheme of finite type X to a finite-dimensional
simple Lie algebra g, both defined over an algebraically closed field k of characteristic
zero, on which a finite group I' acts by automorphisms (both on g and X) and freely on the
rational points of X.

In [2], Calixto, Lemay and Savage initiated the study of Weyl modules for Lie super-
algebras by defining local and global Weyl modules for map superalgebras of the form
g ®c A, where g is either a finite-dimensional basic classical Lie superalgebra, or sl(n, n)
with n > 2, and A is an associative, commutative algebra with unit, both defined over C.
Weyl modules for Lie superalgebras also appear in [8] and [15].

In the current paper we study global and local Weyl modules for a more general class of
map superalgebras and initiate the study of Weyl functors in the super setting. In fact, we
consider map superalgebras g ® A, where g is either sl(n, n) with n > 2, or any finite-
dimensional simple Lie superalgebra not of type q(n), and A is an associative, commutative
algebra with unit, both defined over an algebraically closed field k of characteristic zero.

1.1 Main Results

Let k be an algebraically closed field of characteristic zero, g be either sl(n, n) withn > 2,
or a finite-dimensional simple Lie superalgebra not of type q(n), and A be an associative,
commutative algebra with unit, both defined over k.

Since there are non-conjugate Borel subsuperalgebras of simple Lie superalgebras (see
for instance [3, 19, 20]), results for Lie superalgebras (unlike Lie algebras) may depend on
the chosen triangular decomposition g = n~ @ @n*. In Section 3, Theorem 3.7, we prove
that g admits triangular decompositions satisfying two important conditions (€1) and (€2).
Another important condition on triangular decompositions is what we call parabolic in Def-
inition 4.2. Triangular decompositions satisfying these conditions are important because
the structure of generalized Kac modules, global and local Weyl modules may change
drastically if we choose different triangular decompositions.

In Section 5, Definition 5.4, we define global Weyl modules W4 ()), one of the main
objects of this paper. In Section 6, we introduce A, a commutative algebra that is a quotient
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Weyl Modules and Weyl Functors for Lie Superalgebras 725

of U(h ® A). The global Weyl module W4 () admits a structure of (right) A, -module. Our
first main result, Theorem 7.6, is the following:

Theorem If A is finitely generated and g is a simple Lie superalgebra not of type q(n), with
a triangular decomposition satisfying condition (€2), then W4 (X) is a finitely-generated
right A, -module.

In Section 8, Definition 8.1, we define local Weyl modules W/lfc(t//), the second main
object of this paper. We proceed to give necessary and sufficient conditions (on the choice of
triangular decomposition of g) for local Weyl modules to be finite dimensional. In order to
do that, we denote by wy, a highest-weight generator of Wl{’c(w) and define the subalgebra

w?b:{xegl(x®a)w,/,:0forallaeA}§g.

Theorem 8.13, the other main theorem of this paper, is the following:

Theorem Let g be a simple Lie superalgebra not of type q(n).

(a) Ifgisbasic classical of type I, then W}loc (¥) is finite dimensional (for every triangular
decomposition).

(b) If g is basic classical of type I, then W}{’c(gﬁ) is finite dimensional if and only if the
triangular decomposition is not a parabolic one.

(c) [Ifgiseither of type p(n) or of Cartan type and x, is in the v-submodule of g generated
by wi, then W}{’C(W) is finite-dimensional.

(d) If g is either of type p(n) or of Cartan type, and the triangular decomposition of g is
parabolic, then Wi{)“(lﬁ) is infinite-dimensional.

This whole paper is devoted to studying global and local Weyl modules for map Lie
superalgebras. In particular, we prove that the global and local Weyl modules defined
here satisfy universal properties analogous to those satisfied by other important modules.
Namely, when g is a finite-dimensional simple Lie algebra and A = k, global and local Weyl
modules are equal to each other, and they are irreducible finite-dimensional g-modules.
When g is a finite-dimensional simple Lie superalgebra not isomorphic to q(n) and A =k,
global and local Weyl modules are equal to each other, and they are isomorphic to general-
ized Kac modules. Finally, when g is a finite-dimensional simple Lie algebra and A is an
associative, commutative, algebra with unit, local and global Weyl modules defined in the
current paper are isomorphic to local and global Weyl modules that have been extensively
studied in several papers, such as, [1, 4, 7].

2 Preliminaries

Throughout this paper k will denote an algebraically closed field of characteristic zero, Z
will denote the set of integers, Z, = {0, 1} will denote the quotient ring Z /27, N will denote
the set {0, 1, ...}, and N} will denote the set {1, 2, ...}. All vector spaces, algebras, and
tensor products will be considered over the field k (unless otherwise specified).

A Lie superalgebra is a Z-graded vector space g = g ® g with a Z-graded linear
transformation [-, -]: g ® g — g which satisfies Z,-graded versions of anticommutativ-
ity and Jacobi identity. Given a Lie superalgebra g, we will denote by U(g) its universal
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enveloping superalgebra. Recall that the superalgebra U(g) admits a PBW-type basis, that

is, if xy, - -+, Xy, is a basis of g5 and yy, ..., y, is a basis of gj, then the monomials
yfl ...y,ﬁ"xi‘ co X i, ... im > 0and i, ..., j, €{0,1},
form a basis of U(g).

Let f = f5 ® fi» 9 = g5 @ g7 be Lie superalgebras, and M = Mz ® Mj, N = Ny ®
N7 be g-modules. Throughout this paper we will assume that every homomorphism of Lie
superalgebras ¢ : f — g and every homomorphism of g-modules : M — N 1is even, that
is, (fp) < g5, #(f1) S g1, ¥ (Mp) S Np, and ¢ (M7) S Nj. Notice that the category of
g-modules is equivalent to the category of left Z;-graded U(g)-modules. In particular, the
universal enveloping superalgebra U(g) is a g-module via left multiplication.

Definition 2.1 (Finitely-semisimple module) Let g be a Lie superalgebra. A g-module is
said to be finitely semisimple if it is equal to the direct sum of its finite-dimensional irre-
ducible submodules. Given a subsuperalgebra t C g, let C(4, 1) denote the full subcategory of
the category of all g-modules whose objects are the g-modules which are finitely semisimple
as t-modules.

The proof of the next result is standard (see, for instance, [14, Section 3.1 and
Appendix D]). Since the category of g-modules is abelian, this result implies that Cg ¢) is
also an abelian category.

Lemma 2.2 Category C(y v) is closed under taking submodules, quotients, arbitrary direct
sums, and finite tensor products.

Given a Lie superalgebra g, a Lie subsuperalgebra t C g and a t-module M, define the
induced module indf M to be the g-module

ind{ M = U(g) ®u¢ M,

with action induced by left multiplication.

Lemma 2.3 Let g be a Lie superalgebra, t C g be a Lie subsuperalgebra and M be a t-
module. If g (via the restriction of its adjoint representation) and M are finitely-semisimple
t-modules, then ind{ M is an object in Cig.9-

Proof Let U(g)aq, denote U(g) regarded as a t-module via the restriction of the adjoint

representation of g. Since g is assumed to be a finitely-semisimple t-module via the

restriction of its adjoint representation, by Lemma 2.2, we have that g, its tensor alge-

bra and U(g),q, are finitely-semisimple t-modules. Moreover, since M is assumed to be a

finitely-semisimple t-module, by Lemma 2.2, U(g)aq, @i M a finitely-semisimple t-module.
Now, notice that the map

U(9)ad, ®x M — UgQue M, uQ®@mi—> u@m.

is a surjective homomorphism of t-modules. In fact, for every u @ m € indf M and every
homogeneous element x € t, we have:

x-@®m) = xu®@m = ([x, u]+ (= DHPWPOyy@m = [x, u]@m+ (= 1)PWOPDy @5 .m.

This shows that indf M is a quotient of U(g)aq, ®k M. The result follows from Lemma 2.2.
O
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Lemma 2.4 Let g be a Lie superalgebra, t C g be a Lie subsuperalgebra. If M is a cyclic
t-module given as the quotient of U(t) by a left ideal J C U(%), then indf M is a cyclic
g-module given as the quotient of U(g) by the left ideal generated by J in U(g).

Proof Using the short exact sequence 0 — J — U({t) — M — 0, this proof is
straightforward. O

Finite-dimensional simple Lie superalgebras over an algebraically closed field of char-
acteristic zero were classified by V. Kac in [13], and they can be divided into three groups:
basic classical, strange, and Cartan type (see Table 1). Let g be either sl(n, n) withn > 2,
or a finite-dimensional simple Lie superalgebra. These Lie superalgebras admit a Z-grading
g = ;. _, gi (see Section 3 for more details). Let
_ { go, if g is of Cartan type, Q.
g5, otherwise. ’

For every g, the Lie subsuperalgebra t is a reductive Lie algebra (see Table 1). Denote by t/
the semisimple part of v and by j its center. Fix a Cartan subalgebra h C g, (in particular,
if g Z q(n), then hh = b is a Cartan subalgebra of v, and, if g = q(n), then h = b @ by,
[b7.bi] = by and b is a Cartan subalgebra of t), consider a triangular decomposition
g=n" @®hdnt,andlet b = h ® n" be the Borel subsuperalgebra associated to this
decomposition. Notice that a triangular decomposition g = n~ @ h@n™ induces a triangular
decomposition t = n; @ hg & n(J)r, where n(jf =nfNner=nT¥Nt and 3 € bg.
A g-module V is said to be a weight module when

V=_P V. whereV,={veV|hv=pu(huforallh e bg).
nebs

Table 1 Finite-dimensional simple Lie superalgebras and sl(n, n)

g Tt Type
A(m,n), m >n >0 Ay @A, Bk Basic, type I
A(n,n), n>1 An @ A, Basic, type I
sl(n,n), n =2 A1 @A 1 @k N/A
B(m,n), m>0,n>1 By ®Cy Basic, type IT
Cn+1), n>1 C, ok Basic, type 1
D(m,n), m>2,n>1 Dy @ Cy Basic, type I
D2, 1), « #0,—1 Al DA D A Basic, type II
F4) AL @ B3 Basic, type 11
G@3) A @G, Basic, type I
H(n), n>4 B, or Dy Cartan

Sn), n>3 Ap—1 Cartan

Sy, n=2m,m >2 Ap_i Cartan
W), n>2 A1 @0k Cartan

p(n), n>2 Ay Strange
q(n), n>2 An Strange
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728 1. Bagci et al.

An element u € hg is said to be a weight of V when V,, # {0}, and, in this case, V), is
said to be a weight space of V, and the elements of V), are said to be weight vectors. A
vector v € V), \ {0} is said to be a highest-weight vector (with respect to the fixed triangular
decomposition) if n*v = 0. Similarly, A € hg is said to be the lowest weight of a weight g-
module V if V, # {0} and n™ V), = {0}. A g-module V is said to be a highest-weight module
of highest weight A € h(’-’; if V is generated by a highest-weight vector v € V; \ {0}. Every
irreducible finite-dimensional g-module is a highest-weight module. Denote by Lp(A) the
unique irreducible g-module of highest weight A (with respect to b), and set

XtT=Xxtb)={re b7 | Lp (%) is finite dimensional}. (2.2)

3 Triangular Decompositions

If g is a finite-dimensional simple Lie superalgebra, with respect to each choice of triangular
decomposition g = n~ @ hPDnt, we have that, as a g-module, g has a lowest weight, which
we will denote by —0 € b;’-‘). Let né‘ denote n* N gz, z € {0, 1}. In this paper we will be

interested in triangular decompositions g = n~ @h®n™ satisfying the following conditions:

(€1) ng Cr.

(€2) nﬁ_ C v and —0 is also a root of t.

In fact, triangular decompositions satisfying (€1) will be important to show that generalized
Kac modules are finite dimensional (see Proposition 4.4), and triangular decompositions
satisfying (€2) will be crucial in the proof that global Weyl modules are finitely-generated
right A,-modules (see Theorem 7.6). This section is devoted to constructing triangular
decompositions satisfying these conditions.

3.1 Basic Classical Lie Superalgebras and sl(n, n) with n > 2

In this subsection we assume that g is a basic classical Lie superalgebra, unless otherwise
specified. In these cases, gj is a reductive Lie algebra. A basic classical Lie superalgebra g
is said to be of type II if g7 is an irreducible gg-module, and g is said to be of fype I if gj is
a direct sum of two irreducible gz-modules (see Table 1).

A Cartan subalgebra by C g is defined to be a Cartan subalgebra of g5. Under the adjoint
action of b, we have a root space decomposition:

0=0® P oa where go={xcg|lhx]=alh)xforallhc b
aeh\(0)

Denote by R the set of roots, {o € h*\ {0} | g4 # {0}}. For @ € R, g, is either purely even,
that is, go C g5, Or gg is purely odd, thatis, g, < g7. Let Ry = {@ € R | go C g} be the
set of even roots and Rj = {@ € R | go C gj} be the set of odd roots.

It is known that g can be realized as a contragradient Lie superalgebra (for details, see
[16, Chapter 5]). Recall that A C R is a set of simple roots if, for each @ € A, there exist
elements x4 € go, Yo € g—a, such that: {x,, yo | @ € A}UDb generates g, and [xy, yg] =0
for o # B € A. Denote h, := [x4, yo]. Every choice of a set of simple roots A C R yields
a decomposition R = RT(A) U R™(A), where RT(A) (resp. R™(A)) denotes the set of
positive (resp. negative) roots (defined in the usual way). Define

+ + + +
Ag=ANR; A;j=ANRy, R(—) =R;jNR and RIZRIQR.
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A choice of simple roots A C R also induces a triangular decomposition g =n" (A)® h
nt(A), where nT(A) = @Decr=(a) 9 The subsuperalgebra b(A) = h @ n™(A) is said to
be the Borel subsuperalgebra of g corresponding to A.

In order to construct a triangular decomposition satisfying (€2), for each simple odd
isotropic root (that is, 8 € Aj such that S(hg) = 0), define the odd reflection with respect
to B to be the map

B, ifp =8,
rg: A—> R, rg(B)=3 48, if ' e A, B’ # B, and B(hg) = B'(hg) =0,
B+p. itp €A, B #B, Blhg) #0orp'(hp) #0.
By [5, Lemma 1.30], the set rg(A) is a set of simple roots in R, and

R (rg(A) \ {=B} = RT (M) \ {B}.

Now, let Agis = {y1, .- ., ¥a} be a distinguished set of simple roots of g (that is, a set of
simple roots that has only one odd root), and let y; denote the unique odd root in Agjs (see
[10, Tables 3.54, 3.57-3.60]). The choice of Agjs induces a Z-grading g = @ieZ gi that is
compatible with the Z,-grading; namely, g; = Dy(q); o> Where ht(er) = Z];=1 ht(y;;) if
a=y,+ - +v,andht(y;) = 8; s forall i € {1,...,n}. Explicitly:

gp=9g0 and gi=g-1Dg;, ifgisoftypel, A3.1)
95 =02@DgoDg>2 and gy =g_1Dg1, ifgisoftypell (3.2)
Moreover, Agjs induces a triangular decomposition
g=n"(Ags) @b &0t (Agis), where nF(Agi) =ng & (QB gi,) N X))
i>0

A subsuperalgebra bgis = b(Agis) is called a distinguished Borel subsuperalgebra of
g, and the triangular decomposition given in Eq. 3.3 is called a distinguished triangular
decomposition of g.

Recall that A(n, n) = sl(n, n)/kl, n, where I, , is the identity matrix in s((n, n). Hence,
the preimage of the canonical projection sl(n, n) — A(n, n) induces decompositions as in
Egs. 3.1 and 3.3 on sl(n, n).

Proposition 3.1 Let g be a either a basic classical Lie superalgebra, or s\(n, n) withn > 2,
and let Agis be a distinguished system of simple roots for g.

(a) Ifgisa basic classical Lie superalgebra of type 11, then the triangular decomposition
of g induced by Agis satisfies (€2).

(b) Ifgissl(n,n), n > 2, ora basic classical Lie superalgebra of type I, then there exist
a chain of odd reflections ¢ such that the triangular decomposition of g induced by
¢ (Agis) satisfies (€2).

In particular, g admits at least one triangular decomposition satisfying (€2).

Proof Notice that, since t is defined to be gj, we have ng =n"Ngy C tforevery triangular

decomposition g = n~ @h@n™. That is, we only have to prove that there exists a triangular
decomposition such that the associated lowest root of g is also a root of t.

(a) Recall from Eq. 3.1 that, if g is of type II, the Z-grading associated to Ag;s is given by
g =g-20g_1BgoDg1Pg2. Since n™ (Agis) = g—2Pg— 100, and [g—2, g—2Dg—1] =
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730 1. Bagci et al.

0, it follows that the lowest weight of g_» as a go-module is also the lowest weight of
g, in other words gy < g—>. Since g_» C g = t, we obtain that —6 is also aroot of t.

(b) Let A denote the highest root of g with respect to Agjs, and let A denote ry, (Agis)-
If g = C(n + 1), then one can check that A(h,,) # 0. (In fact, A(hy,) is a purely
positive integer linear combination of the elements of the s-th row of the Cartan matrix
of g.) Thus, it follows from [20, Lemma 10.2] that Ly (1) = Lpa)(A — ¥y). That is,
6 = A — y; is the highest root of g relative to b(A). Since both A and y; are odd roots,
6 is an even root. Thus, since t is defined to be g5, the lowest root —6 is a root of t. For
the cases where g = A(m, n) or sl(n, n), we need to apply a chain of odd reflections
to obtain the result. Indeed, consider the following chain of odd reflections:

Tem—1—em+2 Ter—emt2 Tej—emi2

Ay ST TS A, ST A=A,

Te —& Tem—ey,
Adis — AO m+l_) m+2 Al _ +2
where, following [13, § 2.54],{¢; | i = 1,...,m 4+ n + 2} is the standard basis
of the dual space of the diagonal matrices. Since A = &; — &,4n+2, We have that
Mheg—en) = 0, for all k& > 2, and A(he, —,,.,) = 1. Thus, by [20, Lemma 10.2],
Loy (M) = Lpary (Em+2 — Em+n+2), and €42 — Emyn2 is aroot of v.

O
3.2 Cartan Type Lie Superalgebras

In this subsection g will denote a Lie superalgebra of Cartan type (see Table 1). We will
now briefly describe each one of these Lie superalgebras.

Fix n > 2 and let A(n) denote the exterior algebra with generators &, ..., &,. The
algebra A(n) is a 2"-dimensional associative anticommutative algebra, which admits a Z x
Z»-grading by setting the degree of &1, ..., &, to be (1, i). Thus, with respect to the Z-
grading,

n
An) = @Ak(n), where A (n) = spany {Sil bl <ip <o <ip < n},
k=0

and with respect to the Z-grading,

[n/2] ln/2]
Am) = A(n)y ® A(n);, where A(n)g = @ Azk(n) and A(n); = @ A2k+1(n).
k=0 k=0

If x € A(n);, z € Z, we say that x is homogeneous and define p(x) = z.

Given a linear map D: A(n) — A(n), define p(D) = 0, if D is even, and p(D) = 1,if
D is odd. A homogeneous superderivation of A (n) is defined to be alinearmap D: A(n) —
A(n) that is either even or odd, and satisfies D(xy) = D(x)y + (—1)PPP®xD(y)
for all homogeneous x,y € A(n). A superderivation of A(n) is a linear combination of
homogeneous superderivations of A (n).

Let W(n) be the Lie superalgebra consisting of superderivations of A(n) endowed with
the unique superbracket satisfying

[D1, D2] = Dy o Dy = (=)PPVPP2 Dy 0 Dy,
for all homogeneous superderivations Dy, D;. The Z-grading on A (n) induces a Z-grading:
Wn)=Wmn)-1®Wn)o® - & Wi,

where W (n); consists of derivations that map &1, ..., &, to A(n)g+1-
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For each i € {1,...,n}, denote by 9; the unique superderivation of A(n) satisfy-
ing 0;(§;) = §;j for all j € {1,...,n}, and for each x € A(n), let Dy denote the
superderivation Y ;_, 9;(x)d;. The subspace

H(n) = span {D, | x € A(n)} € W(n)
isi a subsuperalgebra of W (n) and inherits a Z-grading H(n) = H n)_1 6 Hn)o® - @
H (n),—>. The simple Lie superalgebra H (n) is defined to be the
H(n) = [H@n), Hm)] = Hm)-1 ® Hn)o ® - -~ ® H(n)y—s.

Now, let div: W(n) — W (n) be the linear transformation given by

n
div(D) = Z 9;(D(&;))) forall D € W(n).
i=1
The superalgebra S(n) is the subsuperalgebra of W (n) consisting of all D € W (n) such that
div(D) = 0. The superalgebra S(n) inherits a Z-grading from W (n):
S(n)=8n)—1 & SM) D - & S(n)p—2.
Finally we assume that n > 4 and n is even. Then we define
Sn):={DeWm)|(I+& +-+E)div(D) + D& ---&) = 0}.
This Lie superalgebra does not admit a Z-grading, it admits however a Z,-grading:
S =SSm0 @ --- & SWp-1,
where S'(n)[z] = S(n); forevery0 < z <n—2,and S(n)[n,l] = spany {(§1 ---§,—1)—9;) |
j=1,...,n}.

A crucial difference between Cartan type superalgebras and basic classical superalgebras
is that for Cartan type superalgebras, gg is not a reductive Lie algebra. However, as was
described above, if g is a Cartan type superalgebra, then g admits a Z-grading (compatible
with the Z-grading, if g is not of type S(n)) g =g_1 D go ® - - - D gn—1, and moreover, go
is a reductive Lie algebra, for all Cartan type Lie superalgebras.

A Cartan subalgebra b of g is defined to be a Cartan subalgebra of gg. Fix the Cartan
subalgebras b of go that have the following bases:

{60k |1 <k <n}, if g=W(n);
{660k — Eer1dest | 1 <k <n—1}, if g = S@), So);
{6k — Elny21+x0m214k | 1 <k < [n/2]}, if g = H(n).
Consider the element
n
£:=) &d € W(n,
i=1
and define g = g+k& and b = bh+kéE. Notice that £ does not lie in the the Lie superalgebras
S(n), S(n), or H(n), thus
g=70, fg=Wmn) and gCg@kE=7, ifg= H@n),Sn),Sn).
Also notice that:
[E,x]=2zx, forallx € g;,andz € Z.
Hence the adjoint action of j on g gives a root space decomposition

o=0® @D . where go={xeg|[hx]=alxforalheh).
aeh™\{0}
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732 1. Bagci et al.

Denote by R the set of roots, {o € E* \ {0} | go # {0}}. For o € R, either g4 C gg, or
go € 9. Let Ry = {@ € R | go C g5} be the set of even roots and R} = {« € R | go < g7}
be the set of odd roots. Moreover, for each @ € R, there is z € Z such that g, < g.. Thus,
we can define the height of « € R to be ht(«) = z, and define R, tobe {o € R | ht(a) = z}.
Notice that

R=|JR.. Ry=|JR: and R;=|[JRoi.
Z€Z Z€Z Z€Z

Remark 3.2 Notice that £ captures the height of the roots. Thus, it helps identifying the
simple roots of g. The addition of £ to h will be used in the sequel to construct triangular
decompositions satisfying (€2).

We will describe now the roots and root spaces of g. Notice that, if g = W(n), then
go = gl(n), with the basis elements &;0; € W(n) corresponding to the basis elements
E;j € gl(n). Recall that h = span {§;0; | 1 <i < n}and, foreach 1 <i < n, let¢; be the
unique linear map in h* satisfying &;(§;9;) = 6; j, forall 1 < j < n. The set of roots of g is

R=A{ei+ - +e,—¢j|l<it<--<ix=n 0O<k=nandl=<j=n}\{0},
and the corresponding root spaces are:

o = k&, ---&9;, ifo =g +---+e& —¢jandj ¢ {ir, ..., i}
“ spany {&;, --- &, §;0; | j & {i1,....ik}}, ifa=¢ +---+&.

If g = S(n), then go = sl(n). The set of roots of S(n) is the subset of the set of roots of W (n)
obtained from it by removing the roots €| + --- +¢&, —¢; forall 1 < j < n, thatis,

R={ej+ -+, —¢gj|l1sip<---<ix=n, 0<k=<n-—1land1l =< j=<n}\ {0}
The corresponding root spaces are thus:
gaz{kg,-,...g,-ka_,, if or = ej +- e —jand j & {ir, ... ik}, B
spany {&;, - &, (§;0; — &j+10;4+1) | J, J + 1 € {ir, ..., ik}} ifa=¢; +--+é&.
Ifg= S‘(n), then (as for S(n)) go = sl(n) and
R={e+ --+e,—¢j|1<ii<---<igp<n, 0<k=<n-1landl=<j=<n}\{0}

The corresponding root spaces are: g_, = span {(§;---&, — 1)9;} foralli € {1,...,n}
go = S(n)q if ht(x) > 0, and.

Finally, if g = H(n), then go = so(n). Letr = [n/2], {¢1, ..., &} be the elements in
the Cartan subalgebra of g that identify with the standard basis of the Cartan subalgebra of
so(n),and § € E* be the dual of £. If n = 2r, then the set of roots of g is given by

R = {%s&; - Lgj,+mdé| 1 <iy<---<ix <1, k=2 <m <n-2, m >—1, k—m € 27Z}.
If n = 2r + 1, then the set of roots of g is the set

R={fe, £ - Feg,+mé|1<ij<- - <ix<r,k—=2<m=<n-2, m>-—1}.
For each root @ = d1e1 + - - - + dye, + md withd; € {—1, 0, 1}, we have:
go =spany {Dy | x =& - &, a; €{0,1}, a1+ +ay =m+2, ai —a,; = d; foralli}.
Remark 3.3 Some properties that hold for roots of semisimple Lie algebras do not hold for

Cartan type Lie superalgebras. For instance, a root may have multiplicity greater than 1, and
R~ may be different from — R™. (For more details, see [12, 13, 18, 19].) Also, notice that the
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root space decomposition of g given by the action of § induces the root space decomposition
of g given by the action of h. The roots with respect to h are the restrictions of the elements
of R to h. Hence the set of roots of g with respect to h will be also denoted by R and their
roots will be denoted by the same symbols.

Anelement /i € b is said to be regular if «(h) # 0 for all @ € R. Every regular element
h € bR induces a decomposition R = R™(h) U R~ (h), where

RtTW={eeR|a(h) >0 and R (h)={aeR|a) <O}

The set RT(h) (resp. R~ (h)) is said to be the set of positive (resp. negative) roots of g
relative to si. A regular element 2 € hr also induces a triangular decomposition

g=n"(h)@hdnt(k), where nh) = @ Oa.-
aeRE(h)

A Lie subsuperalgebra b is a Borel subsuperalgebra of g if b = b @ n™ (h) for some regular

h e f)R.
Following [19], aroot @ € R is said to be simple for a Borel subsuperalgebra b if the set

[ (RT\{a}) U{~a), if —a €R,
ra (R) = { R\ {a}, otherwise 34

is a set of positive roots relative to some regular element 7 € bHgr. In this case, the
subsuperalgebra

ra®)=b® P o
Bera(RT)
is said to be the Borel subsuperalgebra of g obtained from b by the reflection r,,.
Choose a Borel subalgebra bg of go such that the set of simple roots associated to it is
given by:

{e1— &2, . enm1 —&n), i g = W(n), Sn), S
{e1—ex,...,601— 6,601+ &}, if g= H(Q2r),
{e1—e2, ..., 1 —&r, 8}, if g=HQ@r+1).

Let RO+ (resp. Ry) denote the set of positive (resp. negative) roots of go associated to the
simple roots above. The subsuperalgebra byax = bo @ (@i>] gi) is known as the max-
imal Borel subsuperalgebra of g, and b, = bo @ g—1 is known as the minimal Borel
subsuperalgebra of g.

Proposition 3.4 If g is a Cartan type Lie superalgebra, then g admits at least one triangular
decomposition satisfying (€2).

Proof We claim that there exists a triangular decomposition of g for which the highest root
of g is a root of go. Indeed, since g is simple we have that g = Lg_, (1) as a g-module,
where A is its highest root with respect to byi,. For every @ € R, let by := [go, 9—«]- We
now prove our claim case by case:

Let g = W(n). Then we have that A = —¢,, and the unique odd simple root for by, is
o= —¢.Setb; = 7o (bmin). Since

b—Si = {h € b | 8i(h) = 0}’ (PreCisely h—é‘i = Span]k{sjaj | .] =1...,n, ] ;é l})
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we have that &, (h_¢,) # 0 and hence Lp_, (—&,) = L!-,1 (—&n +€1) (see [19, Lemma 5.3]).
To conclude this case, we notice that —e, is a root of g_1 and & is a root of g;, which
implies that (—¢&, + €1) is a root of gg, as we want.

The proof for W (n) also works for S(n). The only difference is that

hoe ={hebleh) =0, (61 +---+¢&,)(h) =0},

but it is still clear that &, (h_.,) # 0 and hence Ly, (—€,) = LB. (—en +£1).

Now, suppose that g = H (n). For n = 2k, we have that A = &; — § and the unique odd

simple root for by, is ¢ = —e; — §. Set b = oy (bmin). Since

Dej—s =b—e;—s ={h € b | &(h) =35(h) =0},

we have that A(h_.,_s) = 0. Hence Ly, (1) = L[;] (A). Now, ap = —ep — § is an odd
simple root for by. Since A(h_g,—s) # 0, we obtain that Ly _, (L) = LBZ (A — a2), where
by, = Tay ([_J 1). In particular, the highest root of g with respect to b, is &1 + &, which is
clearly a root of gog. Now, we suppose that n = 2k 4 1. Observing that h, _s are the same
as in the case n = 2k, we have that the proof of the case n = 2k also works for n = 2k + 1.
This proves the claim.

Notice that for W(n), S(n) and H(n) we have found a triangular decomposition for
which the highest root of g is in Rg. Namely, the triangular decomposition induced by b,
(resp. [_12) when g is either W (n) or S(n) (resp. H(n)). Let by and by be the opposite Borel
subalgebras of by and b, respectively. It is clear that the triangular decomposition induced
by by for g = W(n) and S(n), and by b, for g = H (n), also satisfy the condition of the
claim. The set of negative roots with respect to b and b, is as follows:

R;l = Ry U(R_1\ {—&1}) U{e1}, forg = W(n) or S(),
R;z = Ry U(R_1\{—&1 -8, —ea =38} U{e1 +4, &2+ 3}, forg = H(n).

In particular, n> € v and hence such triangular decompositions satisfy (€2).

Finaly, consider a triangular decomposition of S(n) satisfying (€2), and let 7 € hr be a
regular element that induces such a decomposition. This implies that 0 (h) > «(h) for any
root & of S(n). Since S‘(n)o = S(n)o, and every roots of S’(n) is also a root of S(n), we have
that 6 (k) > «(h) for any root  of S(n). Thus the result follows. O

3.3 Periplectic Lie Superalgebras

For each n > 2, let p(n) be the Lie subsuperalgebra of gl(n 4+ 1, n + 1) consisting of all
matrices of the form

M:(é _AB;), where A € sl(n + 1), B=B'and C' = —~C.  (3.5)

Throughout this subsection, g will denote p(n). Notice that gg is isomorphic to the Lie alge-
bra sl(n + 1), and as a gg-module, the structure of gy is the following. Let S2(kmt1 (resp.
AZ(K"1)*) denote the second symmetric (resp. exterior) power of k"1 (resp. (k"*1)*),
with the natural action of sl(n + 1) (by matrix multiplication) in each term. Denote by g?
(resp. gi_) the set of all matrices of the form (3.5) such that A = C = 0 (resp. A = B = 0),
and notice that, as gg-modules, g; = gfr SIS where 9 ~ §2(k"t1) and 97 = AZ(KMHL*.

Consider g_1 = 97> 00 = g5 and g1 = g?. Then g = g_1 @ go @ g1 is a Z-grading of
g that is compatible with the Z-grading (g5 = go and g7 = g—1 @ g1). Leth C go be a
Cartan subalgebra of gy, recall that gg is isomorphic to s[(n + 1), and identify § with h* via
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the Killing form (A, A2) = tr(A1A2). If {e1, ..., &,} is the standard orthogonal basis of b,
then the roots of g are described as follows:

® Rootsofg_j:—¢ —¢j,wherel <i < j <n.
® Rootsof go: &; —&j, wherei # jand 1 <i, j <n.
® Rootsofgj: e +e¢ej,wherel <i < j <n.

Consider the triangular decomposition

- +
ng @hong, where ny = P gecp-
1<i<j<n
This triangular decomposition induces a triangular decomposition on g and we have the
following result.

Proposition 3.5 If g is isomorphic to p(n) with n > 2, then the distinguished triangular
decomposition

n@h@nt, where nt =gy @noi

satisfies (€1). In particular, na = n,, and all the roots of g\ are positive.

As usual, let b be the Borel subsuperalgebra h @ nt C g, R be the set of roots of g, R(;s
be the positive roots associated to this decomposition, etc. Notice that R, # —R;ES, since,
foreachi € {1, ..., n}, there exists a positive root of the form 2¢;, such that —2¢; ¢ R.

Proposition 3.6 If g is isomorphic to p(n) with n > 2, then g admits a triangular
decomposition satisfying (€2).

Proof Recall that g; = S2(k"tasa go-module. In particular, 2¢,4 (resp. 2¢1) is the low-
est (resp. highest) weight of g; as a go-module. This implies that 2¢; is the highest weight
of g with respect to the distinguished triangular decomposition given in Proposition 3.5,
and 2¢,41 is a simple root of R&Es' Now, notice that the chain of reflections (as defined in
Eq. 3.4)

M2ep

Tentenq Pep—1+ent1 Tegtey 1 e +ep41
Ri, =Rf 5 Rf " RS "M TS RES

n

+
Rn+1'

is well defined, since 2,1 is simple in Ry, and each & + €,4 is simple in R, _,.
Denote by = [ga, g—o] for all « € R. Since 2¢1(hae,.,) = 0, and 21 (hey1e,,,) = 0, for
all k > 1, it follows from [19, Lemma 5.2], that 2¢1, the highest root of g, is invariant under
Peniis Tentenprs -+ o » Teatenyy - SINCE 261 (De; 4e,,,) 7 0, the highest root of g with respect to
RL] is given by 2e1 — (&1 + €+1) = €1 — €n41, Which is a root of go. O

3.4 Remarks on Triangular Decompositions

Recall conditions (€1) and (€2). The next result sums up the results that we have obtained
regarding triangular decompositions satisfying these conditions.

Theorem 3.7 If g is either sl(n,n) with n > 2, or a finite-dimensional simple Lie

superalgebra, then g admits at least one triangular decomposition satisfying (€1) and (€2).
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Proof 1f g 22 q(n), then the result follows from Propositions 3.1, 3.4, 3.5, and 3.6. If g =
q(n), then every triangular decomposition satisfies (€1) and (€2), as v = q(n)g and every
root of q(rn) is both even and odd. O

Remark 3.8 Conditions (€1) and (€2) are crucial for the rest of this paper. Namely, (€1) is
used to prove finite-dimensionality of generalized Kac modules for Cartan type Lie superal-
gebras (see Proposition 4.4), and (€2) is used to prove that the global Weyl module W4 (})
is a finitely-generated A, -module (see Theorem 7.6).

Observe that if g is either basic classical or strange, then every triangular decomposition
satisfies (€1), since v = gg. Moreover, if g is of type II or q(n), then every distinguished
triangular decomposition also satisfies (€2). However, if g is either of type I or p(n), then
its distinguished triangular decomposition satisfies (€1) but not (€2), as the lowest root of
gisarootof g_;.

If g is of Cartan type, then there are triangular decompositions that do not satisfy (€1).
For instance, the triangular decomposition induced by byin, as t C g5. Moreover, there
are triangular decompositions satisfying (€1) but not (€2). For instance, the triangular
decomposition induced by bpyay, since the lowest root of g with respect this triangular
decomposition is a root of g1 C gj.

If g is of type q(n), then b is not contained in gg. Thus, the highest-weight space of an
irreducible finite-dimensional g-module is not always one dimensional. (It is an irreducible
module for a certain Clifford superalgebra.) As it requires a different treatment, this case
will be considered in a future work.

4 Generalized Kac Modules

From now on we assume that g is either sl(n, n) with n > 2, or a finite-dimensional simple
Lie superalgebra not of type q(n). Let ) be a fixed Cartan subalgebra of g (in particular,
since g # q(n), h = b is a Cartan subalgebra of t), R be the set of roots of g (with respect
to ), and Q C bh* the root lattice Y, Za. Fix a set RT C R of positive roots, O be the
positive cone Y, p+ Noand g = n~ @ h @ n™ be the associated triangular decomposition
of g. Notice that b = b @ n is a solvable subsuperalgebra of g, that n™ are nilpotent ideals
of b, and that h* admits a partial order given by: A < u € h* ifand only if u — A € Q.

Let R, denote the root system {a € h* | vy # {0}, & # 0} of v, R} be the positive
system RT N Ry, and A, be the simple system of R, associated to Ry Since v’ is a finite-
dimensional semisimple Lie algebra, for each @ € R, one can choose elements x4 € tq,
X, € t_y,and hy € b, such that: the subalgebra generated by {x,, iy, Xo} is isomorphic
t0 50(2), [xq, X5 1 = ha, [ha, X5 1 = —2xq, and [ha, Xo] = 2xq. The triple (xo, X5 , he) is
said to be an s[(2)-triple and the Lie subalgebra generated by {x,, h«, xo} Will be denoted
sly. Recall that

Xt = X*(b) = {1 € h* | Lp()) is finite dimensional},

and notice that, for A € XT, we have A(hy) € N, for all « € A, (since Lp(A) is also a
finite-dimensional v -module).
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Definition 4.1 (Generalized Kac module) Let A € X . The generalized Kac module asso-
ciated to A is defined to be the cyclic g-module K (1) = Kp(X) given as a quotient of U(g)
by the left ideal generated by

nt, h—ah), @)*F forallh e handa € A,.

Denote the image of 1 € U(g) in K()) by k;, and notice that as a g-module, K (1) is
generated by the vector k; € K (1), satisfying the following defining relations

k=0, hky =AWk, ()T =0, forallh ehanda € Ap.  (4.1)

Definition 4.2 (Parabolic triangular decomposition) A triangular decomposition g = n~ @
h @ n™ is said to be parabolic if (t + nT) is a Lie subsuperalgebra of g and there exists a
nontrivial subspace g~ C g such that

g=g ®(@+nh). 4.2)

Remark 4.3 When g is basic classical of type I, isomorphic to sl(n, n) with n > 2, p(n)
or q(n), distinguished triangular decompositions are parabolic. When g is basic classical of
type II, it does not admit any parabolic triangular decomposition, since gj is an irreducible
gg-module. When g is of Cartan type, minimal (n*t = n(f @ (Pi>09+i)) and maximal
(n* = n(f @ (Pi<09+i)) triangular decompositions are parabolic.

If g is a basic classical Lie superalgebra or g = sl(n, n), n > 2, then K (1) coincides with
the generalized Kac module defined in [2, Definition 2.6]. The next result gives necessary
and sufficient conditions for generalized Kac modules to be finite dimensional.

Proposition 4.4 Let A € X,

(a) If g is basic classical, isomorphic to sl(n, n) with n > 2, or p(n), then K (\) is finite
dimensional (for every triangular decomposition).

(b) If g is of Cartan type and the triangular decomposition g = n~ ® b @ n™ satisfies
(€1), then K (A) is finite dimensional.

(c) Ifgis of Cartan type, the triangular decomposition g = n~ ® h @ n™ does not satisfy
(€1) and is parabolic, then K (X) is infinite dimensional.

Proof (a) In these cases, the proof is similar to that of [2, Proposition 2.7].

(b) Since A € X (thus A(hy) € Nforalla € A,), we can consider the finite-dimensional
irreducible t-module of highest weight A, Lo(}). Recall that v is a reductive Lie algebra
and 3 acts as a scalar on Lo(A). Hence Lo(A) is isomorphic to the r-module generated
by a vector u; with defining relations

Xotty =0,  huy = r(Wuy, (x0T, =0, forallh e handa € A,.

Let W = U(v)k, be the t-submodule of K () generated by k;. Since W is cyclic
and k; satisfies (4.1), there exists a unique (surjective) homomorphism of t-modules
satisfying

Q! L()()\) —- W, u) — kA.
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Since ¢ is surjective and Lg(A) is finite dimensional, this shows that W is finite
dimensional.

If the triangular decomposition g = n~ @h@n™ satisfies (€1), thatis, n> C t, then

0
by the PBW Theorem, for any given basis {x; | | <i < dim ni_} of ni_, we have that

K@) =U(@k, =spany{xj, ---x; W[ 1< ji<--- < ji < dimni_}.

Since W is finite dimensional, we conclude that K (1) is also finite dimensional.

(c) If the triangular decomposition g = n~ @ h @ n* is parabolic, (vt + n™) is a Lie
subsuperalgebra of g and there exists a nontrivial subspace g~ C g such that g =
g~ @ (t + n™). Now, consider the (v + n*)-module K*(1) given as the quotient of
U(r + n™) by the left ideal generated by

go foralla € RY,  h—a(h) forallheh,  (x )" foralla € A,.

Notice that the image of 1 € U(r + n™), which we will denote by u,, generates K *(1).
Now, let
K*t(A) = ind?

t+nt

K*(b),

and notice that K¥(1) is generated by 1 ® ;. If the triangular decomposition g = n~ @
h @ nT does not satisfy (€1), then g~ N g5 # 0. In particular, Kt()) = Pme K1),
where m runs over the set of ordered monomials where the variables form a basis of g~.
Since g~ N g5 # 0, K*()) is infinite dimensional. Finally, notice that there exists a unique
surjective homomorphism of g-modules K () — K*()) satisfying k), — (I ® uy). Since
K*()) is infinite dimensional, we conclude that K (1) is also infinite dimensional. O

Example 4.5 If g is of Cartan type, then the minimal triangular decomposition, that is, the
one induced by n* = n(J)r @ g_ is parabolic and does not satisfy (€1). In fact, in this case,
n=n,® (@kz lgk) and n” Ngor = gox € tforall k > 1. Thus generalized Kac modules
associated to minimal triangular decompositions are infinite dimensional.

Example 4.6 1If g is of Cartan type, then the maximal triangular decomposition, that is,
the one induced by n™ = ng @D (@kzlgk) satisfies (€1) and is parabolic. Moreover, one
can check that triangular decompositions induced by the Borel subalgebras b; and b, con-
structed in the proof of Proposition 3.4 satisfy (€1) but are not parabolic (in fact, v + n*
is not a subsuperalgebra of g). In particular, generalized Kac modules associated to these
triangular decompositions are finite-dimensional.

Example 4.7 The authors do not know yet any example of a triangular decomposition of a
Lie superalgebra of Cartan type that does not satisfy (€1) and is not parabolic.

The next result generalizes [2, Lemma 2.8] and their proofs are similar.
Proposition 4.8 Let . € X ™. If V is a finite-dimensional g-module generated by a highest-
weight vector of weight A, then there exists a surjective homomorphism of g-modules

wy: K(A) — V. Moreover, there exists a unique g-submodule W < K (L) such that
VEZKHM)/W.
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Since every irreducible finite-dimensional g-module is generated by a highest-weight
vector of weight A € X, Proposition 4.8 applies, in particular, to all irreducible finite-
dimensional g-modules.

5 Global Weyl Modules

Let g be a Lie superalgebra and consider an associative commutative k-algebra A with unit.
The vector space g ® A is a Lie superalgebra when endowed with the Z-grading given by
(g® A)j =g ® A, j € Zy, and the Lie superbracket extending bilinearly

[x1 ® a1, x2 ® az] = [x1, x2] ® ajaz, forall xi,x; € ganday, ar € A.

We refer to a Lie superalgebra of this form as a map Lie superalgebra. From now on, we
identify g with a subsuperalgebra of g ® A via the isomorphism g = g ® k and the inclusion
gk Cg®A.

From now on, let g be either sl(n, n) with n > 2, or a finite-dimensional simple Lie
superalgebra not of type q(n). Let C4 denote the category of g ® A-modules that are finitely
semisimple as t-modules (see Eq. 2.1 for the notation). By Lemma 2.2, Cxo = C(gga,v) is
an abelian category, closed under taking submodules, quotients, arbitrary direct sums, and
finite tensor products.

Lemma 5.1 IfV is a finitely-semisimple t-module, then indtg®A V is a projective object in
Ca. Moreover; the category C 4 has enough projectives.

Proof Recall that g is a finitely-semisimple t-module via the adjoint representation. Since
g® A = g®dmA a5 - modules, Lemma 2.2 implies that g ® A is a finitely-semisimple

d?%4 v isan objectin Cq4.

r-module. Thus, by Lemma 2.3, in

To prove that indy B4y s projective, first recall that an object M of C4 is projective if
and only if Hom¢,(M,—) is an exact functor. By definition, Hom¢, (M, N) =
Homygga) (M, N) for all M,N in C4. By Frobenius Reciprocity, the functor
Homy 4 A)(indg®A V, —) is naturally isomorphic to Homy)(V, —). Since every object
of C4 is assumed to be a direct sum of its finite-dimensional t-submodules, that is, every
object of Cy4 is completely reducible as an t-module, the restriction of Homy)(V, —) to
Ca is exact. Thus Home, (indg®A V, —) is an exact functor.

Moreover, let M be any object of C4. Since M is assumed to be a finitely-semisimple
t-module, by the first part of this lemma, ind?®A M is projective. Since the unique linear
transformation f: ind$®A M — M satisfying f(u @ m) = um for all u € U(g ® A) and
m € M is a surjective homomorphism of g ® A-modules, we conclude that C4 has enough
projectives. O

Given a g-module V, define P4 (V) to be the g ® A-module
Pa(V) = ind3®* v. G.1)

Notice that, if V is a projective g-module, then P4 (V) is a projective g ® A-module.
The next result, which was proved in [2, Proposition 3.2] for the cases where g is either
basic classical or sl(n, n) with n > 2, describes P4 (K (1)) by generators and relations.
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Proposition 5.2 If A € X, then P4(K(})) is generated as a left U(g ® A)-module, by a
vector p € Pa(K ()))g satisfying the following defining relations

0 p =0, hpy=ahpy, ()T =0, forallh e handa € A, (5.2)

Proof Let py = 1 ® ky € Pa(K(A)). Since k) € K(A); satisfies relations (4.1), py €
P4 (K (L)) satisfies relations (5.2). The fact that these are defining relations follows from
Lemma 2.4. O

Given A € X1 and M € Cy4, define

M = M/ Y U@® AM,. (5.3)
HEL

Notice that, if  is a weight of M*, then v < X. Let Cfl denote the full subcategory of C4
whose objects are the left U(g ® A)-modules M € C4 such that M? = M. (Notice that Cf&
depends on the choice of triagular decomposition g = n~ @ h @ n™, even though it is not
shown explicitly in its notation.) The proof of the next result is similar to that of Lemma 5.1.

Lemma 5.3 Let A € Xt and V be a g-module. If V is finitely semisimple as an t-module,
then PA(V)* is a projective object in Ci;. Moreover, the category Cf‘ has enough projectives.

Definition 5.4 (Global Weyl module) Let A € X ™. The global Weyl module associated to A
is defined to be

Wa(h) := Pa(K (W)™
The image of p; in W4 (1) will be denoted by w;.

The next result provides a descriptions of global Weyl modules by generators and
relations, and as a universal object in Cj&' Its proof is similar to that of [1, Proposition 4].

Proposition 5.5 For . € X7, the global Weyl module W4 ().) is generated as a left U(g ®
A)-module, by the vector w;, with defining relations

Mt @ Aw, =0, hwy = rA(Ww;, (x;) "Mt w, =0, forallh € handa € A..
5.4
Moreover, if the triangular decomposition of g satisfies (€1), then the global Weyl module
W4 (M) is the unique object of C%, up to isomorphism, that is generated by a highest-weight
vector of weight ) and admits a surjective homomorphism onto every object of Cg that is
generated by a highest-weight vector of weight .

When A = k, the global Weyl module W4 (1) coincides with the generalized Kac module
K (}). In this case, the moreover part of Proposition 5.5 reduces to the universal property
given in Proposition 4.8.
6 Weyl Functors
Let A be an associative commutative k-algebra with unit, and g be either sl(n, n) withn > 2,

or a finite-dimensional simple Lie superalgebra not of type q(n), endowed with a trinagular
decomposition satisfying (€1).
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Let A € X ™. Recall from Definition 5.4, that w;_ denotes the image of p; in W4 (1), and
set

Anngga(w;) = {u € U(g® A) |uw, = 0},
Anngga(wy) = Anngga(w;) NUH @ A).

Notice that Anngg 4 (w)) is a left ideal of U(g ® A), and thus, since U(h ® A) is a com-
mutative algebra, Annpg 4 (wy) is an ideal of U(h ® A). Define the algebra A to be the
quotient
A, =U(b ® A)/ Anngga (wy).
By Proposition 5.5 and the PBW Theorem, W4 (1); = U(h ® A)wy. Thus, the unique
homomorphism of U(h ® A)-modules satisfying

¢: U ®A) = Wal)i, &(1) =wy

induces an isomorphism of h ® A-modules between W4 (1), and U(h ® A)/ Anngga (w;.).
In other words, W4 (1), = A, as right A,-modules.

Lemma 6.1 Forall» € Xt and V € C’, we have (Anngg(w;)) Vs, = 0.

Proof Letv € V, and W = U(g ® A)v. Since V is an object of Cﬁ;, the submodule W
is also an object of Cﬁ (Lemma 2.2). Moreover, since v € V3, we have (n™ ® A)v = 0
and hv = A(h)v for all 1 € h. Thus, by Proposition 5.5, there exists a unique (surjective)
homomorphism of g ® A-modules w: W4(A) — W satisfying w(w;) = v. Since 7 is a
homomorphism of g ® A-modules and uw; = 0 for all # € Annpga (w,), we conclude that
uv = w(uw;) = 0 for all u € Annpga(w;.). O

Recall that U(h® A) is a commutative algebra, so every left U(h® A)-module is naturally
aright U(h® A)-module. Given A € X, Lemma 6.1 implies that the left action of U(g® A)
on any object V of Cﬁ induces a left (as well as a right) action of A, on Vj. Since W4 (1)
is an object of Cf; generated by w, € W4 (A), as a left U(g ® A)-module, we have a right
action of A; on Wy (1) that commutes with the left U(g ® A) action; namely,

(ww;)u’ =uu'w, forallu e U(g® A) andu’ € U(h ® A). 6.1)

Thus, with these actions, W4 (1) is a (U(g ® A), A,)-bimodule.

In this section we will define Weyl functors for Lie superalgebras. These generalize the
Weyl functors defined in [1, p. 525]. Given A € X, let A; -mod denote the category of left
A, -modules and let M € A,-mod. Since W4 (1) is a finitely-semisimple t-module and the
action of t on W4 (1) ®a, M is given by left multiplication, we have that W4 (1) ®a, M is
a finitely semisimple t-module. Since id: W4 (A) — W4 (A) is an even homomorphism of
g ® A-modules, for every M, M’ € A;-mod and f € Homy, (M, M'),

d®f: Wa(l) ®a, M — Wa(h) @, M’
is a homomorphism of g ® A-modules.

Definition 6.2 (Weyl functor) Let & € X*. The Weyl functor associated to A is defined to
be

Wi As-mod — Ci, WAM =Wa(h) ®a, M, Wif=1id®f,
for all M, M’ in Aj-mod and f € Homa, (M, M').
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Given A € X, notice that there is an isomorphism of g ® A-modules WQAA = Wa(h).
Also notice that, for all & € h* and M in A, -mod, we have

(WAM),, = Wa(h), ®a, M. (6.2)

Given A € X, recall that Lemma 6.1 implies that W4 (1) is a (U(g ® A), A, )-bimodule.

This implies in particular, that Homcﬁ (W4 (1), N) can be viewed as an A, -module for any
object N of C% via

- fHv)= f(v-u) forallucA,, f e Homcz(WA(A), N)and v € Wua(R).

Moreover, Lemma 6.1 also implies that the left action of U(g ® A) on an object V in Cﬁ
induces a left action of A; on V.

Lemma 6.3 Let A € X . For every object N of C%, the map
Homei (Wa(R), N) = Ny, f > f(wz)

is an isomorphism of A, -modules that is functorial in N.

Proof Fix an object N in Cﬁ and a homomorphism f € Homcﬁ (W4 (X)), N). First notice

that, since wy € W4 (A),, then f(w;) € N,, that is, the map f — f(w,) is well-defined.
Now, to show that f — f(w,) is a homomorphism of Aj-modules, notice that

- W) = fwy-u) = fuw) =u(fwy) forallu e A

To show that the map f +— f(w,) is injective, recall from Proposition 5.5 that W4 (})
is generated as a left U(g ® A)-module, by w,. Since f is a homomorphism of U(g ®
A)-modules, f is thus uniquely determined by f(w;).

To finish the proof, we will show that the map f — f(w,) is surjective. Let n €
N,.. Recall that N is an object of C%, so (nt ® A)n = 0. Moreover, by Lemma 6.1, we
also have Anngga(wy)n = 0. Furthermore, since N is a finitely-semisimple t-module,
the t-submodule U(r)n < N is finite dimensional. By the representation theory of finite-
dimensional semisimple Lie algebras, we thus have that (x, Yo+l = 0 for all @ €
A.. Hence, by Proposition 5.5, there exists a unique homomorphism of g ® A-modules
fn: Wa(h) — N satisfying f, (wy) = n. The result follows. O

Given A € X7 and an object M of C%, consider M, as an A,-module. Given
T E Homcf‘ (V, V), the restriction of 7 to V; induces a homomorphism of A;-modules

o Vo — V)f. We can thus define a functor
R:Ci — Ay-mod, RLV =V,, Ri(n)=m. (6.3)

Notice that Rf}1 is an exact functor, since every object of Cf; is a finitely-semisimple t-
module, and thus a direct sum of its h-weight spaces, and every morphism of Cﬁ“ preserves
these weight spaces.

7 The Structure of Global Weyl Modules

Throughout this section, we will assume that A is finitely generated and infinite dimen-
sional. Recall from Eq. 2.1 that v is a finite-dimensional reductive Lie algebra with Cartan
subalgebra b, that, for every o € R;r , the subalgebra sl, < v, which is generated by
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{xy » ha, Xg}, is isomorphic to s[(2), and recall from Definition 5.4 that, for every A € X,
the global Weyl module W4 (A) is generated by its highest-weight vector w; € W4 (1),.

Lemma 7.1 If € XT and @ € R, then (x;)* )1y, = 0.

Proof The result follows from the invariance of the weights of W4 (X) under the action of
the Weyl1 group of t. O

Given a € A and o € Rj , define a power series in an indeterminate ¥ and with
coefficients in U(h ® A) as follows:

o0

pla,a) = exp (—Zh“?“l u">. 1)

i=1

Fori > 0, let p(a, a); denote the coefficient of u’ in p(a, ), and notice that p(a, a)o = 1.
The following lemma was proved by H. Garland (see [11, Lemma 7.5]).

Lemma 7.2 Letm € N,a € Aanda € R}. Then
m
(o ® @)™ (x)" ' = (=)™ > "(x; ®a" ) pla. @); € Ulsly ® A)(ga ® A),
i=0
where U(sly, @ A)(gq ® A) denotes the left ideal of U(sl, ® A) generated by g, @ A =
kx, ® A.

The next two lemmas will be used in the proof of our first main result, Theorem 7.6. This
first one is technical and part of its proof will be used in the proof of Lemma 7.4

Lemma 73 Let A € X1, o € R:r, and ay,...,a; € A. Then, for everymy,...,m; € N,
we have:
(g ®a" - a"yw; € spany {(x; @aj' - af Yw A [0 < €1, ..., & < Alhe)). (1.2)

In particular, (v @ A)w, is a finitely-generated right A, -module.

Proof We will use induction on ¢. First assume thatt = 1, and fix a € A. From Lemma 7.2,
the first relation in (5.5), and Lemma 7.2, we have:

m
0= (xg ®a)"(x;)"w, = Z(—nm(x; Qa" Hp(a,a)iw;  forallm > A(hg).
i=0
Thus, using the fact that p(a, a)o = 1 and induction on m, we conclude that
(x, ®a™)w, € spany{(x, ®a€)wa;\ |0 <l < Ahy)} for allm € N.

This proves the case t = 1.

Now, let s > 1, assume that (7.2) holds for all # < s, and fix ay, ..., as4+1 € A. Since
[x,.he]l =2x, and A isassumed to be commutative, (7.3)
we have:
2x, ®@ay - al T Hwy = (xy @al" - al) (he @ay T Hwy — (he ®a, 1) (x, ®ay' -+ al wy,
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for all my, ..., msy1 € N. Thus, using the fact that (hy ® agﬁl)wk € w;A,; and the
induction hypothesis (for # = s), we see that
(xy ®al w‘f)w;\ € span{(x, ®a1 fs)w,\Ak |0<¥{i<Ahy),i=1,...,s}

+ spany {(he ® afﬁ')(x; ®ay' - al)w, |0 < b < A(ha),

i=1,...,s},
forall my, ..., msy; € N. Using (7.3) again, we have:
(he ® a7 (xg ® 'l abyw,
= (g ®a; - a")(he @ ST w, —2(x; ®ay' -+ ala H‘T')w
= (@ ®a ---a“)(h ®a€"ﬁ'>wk+<h ®a ), ®ay - -afayTHw,
~(xg ®ay---ala™ ) (he ® a; Ywy,
forall 0 < £q,...,¢; < A(hy) and ms41 € N. Thus, usin the induction hypothesis again
g yp g

(fort = s) on (he®ay") (xg ®a5’ - -as*als 1w and (xg ®ay’ - - a;*al ) (ha®a) Ywy,
we see that
(he ® a1 (xg ®ay' ---al)w;

e spang{(x; ® a’fl e dS WAL [0 < ki < Ah) i =1,..., 5+ 1)
+spany ((he ® a' ) (xg @ ai2 - Hwy [0<ki < Mho),i =2, s+1),
forall0 < ¢y, ..., ¥€s < A(hy) and ms4 € N. Finally, using (7.3) again, we have:

(he ® a;") (x ®ab?--- Yfl')w/\
= (x, ®a2 . Yj_*ll)(h ®al')wl —2(x, ®a . Yf:ll)wk
€ spany {(x; ®aj' - Jfll)w;\Ax |0 <n; < A(hg ) i=1,...,5s+1},
forall0 < €y, ka, ..., ks+1 < A(hy). Hence, Eq. 7.2 follows.

In particular, usmg (7.2) and the assumptions that A is finitely generated and v is a
finite-dimensional Lie algebra, we conclude that (vt ® A)w, is a finitely-generated right

A, -module. O
Lemma 7.4 Let . € X1, o € R;", X1,...,xk € ntand ay,...,a; € A. Then, for all
mi,...,m; €N, the element ([x1, [x2, ... [xk, x5 1...1] ®ai"‘ cea"yw;, is in

span, {([x1, [x2, ... [ve, xg 1. 11 @ al’ - a Y wiAs |0 < €1,y £ < A(a)).

Proof The proof is by induction on k. First assume that k = 1 and let x € n™. Using (7.2)

and the first relation in (5.5), for all my, ..., m,; € N, we have:
(I, xg1®ay" - -af"w, =[x ® 1, x5 ®a‘--~a,m’]wk
=@ Dy ®ay - a"w,

e spany {([x, x; ] ®af1 e dMY W A0 01, 8 < A(ha)).
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This proves the case k = 1. Now assume k > 1 and let x1, ..., x; € n". Using the first
relation in (5.5) and the induction hypothesis, for all m, ..., m; € N, we have:
(Lx1, [x2, - [, xg 1 - N @al™ - af"wy,

m

=[(x1 ® 1), ([x2, [x3, - - [xk, x5 1+ - 1] ® a)

= (x1 @ D(lx2, [x3, - [ xg 1+ - 11 @ay™" -+ a"Hwy,

e {(xr, Doy - Do, xg 1+ 1 ®@af" - al Y waAs | 0< £, ..., £ < A(hq)).
O

m
cead™)w;,

LetUn~ ® A) = ano U,(n~ ® A) be the filtration on U(n~ ® A) induced from the
usual grading of the tensor algebra T(n™ ® A) = @dio(n’ ® A%,

Lemma 7.5 If g is a finite-dimensional simple Lie superalgebra, not of type q(n), endowed
with a triangular decomposition satisfying (€2), then there exists no € N such that

U,(n” ® A)w, A, = Wa(A), foralln > ng.

Proof First, recall that W4 (A) = U(n™ ® A)w; A,. Then, by the PBW Theorem,
Wa() =Um; ® AUMS @ A)wiAy,

where, by abuse of notation, we are denoting by U(n{ ® A) the subspace of U(g ® A)
whose basis consists of all the elements in the PBW basis of U(g ® A) which have no even
component. Since we are assuming that the triangular decomposition g = n~ @ h @ n*
satisfies (€2), we have ng = 1, . Hence, U(na ® A)w,, which is the (t ® A)-submodule
of W4 (A) generated by w;, is a quotient of the Weyl (v ® A)-module of highest weight
M. This is a finitely-generated A,-module by [1, Theorem 2(i)]. Thus U(na ® A)w, is a

finitely-generated A, -module, that is, there exist fi, ..., fx € ng ® A such that
Uy @ AwiAs = Y fii - fiwaAs.
I<ij<--<i;<k

Now, recall that —6 denotes the lowest root of g and that we have fixed a triangular
decomposition of g satisfying (€2). Hence 6 € R;}. Notice that, since g is assumed to
be finite dimensional, there exists kg € N such that [x1, [x2,...[xk, x5 ]...]] = 0, for
all k > ko and xq, ..., x; € nT. Moreover, since g is assumed to be simple and x, is a
lowest-weight vector in the g-module g, we have

n Cspang{[x1, [x2, - - [xk, xg 1o -1 [ X1, oo Xk € nTand 0 < k < ko). (7.4)

Hence, it follows from Lemma 7.4 that, for each « € RT, the space (g—q¢ ® A)w, is a
finitely-generated Aj;-module. Thus, (ni_ ® A)w, is a finitely-generated Aj-module, that
is, there exist g1, ..., g¢ € ni_ ® A such that

(ny ® AwyAy = Z g1+ 8jsWaAL.
l<ji<<js<t

Moreover, notice that [ng ®A, n{ ®A] C n{ ® A. Then one can use induction on s and
¢ (similar to the proof of Lemma 7.3) to prove that

U7 @ UG @ AywsAr = Y gjy 8 fiy - fiywas.

1<iy <-<ip <k
1<jp<-<js<t
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The result follows. O

We now state and prove the first main result of the paper. Notice that the existence of a
triangular decomposition satisfying (€2) will be crucial in the proofs of Theorem 7.6 and
Proposition 7.8 (see Example 7.7).

Theorem 7.6 Let g be a finite-dimensional simple Lie superalgebra not of type q(n)
endowed with a trinagular decomposition satisfying (€2). For all . € X, the global Weyl
module W4 () is finitely generated as a right A, -module

Proof We will show that, for every n > 0, U,(n™ ® A)w, A, is a finitely-generated A, -
module. Recall that —6 denotes the lowest root of g. Also recall that A is assumed to be
finitely generated and let aj, ay, .. ., a; be generators of A. Denote by B,,- a (finite) basis
of n~ extracted from the right side of Eq. 7.4 and let B,,-g 4 be the (finite) set

(y®al"---a |y €By-and 0 < £1,..., & < r(ho)).
We will use induction to prove that, for every n € N,
U,(n~ ® Aw;, € spany (Y] -+ Y w3 Ay [ 1 >0, Yi,....Y; € By-gaandny + -+ +n; <n}.

Forn = 1, the result follows from Lemma 7.4 and the construction of B,,-g 4. Suppose now
n > 1. Without loss of generality, let u = uju,_1 be a monomial, with u; € Uy(n™ ® A)
and u,—1 € U,_1(n~ ® A). By induction hypothesis, we have:

uw;, = uiuy—1wy € spam{u Yy - Y w3 Ay |1 >0, Yi,.... Y € By-ga, ni+--+n <n—1}

Let u’ be an element in spank{YI"1 Y w Ay [t >0, Y, .., Y € Bumga, 11+ +
n; < n — 1}, and without loss of generality assume that u; and u’ are homogeneous. By
induction hypothesis, we have:

wy'wy, = [y, wJwy, + (=P

e U,1(n” ® A)wy Ay + spany {u'Yw; Ay | Y € By-ga}

C spank{Yln1 ~~~Y;ﬂ'lwax [t>0, Yi,...,Y41 € By-gaandng + -+ +n41 < n}.

This shows that U, (n™ ® A)w; A, is a finitely-generated A, -module for each n > 0. Since
there exists ng € Ny such that U,(n™ ® A)w; A, = Wa(A) forall n > ng (by Lemma 7.5),
the result follows. O

In the non-super setting, Theorem 7.6 was proved in [1, Theorem 2(i)] for the untwisted
case, and in [9, Theorem 5.10] for the twisted case. Notice that in the non-super setting the
analogues of Theorem 7.6 do not depend on the choice of the triangular decomposition of g.

Example 7.7 Let g be either a basic classical Lie superalgebra of type I or isomorphic

to p(n), S(n), H(n), or W(n), and A be an associative, commutative, finitely-generated

infinite-dimensional k-algebra. We will show that, for all A € X, the global Weyl module

W4 (X)) associated to a parabolic triangular decomposition (recall Definition 4.2) g =n~ @

h @ n™T, is not finitely generated. Notice that a parabolic triangular decomposition cannot

satisfy (€2), since t + n is not a subalgebra if the triangular decomposition satisfies (€2).
In fact, in this case we have:

g®A=(" ®A)®(t+nH)®A),
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where t+n™ is a subsuperalgebra and g~ is a nontrivial subspace of g. Thus we can consider
the (t +n") ® A-module W* () given as the quotient of U((t +n™) ® A) by the left ideal
generated by

0o ®A foralla e RY,  h—A(h) forallhebh, (x )M foralla € A,

Notice that the image of 1 € U((t+n")® A), which we will denote by u;, generates W*(1).
Now, let

wWe : ®A
WE() = indl o gu WO,

and notice that W (1) is generated by 1®u;,. Also notice that there exists a unique surjective
homomorphism of g® A-modules W4 (L) — WT(L) satisfying wy, — (1®u;), thus WE(X)
admits a structure of right A, -module (cf. Lemma 6.1). Moreover, (g~ ® A) ® W*(1) is a
right Ay -submodule of W¥ (). Since A is assumed to be infinite dimensional, we have that
WE()) is not finitely generated as a right A, -module. This concludes that W4 (1) is also not
finitely generated as an A -module.

Proposition 7.8 Let g be a finite-dimensional simple Lie superalgebra not of type q(n)
endowed with a triangular decomposition that satisfies (€2). For all .. € X, the algebra
A, is finitely generated.

Proof Since A}, is defined to be U(h ® A)/ Annyga (wy), to prove that A is finitely gener-
ated is equivalent to proving that there exist finitely many elements Hy, ..., H, € U(h® A)
such that

Uh® Aw, = spank{Hlkl .- -H,’,‘”w)\ | k1, ..., k, > 0}.
Moreover, since U(h ® A) is a commutative algebra generated by h ® A, this is equivalent
to proving that

(h ® Ayw, C span (Hf' - Hwy | ki, ..., ky > 0. (1.5)

In order to prove (7.5), first recall that A is assumed to be finitely generated and let
ai,as, ...,a; be generators of A. Now denote by —6 the lowest root of g. Notice that,
since we have fixed a triangular decomposition of g satisfying (€2), we have 6 € RY.
Also notice that, since g is assumed to be finite dimensional, there exists kg € N such that
[x1, [x2, ... [xk, xg 1...1] = 0, for all k > ko and x1, ..., x¢ € nT. Moreover, since g is
assumed to be simple and x,,; is a lowest-weight vector in the g-module g, we have

h®A C span{[x1, [x2, - - [xp, x5 1- - NN®ay @ | x1,...,xp ent,0<k <ko, 0 <my,....,m}.

Using arguments similar to those used in the proof of Lemma 7.3, we see that for

every k € Ny and x1, ..., x; € nt such that [x1, [x2, ... [x, x,]...1] € b, the element

([x1s [x2, - [xrs xg 1.2 1] ®a117” . ~atm')w;\ is a linear combination of elements of the form
([x1, 2, Do x5 1 AT ®@at - af Y PO, ki, .. k)ws,

where 0 < £1,...,¢; < A(hg),0 < ky,..., ks < A(hy), and P(0,ky, ..., k) is a finite

product of elements of U(h ® A) of the form (hy ® alf‘ e af’ ). Thus the result follows. [J

Example 7.9 Given k > 0, let Sy denote the symmetric group on k letters, let (A®¥)S
denote the subalgebra of A®* consisting of all the fixed points under the natural action of Sy
on A®%, When g is either of type II, or isomorphic to S(n) or H (n), t is a finite-dimensional
semisimple Lie algebra. In particular, X* C PJ, where P denote the set of dominant
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integral weights of t. Thus, in these cases (as described in [1, Theorem 4]), the algebra
A, is isomorphic to the algebra (A®"1)S1 @ - .. @ (A®™)Sm where ry, ..., r, are unique
non-negative integers such that A = rywy + - - - 4+ r,wy, and where wy, . .., w, denote the
fundamental integral weights of t. If g is either basic classical of type I or isomorphic to
W (n), then v = 3@/, where 3 is the 1-dimensional center and t’ is the semisimple part of t,
and b = 3 ® b/, where b’ is a Cartan subalgebra of v/. If |; = 0, then A, is also isomorphic
to the algebra (A®"1)51 @ --- @ (A®™)Sm If A(z) # O for some z € 3, there exist A € Pj
and n € 3* such that A(z, h) = n(z) + A(h) for every z € 3, h € by’. Then by the proof of
Proposition 7.8 we have that

UG ® Aw, Cklz®a UG © Aw;,
where 0 < ¢; < A(hg), foralli = 1,...,¢. In particular, since Uh ® A) E UG R A) ®
Ul ® A), this yields a surjective homomorphism of algebras
k[Z@diZ[]®(A®rl)Srl ®_._®(A®rn)Srn _,_)1&)H

where now ry, ..., r, are the unique non-negative integers such that A = rjw;+- - -+r,w,.
The next result follows directly from Theorem 7.6.

Corollary 7.10 Let g be a finite-dimensional simple Lie superalgebra not of type q(n)
endowed with a triangular decomposition that satisfies (€2). If M is a finitely-generated
A -module (resp. finite dimensional), then Wj}x M is a finitely-generated g® A-module (resp.
finite dimensional).

8 Local Weyl Modules

In this section we will assume that g is either sl(n, n) with n > 2, or a finite-dimensional
simple Lie superalgebra not of type q(n), and that A is an associative commutative finitely-
generated k-algebra with unit.

Definition 8.1 (Local Weyl module) Assume that ¢ € (h ® A)* and /|, € X *. The local
Weyl module Wl{’c(w) associated to ¥ is defined to be the cyclic g ® A-module given as the
quotient of U(g) ® A by the left ideal generated by

A, h—yh), @)V forallheh® Aanda € A,.

Denote the image of 1 € U(g® A) in WJ‘OC(I//) by wy, and notice that as a g ® A-module,
W}\"C(gﬁ) is generated by the vector wy, satisfying the following defining relations:

T @A) wy =0, hwy =y MWwy, )V w, =0, forallheh® Aanda € A,.

8.1)

The next result describes local Weyl modules as universal objects. Its proof is similar to
that of [2, Proposition 4.13].

Proposition 8.2 Ler € (h ® A)* such that Y|y = A € XT. Assume that W € Cﬁ; isa
finite-dimensional g ® A-module that is generated by a highest weight vector w € W such
that xv = ¥ (x)v, for all x € h ® A. Then there exists a surjective homomorphism from
W}L‘OC(W) to W sending wy, to w. Moreover, if the triangular decomposition of g satisfies
(C1), then W}fc(l/f) is the unique object in Cﬁ with this property.
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Notice that, since A, is a commutative algebra, every irreducible finite-dimensional A, -
module is one-dimensional. For ¥ € (h ® A)* such that |, € X¥, let ky denote the
one-dimensional irreducible A;-module, where xv = v (x)v forall x € A, and v € ky,.

Remark 8.3 Recall that W}fc(x//) is generated by wy, that is, W/lfc(l/f) = U(g ® Awy.
Thus, since wy, satisfies nt® A)wy = 0and hwy = Y (h)wy forallh € h ® A, we have

Rf“’ W (y) = kwy,. Moreover, notice that kwy, is isomorphic to ky as a A;-module.

For the remainder of this section we fix a triangular decomposition of g satisfying (€2).
The next result describes local Weyl modules via Weyl functors.

Theorem 8.4 Assume that g is a finite-dimensional simple Lie superalgebra not isomorphic
10 q(n). Let ¥ € (h ® A)* such that |y = » € XT. Then Wf:‘lkw = WIE‘OC(W).

Proof First recall from Remark 8.3 that W°(y) = U(g ® A)wy, and Ry W (y) = kwy,.
Thus, there exists a unique homomorphism of g ® A-modules Eyloc(y - W}QR)/\4 W/l{0c W) —

We(y) satistying
er‘oc(w)(u@)ww) = uwy forallu e Ug® A.

Moreover, EW/laoc W) 18 surjective.

Now, notice that WQR)/; W/lfc(t/f) is a g ® A-module generated by the highest-weight
vector 1 ® wy, (see Remark 8.3). Moreover, by Corollary 7.10, W4 RA W°(y) is finite
dimensional. Thus, 1 @wy, satisfies all the relations (5.4). This implies that we have a unique
homomorphism of g ® A-modules n: Wllfc(l//) — WQRQ Wkoc(w) satisfying n(wy) =
1®wy,. Moreover, 7 is surjective, No€yyloc(yy = idW}‘oc(w), and Eqploc(yy 0N = idW?R; wioe ()
The result follows.

The next result follows directly from Theorems A.6 and 8.4.

Corollary 8.5 Let A and B be finite-dimensional commutative, associative k-algebras with
unit, Y € (h ® A)* such that |y = A € Xt and ¢ € (h ® B)* such that plp = 1 € X+
and A + . € X*. Then

Wikl (A7, (ky 1)) = 5 (WY (W) @ 75 (Wh(9))
as g ® (A @ B)-modules.

The next result gives a homological characterization of local Weyl modules, and its proof
is similar to that of [9, Lemma 7.5].

Corollary 8.6 Letyy € (h® A)* suchthat |y = A € X*. A g® A-module V is isomorphic
to the local Weyl module W}fc(w) if and only if it satisfies all of the following conditions:

(@) Vel

(b) RLV =ky;

(c) Homcﬁ(V, U)=0and Ext(ljA (V,U) =0, for all finite-dimensional irreducible U €
A

C% with Uy, = 0.
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Now we give necessary and sufficient conditions for local Weyl modules to be finite
dimensional. We begin by giving a sufficient condition. In the non-super setting, this result
was proved in [4, Theorem 1] for A = k[#%!], and in [7, Theorem 1], for the case where
A is the algebra of functions on a complex affine variety. For the case where g is either
basic classical or sl(n,n) with n > 2, and A is finitely generated, it was proved in [2,

Theorem 4.12]. In our curent setting, the result is a direct consequence of Corollary 7.10
and Theorem 8.4.

Theorem 8.7 Let ¥ € (h ® A)* with |y € XT. If g is either isomorphic to sl(n, n) with
n > 2, or a finite-dimensional simple Lie superalgebra not of type q(n), and the triangular
decomposition g = n~ @@ nt satisfies (€2), then the local Weyl module W‘IAOC(IP) is finite
dimensional.

In what follows we give a necessary condition over triangular decompositions of g for
local Weyl modules to be finite dimensional. We begin with a technical lemma.

Lemma 8.8 If v € (h ® A)* is such that ¥l = A € X, then there exists a finite-
codimensional ideal I C A such that (ny ® I )Wi{’c(lﬁ) 5 =0.

Proof Leta € Rj and let /, be the kernel of the linear map

A —> Homy (5-0 ® WX ()1, (8o © Ay )
a— [uQ@vi> M®a)v], a€A ucg 4 ve Wllfc(t//)x.

Since g_, is finite dimensional for all @ € Ry, and since W}fc(w)x =Ubh e DHwy =
kwy , Lemma 7.3 implies that (g_, ® A)wy is finite dimensional. Thus, I, is a finite-
codimensional linear subspace of A. We claim that I, is, in fact, an ideal of A. Indeed, since
a # 0, we can fix & € b such that «(h) # 0. Then, foralla € A, b € I, v € W‘LOC(I/I))L,

and y € g_o, we have
0= (®a)(y®b)v = [hQa, yQblv+(yRb)(h®Ra)v = —a(h)(yQab)v+(y®b)(h®a)v.
Since (h ® a)v € W}L‘O"(w);\ and b € Iy, we have (y ® b)(h ® a)v = 0; and since we
have assumed that o (%) is nonzero, this implies that (y ® ab)v = 0. As this holds for all
vE Wllfc(l/f))\ and y € g_y, we have that ab € I,. Hence I, is an ideal of A.

Let I = ﬂaeRt I, and notice that (ny; ® I)WLOC(W);L = 0. Since R:“ is a finite set, I

is an intersection of finitely many finite-codimensional ideals, and thus I is also a finite-
codimensional ideal of A. (]

Definition 8.9 For v € (h ® A)* with /|, € X7, let I, be the sum of all ideals / C A
such that (ny; ® Nwy = 0.

Remark 8.10 It follows from Lemma 8.8, that Iy, is a finite-codimensional ideal of A and
from Definitions 8.1 and 8.9 that ((n;, ® e Iy)wy = 0. Furthermore, since Iy has
finite codimension and A is assumed to be finitely generated, we have that I:Z has finite
codimension, for all n € N (see [2, Lemma 2.1(a),(b)]).

Given ¥ € (h ® A)* such that /|, € X, let wf;j denote the set

(xeg| x®a)wy =0foralla € A}.
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Notice that wf;/ is a subalgebra of g and n™ C wi (by Definition 8.1).

Lemma 8.11 Let g be a finite-dimensional simple Lie superalgebra not of type q(n), and
Y e (h ® A)* be such that |y = A € X+, If x; is in the v-submodule of g generated by

wi, then there exists ny € N such that (g ® ];W) wy = 0.

Proof Assume that x, is in the t-submodule of g generated by wg. Since v is a reductive

Lie algebra, x, isin

span]k{[x;l,[...,[xf;k,[xyl,[,..,[xn,z]..,]]]...]]lk,ﬁeN,ﬁl,...,ﬁk,yl,...,yg IS R;r,zewlgﬁ}.

Now, since x,, € wf;/ forall y € R;" s wf/’/ is a subalgebra of g and v is finite dimensional,
there exists N € N such that

xg € spang{[xg ,[....[xg,2].. ]Ik <N, Bi, ..., B € R,z € wg}.
Thus, since (xﬂ_ ® b)wy = 0forall B € Rj and b € I (by Definition 8.1), we see that

(xg ® a)wy =O0foralla € I:;/V' Hence, since g = spany {[xq,, [- -, [Xa,, X 1---1] [ n €
N, o1, ...,a, € R}, it follows that (g®]$’)ww =0. O

Lemma 8.12 Let g be a finite-dimensional simple Lie superalgebra not of type q(n), and
¥ € (h ® A)* be such that Y| =1 € X+

(a) If g is basic classical of type I, then, for every choice of triangular decomposition
g=n"®HhdnT, Xg IS in the v-submodule of g generated by wg.

(b) If g is basic classical of type I, then x, is in the t-submodule of g generated by wg if
and only if the triangular decomposition g = n~ @ b ® n is not a parabolic one.

Proof Assume first that g is basic classical of type II. Since (n™ ® A)wy = 0, we have
(Z ®a)wy =0forall 7 € gy, € R and a € A. Since v = gj is a finite-dimensional

simple Lie algebra and gj is an irreducible r-module, then there exist a € RT and 7/ € g4
such that

xy € spany{[xp . Lo g Doy Lo Doy 211D Tk € €N, B B ve € RYE)

Letz = [xy,, [. .., [xy,, 2']...]], and notice that (z ® a)wy, = 0 for alla € A.

Now assume that g is basic classical of type I. Recall that in these cases g admits a
Z-grading g1 © go @ 91, 95 = g0 = v, and g7 = g1 D g1, where g; and g are
irreducible t-modules. If we choose a triangular decomposition g = n~ @ h @ n' that is
not a parabolic one, for each i € {—1, 0, 1}, there exists B; € RT such that gg, < g; Nn™.
In particular, gg_,, gg,. 98, € wi. Since x, is not in the center of g, and since g1, v/ and
g1 are irreducible t-modules, it follows that x, is in the t-submodule of g generated by
95, DO D9 S wf};-

Conversely, if g = n~ @h@n™ is a parabolic triangular decomposition, then x,; belongs
to either g or g;. In any case, we have that x, is not in the t-submodule of g generated
by w?p (in fact, if x, € g+1, then the v-submodule of g generated by wf;, isgo®gy1). O

This next result gives, for basic classical Lie superalgebras, a necessary and sufficient
condition for a local Weyl module to be finite dimensional, and when g is either p(n) or of
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Cartan type, a sufficient condition and a necessary condition for a local Weyl module to be
finite dimensional.

Theorem 8.13 Let g be a finite-dimensional simple Lie superalgebra not of type q(n) with
a triangular decomposition g = n~ ® h & n™, let ¥ € (h @ A)* be such that vy € X+,
and let A be infinite dimensional.

(a) Ifgisbasic classical of type II, then W/lfc () is finite dimensional (for every triangular
decomposition).

(b) If g is basic classical of type I, then Wi{”(lﬁ) is finite dimensional if and only if the
triangular decomposition is not a parabolic one.

(c) If g is either of type p(n) or of Cartan type, and the x; is in the t-submodule of g
generated by wfy, then W}{’C(W) is finite-dimensional.

(d) If g is either of type p(n) or of Cartan type, and the triangular decomposition of g is
parabolic, then W}{’C(lﬁ) is infinite-dimensional.

Proof The proofs that Wkoc(w) are finite dimensional (that is, item (a), the if part of item (b)
and item (c)) follow from Lemmas 8.11 and 8.12 using standard arguments.

To prove the only if part of item (b) and item (d), suppose that g is either basic classical
of type I, or of type p(n), or of Cartan type, and that the triangular decomposition g =
1~ @ h ® nt is parabolic, that is, (t + n™) is a Lie subsuperalgebra of g and there exists
a nontrivial subspace g~ C g such that g = g~ @ (v + n*). Thus, we can consider the
(t+n") ® A-module W* (1) defined to be the quotient of U((t +n™) ® A) by the left ideal
generated by

9. ®A foralla € R, h—y(h) forallheh®A, (x;)?"* foralla € A,.

Notice that the image of 1 € U((r + n*) ® A), which we will denote by uy,, generates
WE().
Now, let L
WEW) = indS5 o0 WEW),

and notice that W¥(y) is generated by 1 ® uy,. Moreover, since A is assumed to be infinite
dimensional, we have that g~ ® A is infinite dimensional, which implies that W*(y) is
infinite dimensional. Finally, notice that there exists a unique surjective homomorphism of
g ® A-modules W' () — WT(y) satisfying wy + (1 ® uy). Since W¥(y) is infinite
dimensional, we conclude that W}L“’C(W) is also infinite dimensional. (|

Example 8.14 Let g be a simple Lie superalgebra of Cartan type, and let ¢ € (h ® A)* be
such that ¥|, € X ™. If one chooses either the maximal or the minimal triangular decom-
position (see Section 3.2), then x, is not in the v-submodule generated by wlgp. In these

cases, W}f“(xp) will not be finite dimensional. On the other hand, if one chooses a tri-

angular decomposition of g satisfying (€2) (see Proposition 3.4), then W/lfc(l//) is finite
dimensional.

Remark 8.15 Traditionally, local Weyl modules are universal objects in certain categories
of finite-dimensional modules (see, for instance, [4, Proposition 2.1(iii)], [7, Theorem 5],
[1, Proposition 5], [6, Corollary 4.6] and [2, Proposition 4.13]). In the current setting, we
have proved in Proposition 8.2 that the local Weyl module Wlf’c(t/f) is a universal object in
the category C/’}\ (A = ¥r|p). However, if g is a Lie superalgebra of type I, p(n) or Cartan,
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with a parabolic triangular decomposition, then local Weyl modules are infinite-dimensional
(see Theorem 8.13(b), (d)). In these cases, there is no finite dimensional g ® A-module of
highest-weight A of which every finite dimensional g ® A-module of highest-weight A is a
quotient.

We illustrate this claim with a concrete example. Let A = k[¢], g be a Lie superalgebra
of type I with a distinguished triangular decomposition (which is parabolic), and let y = 0.
Notice that, in this case, Wﬂl‘ff](w) is free as a left U(ni_ ® k[¢])-module. Now, for every
k > 0, consider the g ® k[7]-module W} given as the quotient of U(g ® k[¢]) by the left
ideal generated by

ek, bRk, x,, y®ik, foralla € Acandy € ny.

Notice that Wy € Cﬂi‘[t] is a quotient of WEL?EJ(W) and that dim Wy, = phdimng gor all k > 0.
Since there is no upper bound for k, we see that there is no finite-dimensional g ® k[z]-
module of highest-weight A that projects onto Wy for all £k > 0.

Corollary 8.16 Let g be either of type p(n) or a basic classical Lie superalgebra, and let
LOH®A) ={y e (h® A)* | y(HQ I) =0 for some finite-codimensional ideal I of A}.

(a) If g is basic classical of type II, then W/lfc(l/f) =0ify ¢ L(Hh® A).

(b) If g is either of type p(n) or basic classical of type I, and the triangular decomposition
is not a parabolic one, then W/lfc(w) =0ify ¢ L(HhR A).

(¢) If g is of Cartan type and x, is in the t-submodule of g generated by wi, then

W) =0ify ¢ L(H® A).

Proof In each one of these cases, Wi{’c(lﬁ) is finite dimensional. Thus, there exists a finite
codimensional ideal I of A such that (g ® I)wy = 0. In particular, (h @ a)wy = ¥ (h @
a)wy =O0foralla € I.If ¢ ¢ L(h ® A), then there exists a € [ such that ¥ (h @ a) # 0.
In this case, wy = 0. Thus W°(y) = U~ ® A)wy = 0. O

We finish this section with two results regarding tensor products of local Weyl modules.
They generalize well-known results.

Lemma 8.17 Let Jy, be the sum of all ideals I C A such that (§ ® )W () = 0. Then Jy,
is a finite-codimensional ideal of A.

Proof By [17, Proposition 8.1], all ideals of g ® A are of the form g ® I, where I is an ideal
of A. In particular, the annihilator of the action of g ® A on W/]fc(w) is of the form g ® 1,
for some ideal I of A. Since Wi{’c(w) is finite dimensional and (g® A) /(g ) = gR A/I,
we see that / must be a finite-codimensional ideal of A. Now the result follows from the
fact that I C Jy. O

Given an ideal I of A, we define its support to be the set Supp(/) = {m € MaxSpec(A) |
I € m}. The next result generalizes [2, Theorem 4.15].

Proposition 8.18 Let , ¢ € (h ® A)*, |y = A, ¢ly = i, and suppose that A, u € X+
are such that A+ € XV, If Supp(Jy ) NSupp(Jy) = @, then (omitting the pull back maps)
we have

W +¢) = WEW) © Wik(@),

as g ® A-modules.
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Proof Using the fact that Supp(Jy ) N Supp(J,) = ¥, one can prove that the action of g ® A
on the tensor product W/lfc(llf) ® WX’C (¢) descends to an action of g ® (A/Jy, @ A/J,) on
W}{’C(W) ® W}‘OC (). By Lemma 8.17, both algebras A/Jy, and A/ J,, are finite dimensional.
Thus we can use Corollary 8.5. The result follows from Theorem A.6. O
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Appendix: Homological Properties of Weyl Functors

The results of this section show that the Weyl functors defined in the current paper satisfy
properties similar to the ones satisfied by Weyl functors defined in the non-super setting.
Since the proofs of ther results of this appendix are very similar to those in the non-super
setting, we refer to [1, §3.7] and [9, §4] for the details.

Throughout this appendix, we assume that g is either sl(n,n) with n > 2, or a
finite-dimensional simple Lie superalgebra not of type q(n), endowed with a triangular
decomposition satisfying (€1). We will also assume that A, B and C are associative,
commutative k-algebras with unit.

Proposition A.1 Let A € XT.

(a) Forevery Ay -module M, there is an isomorphism of A, -modules R;W’f\M = M that
is functorial in M.

(b) W/ A,-mod — C5 is left adjoint to R’y : C;; — Aj-mod.

(c) WA is fully faithful.

(d) If M is a projective A, -module, then Wj\qM is a projective object in Cﬁ.

Corollary A.2 For each A € X7, the module Wa()) is projective in Cﬁ and the
module K (L) is projective in Cﬁ. Moreover, there is an isomorphism of algebras
Homg, (Wa(h), Wa(h) = Ay

Notice that, despite Wﬁ being a fully faithful functor (by Proposition A.1(c)), it is not an
equivalence of categories, as it is not essentially surjective. In fact, if © < A, then W4 (w)
is an object of Cf\ for which there exists no A;-module N satisfying W’)xN = Waw). df
WAN = Wy(w), then N = RAWAN = R, Wy () = 0.) Theorem A.3 describes for
which objects M of C,/}x there exists an A, -module N satisfying W)/;N =M.

Theorem A.3 Let M be an object of Cﬁ. Then M = Wj\‘ R}[‘AM if and only if, for each object
N of Cf‘ that satisfies N, = 0, we have

Homg: (M, N) = Exté/AA (M, N) = 0.
Corollary A.4 The functor W)/; is exact if and only if, for each object N of Cﬁ that satisfies

N, =0, we have

Exti,}x (Wh—,N)=0.
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Similar to the definition of A, in Section 6, for each A € X1, let

B, =U(h ® B)/Amnygp(w;) and Cy =U(h ® C)/Annygc(w)).

Remark A.5

(a) Every homomorphism of k-algebras w: C — A induces a unique (even) homomor-
phism of Lie superalgebras (which we denote by the same symbol) 7: g C — g® A
satisfying

T(x®c)=xQmn(c) forallx egandc e C.

This latter homomorphism induces an action of g ® C on any g ® A-module M via the
pull-back. Let 7*M denote such a g ® C-module.

(b) Leti € XT and w: C — A be a homomorphism of k-algebras. Using item (a), we
see that 7 also induces a homomorphism of associative superalgebras (which we keep
denoting by the same symbol), 7: U(g ® C) — U(g ® A). Notice that by construc-
tion, TtmT®C) S nt @A, w(h)—A(h) = h—A(h) forall h € b, and 7w (x;)* = (x;)k
forall « € A, and k > 0. Hence

T (Anng®c(w;h)) C Anngga(w;) and 7 (Annb@,c(wk)) C Annpga (w;,).

Thus 7 induces a homomorphism of k-algebras 7: C, — A;, and every A,-module
V admits a structure of C,-module via the pull-back along 7. Denote this C;-module
by T*V.

(c) LetA,u € XT besuchthat A+ u € X, and recall that the action of the superalgebra
U(g® A) on W4 (L) ® Wy (w) is induced by the comultiplication A: U(g ® A) —
U(g®A)®U(g® A). In particular, we have x (w; Qw,) = (xw;) @w, +wy ® (xw,)
forall x € g ® A, and thus w; ® wy, is a highest-weight vector in Wa (1) @ Wa(u).
Hence, there exists a unique surjective homomorphism of g ® A-modules & : W4 (A +
w) = Wa(h) @ Wa(p) satisfying &(wyy,) = w; ® wy. Now, notice that RZJF”& isa
surjective homomorphism of U(h ® A)-modules:

R7&: U@ Awrpy — U @ A)ws @ U(h ® A)wy,.

Moreover, since U(h ® A)w, = A, forallv € X+, Rif”é induces a homomorphism
of commutative k-algebras A ,: A1, — A; ® A,. Thus, given an Aj-module M
and an A ,-module N, their tensor product M ® N admits an A, 1 ,-module structure
via the pull-back along A; ;. Denote this A, 1 ,-module by Af\,u (M ®N).
Theorem A.6 Let g be a finite-dimensional simple Lie superalgebra not of type q(n), with
a fixed triangular decomposition satisfying (€2). Suppose also that A and B are finite-
dimensional commutative, associative k-algebras with unit and let tp: A ® B — A and
ng: A@® B — B be the canonical projections. Let A, jn € Xt be such that x + u € X+.
If M € Ay-mod, N € B,-mod are finite dimensional, then there is an isomorphism of
g ® (A & B)-modules

Wiap (A, (M ® N)) = 7 i (WiM) @ 5 (WL N).
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